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A bstract

W epresenta new prescription fortheresum m ation ofcontributionsdueto softgluon em ission

to thetransversem om entum distribution ofprocessessuch asDrell-Yan production in hadronic

collisions. W e show that fam iliar di�culties in obtaining resum m ed results as a function of

transversem om entum starting from im pact-param eterspaceresum m ation arerelated to thedi-

vergenceoftheperturbativeexpansion ofthem om entum -spaceresult.W econstructaresum m ed

expression by Borelresum m ation ofthisdivergentseries,rem oving the divergence in the Borel

inversion through the inclusion ofa suitable highertwistterm . The ensuing resum m ation pre-

scription isfreeofnum ericalinstabilities,isstable upon theinclusion ofsubleading term s,and

the originaldivergentperturbative seriesisasym ptotic to it. W e com pare ourresultsto those

obtained using alternativeprescriptions,and discusstheam biguitiesrelated totheresum m ation

procedure.
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1 Transverse m om entum resum m ation

The com putation oftransverse m om entum distributions ofheavy system s (such as dileptons,

vectorsbosons,Higgs)playsan im portantrolein colliderphenom enology,from theTevatron to

theLHC [1,2].Asiswellknown,theperturbativeQCD expansion oftheinclusive distribution

containsto allorderspowersof�sln
2
(qT =Q),due to the em ission ofsoftand collineargluons.

W hen thetransversem om entum qT ism uch sm allerthan them assofthe�nalstateQ theselogs

becom elargeand m ustberesum m ed in orderforperturbativepredictionsto rem ain reliable.

Theresum m ation,to given logarithm icaccuracy,can beperform ed [3]fortheFouriertrans-

form ofthe di�erentialcross-section d�

dq2
T

with respect to qT . Upon Fourier transform ation,qT

turnsinto itsFourierconjugate,the im pactparam eterb,and large logsofqT =Q becom e large

logsofbQ.Fouriertransform ation isnecessary in orderforthecontributionsincluded by resum -

m ation to respect transverse m om entum conservation,thereby avoiding the spurious factorial

growth ofresum m ed coe�cients[4].However,theFouriertransform m ustbeinverted in orderto

obtain resum m ed predictionsforphysicalobservables. Thisisproblem atic because the Fourier

inversion integralnecessarily involvesan integration overtheregion ofim pactparam eterswhere

thestrong coupling isnotwellde�ned becauseoftheLandau pole.

This problem has been treated with various prescriptions. One possibility is to m odify

the behaviour ofthe strong coupling in the infrared in the Fourier inversion integral[3](b?
prescription,henceforth): this procedure iswidely used,but itis known to lead to num erical

instabilitieswhen theresum m ed resultsarem atched to �xed{orderones[5].A second option is

based on theobservation thattheFourierinversion integralcan becom puted orderbyorderin an

expansion oftheresum m ed resultsin powersof�s:ifonly leading log term sareretained in the

Fourierinversion,theresultisthen wellde�ned forallvaluesofqT [5].Thisprocedurehowever

is unstable to the inclusion ofsubleading corrections: the Fourierinversion can be perform ed

to next-to-leading log accuracy [6](asit is necessary ifthe resum m ation is perform ed to this

order),butin such casetheresultdi�erssigni�cantly from theleading logone,and in factforQ

around 100GeV itblowsup forvaluesofqT oforderofseveralGeV,wellwithin theperturbative

region.A \m inim al" prescription which isfreeofthesedi�cultiescan beconstructed [7],along

thelinesofthesim ilarprescription forthreshold resum m ation [4].Nam ely,theintegration path

in theFourierinversion isdeform ed in such a way asto leaveunchanged theresultto any �nite

perturbative order,but avoiding the Landau pole and associate cut in the resum m ed result.

This leads to a prescription which is free ofnum ericaland perturbative instabilities: its only

shortcom ingisthatitisdi�culttoassesstheam biguitiesrelated totheresum m ation procedure,

asitcan be done in the b? prescription by varying the way in which the infrared behaviourof

thestrong coupling ism odi�ed.

Here we shallshow that,analogously to what happens in the case ofthreshold resum m a-

tion [8],the am biguity in the resum m ation procedure isdue to the factthatthe perturbative

expansion ofthe resum m ed result for the transverse m om entum distribution itselfin powers

of�s diverges. After discussing,in the next section ofthis paper,how existing prescriptions

treatthisdivergence,wewillshow in section 3 thatthedivergentseriescan betreated by Borel

sum m ation,asisthe case forthreshold resum m ation [8,9]. The Boreltransform ofthe series

converges and can be sum m ed. The inversion integralwhich gives back the originalseries di-
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verges,butthedivergencecan berem oved by including a suitablehighertwistterm .Thisleads

to a resum m ed result ofwhich the originaldivergent series is an asym ptotic expansion. The

ensuingprescription isgiven in term sofacontourintegralwhich iseasily am enabletonum erical

im plem entation. The result isfree ofnum ericalinstabilities,and stable upon the inclusion of

subleading corrections.An estim ateoftheam biguity on theresum m ed resultsm ay beobtained

from a variation ofthehigher-twistterm which isincluded in orderto rendertheresultsconver-

gent.In section 4 we willcom pare the resultofourprescription to otherexisting prescriptions

in the case ofthe Drell-Yan process,and discuss the am biguities related to the resum m ation

procedure.Som eresultson Fouriertransform sarecollected in theAppendix.

2 T he need for a resum m ation prescription

Letusconsider a parton{levelquantity � which depends on a large scale Q and a transverse

m om entum ~qT ,such as the partonic Drell-Yan di�erentialcross-section d�

dq2
T

. Resum m ation is

necessary because the perturbative coe�cient oforder n in the expansion of� in powers of

�s(Q
2)hastheform

�=
X

n

�
n
s(Q

2)�
(n)
(q2

T
;Q

2) (2.1)

�
(n)
(q2

T
;Q

2)=

�
Pn(ln q̂

2
T
)

q̂2
T

�

+

+ Q n(̂q
2

T
)+ D n�(̂q

2

T
); (2.2)

where

q̂
2

T
�

q2
T

Q 2
; (2.3)

Pn(ln q̂
2
T
) is a polynom ialofdegree 2n � 1 in ln q̂2

T
,Q n(̂q

2
T
) is regular as qT ! 0,and D n are

constants (see the Appendix for a de�nition ofthe + distribution). Physicalobservables are

obtained,exploiting collinearfactorization,astheconvolution ofparton levelcross-sectionswith

parton distributions[3].W hen Q 2 islargeenough,itsetsthescaleofparton distributions,and

the qT dependence is entirely given by the partonic cross-section. For lower values ofQ 2 the

scaleofparton distributionsissetby theim pactparam eterb,which isFourierconjugateto qT ,

the convolution m ustbe perform ed in b space,and the Fouriertransform m ustbe inverted to

obtain physicalpredictions.In eithercase,theresum m ation isperform ed in bspaceatthelevel

ofpartonicobservables.

Upon Fourier transform ation,~qT is replaced by its Fourier-conjugate variable,the im pact

param eter~b,and thesm all-qT region ism apped onto thelarge-bregion.Largelogsofbcan then

beresum m ed,leading to an expression oftheform

�(� s;��L)=

1X

k= 1

hk(�s)(��L)
k + O (L0); (2.4)

where

L � ln
b2
0

Q 2b2
(2.5)
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isthelargelogarithm which isresum m ed,and O (L0)denotesterm swhich arenotlogarithm ically

enhanced as b ! 1 . For future convenience, we have introduced in the de�nition ofL an

arbitrary constantb0 (to bediscussed below),and wehavefurtherde�ned

�� � �0�s(Q
2); (2.6)

�0 isthe�rstcoe�cientoftheQCD beta function,

Q
2
@�s(Q

2)

@Q 2
= � �0�

2

s(Q
2)
�
1+ �1�s(Q

2)+ O (�2s)
�

(2.7)

�0 =
33� 2nf

12�
; �1 =

1

2�

153� 19nf

33� 2nf
: (2.8)

Theinverse Fouriertransform of� with respectto bisgiven by

�(� s;q̂
2

T
)=

Q 2

2�

Z

d
2
be

�i~q T �
~b�(� s;��L)=

Z
+ 1

0

d̂bb̂J0(̂b̂qT )�(� s;��L); (2.9)

using two-dim ensionalpolarcoordinatesfor b̂� bQ,and theintegralrepresentation ofthe0-th

orderBesselfunction,

J0(z)=
1

2�

Z
2�

0

d� e
�izcos�

: (2.10)

Now considerspeci�cally theresum m ation of

�(� s;q̂
2

T
)=

1

�̂0

d�̂

dq̂2
T

; (2.11)

where d�̂

dq̂2
T

isthepartonictransversem om entum distribution ofa m assive�nalstate,and �̂0 the

Born{leveltotalcross-section.In thiscase,theb-spaceresum m ed resulthastheform [3]

�(� s;�� L)= expS(�s;�� L); (2.12)

S(�s;�� L)� �

Z Q 2

b
2

0

b2

d�2

�2

�

ln
Q 2

�2
A(�s(�

2))+ B (�s(�
2))

�

; (2.13)

where

A(�s)= A 1�s + A 2�
2

s + :::; B (�s)= B 1�s + :::; (2.14)

and the constants A i;B i can be determ ined order by order by m atching to the �xed-order

calculation.

The integralin eq.(2.13)can be perform ed explicitly,and theresultcan then beexpanded

as

S(�s;�� L)=

1X

i= 0

��i�1 fi(�� L); (2.15)
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where inclusion ofthe�rstk ordersin thesum correspondsto thenextk-to-leading log (N kLL)

approxim ation.TheLL and NLL functionsf0;f1 areexplicitly given by

f0(y) =
A 1

�0
[ln(1+ y)� y] (2.16)

f1(y) =
A 1�1

�2
0

�
1

2
ln

2
(1+ y)�

y

1+ y
+
ln(1+ y)

1+ y

�

�
A 2

�20

�

ln(1+ y)�
y

1+ y

�

+
B 1

�0
ln(1+ y): (2.17)

Notethatwith y = ��L,using theleading log form of�s(Q
2),

1+ y =
�s(Q

2)

�s(b
2
0
=b2)

: (2.18)

Itisapparentfrom eqs.(2.16,2.17)that�(� s;��L)hasa branch cutalong the negative real

axisin thecom plex planeofthevariabley = ��L:

Re(y)� � 1; Im (y)= 0: (2.19)

Thisisdueto thefactthatthestrong coupling blowsup when itsargum entreachestheLandau

pole,so thatS(�s;�� L)eq.(2.13)issingularwhen bbecom eslargeenough,i.e.when

b
2
� b

2

L �
b20

Q 2
e

1

�� : (2.20)

Atleading order,b2L =
b2
0

� 2. Itfollowsthatthe seriesfor�(� s;��L)eq.(2.4)hasa �nite radius

ofconvergence,and the integrand in eq.(2.9) is not analytic in the whole integration range

0� b̂< +1 ,so theFourierinversion integralisnotwell-de�ned withouta prescription to treat

thesingularity.

As m entioned in the introduction,various prescriptions ofthis kind have been proposed.

Beforediscussingthem ,letusshow thatthereason whyaprescription isneeded isthedivergence

ofthe expansion in powers of�s(Q
2) ofthe resum m ed result obtained com puting the inverse

Fourier transform eq.(2.9) with �(� s;�� L) eq.(2.12). To any �nite perturbative order,the

qT -spaceresum m ed resultisfound by expanding eq.(2.12)and inverting theFouriertransform

orderby order:

�K (�s;�L)=

KX

k= 1

hk(�s)��
k Q

2

2�

Z

d
2
be

�i~q T �
~b
L
k
; (2.21)

wherewehavereplaced theargum ent q̂2
T
of� by

�L � ln q̂2
T
= ln

q2
T

Q 2
: (2.22)
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W hen K ! 1 the series eq.(2.21) diverges. To see this, we com pute the integrals in

eq.(2.21)using eq.(A.1)oftheAppendix:

�K (�s;�L)=
d

dq̂2
T

R K (�s;�L) (2.23)

R K (�s;�L)= 2

KX

k= 1

hk(�s)��
k

kX

j= 0

�
k

j

�

M
(j)(0)�Lk�j

; (2.24)

where thefunction M (�)isde�ned in eq.(A.2),we have assum ed q̂2
T
6= 0,so thatdistributions

can beignored,and theterm with j= k,which leadsto a vanishing contribution to �K (�s;�L),

hasbeen included in the sum overj eq.(2.24)forlaterconvenience. W enow changethe order

ofsum m ation,and usetheidentity

1

(k� j)!
=

1

2�i

I

H

d� e
�
�
�(k�j)�1

; (2.25)

wheretheintegration path H isany closed contourwhich enclosestheorigin � = 0.W eobtain

R K (�s;�L) = 2

KX

j= 0

M (j)(0)

j!

KX

k= j

k!

(k� j)!
hk ��

k �Lk�j (2.26)

=
1

�i

I

H

d�

�
e
�

KX

j= 0

M (j)(0)

j!

�
�

�L

� j KX

k= j

k!hk

�
���L

�

� k

: (2.27)

Becauseofthesingularity eq.(2.19),thepowerserieseq.(2.4)hasa �niteradiusofconver-

genceequalto one

lim
k! 1

�
�
�
�
hk+ 1

hk

�
�
�
�= 1; (2.28)

which im m ediately im plies the vanishing ofthe radius ofconvergence ofthe sum over k in

eq.(2.27).

Thesituation isthussim ilarto thatwhich isencountered in threshold resum m ation [4,8,9]:

the resum m ation isperform ed on quantitieswhich are related by M ellin transform ation to the

physicalones,but the resum m ed results cannot be expressed as a M ellin transform ofsom e

function. Nam ely,their inverse M ellin transform does not exist,as a consequence ofthe fact

thattheinverseM ellin transform oftheirexpansion in powersof�s(Q
2)diverges.In thepresent

case,thedivergence oftheperturbative expansion im pliesthattheFourierinversion integralis

ill-de�ned;ofcourse the problem disappearsifoneretainsonly a �nite num berofterm sin the

resum m ed expansion [10,11].Variouscom m onlyusedprescriptionsreplacetheill-de�nedintegral

with awellde�ned one,aswenow review.In thenextsection,weconstructaprescription which

isinstead based on theidea ofreplacing thedivergentserieswith a convergentonethrough the

Borelsum m ation m ethod. In the lastsection we willcom pare the variousprescriptionsand in

particulartheway they treatthedivergence oftheperturbativeseries.
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In theprescription ofref.[3],thevariablebisreplaced by a function b?(b)which approaches

a �nitelim itblim � bL asb! 1 ,such asforexam ple

b? =
b

p
1+ (b=blim )

2
: (2.29)

In thisway,thecuteq.(2.19)isneverreached.Thisprocedurehassom edegreeofarbitrariness

in thechoiceofthefunction b?(b),which isinterpreted asaparam etrization ofnon-perturbative

e�ects,whose size can be estim ated by varying b?,forinstance by changing the value ofblim .

The m atching ofthisprescription to the �xed-orderresultishowevernum erically unstable,as

pointed outin ref.[5].

A di�erentpossibility [5]isbased on theobservation thatifonly theleading logcontribution

(i.e.theterm swith j= 0)areincluded in eq.(2.24),then theseriesconverges,and itssum can

in factbecom puted in closed form ,with theresult(seeeq.(A.16)oftheAppendix)

�LL(�s;�L)= 2
d

dq̂2
T

�
�
�s;���L

�
: (2.30)

Equation (2.13) im plies that S(�s;�� L) depends on b2 through �s(1=b
2). Therefore, using

eq.(2.18),the LL expression eq.(2.30) is seen to becom e a function of�s(q
2
T
). Therefore,

the leading log truncation ofthe perturbative expansion in powers of�s(Q
2) eq.(2.27)has a

�niteradiusofconvergence,setby theLandau pole

q
2

T
> Q

2exp

�

�
1

��

�

= �2
; (2.31)

wherethelastequality holdsatleading order.

Them ain defectofthisresultisthatitissubjectto largenext-to-leading log corrections.In

fact,theNLL Fourierinversion integralcanalsobecom puted inclosed form [6].Theresult(given

in eq.(A.17))di�erssizably from theLL resulteven forrelatively largevaluesofqT (severalGeV

forQ = 100 GeV),asweshallseeexplicitly in Sect.4 below.In fact,itturnsoutthattheNLL

correction divergesatavalueofqT which isan increasingfunction ofthescaleQ.Thisinstability

can be understood asa consequence ofthe factthatthe truncation ofthe resum m ed resultto

�nitelogarithm icaccuracy leadstoan expansion in powersof�s(q
2
T
)with coe�cientsdepending

on ln(qT =Q),where higherpowersof�s(q
2
T
)correspond to higherlogarithm ic orders. Such an

expansion isnecessarily poorly behaved atlow qT ,allthem ore so when the scaleratio qT =Q is

large.Perform ing theFourierinversion to leading ornext-to-leading logarithm icaccuracy thus

rem oves the divergence ofthe series eq.(2.21): thisisanalogousto whatisfound in the case

ofthreshold resum m ation,whereitcan beshown [8]thatthedivergenceofresum m ed resultsis

rem oved ifthe M ellin inversion isperform ed to any �nite logarithm ic accuracy. However,the

ensuing resultsarethen perturbatively unstable.

A yetdi�erentwayoftreatingthedivergencehasbeenproposedm orerecentlyinref.[7],along

thelinesoftheso{called M inim alPrescription ofthreshold resum m ation [4].Thebasicideahere

isthattoany �niteperturbativeorder,when thedivergentseriesisreplaced by a�nitesum ,one

m aychoosetheintegration path in such awaythatitavoidsthesingularitieswhich appearatthe
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resum m ed level. The resultofthe Fourier(orrespectively M ellin)inversion isthen unchanged

to any �nite perturbative order,butitbecom es�nite attheresum m ed level.Itcan be further

shown [4]thatthe divergentperturbative expansion ofthe resum m ed expression isasym ptotic

to the resultobtained in thisway. Thisprescription iswidely used [2]: whereasin the case of

threshold resum m ation itleadsto dependence ofresum m ed physicalresultson a kinem atically

unaccessible region (albeit by power{suppressed term s),in the case oftransverse m om entum

resum m ation itsonly shortcom ing isspeed lim itation in itsnum ericalim plem entation.

3 T he B orelprescription

W e now turn to the construction of a prescription which extends to transverse m om entum

resum m ation the Borelprescription proposed in refs.[8,9]for the resum m ation ofthreshold

logarithm s.Thebasicideaistotackledirectlythedivergenceoftheseries(2.24,2.27)bysum m ing

itthrough theBorelm ethod.

To do this,wetaketheBoreltransform ofeq.(2.27)with respectto ��.Thisam ountsto the

replacem ent ��k ! w k�1 =(k� 1)!,wherew istheBorelvariableconjugateto ��.W eobtain

R̂ K (w;�L)=
1

�i

I

H

d�

�2
e
�L�

KX

j= 0

M (j)(0)

j!
�
j

KX

k= 1

khk

�
w

�

� k�1

; (3.1)

wherein com parison toeq.(2.27)wehaverescaled theintegration variable� ! �L�,and wehave

included allterm swith 1� k � j� 1,which vanish upon contourintegration.

Both sum sin eq.(3.1)areconvergentasK ! 1 .Indeed,

1X

k= 1

khk

�
w

�

� k�1

= �
d

dw
�

�

�s;
w

�

�

for

�
�
�
�
w

�

�
�
�
�< 1 (3.2)

1X

j= 0

M (j)(0)

j!
�
j = M (�) for j�j< 1; (3.3)

thelastcondition being dueto thesim plepoleofM (�)at� = 1.Thus,

R̂(w;�L)= lim
K ! 1

R̂ K (w;�L)=
1

�i

I

H

d�

�
e
�L�
M (�)

d

dw
�

�

�s;
w

�

�

; (3.4)

provided thecontourH ischosen so that

w < j�j< 1: (3.5)

Since M (�)hasno singularitieson the negative realaxis,and �(�s;w=�)hasa branch cuton

thereal� axisbetween � w and 1,theintegration contourcan now bedeform ed so that̂R(w;�L)

iswellde�ned forallpositivevaluesofw (see�g.1).

Theoriginalfunction eq.(2.24)isrecovered by inverting theBoreltransform :

R(�s;�L)=

Z
1

0

dw e
�

w

�� R̂(w;�L): (3.6)

7



Figure1:Theintegration contourH in eq.(3.4).

The inversion integralisdivergentatw ! 1 . Thisiseasily seen by inspection of�g.1:asw

becom eslarge,thebranch cutextendstotheleft,and theintegration contourispushed towards

largenegativevaluesof�,whereM (�)oscillateswith a factorially growing am plitude.

W eregulatetheintegralby cutting ito� atw = C.W ethusget

R
C (�s;�L)=

1

�i

I

H

d�

�
M (�)e

�L�

Z C

0

dw e
�

w

��

d

dw
�

�

�s;
w

�

�

; (3.7)

which is the Borelprescription for transverse m om entum resum m ation. The result can be

equivalently rewritten by doing a partialintegration as

R
C (�s;�L)=

1

�i

I

H

d�

�
M (�)e

�L�

�

e
�

C

�� �

�

�s;
C

�

�

+
1

��

Z C

0

dw e
�

w

�� �

�

�s;
w

�

��

; (3.8)

which m ay be m ore convenient for num ericalim plem entations in that it depends directly on

the physicalobservable �,rather than its derivative. Equation (3.8),and its equivalent form

eq.(3.7),are the m ain resultofthispaper. Itisinteresting to observe thatifwe integrate by

parts before cutting o� the integral,then the surface term vanish. W e then end up with the

alternativeresum m ation

R
C 0

(�s;�L)=
1

�i

I

H

d�

�
M (�)e

�L�1

��

Z
C

0

dw e
�

w

�� �

�

�s;
w

�

�

: (3.9)

Asweshallseeshortly,thisisan equally valid prescription.

In ordertoseethatthisisavalid resum m ation prescription,considerthetruncation toorder
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K ofeq.(3.6),nam ely

R
C
K (�s;

�L) �

Z
C

0

dw e
�

w

�� R̂ K (w;�L)

= 2

KX

j= 0

M (j)(0)

j!

KX

k= j

k!

(k� j)!
hk ��

k


�
k;C

��

�

(k� 1)!
�Lk�j

; (3.10)

where


(k;z)=

Z z

0

dw e
�w
w
k�1 = (k� 1)!

 

1� e
�z

k�1X

n= 0

zn

n!

!

(3.11)

isthetruncated gam m a function.Thedi�erence between theoriginalR K (�s;�L)eq.(2.23)and

itsBorelresum m ation R C
K (�s;

�L)is

R
ht

K (�s;
�L;C) � RK (�s;�L)� R

C
K (�s;

�L)

= 2e�
C

��

KX

j= 0

M (j)(0)

j!

KX

k= j

k!

(k� j)!
hk ��

k �Lk�j

k�1X

n= 0

1

n!

�
C

��

� n

: (3.12)

Because

e
�

C

�� =

�
�2

Q 2

� C �
1+ O

�
�s(Q

2)
��
; (3.13)

R ht
K (�s;

�L;C)isseen tobepower{suppressed atlargeQ 2 (highertwist):cuttingo�thew integra-

tion atw = C isequivalentto theinclusion ofa highertwistterm ,which cancelsthedivergence

oftheresum m ed expression.Speci�cally,R ht
K (�s;

�L;C)isa twist-tcontribution with

t= 2(1+ C); (3.14)

the choice C = 1 corresponds to the inclusion ofa twist-four term . M oreover,it is apparent

from eq.(3.12)that

R
ht

K (�s;
�L;C) �

� s! 0

e
�

C

�� ; (3.15)

which vanishes faster than any power of�s as �s ! 0. It follows that the originaldivergent

R K (�s;�L)isan asym ptoticexpansion oftheBorel-resum m ed resultR
C (�s;�L)eqs.(3.8,3.7).

Furtherm ore,thealternativeprescription R C 0

(�s;�L)eq.(3.9)di�ersfrom R C (�s;�L)eq.(3.8)

by the�rstterm in square bracketsin (3.8),which isa �nite higher-twistcontribution.Hence,

the two prescriptions correspond to two inequivalent butequally acceptable regularizationsof

the divergentsum which di�erby �nite term s,and are both asym ptotic sum softhe divergent

series.

Them ain featuresoftheBorelprescription can beappreciated by considering asan explicit

exam pleofa resum m ed quantity �(� s;��L)= 
LL(�s;��L),with


LL(�s;��L)�
dSLL(�s;��L)

dlnQ 2
; (3.16)
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and SLL(�s;��L)given by eqs.(2.13,2.15)evaluated attheleading log level(2.16),nam ely


LL(�s;��L)=
A 1

�0
ln(1+ �� L): (3.17)

Substituting thisform of�(� s;��L)in eq.(3.7),theassociateqT -spacephysicalobservablecom -

puted with theBorelprescription isfound to be

�
CLL(�s;
�L)=

A 1

�0

1

q̂2
T

Z C

0

dw e
�

w

��

1

�i

I

H

d�M (�)e
�L�

1

� + w
: (3.18)

The� integraliseasy to calculate,becausetheintegrand hasonly a sim plepoleat� = � w:

�
CLL(�s;
�L)=

2A 1

�0

1

q̂2
T

Z C

0

dw

�
�2

q2
T

� w

M (� w); (3.19)

wherewehaveused theleading-log expression oftherunning coupling.Itisthusclearthatthe

divergentintegration iscuto� by theinclusion ofa power{suppressed contribution

�
ht
LL
(�s;�L;C) =

2A 1

�0

1

q̂2
T

Z
+ 1

C

dw

�
�2

q2
T

� w

M (� w)

=
2A 1

�0

1

q̂2
T

�
�2

q2
T

� C Z
+ 1

0

dw

�
�2

q2
T

� w

M (� w � C): (3.20)

Notethatthesuppression isby powersof � 2

q2
T

:at�niteorderK thehighertwistcontribution is

suppressed by a powerof � 2

Q 2
,asshown in eq.(3.12),butwhen resum m ed to allorders,thescale

Q 2 isreplaced by an e�ective scaleq2
T
.

4 C om parison ofresum m ation prescriptions

Letusnow com paretheresultsfound usingtheBorelprescription tothoseofotherprescriptions,

with thedualgoalofunderstanding theadvantagesand disadvantagesofvariousm ethods,and

ofassessing theam biguity which isintrinsicto theresum m ation ofa divergentexpansion.

First,we look ata typicalresum m ed observable. Nam ely,we consider the transverse m o-

m entum distribution ofDrell-Yan pairs,eq.(2.11),which weevaluateatthepartonicresum m ed

next-to-leading log level,i.e. using eq.(2.12)with S(�s;�� L)com puted including the �rsttwo

term sin eq.(2.15),given in eqs.(2.16,2.17)with [12,13]

A 1 =
CF

�
(4.1)

A 2 =
1

�2

�
67

9
�
�2

3
�
10

27
nf +

8�

3
�0 ln

b0e

E

2

�

(4.2)

B 1 =
2CF

�
ln
b0e


E �3=4

2
: (4.3)
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Figure2:TheNLL partonicresum m ed Drell-Yan transversem om entum distribution com puted

with variousresum m ation prescriptions with Q 2 = 104 GeV 2 and in a narrow (left)and wide

(right)rangeofqT .

Theresultsaredisplayed in �g.2,forQ = 100 GeV.Thetwo lowercurvesatlargeqT in this

�gurecorrespond to thosefound using respectively eqs.(A.16)and eqs.(A.17)oftheAppendix,

nam ely,to inverting the Fourier transform to leading and next-to-leading log accuracy (with

b0 = 2e�
 E ). The sizable di�erence between these two results even forqT aslarge as10 GeV

showstheinstability ofthetruncation oftheFouriertransform to �nitelog accuracy discussed

in theintroduction and �rststressed in ref.[6].

Theotherprescriptionsdisplayed in �g.2aretheb? prescription,wheretheFourierinversion

isperform ed afterreplacingbwith b? eq.(2.29),with blim = bL,wherebL = 7:2GeV �1 istheNLO

Landau poleeq.(2.20);them inim alprescription (M P)wheretheFourierinversion isperform ed

along thedeform ed path ofref.[7],and theBorelprescription eq.(3.7)with C = 1.

In �g. 3 we further show the dependence ofthe Borelprescription on the param eter C

which characterizesthehighertwistterm included in the resum m ation eqs.(3.13,3.14),asitis

varied between twistfourand twisteight.Because allthese choicesprovide valid resum m ation

prescriptions, this variation provides an estim ate of the am biguity which is intrinsic of the

resum m ation procedure: indeed,the b? and m inim alprescription,also shown in this �gure,

are wellwithin the band ofvariation asqT ! 0. These plotsshow thatthe am biguity in the

resum m ation procedure isnegligible forqT & 5 GeV,itrem ainssm allforqT & 2 GeV,and it

only blowsup asqT approachestheLandau pole.

W e can further elucidate the origin ofthese results by studying the e�ect ofthe various

prescriptions when the divergent sum eq.(2.21) is truncated,so the Fourier inversion can be

perform ed term by term . Considerspeci�cally the �rstterm in the series,nam ely,the inverse

Fouriertransform ofL.Theexactresultisgiven by eq.(A.1)fork = 1,

1

2�

Z

d
2
b̂e

�îq T �̂b ln
b2
0

b̂2
=

2

q̂2
T

: (4.4)

The M P reproducesthisexactresult,because ln(b20=̂b
2)isanalytic on the positive realb̂ axis,

11



Figure3:Dependenceoftheresultsshown in �g.2fortheBorelprescription on theparam eterC.

TheverticallineatqT = 156 M eV indicatestheposition oftheLandau pole.

and a deform ation ofthe integration contourhasno e�ect;a branch cuton the positive real b̂

axisonly arisesaftersum m ation ofthewholeseries.

TheBorelprescription yieldsinstead
�
1

2�

Z

d
2
b̂e

�îq T �̂b ln
b2
0

b̂2

�

BP

=
2

q̂2
T

�

1� e
�

C

��

�

(4.5)

as one can see by setting h1 = 1

��
and hk = 0 for allk 6= 1 in eq.(3.10). The exact result

is m odi�ed by the introduction ofa correction oftwist 2(1+ C). Note that the higher twist

correction is tiny at large Q 2,oforder 10�6 for C = 1 and Q 2 = 104 GeV 2. Ifwe use the

alternativeBorelprescription R C 0

(�s;�L)eq.(3.9)wegetinstead

�
1

2�

Z

d
2
b̂e

�îq T �̂b ln
b20

b̂2

�

BP0

=
2

q̂2
T

�

1� e
�

C

��

�

1+
C

��

��

: (4.6)

so thetwo prescriptionsareindeed seen to di�erby a highertwistterm .

Finally,the resultofthe replacem entofb by b? eq.(2.29)can be com puted analytically in

term softheBesselfunction K 1:

1

2�

Z

d
2
b̂e

�îq T �̂b ln
b2
0

b̂2?

=
1

2�

Z

d
2
b̂e

�îq T �̂b ln

"
b2
0

b̂2

 

1+
b̂2

b̂2
lim

! #

=
2

q̂2
T

h

1� b̂lim q̂T K 1(̂blim q̂T )

i

: (4.7)

Using theasym ptoticbehaviourK 1(z) �
z! 1

e�z =
p
z,weseethatthecorrection factorin eq.(4.7)

vanishesfasterthan any powerof1=(blim qT )forqT � 1=blim .
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For higher order powers ofL the sam e qualitative behaviour is found using the various

prescriptionsdiscussed here. Nam ely,the M P givesthe exactFouriertransform eq.(A.1);the

BP givesa resultwhich di�ersfrom itby a highertwistterm ,and the b? prescription givesa

resultwhich di�ersfrom itby a term which isexponentially suppressed in 1=(blim qT ).

W e thus see that the way di�erent prescriptions tackle the divergence ofthe perturbative

expansion is the following. In the LL and NLL case,the divergent series eq.(2.24) is m ade

convergent by truncating the Fourier inversion to �nite order,i.e. by only retaining a �nite

num ber ofterm s in the innersum overj. This,asdiscussed in Section 2,leads e�ectively to

an expansion in powersof�s(q
2
T
)which hasvery poorconvergence propertiesatsm allqT even

when Q is large. The M P and BP both provide an asym ptotic sum ofthe divergent series:

the BP rem oves the divergence by inclusion ofa highertwistterm ,and the M P by a suitable

analyticcontinuation,which corresponds[4]totheinclusion ofterm swhich arem oresuppressed

than any powerofQ 2. Atlarge Q 2,the highertwistterm ofthe BP isnegligible so these two

prescriptionsareessentially indistinguishable when applied to convergentseries.W hen applied

tothedivergentresum m ed expansion displayed in �gs.2-3they onlydi�erin theregion whereqT
approachestheLandau pole,so thehigh{orderbehaviouroftheseriesbecom erelevant.Finally,

theb? prescription m odi�esthedivergentseriesby inclusion ofa term which ism oresuppressed

than any powerof1=(blim qT ). W hen applied to a convergentseries,thisprescription produces

a resultthatdi�erssizably from thatofthe BP when q2
T
� Q 2 and itapproachesthe Landau

pole: this is because the scale ofthe correction term is set by Q 2 for the BP,and by q2
T
for

the b? prescription. At the resum m ed level,however,the e�ective scale ofpower suppressed

term sbecom es q2
T
also forthe BP (com pare eq.(3.20)),so allresum m ation prescriptions lead

essentially to thesam eresult.

5 Sum m ary

W ehaveconstructed a resum m ation prescription fortransverse m om entum distributionswhich

extendsto thiscasetheBorelprescription previously proposed forthreshold resum m ation [8,9].

The construction isbased on the observation thatthe reason why a resum m ation prescription

isneeded in the �rstplace isthatthe perturbative expansion ofresum m ed resultsin qT space

in powers of�s(Q
2) diverges. The Borelprescription tackles this divergence by sum m ing the

convergentBoreltransform ofthedivergentseries,and then m akingtheBorelinversion �niteby

inclusion ofa highertwistterm .Theoriginaldivergentseriesisan asym ptoticexpansion ofthe

result obtained thus. The Borelprescription iseasily am enable to num ericalim plem entation;

being based on a b-space resum m ation it is easy to m atch to �xed{order results, and it is

perturbatively stable.

There issom e freedom in thisprescription,param etrized by a realparam eterC,related to

the twist tofthe term included in orderto obtain convergence by t= 2(C + 1). W hereas C

m ay bechosen to takeany value,itisconvenientto choosea valuewhich correspondsto twists

which already appear in the expansion ofthe observable being considered. Indeed,physical

observables m ust be independent ofthe choice ofC,and thus ifan unphysicaltwist term is

introduced,itm ustbe com pensated by an equaland opposite powersuppressed term which is

13



thereby arti�cially introduced by thischoice.

Com parison oftheBorelprescription to otheravailable resum m ations,such asthem inim al

prescription orthe b? m ethod,showsthatatlarge Q
2 they lead to resultswhich are extrem ely

stable and which only di�er when qT approaches the Landau pole. In fact,variation ofthe

param eter C of the Borelprescription provides a reliable estim ate of the am biguity in the

resum m ation procedure.ForqT & 2 GeV thisam biguity appearsto benegligibly sm all,even in

theregion ofa few GeV where theim pactoftheresum m ation issizable.Thisisin contrastto

thecaseofthreshold resum m ation,whereitwasfound [9]thattheam biguity isalm ostaslarge

asthe e�ectofthe resum m ation itselfin m ostofthe kinem atic region where the resum m ation

isrelevant.

Ourresultscontradictthe widespread prejudice thattransverse m om entum resum m ation is

a�ected by sizableam biguities,and itshowsthat,atleastaslongasQ isaslargeastheW m ass

and qT aslargeasthe nucleon m assperturbative resum m ation oftransverse m om entum distri-

butionsprovidesreliable and stable results. The Borelprescription providesa new m ethod for

perform ingthisresum m ation which hasm orestablem atchingpropertiesthan theb? prescription

and m ightbenum erically advantageousoverthewidely used m inim alprescription.
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A A ppendix

In this appendix,we collect som e results on two-dim ensionalFourier transform s ofpowers of

logarithm s.

First,we com pute the exactFouriertransform with respectto b̂ofthe k{th powerofln
k b2

0

b̂2

(with b0 a constant).W eget

1

2�

Z

d
2
b̂e

�îq T �̂b ln
k b

2
0

b̂2
= 2 M (k)(0)�(̂q2

T
)+ 2

k�1X

j= 0

�
k

j

�

M
(j)(0)

�
d

dq̂2
T

ln
k�j

q̂
2

T

�

+

; (A.1)

where

M (�)=

�
b2
0

4

� �
�(1� �)

�(1+ �)
; (A.2)

and the+ distributionsarede�ned by

Z
1

0

dq̂
2

T

�
D
�
q̂
2

T

��

+
= 0: (A.3)

In orderto proveeq.(A.1),wede�nea generating function

�(̂b;�)=

�
b2
0

b̂2

� �

; L
k = ln

k b
2
0

b̂2
=

@k

@�k
�(̂b;�)

�
�
�
�
�= 0

: (A.4)

W ehave
1

2�

Z

d
2
b̂e

�îq T �̂b�(̂b;�)=

Z
+ 1

0

d̂bb̂J0(̂b̂qT )

�
b2
0

b̂2

� �

; (A.5)

where we have used polar coordinates for b̂,and the integralrepresentation ofthe 0-th order

Besselfunction

J0(z)=
1

2�

Z
2�

0

d� e
�izcos�

: (A.6)

Theintegralcan becom puted by m eansoftheidentity

Z
+ 1

0

dxx
�
J�(ax)= 2� a���1

�
�
1

2
+ �

2
+

�

2

�

�
�
1

2
+ �

2
�

�

2

� a > 0; � Re� � 1< Re� <
1

2
: (A.7)

W e�nd
1

2�

Z

d
2
b̂e

�îq T �̂b�(̂b;�)= 2� M (�)
�
q̂
2

T

���1
: (A.8)

W em ay now replace
�
q̂
2

T

���1
=

h�
q̂
2

T

���1
i

+

+
1

�
�(̂q2

T
); (A.9)

consistentwith thede�nition eq.(A.3).W eget

1

2�

Z

d
2
b̂e

�îq T �̂b�(̂b;�)= 2M (�)

�

�(̂q2
T
)+

�
d

dq̂2
T

�
q̂
2

T

��
�

+

�

: (A.10)
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Evaluating the k-th derivative ofboth sides with respect to � at � = 0 leads im m ediately

to eq.(A.1). Note that the term j = k is excluded from the sum because it vanishes upon

di�erentiation with respectto q̂2
T
. For q̂2

T
strictly largerthan zero,both the term proportional

to �(̂q2
T
)and the+ prescription haveno e�ect.

Let us now turn to the evaluation ofthe Fourier transform to �xed logarithm ic accuracy.

Equation (A.1) shows that the Fourier transform ofthe k-th power oflnb is proportionalto

1=q̂2
T
tim esthe (k � 1)-th powerofthe log ofthe Fourierconjugate variable ln q̂2

T
(leading log

approxim ation),butalso includesterm sproportionalto alllowerpowersofthislog.TheN nLL

approxim ation corresponds to including term s up to j = n in the sum in eq.(A.1),i.e. such

thatthepowerofln q̂2
T
isby n + 1 unitslowerthan thepowerofln(b2

0
=̂b2).

TheNLL and N 2LL approxim ationsareparticularly sim pledueto thefactthat

M
(1)(0)= ln

b2
0

4
+ 2
E (A.11)

M
(2)(0)=

�

ln
b20

4
+ 2
E

� 2

(A.12)

where 
E � 0:5772 isthe Eulerconstant. Itfollowsin particularthatifb0 = 2e�
 E ,the NLL

and NNLL term sin eq.(A.1)vanish [12].

A usefulform oftheN nLL approxim ation can beobtained noting that

M
(j)(0)=

Z
1

0

dxJ1(x)ln
j b

2
0

x2
: (A.13)

Itfollowsthateq.(A.1)(for q̂2
T
> 0,i.e.neglecting distributions)can berewritten as

1

2�

Z

d
2
b̂e

�îq T �̂b ln
k b

2
0

b̂2
= 2

d

dq̂2
T

Z
1

0

dxJ1(x)

�

ln q̂2
T
+ ln

b2
0

x2

� k

: (A.14)

The N nLL approxim ation can then be obtained by retaining the �rstn term sin the binom ial

expansion of

�

ln q̂2
T
+ ln

b2
0

x2

�k
in thisequation.

This result is particularly usefulin that it allows the com putation in closed form ofsom e

Fourier transform s ofgeneric functions to �xed logarithm ic accuracy. Speci�cally,consider a

function

F(L)=

1X

k= 0

Fk L
k
: (A.15)

ItsFouriertransform to LL accuracy isgiven by

�
1

2�

Z

d
2
b̂e

�îq T �̂bF(L)

�

LL

= 2
d

dq̂2
T

1X

k= 0

Fk

Z
1

0

dxJ1(x)ln
k
q̂
2

T
= 2

d

dq̂2
T

F(ln q̂2
T
): (A.16)

Thisresultwasgiven in ref.[5].

One m ay think thatbecause ofeqs.(A.11-A.12)eq.(A.16)with b0 = 2e�
 E autom atically

provides a result which is correct to N 2LL accuracy. This, however, is not true ifF(L) is
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a physicalobservable,such as a cross-section. Indeed,in this case the N nLL approxim ation

to itisde�ned by expansion ofitslogarithm :forexam ple ifF(L)isidenti�ed with �(� s;�� L)

eq.(2.12),theexpansion ofittosubsequentlogarithm icorderisgiven bytheexpansion eq.(2.15)

ofS(�s;�� L)= ln�(� s;�� L),and notof�(� s;�� L)itself.TheNLL approxim ation totheFourier

inverse ofF(L)m ay howeverbecalculated exactly in term sofG(L)� lnF(L).One�nds

�
1

2�

Z

d
2
b̂e

�îq T �̂bF(L)

�

N LL

= 2
d

dq̂2
T

Z
1

0

dxJ1(x)exp

�

G 0 + G 1ln
b20

x2

�

= 2
d

dq̂2
T

F(ln q̂2
T
)M

�
G
0(ln q̂2

T
)
�
; (A.17)

where

G(L)� lnF(L)= G0 + G 1 ln
b2
0

x2
+ O

�

ln
2
b2
0

x2

�

; (A.18)

with

G 0 = G(ln q̂2
T
); G 1 = G

0(ln q̂2
T
): (A.19)

Thisistheresultfound in ref.[6].
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