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We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon

exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks

with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers

single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare

our calculations with the results of HERMES and COMPASS, finding good agreement for �þ production

at HERMES, and qualitative agreement for �0 and Kþ production. Our predictions for pion and kaon

production at COMPASS could be probed with increased statistics. The successful comparison of our

calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have

some orbital angular momentum in the infinite-momentum frame.
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I. INTRODUCTION

It is well known that transverse-momentum-dependent
distribution and fragmentation functions can have a non-
trivial spin dependences and that the so-called ‘‘T-odd’’
transverse-momentum-dependent distribution and frag-
mentation functions can lead to single-spin asymmetries
[1–4]. They are also often referred to as ‘‘naively T-odd,’’
because the appearance of these functions does not imply a
violation of time-reversal invariance, since they can arise
through final-state interactions. The Sivers distribution
function f?1T , schematically depicted in Fig. 1, is the oldest
example of such a function.

It describes the difference between the momentum dis-
tributions of quarks inside protons transversely polarized in
opposite directions. The Sivers effect was put forward as a
possible explanation for the large single-spin asymmetries
observed in p"p ! �X experiments [1,3,5]. Furthermore,
it generates single-spin asymmetries in inclusive hadron
production in deep-inelastic scattering (SIDIS) [4,6].
These have been measured by the HERMES collaboration
to be nonzero for lp" ! l0�X [7], and updated HERMES
results for pion and kaon production have been reported in
[8]. More recently, COMPASS has analyzed their SIDIS
data on pion and kaon production off a deuteron target [9],
and collected data using a proton target in 2007.
Phenomenological analyses of SIDIS data have been per-
formed in Refs. [10–13]. The Sivers effect may also result,
e.g., in asymmetric di-jet correlations in p"p ! jet jet X
[14,15], but these are not yet visible in the data analyzed to
date [16].

In recent years the importance in hadron physics of the
role of the transverse momenta of the partons has been
better recognized, since they provide time-odd distribution
and fragmentation functions, and make possible single-

spin asymmetries in hadronic processes [4,6,17].
Specifically, it has been understood that one-gluon-
exchange final-state interactions (FSI) are a calculable
mechanism for generating a transverse single-spin asym-
metry in SIDIS [6]. This FSI generates a Sivers effect when
the distribution functions are allowed to be functions of the
transverse momenta of the partons, as well as their longi-
tudinal momentum fractions. Therefore, taking the trans-
verse momenta of the partons into consideration enlarges
the realm of investigation of the nucleon structure.
A simple scalar diquark model was used in [6] to dem-

onstrate explicitly that this FSI can indeed give rise to a
leading-twist transverse single-spin asymmetries in SIDIS,
which emerged from interference between spin-dependent
amplitudes for different nucleon spin states. It was ob-
served in [6,18] that the same overlap integrals between
light-cone wave functions that describe the contribution to
the nucleon anomalous magnetic moment from a given
quark flavor also appear in the Sivers distribution for that
quark flavor (with additional pieces in the integrand). Since
these integrals are the overlaps between light-cone wave
functions whose orbital angular momenta differ by �Lz ¼
�1, nonzero orbital angular momenta of the quarks inside
the proton are essential for the existence of the Sivers
asymmetry [6,18].

FIG. 1 (color online). Schematic depiction of the Sivers dis-
tribution function f?1T . The spin vector ST of the nucleon points

out of and into the page, respectively, and kT is the transverse
momentum of the extracted quark.
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A more realistic model for time-even transverse-mo-
mentum-dependent parton distributions was considered in
[19], namely, a quark-diquark model with both scalar and
axial-vector diquarks, as suggested by the simple SU(6)
quark model of the nucleon. The FSI approach was re-
cently applied within this type of model also for time-odd
quark distributions in [20–22]. The authors of [21] consid-
ered different choices of the diquark propagator and gluon-
diquark vertex. A more general nucleon–quark-diquark
vertex and a general form of gluon-diquark vertex have
also been considered in [22]. We note that the simple
quark-diquark model is only a naive description of the
nucleon, and is applicable only for valence quarks. In
this paper we present results obtained within this model
with the simplest choices for the nucleon–quark-diquark
vertex, the gluon-diquark vertex, and the diquark
propagator.

We calculate the Sivers distribution functions in SIDIS
induced by the one-gluon exchange final-state interaction
for models of the nucleon in which the spectator diquark is
treated as either a scalar or an axial-vector. As we discuss
below, the simplest SU(6) wave function of the nucleon
suggests that the spectator diquark would be in a combi-
nation of these two states. We consider two types of form
factor at the nucleon–quark-diquark vertices: the dipole
form factor used by Jakob et al. in [19] and the Gaussian
form factor used by Gamberg et al. in [23,24]. When either
of these form factors is used, we find that at larger trans-
verse momenta the asymmetry calculated using a one-
gluon exchange may exceed unity in magnitude, indicating
that unknown higher-order effects must become important
there.1 Imposing the physical restriction that the asymme-
try calculated by one-gluon exchange not exceed unity
changes rather little the Sivers single-spin asymmetry after
integration over the transverse momentum, indicating that
the results we present should be quite reliable. The simi-
larity of our predictions for dipole and Gaussian form
factors also indicates the stability of our results.

We compare our results for the Sivers single-spin asym-
metries for �þ, �0, ��, Kþ, and K� with the SIDIS
measurements made by HERMES and COMPASS. We
find good agreement with the HERMES results for �þ
production, and qualitative agreement for �0 and Kþ
production. The experimental errors in the HERMES mea-
surements of the Sivers asymmetries for �� and K�
production do not permit any definite conclusions to be
drawn. The same is true of the current measurements by
COMPASS, and we look forward to increased statistics
that could further test our predictions for pion and kaon
production in SIDIS. However, the successful comparison
of our calculations with the HERMES data already con-

stitutes prima facie evidence that the longitudinal projec-
tion of the net quark angular momentum in the infinite-
momentum frame is nonzero.

II. BASIC FORMULAS FOR THE SIVERS
ASYMMETRY

A. Definition of the Sivers asymmetry A
sinð�h��SÞ
UT ðxÞ

The SIDIS cross section lþ N" ! l0 þ hþ X on a
transversely-polarized (T) target contains 8 spin-dependent
azimuthal modulations. Here we consider only one of
them—the so-called Sivers asymmetry. The relevant angu-
lar distribution of the cross section contains unpolarized
(U) and Sivers (Siv) parts:

d6�ðx; y; z; PT;�h;�SÞ
dxdydzd2PTd�S

¼ d6�Uðx; y; z; PT;�hÞ
dxdydzd2PTd�S

þ ST
d6�Sivðx; y; z; PTÞ
dxdydzd2PTd�S

� sinð�h ��SÞ; (1)

where�h and�S are the azimuthal angles of the transverse
momentum of the produced hadron and the transverse spin
of the target relative to the virtual photon direction.
The Sivers asymmetry is usually defined as

Asinð�h��SÞ
UT ðx; y; z; PTÞ

¼ 2

ST

R
d�h

R
d�Sd

6�ðx; y; z; PT;�h;�SÞ sinð�h ��SÞR
d�h

R
d�Sd

6�ðx; y; z; PT;�h;�SÞ
;

(2)

and we note that the integration singles out the �U com-
ponent in the denominator and �Siv in the numerator.
Within the LO QCD parton model, we have

d6�Uðx; y; z; PT;�hÞ
dxdydzd2PTd�S

¼ Cðx; yÞ�qe
2
q

Z
d2k2

?f
q
1 ðx;k2

?ÞDh
1qðz;p2

?Þ;
(3)

d6�Sivðx; y; z;PTÞ
dxdydzd2PTd�S

¼ Cðx; yÞ�qe
2
q

Z
d2k?

�
�jk?j

M

�

� sinð�q ��SÞf?q
1T ðx;k2

?ÞDh
1qðz;p2

?Þ;
(4)

where

Cðx; yÞ ¼ �2
em

2ME

1þ ð1� yÞ2
xy2

; (5)

fq1ðx;k?Þ and f?q
1T ðx;k?Þ are the unpolarized and Sivers

quark distribution functions inside the nucleon, �q is the

azimuthal angle of the active quark q, Dh
1qðz;p?Þ is the

unpolarized fragmentation function of q into the hadron h,
and

1A more complete description of the FSI can be made by
introducing an appropriate Wilson-line phase factor in the defi-
nition of the distribution functions of quarks in the nucleon
[1,25–28].
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p? ¼ PT � zk? (6)

is the transverse momentum of the produced hadron with
respect to the fragmenting quark momentum.

In order to obtain the dependence of Sivers asymmetry
on any single kinematic variable such as x, one must
integrate the unpolarized and polarization-dependent parts
of the cross sections over the other three kinematic varia-
bles:

A
sinð�h��SÞ
UT ðxÞ ¼ ��̂ðxÞ

�̂ðxÞ ; (7)

��̂ðxÞ ¼ Int

�
Cðx; yÞ�qe

2
q

Z
d2k?

�
�k? � PT

MjPTj
�

� f?q
1T ðx;k?ÞDh

1qðz;PT � zk?Þ
�
; (8)

�̂ðxÞ ¼ Int

�
Cðx; yÞ�qe

2
q

Z
d2k?f

q
1 ðx;k?Þ

�Dh
1qðz;PT � zk?Þ

�
; (9)

where Int½. . .� denotes the following integration:

Int½G� ¼
Z zmax

zmin

dz
Z PTmax

PTmin

djPTjjPTj
Z 2�

0
d�

�
Z k?max

0
djk?jjk?j½G�: (10)

The derivation of (8) is given in the Sec. II B.
In the later comparisons with experimental data, we use

the following integration limits for asymmetries on a pro-
ton target at HERMES: 0:2< z < 0:8, 0.05 GeV <jPTj<
1:2 GeV, and for asymmetries on a deuteron target at
COMPASS we use 0:2< z < 0:8, 0.1 GeV <jPTj<
2:0 GeV, corresponding to the kinematic conditions of
these experiments.

B. Intrinsic k? integration

Let us consider two integrals:

R1 ¼
Z

d2k?fðk2
?ÞDðp2

?Þ; (11)

R2 ¼
Z

d2k?
jk?j
M

sinð�q ��SÞfðk2
?ÞDðp2

?Þ: (12)

The integrand of R1 is a scalar function of vectors k? and
PT in the two-dimensional transverse-momentum space.
This means that R1 can be a function only of z and P2

T :

R1 ¼ r1ðz;P2
TÞ:

On the other hand, (12) can be represented as

R2 ¼ Ŝ1F2 � Ŝ2F1; (13)

where Ŝ1;2 are the components of the two-dimensional

transverse spin vector Ŝ and the Fi are the components of

F ¼
Z

d2k?
k?
M

fðk2
?ÞDðp2

?Þ: (14)

Since F is a two-dimensional vector, and the only vector
remaining after integration in (14) is PT , we have

F ¼ PT�ðP2
TÞ; (15)

and hence

�ðP2
TÞ ¼

PT � F
P2
T

: (16)

From Eqs. (13)–(16) we finally obtain

R2 ¼ sinð�h ��SÞr2ðz;P2
TÞ;

where

r2ðz;P2
TÞ ¼

Z
d2k?

k? � PT

MjPTj fðk
2
?ÞDðp2

?Þ: (17)

C. Calculations of the Sivers function in diquark
models

In this subsection we repeat the derivation of the Sivers
function in the scalar diquark model with a constant
Yukawa vertex given in [6,29], and later generalize the
result to the scalar and axial-vector diquark models with
nontrivial form factors gðk2Þ at the nucleon–quark-diquark
vertex. We obtain, from (A6) in the Appendix of this paper
or from (22) of [29], the following expression for the
distribution function in the Yukawa model:

f1ðx;k?Þ ¼ g2ð1� xÞk
2
? þ ðxMþmÞ2
ðk2

? þ BÞ2 : (18)

From Eqs. (28) and (30) of [29], we also have

kx?f
?
1Tðx;k?Þ ¼ �g2

e1e2
4�

ðxMþmÞð1� xÞ 1

ðk2
? þ BÞ

1

�

�
Z

d2l?
1

ðl2? þ BÞ
ðl? � k?Þx

½ðl? � k?Þ2 þ �2
g�
:

(19)

Here we set to unity the parameter a in Eq. (30) of [29].
Using (18) and (19), we can write

f?1Tðx;k?Þ
f1ðx;k?Þ

¼ e1e2
4�

MðxMþmÞ
ðxMþmÞ2 þ k2

?
kx?Rðx;k?Þ; (20)

where Rðx;k?Þ is given by
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kx?Rðx;k?Þ � 1

k2
? þ B

¼ �1

�

Z
d2l?

1

ðl2? þ BÞ

� ðl? � k?Þx
½ðl? � k?Þ2 þ �2

g�
� I: (21)

We calculate the right-hand side of (21) by first taking the
direction of k? as the x direction and using k and l to
denote jk?j and jl?j, respectively, so that

k? ¼ kð1; 0Þ;
l? ¼ lðcos�; sin�Þ;

ðl? � k?Þx ¼ l cos�� k;

ðl? � k?Þ ¼ ðl cos�� k; l sin�Þ;
ðl? � k?Þ2 ¼ l2 þ k2 � 2kl cos�:

(22)

Then, I in (21) becomes

I¼�1

�

Z
ldld�

lcos�� k

ðl2 þBÞðl2 þ k2 � 2klcos�Þ
¼

Z 1

0
ldl

1

ðl2 þBÞðl2 þ k2Þ
��1

�

Z 2�

0
d�

lcos�� k

1� 2kl
l2þk2

cos�

�
:

(23)

After some calculations, we find that the last factor in (23)
gives��1

�

Z 2�

0
d�

l cos�� k

1� 2kl
l2þk2

cos�

�
¼

�
2 l2þk2

k when l < k
0 when l > k

:

(24)

Using (24), the expression (23) becomes

I ¼
Z k

0
ldl

1

ðl2 þ BÞðl2 þ k2Þ 2
l2 þ k2

k

¼ 1

k

Z k

0
2ldl

1

ðl2 þ BÞ ¼
kx?
k2
?

Z k2
?

0
dðl2?Þ

1

ðl2? þ BÞ ; (25)

where we use 1=k ¼ kx?=k
2
?, since we take the direction of

k? as the x direction. From (21) and (25), we have

Rðx;k?Þ � 1

k2
? þ B

¼ 1

k2
?

Z k2
?

0
dðl2?Þ

1

ðl2? þ BÞ : (26)

Then, using Rðx;k?Þ in (26), we can obtain the Sivers
function from the formula (20). The result is identical to
the result in [6,29].

Equation (26) is for the Yukawa model, presented in the
Appendix, in which the nucleon–quark-diquark vertex is
gðk2Þ ¼ 1. We can generalize (26) for a general form factor
gðk2Þ ¼ gðx;k?Þ by using the following formula:

Rðx;k?Þ � gðx;k?Þ
k2
? þ B

¼ 1

k2
?

Z k2
?

0
dðl2?Þ

gðx; l?Þ
ðl2? þ BÞ : (27)

Using formula (27), we now calculate Rðx;k?Þ for the
dipole and Gaussian form factors at the proton–quark-
diquark vertex, respectively, obtaining the results shown in
(39) and (49).

D. Generalized diquark models

While the simplest possibility for the spectator diquark
is the scalar case, even in the absence of orbital angular
momentum in the nucleon rest frame, it may exist in a spin-
one, axial-vector state. Indeed, this possibility is realized in
the simplest nonrelativistic SU(6) wave function for the
proton:

jp "i ¼ 1ffiffiffi
3

p
� ffiffiffi

2

3

s
juu1þ 1ijd #i �

ffiffiffi
1

3

s
juu10ijd "i

�

� 1ffiffiffi
6

p
� ffiffiffi

2

3

s
jud1þ 1iju #i �

ffiffiffi
1

3

s
jud10ju "i

�

þ 1ffiffiffi
2

p jud00> ju "i (28)

jp #i ¼ 1ffiffiffi
3

p
�
�

ffiffiffi
2

3

s
juu1� 1ijd "i þ

ffiffiffi
1

3

s
juu10ijd #i

�

� 1ffiffiffi
6

p
�
�

ffiffiffi
2

3

s
jud1� 1> ju "i þ

ffiffiffi
1

3

s
jud10iju #i

�

þ 1ffiffiffi
2

p jud00iju #i: (29)

In each of the terms in (28) and (29), we have exhibited the
spin states of the spectator diquark, showing explicitly that
it is in a combination of scalar and axial-vector configura-
tions in different spin states.
If the proton does have a naive SU(6) wave function in

its rest frame, the distribution functions of the u and d
quarks inside the proton, fu1 and fd1 , are given by

fu1 ¼ 3
2f

s
1 þ 1

2f
a
1 ; fd1 ¼ fa1 ; (30)

and those inside the deuteron are given by

fudeu 1 ¼ fddeu 1 ¼ fu1 þ fd1 : (31)

The same relations also hold for the Sivers distribution
functions, as we discuss below in more detail.
In the following, we allow for nontrivial form factors at

the nucleon–quark-diquark vertices, in both the scalar (s)
and axial-vector (a) diquark cases:

�s ¼ gsðk2Þ; ��
a ¼ gaðk2Þffiffiffi

3
p ���5: (32)

Two specific models for the form factors gsðk2Þ and gaðk2Þ
are discussed in the following sections.
Using the diquark model for the nucleon with specific

forms for the vertices and polarization vectors, Ref. [19]
obtained reasonably good T-even distribution functions for
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the nucleon. Ref. [19] used the nucleon-quark-diquark

vertex given by �
�
a ¼ gaðk2Þffiffi

3
p �5ð�� þ P�

M Þ. Since Ref. [19]

used the polarization vectors which satisfy
P

��
ð�Þ�
� �ð�Þ	 ¼

�g�	 þ P�P	=M
2, the second term gaðk2Þffiffi

3
p �5

P�

M in their��
a

vanishes when it is multiplied by the polarization vectors.
Therefore, the vertex ��

a in (32) of our paper is equivalent
to that used in Ref. [19] with an overall minus sign differ-
ence. Hence, in this paper we use vertices and polarization
vectors that are equivalent to those of Ref. [19], i.e.,
essentially we work with the diquark model for the nucleon
presented in Ref. [19]. We find in the Appendix that this
model gives axial-vector diquark wave functions that, in
the nucleon rest frame, coincide with the wave functions of
the spin-half states that are made by adding spin-half and
spin-one states with the correct Clebsch-Gordan coeffi-
cients. Therefore, this model is consistent with the SU(6)
wave function of the nucleon. We note that Ref. [30]
considered general vertices that transform as a scalar or
vector under Lorentz transformations.

III. DIPOLE FORM FACTOR

A. Calculations

We first consider a dipole model for the nucleon–quark-
diquark vertex:

gRðk2Þ ¼
ffiffiffiffiffiffiffi
NR

p k2 �m2

ðk2 ��2Þ2 ¼
ffiffiffiffiffiffiffi
NR

p ðk2 �m2Þð1� xÞ2
ðk2

? þ BRÞ2
;

(33)

where R ¼ s for the scalar and R ¼ a for the axial-vector
diquark, we used [19,29]

� k2ðx;k2
?Þ ¼

k2
?

1� x
þ x

1� x
M2

R � xM2; (34)

and BR is given by

BR ¼ ð1� xÞ�2 þ xM2
R � xð1� xÞM2: (35)

We then have the following distribution functions from
Fig. 2:

fR1 ðx;k?Þ ¼ NR

16�3

ð1� xÞ3½ðxMþmÞ2 þ k2
?�

ðk2
? þ BRÞ4

; (36)

yielding the following when integrated over k?:

fR1 ðxÞ ¼
NR

16�3

�ð1� xÞ3½2ðxMþmÞ2 þ BR�
6B3

R

: (37)

The normalization factors NR are fixed from the condition

Z 1

0
dxfR1 ðxÞ ¼ 1: (38)

In the present cases of dipole form factors, we obtain from
(27)

Rðx;k?Þ � 1

ðk2
? þ B�Þ2

¼ 1

k2
?

Z k2
?

0
dðl2?Þ

1

ðl2? þ B�Þ2

¼ 1

k2
?

�
� 1

k2
? þ B�

þ 1

B�

�

¼ 1

B�ðk2
? þ B�Þ

: (39)

Thus, we obtain finally the Sivers distribution functions for
the dipole form factors as follows:

f?R
1T ðx;k?Þ ¼ aR

e1e2
4�

NRð1� xÞ3MðxMþmÞ
16�3BRðk2

? þ BRÞ3
; (40)

Following [6], we fix e1e2
4� ¼ �CF�S, where CF ¼ 4

3 .

In deriving (40), we use for the gauge-field coupling to
the axial-vector diquark in Fig. 3 the simple form
ie2g

�
ððP� lÞ þ ðP� kÞÞ�, which is equivalent, for
each polarization state, to the gauge-field coupling to a
scalar diquark. We motivate this simple coupling by as-
suming that the QCD coupling to the diquark is indepen-
dent of the spin state of the diquark.
We note that the results for the axial-vector diquark in

(36), (37), and (40) are different from those of [20], which

are obtained if
P

��
ð�Þ�
� �ð�Þ	 ¼ �g�	 is used. Ref. [21] con-

siders various different possibilities for the polarization
sum of the axial-vector diquark. More general forms of
gauge-field coupling to the axial-vector diquark were used
in Refs. [20–22]. Ref. [22] used a more general nucleon–-
quark-diquark vertex for the axial-vector diquark.

FIG. 3 (color online). Leading-order diagram contributing to
the Sivers function f?1T in a diquark model, via a one-gluon

exchange FSI.

FIG. 2 (color online). Leading-order diagram contributing to
f1 in a diquark model.
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The values of aR are given by the overlaps of the proton
wave functions of positive and negative helicities. We find

as ¼ 1 and aa ¼ �1
3: (41)

Details of the derivation are presented in the Appendix,
where the relations between the SU(6) and light-cone wave
functions are discussed, as well as the relations between
light-cone and Bjorken-Drell spinors.

In this paper we work with the diquark model for the
nucleon presented in Ref. [19], as we explained in the last
paragraph of Sec. II. In this model we obtained the wave
functions (A16) and (A18) given in the Appendix for the
quark and axial-vector diquark system. The Sivers distri-
bution function f?1T is given by the overlaps of the proton
wave functions of positive and negative helicities [6,29].
As we can see in (A16) and (A18), only the wave functions
with szb ¼ 0 contribute to the overlaps for f?1T . We find that

the wave functions with szb ¼ 0 in (A16) and (A18) have

the exactly same structures as the wave functions for the
quark and scalar diquark system given in (A6) and (A10),
except for the overall constant factor � 1ffiffi

3
p for the positive

helicity wave functions and þ 1ffiffi
3

p for the negative helicity

ones. Therefore, the overlaps of positive and negative
helicities for the quark and axial-vector diquark system
have an overall factor of � 1

3 compared to the overlaps of

(A6) and (A10) for the quark and scalar diquark system.
This is the reason why, in the diquark model with which we
work in this paper, we have the same Sivers distribution
functions for the cases of the scalar diquark and axial-
vector diquark, except for the difference of the overall
constant factors aR given in (41).

We use�S � 0:3 and choose the following values for the
parameters of the model studied in this section:

m ¼ 0:36 GeV; Ms ¼ 0:6 GeV;

Ma ¼ 0:8 GeV; � ¼ 0:65 GeV:
(42)

We assume a Gaussian transverse-momentum dependence
for the fragmentation functions:

Dh
1qðz;p2

?Þ ¼
1

��2
2

e�p2
?=�

2
2Dh

1qðzÞ; (43)

with �2
2 ¼ 0:2 GeV2 as obtained in [31]. We use the

leading-order fragmentation functions of [32] for the inte-
grated fragmentation functions Dh

1qðzÞ. The k? integration

is performed as described in Section II B.
We present in the top panel of Fig. 4 the dependence of

the calculated asymmetry on the upper limit in the k?
integral. As one can see, the saturation of the integral takes
place around 2 GeV, which is a rather high value, though
about 90% of the integral is provided by the region jk?j<
1 GeV. For definiteness, in this section using dipole form
factors, we use jk?jmax ¼ 2:5 GeV for the upper limit of
the k? integration. The leading-order perturbative QCD
approach is believed to be applicable to SIDIS when all

transverse momenta are much smaller than the virtuality of
the hard scattering, Q. However, in SIDIS at fixed energy
there is a strong correlation between the mean values of x
and Q2: for example, at HERMES hQ2iðx ¼ 0:18Þ �
4 GeV2 and hQ2iðx ¼ 0:28Þ � 6 GeV2. Thus the highest
virtuality at HERMES corresponding to the last populated
x bins is of the same order of magnitude as the saturation
value for the intrinsic transverse-momentum integration.
This consideration, together with the fact that the simple
diquark model used here treats only the valence quarks,
shows that this approach cannot be considered reliable for
low values of x. Hence, our results should be considered as
applicable only to x > 0:1.
Another issue bearing on the accuracy of our results is

that unitarity requires the analyzing power of the Sivers
function to be less than unity in modulus for all values of x

and k?: Au;d � jk?f?u;d
1T ðx;k?Þ=Mfu;d1 ðx;k?Þj 	 1. This

is not always the case for the simplified leading-order one-
gluon-exchange FSI that we consider, which tends to yield
larger values at large x and k?, as seen in the middle panel
of Fig. 4 for scattering off a u quark, and in the bottom
panel for scattering off a d quark.2 The issue would be
resolved if a full higher-order calculation were performed,
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FIG. 4 (color online). In the top panel, we show the Sivers
asymmetry for �þ production off a proton target for HERMES
kinematics at x ¼ 0:276 as a function of the upper limit of the
jk?j integration. The analyzing power of the Sivers function for
scattering off a u quark (middle panel) and a d quark (bottom
panel) as functions of x and kT ¼ jk?j. The calculated values
exceed the unitarity limit in the white regions at larger x and kT .
All these plots are obtained using dipole form factors.

2A related issue is that the asymmetry we calculate is large
close to the contour in the ðx;k?Þ beyond which unitarity is
violated.
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but this is currently not available, so one must estimate the
error incurred by including unphysical values in the inte-
gration over k?. In fact, we find that the naive predictions
obtained by ignoring the unitarity issue differ from the
modified calculations that are obtained by truncating the
k? integration at the x-dependent unitarity limit shown in
Fig. 4, by far less than the present experimental uncertain-
ties, so this theoretical error may be neglected for the time
being.

B. Comparisons with data

In Figs. 5 and 6 we compare the Sivers asymmetries for
pion and kaon production calculated with a dipole form
factor using �s ¼ 0:3 and � ¼ 0:65 GeV with data from
the HERMES Collaboration obtained using a proton target,
and with data from the COMPASS Collaboration obtained
using a deuteron target. In this paper wework with a simple
diquark model in which only the valence u and d quarks of
the nucleon are considered for the unpolarized and Sivers
quark distribution functions inside the nucleon. Working
within such an approximation, the different results for pion
and kaon production in our calculation arise only from the
difference of the fragmentation functions Dh

1qðzÞ in

Eq. (43) for pion and kaon productions from the u and d
quarks, which are given in Ref. [32].

We see that our predictions for the �þ asymmetry (top
panel of Fig. 5) agree very well with the HERMES data,
which exhibit a relatively significant positive asymmetry.
The HERMES data for the �� asymmetry (middle panel)
are more equivocal, though they are compatible with posi-

tive values that are smaller than for�þ, as predicted by our
calculations. We also predict a positive asymmetry for �0

production, which is in qualitative agreement with the
HERMES data, as seen in the bottom panel of Fig. 5. In
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FIG. 6 (color online). Comparisons of our predictions for the
Sivers asymmetries in the production of Kþ (top panel) and K�
(bottom panel) with HERMES data, assuming �s ¼ 0:3 and
� ¼ 0:65 GeV for the dipole model parameters.

-0.02

0

0.02

0.04

0.06

0.08

0.05 0.1 0.15 0.2 0.25 0.3

-0.04

-0.02

0

0.02

0.04

0.05 0.1 0.15 0.2 0.25 0.3

x

A
U

T
si

n
(φ

h
-

φ S
) π+

x

A
U

T
si

n
(φ

h
-

φ S
)

π-

x

A
U

T
si

n
(φ

h
-

φ S
) π0

0

0.05

0.1

0.05 0.1 0.15 0.2 0.25 0.3

FIG. 5 (color online). Comparisons of our predictions for the
Sivers asymmetries in the production of �þ (top panel), ��
(middle panel), and �0 (bottom panel) with HERMES data,
assuming �s ¼ 0:3 and � ¼ 0:65 GeV for the dipole model
parameters.
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the case of the HERMES data for kaons, we see qualitative
agreement for the Kþ asymmetry shown in the top panel of
Fig. 6, though the experimental values are somewhat larger
than the predictions, albeit with large errors. This differ-
ence could be explained by the fact that we do not include
the �s contribution, which dominates in fragmentation to the
Kþ. In the case of the K� asymmetry shown in the lower
panel of Fig. 6, the experimental values are similar to the
predictions, though again with relatively large errors.

The corresponding comparisons for COMPASS data on
pion and kaon production are shown in Figs. 7 and 8,
respectively. In this case, again using a dipole form factor
and �s ¼ 0:3 and � ¼ 0:65 GeV, we predict small asym-
metries for all three charge states for both pions and kaons.
These predictions are compatible with the data available
from COMPASS for ��, K�, and K0 production.

We conclude that our model gives qualitatively success-
ful predictions for the Sivers asymmetries if a dipole form
factor is assumed.

IV. GAUSSIAN FORM FACTOR

A. Calculations

In order to assist in evaluating the reliability of our
results, in this section we make a similar analysis of the
predictions for the Sivers asymmetries obtained using a
Gaussian form factor at the proton–quark-diquark vertex
given by

gðk2Þ ¼ ffiffiffiffiffiffiffi
NR

p ðk2 �m2Þeð1=2�2
1Þðk2��2Þ; (44)

where �k2 ¼ k2
?

1�x þ x
1�xM

2
R � xM2. In this case, we have

the distribution functions

fR1 ðx;k?Þ ¼ NR

�2
1ð1� xÞ f0ðxÞ½ðxMþmÞ2 þ k2

?�

� e�ðk2
?=�

2
1
ð1�xÞÞ; (45)

where

f0ðxÞ ¼ eðxð1�xÞM2�xM2
RÞ=ð�2

1
ð1�xÞÞ: (46)

After integration over k?, we obtain the distribution func-
tions

fR1 ðxÞ ¼ �NRf0ðxÞ½ðxMþmÞ2 þ�2
1ð1� xÞ�; (47)

where the normalization factors NR are fixed byZ 1

0
dxfR1 ðxÞ ¼ 1: (48)

We obtain from (27) for the present Gaussian form factor

Rðx;k?Þ � e�ðk2
?=2�

2
1
ð1�xÞÞ ¼ 1

k2
?

Z k2
?

0
dðl2?Þe�ðl2?=2�2

1
ð1�xÞÞ

¼ 1

k2
?
2�2

1ð1� xÞ

� ð1� e�ðk2
?=2�

2
1ð1�xÞÞÞ: (49)

Finally, we obtain the following Sivers distribution func-
tions for the Gaussian form factor:

f?R
1T ðx;k?Þ ¼ aR

e1e2
4�

NR2MðxMþmÞf0ðxÞ

� 1

k2
?
e�ðk2

?=2�
2
1
ð1�xÞÞð1� e�ðk2

?=2�
2
1
ð1�xÞÞÞ;

(50)

where as ¼ 1 and aa ¼ � 1
3 as in (40). Relevant formulas

and details of the derivation and the relation between the
light-cone and rest-frame SU(6) descriptions of the nu-
cleon wave function are given in the Appendix.
We present in the top panel of Fig. 9 the dependence of

the calculated asymmetry on the upper limit in the k?
integral. As one can see in Figs. 4 and 9, the convergence of
the k? integration is faster with the Gaussian form factor
than with the dipole form factor, and in this section we use
jk?jmax ¼ 1:5 GeV for the upper limit of the k? integra-
tion. As explained in Sec. III A, because of the strong
correlation between the mean values of x and the virtuality
of the hard scattering Q2, and the fact that the simple
diquark model used here treats only the valence quarks,
the results cannot be considered reliable for low values of
x. Hence, our results should be considered as applicable
only to x > 0:1.
Another issue bearing on the accuracy of our results is

that unitarity requires the analyzing power of the Sivers
function to be less than unity in modulus for all values of x
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FIG. 8 (color online). Comparisons of our predictions for the
Sivers asymmetries in the production of Kþ (top panel), K�
(middle panel), and K0 (bottom panel) with COMPASS deuteron
target data, assuming �s ¼ 0:3 and� ¼ 0:65 GeV for the dipole
model parameters.
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and k?. This is not always the case for the simplified
leading-order one-gluon-exchange FSI that we consider,
which tends to yield larger values at large x and k?, as seen
in the middle panel of Fig. 9 for scattering off a u quark,
and in the bottom panel for scattering off a d quark. In
order to estimate the error incurred by including unphys-
ical values in the integration over k?, we compared the
naive predictions obtained by ignoring the unitarity issue
and the modified calculations obtained by truncating the
k? integration at the x-dependent unitarity limit shown in
Fig. 9, and found that they differ by far less than the present
experimental uncertainties. In reality, the contributions to
the integrations of��̂ðxÞ in (8) and �̂ðxÞ in (9) from the k?
range where unitarity is violated are very small, since due
to the Gaussian form factor the integrands of both (8) and
(9) decrease very rapidly when jk?j becomes large. Hence
the theoretical error arising from this unitarity issue is
estimated to be small.

B. Comparisons with data

We display in Figs. 10 and 11 comparisons of our
predictions for the Sivers asymmetries with HERMES
data on pion and kaon production, respectively. These
predictions are calculated with the Gaussian form factor
using �s ¼ 0:3, �1 ¼ 0:5 GeV. As in the dipole case, we
find quantitative success for the �þ asymmetry and quali-
tative success for the �0 asymmetry, while the experimen-

tal errors in the �� asymmetry do not permit a firm
conclusion to be drawn. In the case of theK� asymmetries,
we again find a qualitative success for the Kþ case, though
the measured asymmetry is larger than our prediction. This
may again be explained by ignorance of the �s contribution.
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FIG. 10 (color online). Comparisons of our predictions for the
Sivers asymmetries in the production of �þ (top panel), ��
(middle panel) and �0 (bottom panel) with HERMES data,
assuming �s ¼ 0:3 and �1 ¼ 0:5 GeV for the Gaussian model
parameters.
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FIG. 9 (color online). In the top panel, we show the Sivers
asymmetry for �þ production off a proton target for HERMES
kinematics at x ¼ 0:276 as a function of the upper limit of the
jk?j integration. The analyzing power of Sivers function for
scattering off a u quark (middle panel) and a d quark (bottom
panel) as functions of x and kT ¼ jk?j. The values exceed the
unitarity limit in the white regions at larger x and kT . All these
plots are obtained using Gaussian form factors with parameters
�1 ¼ 0:5 GeV and �s ¼ 0:3.

SIVERS ASYMMETRIES FOR INCLUSIVE PION AND . . . PHYSICAL REVIEW D 80, 074033 (2009)

074033-9



In the K� case, the prediction is also qualitatively success-
ful, though no definite conclusion can be drawn.

The corresponding comparisons between our predic-
tions and COMPASS data on pion and kaon production
are shown in Figs. 12 and 13, respectively. In the �� cases

we predict smaller Sivers asymmetries than for HERMES,
and the data certainly reflect this trend, though the data are
quite compatible with zero. In the cases of the kaon asym-
metries shown in Fig. 13, the predicted asymmetries are
very close to zero, as are the values measured by
COMPASS.
We see that our model also gives qualitatively successful

predictions for the Sivers asymmetries if a Gaussian form
factor is assumed, and that the predictions using this and a
dipole form factor are qualitatively similar. This gives
some further confidence in the stability of our results and
the conclusions we draw.

V. CONCLUSIONS

We have studied the Sivers single-spin asymmetry in
SIDIS generated by the mechanism of a one-gluon-
exchange final-state interaction. We derived a general for-
mula that can be used to calculate the Sivers distribution
function for diquark models having different form factors
at the nucleon-quark-diquark vertex. We calculated the
Sivers distribution functions in diquark models with both
dipole and Gaussian form factors, and compared the cor-
responding predictions for Sivers single-spin asymmetries
in pion and kaon production in SIDIS with the results of
HERMES and COMPASS. The predictions made using
dipole and Gaussian form factors are quite similar, and
are relatively insensitive to the unphysical values of the
model calculations at large x and k?.
We find qualitatively successful results for the asymme-

tries in �þ, �0, and Kþ production. In the case of Kþ
production at HERMES, the measured values are even
larger than our predictions, reflecting the possible impor-
tance of an �s contribution. In other cases, particularly at
COMPASS energies, many of the experimental measure-
ments are currently compatible with zero, and greater
accuracy will be necessary to confront our theoretical
predictions. On the theoretical side, it is desirable to im-
prove the accuracy of our predictions, in particular, by
going beyond the simple one-gluon-exchange final-state
interaction. However, the relative success of this first con-
frontation between HERMES and COMPASS data and our
naive predictions is an encouraging indication that one may
be able to understand satisfactorily the Sivers asymmetries
in SIDIS, which are rather subtle aspects of hadron dy-
namics in deep-inelastic scattering.
One prima facie conclusion from the successful com-

parison between our predictions and the HERMES data on
�þ, �0, and Kþ production is that the quark partons in the
nucleon must have nonzero orbital angular momentum in
the infinite-momentum frame.
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APPENDIX A: WAVE FUNCTIONS OF SCALAR
AND AXIAL-VECTOR DIQUARK MODELS

The expansion of the proton state in terms of light-cone
Fock states is

jc pðPþ;P?Þi ¼
X
n

Yn
i¼1

dxid
2k?iffiffiffiffi

xi
p

16�3
16�3�

�
1�Xn

i¼1

xi

�

� �ð2Þ
�Xn
i¼1

k?i

�
c nðxi;k?i; �iÞ

� jn; xiPþ; xiP? þ k?i; �ii; (A1)

where the light-cone momentum fractions xi ¼ kþi =Pþ
and k?i represent the momenta of the QCD constituents.
The physical transverse momenta are p?i ¼ xiP? þ k?i.
The �i label the light-cone spin projections S

z of the quarks
and gluons along the quantization direction z. The
n-particle states are normalized as

hn;p0þ
i ;p0

?i; �
0
ijn;pþ

i ;p?i; �ii

¼ Yn
i¼1

16�3pþ
i �ðp0þ

i � pþ
i Þ�ð2Þðp0

?i � p?iÞ��0
i�i
:

(A2)

Here and in the following we do not display the other
quantum numbers of the partons, i.e., color and quark
flavor.

In order to construct diquark models, we take the fol-
lowing form factors at the proton–quark-diquark vertex,
for the scalar (s) and axial-vector (a) diquarks, respec-
tively,

�s ¼ gsðk2Þ; �
�
a ¼ gaðk2Þffiffiffi

3
p ���5: (A3)

We can then obtain the light-cone wave functions of scalar
and axial-vector diquark models from Fig. 14. In this
Appendix we consider elementary vertices given by

gsðk2Þ ¼ gaðk2Þ ¼ 1. In Secs III and IV we introduce
dipole and Gaussian form factors, respectively.

1. Scalar diquark model

We also use the term ‘‘Yukawa model’’ for the scalar
diquark model described in this subsection. Each Fock-
state wave function of the physical proton with total spin
projection Jz ¼ � 1

2 is represented by a function

c Jz
n ðxi;k?i; �iÞ, where

ki ¼ ðkþi ;k?i; k
�
i Þ ¼

�
xiP

þ;k?i;
k2
?i þm2

i

xiP
þ

�
(A4)

specifies the momentum of each constituent and �i speci-
fies its light-cone helicity in the z direction.
From Fig. 14 with the scalar vertex �s, the Jz ¼ þ 1

2

two-particle Fock state in the scalar diquark model is given
by [33,34]

j�"
two particleðPþ;P? ¼ 0?Þi

¼
Z dxd2k?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1� xÞp
16�3

�
c "

þð1=2Þðx;k?Þ
��������þ 1

2
; xPþ;k?

�

þ c "
�ð1=2Þðx;k?Þ

��������� 1

2
; xPþ;k?

��
; (A5)

where

c "
þð1=2Þðx;k?Þ ¼ ðxMþmÞ

x
’;

c "
�ð1=2Þðx;k?Þ ¼ � ðþk1 þ ik2Þ

x
’:

(A6)

The scalar part of the wave function ’ is given by [33,34]

’ðx;k?Þ ¼ gffiffiffiffiffiffiffiffiffiffiffiffi
1� x

p 1

M2 � k2
?þm2

x � k2
?þ�2

1�x

¼ �g
x

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

p
k2
? þ B

; (A7)

where M, m, and � are the masses of proton, quark, and
diquark, respectively, and

B ¼ xð1� xÞ
�
�M2 þm2

x
þ �2

1� x

�
: (A8)

Similarly, the Jz ¼ � 1
2 two-particle Fock state is given by

[33,34]

j�#
two particleðPþ;P? ¼ 0?Þi

¼
Z dxd2k?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1� xÞp
16�3

�
c #

þð1=2Þðx;k?Þ
��������þ 1

2
; xPþ;k?

�

þ c #
�ð1=2Þðx;k?Þ

��������� 1

2
; xPþ;k?

��
; (A9)

where
FIG. 14 (color online). Diagram giving the light-cone wave
functions of scalar and axial-vector diquark models.
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c #
þð1=2Þðx;k?Þ ¼ � ð�k1 þ ik2Þ

x
’;

c #
�ð1=2Þðx;k?Þ ¼ ðxMþmÞ

x
’:

(A10)

The quark-state bases on the right-hand sides of (A5)
and (A9) correspond to light-cone spinors (LC). The
Bjorken-Drell (BD) spinors uBDðkÞ and the light-cone
spinors uLCðkÞ are related by

uBDþð1=2ÞðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkþ þmÞ2 þ ~k2?
q ððkþ þmÞuLCþð1=2ÞðkÞ

� ðk1 þ ik2ÞuLC�ð1=2ÞðkÞÞ;

uBD�ð1=2ÞðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkþ þmÞ2 þ ~k2?
q ð�ð�k1 þ ik2ÞuLCþð1=2ÞðkÞ

þ ðkþ þmÞuLC�ð1=2ÞðkÞÞ: (A11)

The Bjorken-Drell spinors uBDðkÞ satisfy
jþuBDþð1=2ÞðkÞ ¼ 0; j�uBD�ð1=2ÞðkÞ ¼ 0;

j�uBDþð1=2ÞðkÞ ¼ uBD�ð1=2ÞðkÞ; jþuBD�ð1=2ÞðkÞ ¼ uBDþð1=2ÞðkÞ;
(A12)

where j� ¼ j1 � ij2 and

ji ¼ si þ li; si ¼ �i ¼ �i 0
0 �i

� �
;

li ¼ �i�ijkkj
@

@kk
; �123 ¼ 1:

(A13)

Since kþ ¼ xM in the proton rest frame, from (A11) the
Fock states given in (A5) and (A9) with the light-cone
wave functions (A6) and (A10) correspond to
j þ 1

2 ; xP
þ;k?iBD and j � 1

2 ; xP
þ;k?iBD, respectively, in

the proton rest frame.

2. Axial-vector diquark model

For the polarization vectors of the axial-vector diquark
appearing at the vertex of Fig. 14, we use the following set
of three polarization vectors:

�ðþ1Þ� ¼ ð�ðþ1Þ0; �ðþ1Þ1; �ðþ1Þ2; �ðþ1Þ3Þ

¼ 1ffiffiffi
2

p ð0;�1;�i; 0Þ;

�ð�1Þ� ¼ 1ffiffiffi
2

p ð0;þ1;�i; 0Þ;

�ð0Þ� ¼
�
P3

M
; 0; 0;

P0

M

�
:

(A14)

These polarization vectors are those used in Ref. [19]

which satisfy
P

��
ð�Þ�
� �ð�Þ	 ¼ �g�	 þ P�P	=M

2. In the

proton rest frame, �ð0Þ� is the spin vector oriented in the

z direction and �ð�1Þ� are those circularly polarized in the
x-y plane.

From Fig. 14 with the scalar vertex �a � �ð�Þ�, the two-
particle Fock state for the proton with Jz ¼ þ 1

2 has six

possible spin combinations for the quark and axial-vector
diquark:

j�"
two particleðPþ;P? ¼ 0?Þi ¼

Z dxd2k?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

16�3

�
c "

þð1=2Þþ1ðx;k?Þ
��������þ 1

2
þ 1; xPþ;k?

�

þ c "
�ð1=2Þþ1ðx;k?Þ

��������� 1

2
þ 1; xPþ;k?

�
þ c "

þð1=2Þ0ðx;k?Þ
��������þ 1

2
0; xPþ;k?

�

þ c "
�ð1=2Þ0ðx;k?Þ

��������� 1

2
0; xPþ;k?

�
þ c "

þð1=2Þ�1ðx;k?Þ
��������þ 1

2
� 1; xPþ;k?

�

þ c "
�ð1=2Þ�1ðx;k?Þ

��������� 1

2
� 1; xPþ;k?

��
; (A15)

where the two-particle states jszf ; szb; x;k?i are normalized as in (A2). Here szf and s
z
b denote the z component of the spins of

the constituent fermion and boson, respectively, and the variables x and k? refer to the momentum of the fermion. The
wave functions are given by

c "
þð1=2Þþ1ðx;k?Þ ¼ �

ffiffiffi
2

3

s
ð�k1 þ ik2Þ

x
’; c "

�ð1=2Þþ1ðx;k?Þ ¼ þ
ffiffiffi
2

3

s
ðxMþmÞ

x
’;

c "
þð1=2Þ0ðx;k?Þ ¼ �

ffiffiffi
1

3

s
ðxMþmÞ

x
’; c "

�ð1=2Þ0ðx;k?Þ ¼ þ
ffiffiffi
1

3

s
ðþk1 þ ik2Þ

x
’;

c "
þð1=2Þ�1ðx;k?Þ ¼ 0; c "

�ð1=2Þ�1ðx;k?Þ ¼ 0;

(A16)

where

JOHN ELLIS, DAE SUNG HWANG, AND ARAM KOTZINIAN PHYSICAL REVIEW D 80, 074033 (2009)

074033-12



’ðx;k?Þ ¼ effiffiffiffiffiffiffiffiffiffiffiffi
1� x

p 1

M2 � k2
?þm2

x � k2
?þ�2

1�x

: (A17)

Similarly, the wave functions for a proton with negative helicity are given by

c #
þð1=2Þþ1ðx;k?Þ ¼ 0; c #

�ð1=2Þþ1ðx;k?Þ ¼ 0; c #
þð1=2Þ0ðx;k?Þ ¼ �

ffiffiffi
1

3

s
ð�k1 þ ik2Þ

x
’;

c #
�ð1=2Þ0ðx;k?Þ ¼ þ

ffiffiffi
1

3

s
ðxMþmÞ

x
’; c #

þð1=2Þ�1ðx;k?Þ ¼ �
ffiffiffi
2

3

s
ðxMþmÞ

x
’;

c #
�ð1=2Þ�1ðx;k?Þ ¼ þ

ffiffiffi
2

3

s
ðþk1 þ ik2Þ

x
’:

(A18)

The coefficients of ’ in (A16) and (A18) are the matrix
elements of �uðkþ;k�;k?Þffiffiffiffiffi

kþ
p �a � �ð�Þ� uðPþ;P�;P?Þffiffiffiffiffi

Pþp , which are the
numerators of the wave functions corresponding to each
constituent-spin sz configuration.

Because of the transformation properties (A12) of the
Bjorken-Drell spinors uBDðkÞ, when we construct the pro-
ton spin states jP;� ¼ � 1

2i by using the Clebsch-Gordan

coefficients with uBDðkÞ for spin-half components, they
satisfy

Jþ
��������P;� ¼ þ 1

2

�
¼ 0;

J�
��������P;� ¼ � 1

2

�
¼ 0

J�
��������P;� ¼ þ 1

2

�
¼

��������P;� ¼ � 1

2

�
;

Jþ
��������P;� ¼ � 1

2

�
¼

��������P;� ¼ þ 1

2

�
;

(A19)

where Ji is the angular momentum operator for the proton
given by Ji ¼ P

aj
i
a ¼ P

aðsia þ liaÞ, which is the sum over
the constituents a, and J� ¼ J1 � iJ2.

Since kþ ¼ xM in the proton rest frame, from (A11) the
Fock states with the light-cone wave functions given in
(A16) and (A18) correspond to the following states in the
proton rest-frame, respectively:

� ffiffiffi
2

3

s ���������1

2
þ 1;xPþ;k?

�
BD �

ffiffiffi
1

3

s ��������þ1

2
0;xPþ;k?

�
BD

�
;

�
�

ffiffiffi
2

3

s ��������þ1

2
� 1;xPþ;k?

�
BD þ

ffiffiffi
1

3

s ���������1

2
0;xPþ;k?

�
BD

�
:

The above states are angular momentum eigenstates
jP;� ¼ þ 1

2i and jP;� ¼ � 1
2i, respectively, which satisfy

(A19). In the proton rest frame, the states described by
(A16) and (A18) are identical to the axial-vector diquark
states appearing in the SU(6) wave functions (28) and (29).
Therefore, in the proton rest frame the wave functions of
the axial-vector diquark states derived here through the
vertex given in Fig. 14 with the polarization vectors given
in (A14) coincide with those in the SU(6) wave function
for the proton.
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