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A bstract

W e present a new prescription for the resumm ation of contributions due to soft gluon em ission

to the transverse m om entum distribution of processes such as D rellY an production in hadronic
collisions. W e show that fam iliar di culties in obtaining resumm ed results as a function of

transverse m om entum starting from im pactiaram eter space resum m ation are related to the di-
vergence of the perturbative expansion of them om entum —-space result. W e construct a resum m ed

expression by Borel resum m ation of this divergent serdes, rem oving the divergence In the Borel
nversion through the inclusion of a suitable higher tw ist term . T he ensuing resum m ation pre—
scription is free of num erical instabilities, is stable upon the inclusion of subleading term s, and
the origihal divergent perturbative series is asym ptotic to it. W e com pare our results to those
obtained using altemative prescriptions, and discuss the am biguities related to the resum m ation
procedure.
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1 Transverse m om entum resum m ation

T he com putation of transverse m om entum distributions of heavy system s (such as dileptons,
vectors bosons, H iggs) plays an im portant role in collider phenom enology, from the Tevatron to
the LHC [1,2]. As iswellknown, the perturbative Q CD expansion of the inclusive distribution
contains to all orders powers of n? (=0 ), due to the em ission of soft and collinear gluons.
W hen the transversem om entum ¢ ismuch an aller than them ass of the nalstate Q these logs
becom e Jarge and m ust be resumm ed In order for perturbative predictions to rem ain reliable.

T he resum m ation, to given logarithm ic accuracy, can be perform ed [3] for the Fourder trans—
form of the di erential cross-section ;T% w ith respect to g, . Upon Fourier transform ation, g,
tums into its Fourier conjugate, the In pact param eter b, and large logs of ¢, =Q becom e large
logs of 0 . Fourier transform ation is necessary in order for the contrdbutions included by resum —
m ation to regpect transverse m om entum conservation, thereby avoiding the spurious factorial
grow th of resum m ed coe cients [4]. H owever, the Fourder transform m ust be inverted in order to
obtain resum m ed predictions for physical obsarvables. T his is problem atic because the Fourder
Inversion integralnecessarily involves an integration over the region of iIn pact param eters w here
the strong coupling is not well de ned because of the Landau pole.

This problem has been treated with various prescriptions. O ne possibility is to m odify
the behaviour of the strong coupling in the infrared in the Fourier inversion integral [3] (b,
prescription, henceforth): this procedure is w dely used, but it is known to lead to num erical
nstabilities when the resum m ed results arem atched to xed{order ones [5]. A second option is
basad on the obsarvation that the Fourier Inversion integralcan be com puted order by order in an
expansion of the resum m ed results in powers of : if only leading log tem s are retained in the
Fourier inversion, the result is then wellde ned for allvalues of g, [5]. T his procedure how ever
is unstable to the inclision of subleading corrections: the Fourier inversion can be perform ed
to next—to-leading log accuracy [6] (as it is necessary if the resumm ation is perform ed to this
order),but in such case the result di ers signi cantly from the leading log one, and in fact for Q
around 100 G &V itblow s up forvaluesofqg of order of severalG eV ,wellw ithin the perturbative
region. A \m inim al" prescription which is free of these di culties can be constructed [7], along
the Iines of the sim ilar prescription for threshold resumm ation [4]. Nam ely, the integration path
In the Fourier inversion is deform ed in such a way as to leave unchanged the result to any nite
perturbative order, but avoiding the Landau pole and associate cut in the resumm ed result.
This leads to a prescription which is free of num erical and perturbative instabilities: its only
shortcom ing is that it isdi cult to assess the am biguities related to the resum m ation procedure,
as it can be done in the b, prescription by varying the way in which the infrared behaviour of
the strong coupling ism odi ed.

Here we shall show that, analogously to what happens in the case of threshold resumm a—
tion [8], the am biguity In the resumm ation procedure is due to the fact that the perturbative
expansion of the resumm ed result for the transverse m om entum distrlbbution itself in powers
of  diverges. A fter discussing, In the next section of this paper, how existing prescriptions
treat this divergence, we w ill show in section 3 that the divergent series can be treated by Borel
sum m ation, as is the case for threshold resumm ation [8,9]. The Borel transform of the series
converges and can be summ ed. The inversion Integral which gives back the original series di-



verges, but the divergence can be ram oved by including a suitable higher tw ist term . T his leads
to a resumm ed result of which the original divergent series is an asym ptotic expansion. The
ensuing prescription isgiven in termm s of a contour integralw hich is easily am enable to num erical
In plem entation. The result is free of num erical Instabilities, and stable upon the inclusion of
subleading corrections. A n estim ate of the am biguity on the resumm ed resultsm ay be obtained
from a variation of the higher+tw ist term which is lncluded In order to render the results conver-
gent. In section 4 we w ill com pare the result of our prescription to other existing prescriptions
In the case of the D rellY an process, and discuss the am biguities related to the resum m ation
procedure. Som e results on Fourier transform s are collected in the A ppendix.

2 The need for a resum m ation prescription

Let us consider a parton{level quantity which depends on a large scale Q and a transverse

momentum ¢, , such as the partonic D rellY an di erential cross-section C?? . Resumm ation is

necessary because the perturbative coe cient of order n in the expansion of in powers of
s(©?) has the om
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P,(In¢’) isa polynomial of degree 2n 1 in n4, Q. (&) isregubrasq ! 0,and D, are
constants (see the Appendix for a de nition of the + distrlbution). Physical cbservables are
obtained, exploiting collinear factorization, as the convolution of parton level cross-sections w ith
parton distributions [3]. W hen Q2 is Jarge enough, it sets the scale of parton distributions, and
the q dependence is entirely given by the partonic cross-section. For lower valies of Q2 the
scale of parton distrdbutions is set by the in pact param eter b, which is Fourder conjugate to g, ,
the convolution m ust be perform ed in b space, and the Fourder transform m ust be inverted to
obtain physical predictions. In either case, the resum m ation is perform ed in b space at the level
of partonic ocbsarvables.

Upon Fourder transform ation, § is replaced by its Fourierconjigate variable, the in pact
param eter b, and the sn allg, region ism apped onto the largedb region. Large logs ofb can then
be resumm ed, leading to an expression of the form
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is the lJarge logarithm which isresumm ed, and O (L.°) denotes term swhich are not logarithm ically
enhanced asb ! 1 . For future convenience, we have Introduced in the de nition of L an
arbitrary constant Iy (to be discussad below ), and we have further de ned

0 s(Q%); (2.6)

o isthe st coe cient ofthe QCD beta function,

@ .Q%)
QZ*@QZ = 0 207 1+ 1 QH+O0( D) 2.7)
33 2 1153 19 08)
12 T 533 o '

T he inverse Fourder transform of w ith respect to b is given by
o QZZ ) Z +1
(oif)= - de " (4 L)= abbao B3 ) ( i L); (2.9)

0

using two-dim ensional polar coordinates for B 10,and the Integral representation of the 0-th
order Bessel function,

Jo(z)= — d ezes (2.10)

Now consider speci cally the resumm ation of

— 1 4d»
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w here C%z is the partonic transverse m om entum distrdbution of a m assive nalstate, and *y the

T

Bom {level total crosssection. In this case, the bgpace resum m ed result has the form [3]
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w here
A( g)=A; s+ A, §+ - B(gs)=B1 ¢+ :::; (2.14)

and the constants A ;;B; can be detem ined order by order by m atching to the xed-order
calculation.
T he integral in eg. (2.13) can be perform ed explicitly, and the result can then be expanded

as
N
S(s; L)= YO L); (2.15)



where inclusion of the rst k orders in the sum corresponds to the next®+o-Jeading log (N*LL)
approxin ation. The LL and NLL functions f,;f; are explicitly given by

A
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Note thatwith y= L, using the leading log form of .(Q?),

s(Q%)
s %:bZ)'

It is apparent from egs. (2.182.17) that ( ; L) hasa branch cut along the negative real
axis in the com plex plane of the variabley = L:

14 y= (2.18)

Re (y) 1; Im (y)= O: (2.19)

T his isdue to the fact that the strong coupling blow s up when its argum ent reaches the Landau
pole, so that S ( 5; L) eg. (2.13) is singular when b becom es Jarge enough, ie. when

5B g e : (2.20)

At leading order,bﬁ = ﬁ% . It ©llow s that the series for ( ; L) eg. (24) hasa nite radius

of convergence, and the integrand in eg. (2.9) is not analytic in the whole Integration range

0 B< +1 ,so the Fourier inversion Integral is not wellkde ned w ithout a prescription to treat

the singularity.

A s mentioned in the Introduction, various prescriptions of this kind have been propos=d.

B efore discussing them , let us show that the reason why a prescription isneeded is the divergence

of the expansion in powers of .(Q?) of the resumm ed result obtained com puting the inverse

Fourier transform eg. (29) with ( o; L) . (Z.12). To any nite perturbative order, the

G —space resumm ed result is found by expanding eg. (2.12) and inverting the Fourier transform
order by order:
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w here we have replaced the argum ent qf of_by

o
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When K ! 1 the series eg. (2.21]) diverges. To see this, we com pute the integrals in
eq. (22])) using eg. (&_1) of the A ppendix:

— d
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k=1 =0 J

where the function M ( ) isde ned in eg. A J), we have assmed ¢ 6 0, so that distributions
can be ignored, and the term with j= k,which leads to a vanishing contribution to_K ( s;L),
has been included in the sum over j eq. (2.24) for later convenience. W e now change the order
of summ ation, and use the dentity
1 1 .
——=— d e ¥V (225)
(k Y2 1y

w here the Integration path H is any closed contour which encloses the origin = 0. W e obtain

Ry ( ;L) = 2 . —hy, KLK? (2.26)

1 d X M (j)(o) I L
- 5 Sel /= - Kih, — (2.27)

30 ’ k=3

B ecause of the sinqularity eg. (2.19), the power series 5. (2.4) hasa nite radius of conver—

gence equal to one
hyiq

k!'1  hy

=1; (2.28)

which mmediately in plies the vanishing of the radius of convergence of the sum over k in
eq. 2.27).

T he situation is thus sin ilar to that which is encountered in thresholdd resumm ation [4,8,91]:
the resum m ation is perform ed on quantities which are related by M ellin transform ation to the
physical ones, but the resumm ed results cannot be expressed as a M ellin transform of som e
function. Nam ely, their Inverse M ellin transform does not exist, as a consequence of the fact
that the inverse M ellin transform of their expansion in powers of (Q?) diverges. In the present
case, the divergence of the perturbative expansion im plies that the Fourder inversion integral is
ill-de ned; of course the problam disappears if one retains only a nite num ber of term s in the
resum m ed expansion [10,11]. Various com m only used prescriptions replace the ilkde ned integral
w ith a wellde ned one,aswe now review . In the next section, we construct a prescription which
is Instead based on the dea of replacing the divergent serdes w ith a convergent one through the
Borel summ ation m ethod. In the last section we w ill com pare the various prescriptions and in
particular the way they treat the divergence of the perturbative series.



In the prescription of ref. [3], the variable b is replaced by a function b, (b) which approaches
a nite lim it by, kb asb! 1 ,such as for exam ple
b

b=p——:
1+ (oo, )

(2.29)

In thisway, the cut eg. (2.19) is never reached. T his procedure has som e degree of arbitrariness
In the choice of the function b, (b), which is Interpreted as a param etrization of non-perturbative
e ects, whose size can be estin ated by varying b, , for instance by changing the value of by, .
The m atching of this prescription to the xed-order result is however num erically unstable, as
pointed out in ref. [5].

A di erent possibility [5]isbased on the obsarvation that if only the leading log contrdbution
(ie. the temm swith j= 0) are included in eg. (2.24), then the serdes converges, and its sum can
n fact be com puted in closed form , w ith the result (see 9. (a_18) of the A ppendix)

— d
L ( S,’L)=2@ si L

(2.30)

Equation (2.13) inplies that S( 5; L) depends on ¥ through .(1=#). Therefore, using
eq. (218), the LL expression eg. (2.30) is seen to become a function of (). Therefore,
the Jeading log truncation of the perturbative expansion in powers of (Q?) ey. (2.27) has a
nite radius of convergence, set by the Landau pole

1
¢ >Q°exp — = % (2.31)

w here the Jast equality holds at leading order.

Them ain defect of this result is that it is sub Fct to lJarge next+to-leading log corrections. In
fact, theN LL Fourder inversion integralcan also be com puted in closed form [6]. T he result (given
in eq. (A_17)) di ers sizably from the LL result even for relatively large values of g, (severalG &V
forQ = 100 G &V ),aswe shall see explicitly in Sect. 4 below . In fact, it tums out that the NLL
correction diverges at a value ofg. which isan increasing fiinction ofthe scale Q . T his instability
can be understood as a consequence of the fact that the truncation of the resumm ed result to

nite logarithm ic accuracy leads to an expansion in powers of ¢ (qf ) w ith coe cients depending

on In(g =Q ), where higher powers of (¥ ) correspond to higher logarithm ic orders. Such an
expansion is necessarily poorly behaved at low g, , all the m ore so when the scale ratio g, =Q is
large. Perform ing the Fourder inversion to leading or next+o-leading logarithm ic accuracy thus
ram oves the divergence of the serdes eq. (2.21]): this is analogous to what is found in the case
of threshold resum m ation, where it can be shown [8] that the divergence of resum m ed results is
ram oved if the M ellin inversion is perform ed to any nite logarithm ic accuracy. However, the
ensuing results are then perturbatively unstable.

A yetdi erentway of treating the divergence hasbeen proposed m ore recently in ref. [7],along
the lines of the so{called M inin alP rescription of threshold resum m ation [4]. T he basic dea here
isthat to any nite perturbative order, when the divergent series is replaced by a nite sum , one
m ay choose the integration path in such a way that it avoids the singularities w hich appear at the



resumm ed level. T he result of the Fourder (or respectively M ellin) inversion is then unchanged
to any nite perturbative order, but it becom es nite at the resumm ed level. Tt can be further
shown [4]that the divergent perturbative expansion of the resum m ed expression is asym ptotic
to the result obtained in this way. T his prescription is w dely used [2]: whereas In the case of
threshold resum m ation it leads to dependence of resum m ed physical results on a kinem atically
unaccessible region (albeit by power{suppressed tem s), in the case of transverse m om entum
resum m ation its only shortcom ing is speed lim itation in its num erical in plem entation.

3 The Borel prescription

W e now tum to the construction of a prescription which extends to transverse m om entum
resum m ation the Borel prescription proposed in refs. [8,9] for the resumm ation of threshold
logarithm s. T he basic dea is to tackle directly the dvergence of the serdes (2.24[2.27) by sum m ing
it through the Borelm ethod.

To do this, we take the Borel transform of eg. (2.27) w ith respect to . This am ounts to the
replacement ¥ ! w¥! =(k 1)!,wherew isthe Borelvariable conjigateto .W e obtain
N d . X M(j)(o) D3 W k1
Rx wW;L)= — — e —_— ] kh, — ; (3.1)
=0 : k=1

where in com parison to eg. (Z27) we have rescaled the integration variable ! L ,and wehave
Included allterm swith 1 k j  1,which vanish upon contour integration.
Both sum s n eg. (3.1]) are convergent asK ! 1 . Inded,

3 k1

w d w w
kh, — = — si— for — <1 (32)
dw
k=1
X M(j)(o) .
. T=M () for j j< 1; (3.3)
0
the last condition being due to the sim ple pole of M ( )at = 1. Thus,
I
A~ . A 1 d L d W
Rw;L)= lm Ry W;L)=— —e M ( )— si— g (34)
K!1 iy dw
provided the contour H is chosen so that
w < j j< 1: (3.5)
Since M ( ) has no sihgularities on the negative real axis, and ( ¢;w= ) hasa branch cut on

thereal axisbetween w and 1, the integration contour can now be deform ed so that® w ;L)
iswellde ned for all positive values of w (see g.[d).
T he original function eg. (2.24) is recovered by inverting the B orel transform :
Z 1
R( s;L)= dwe&RA(w;L): (3.6)
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Figure 1: The integration contour H in eq. (3.4).

T he inversion integral is divergent atw ! 1 . This is easily seen by inspection of g.[: asw
becom es large, the branch cut extends to the left, and the integration contour is pushed towards
large negative values of ,whereM ( ) oscillates w ith a factorially grow ing am plitude.
W e regulate the integralby cutting ito atw = C . W e thus get
I Z
1 d ¢

R( g;L)=— —M ()& dwe — si— (3.7)
1y 0 dw

which is the Borel prescription for transverse m om entum resumm ation. The result can be
equivalently rew ritten by doing a partial integration as

T Z

c 1 d c c 1 ° .

R°( 4;L)= — —u ()& e si— + — dw e si— (38)
H 0

=

which m ay be m ore convenient for num erical in plem entations in that it depends directly on
the physical cbservable , rather than its derivative. Equation ([3.8), and its equivalent form
eq. (3.1), are the m ain result of this paper. It is Interesting to observe that if we integrate by
parts before cutting o the integral, then the surface term vanish. W e then end up with the
altemative resum m ation
I Z .
o 17 d 1 . w
R (L)=— —M ()&~ dwe si— (39)
! 0

A swe shall see shortly, this is an equally valid prescription.
Tn order to see that this isa valid resum m ation prescription, consider the truncation to order



Z C
Ry ( siL) dwe Rx (w;L)
0
X M (3) 0 X k! ]{'g )
- 2 I( ) — kﬁ'ij ; (3.10)
T L O ( )!
w here 7 o n!
Z
k;z)= dwe" wtt = &k 1)1 €& — (3.11)

0 n=20

is the truncated gamm a function. T he di erence between the origmalR ¢ ( ;L) 3. (2.23) and
its Borel resumm ation Ry ( ;L) is

R2( 55L5C) Rq ( s;L) R; ( 4;L)

%M(j)o% k! 'Xll Cn

= 2e ,I() —— k k3 — = (312
=0 ] k=j( J): n:on'

Because
2 ¢}
C
e = o2 1+0 Q% ; (3.13)

Rﬁt( s;L ;C ) is seen to be pow er{suppressed at large Q ? (higher tw ist): cutting o thew integra—
tion atw = C isequivalent to the inclusion of a higher tw ist term , which cancels the divergence
of the resum m ed expression. Speci cally, R 2°( ;L ;C ) is a tw istt contribution w ith

t=2@0+C); (3.14)

the choice C = 1 corresponds to the inclusion of a tw ist-four term . M oreover, it is apparent
from eg. (3.12) that
c

RES( ;L;C) e ; (3.15)

s! 0

which vanishes faster than any power of 5 as s ! 0. Tt follows that the original divergent
Rk ( s;L) is an asym ptotic expansion of the Borelresumm ed result RC ( ;L) egs. (3.8B17).

Furthem ore, the altemative prescription R€°( ;L) eq. (33) di ers from R € ( ;L) eq. (3.8)
by the rst term in square brackets in (3.8), which isa nite higher+w ist contribution. Hence,
the two prescriptions correspond to two nequivalent but equally acoeptable regularizations of
the divergent sum which di erby nite term s, and are both asym ptotic sum s of the divergent
series.

Them ain features of the B orel prescription can be appreciated by considering as an explicit
exam ple ofa resummed quantity ( s; L)= 11( g; L), with

dsi.( s; L)
L s7 L) TQz; (3.16)



and Si1 ( s; L) given by egs. (Z.13[2.19) evaluated at the leading log level (2.16), nam ely

Ay
e si L)=— I+ L): (317)
0

Substituting this form of ( 4; L) i eg. (3.1), the associate g, -space physical cbservable com —
puted w ith the B orel prescription is found to be

Z . I
C A1 1 W 1 1
n(sil)=——= dwe — dM( )& : (3.18)
0 q? 0 1y + W
The integraliseasy to calculate, because the integrand hasonly a smplepoleat = w:
Z w
c (1= 22 Cd 2 M ( w) (3.19)
L)= — — W  — w);
R o & o o5 '

w here we have usad the leading—log expression of the running coupling. Tt is thus clear that the
divergent integration is cut o by the inclusion of a pow er{suppressaed contribution

Z’+l 2 W
ht( :1,;C ) = ﬁi dw — M( w)
LL sr 4 0 qrz . qTZ
ZA;L 1 2 CZ+1 2 W
e dw — M ( w C): (320)
o & & 0 F

N ote that the suppression is by powers of q—; : at nite order K the higher tw ist contribution is
T

suppressed by apoweron—z,as shown in eg. (3.12), but when resumm d to all orders, the scale
Q? is replaced by an e ective scale g .

4 Com parison of resum m ation prescriptions

Letusnow com pare the results found using the B orel prescription to those of other prescriptions,
w ith the dualgoal of understanding the advantages and disadvantages of various m ethods, and
of assessing the am biguity which is intrinsic to the resum m ation of a divergent expansion.

First, we look at a typical resumm ed observable. Nam ely, we consider the transverse m o-
m entum distrdbution of D relkY an pairs, eg. (2.11]), which we evaliate at the partonic resum m ed
next+to-leading log level, ie. using eg. (2.17) with S( 5; L) com puted including the rst two
term s In eq. (2.19), given in egs. (2.182.17) with [12,13]

C
A, = -5 (41)
N 1 67 210 ) ]nboeﬁ 4.2)
=— — — —n
72 9 3 g27°%7 3 ° 2
2C er 4
B,= — an) : (43)
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Figure 2: The NLL partonic resumm ed D rellY an transverse m om entum distridbution com puted
w ith various resumm ation prescriptions with Q2 = 10* Gev? and in a narrow (kft) and wide
(right) range of g, .

The results aredisplayed In  g.[d, orQ = 100 G eV .The two Iower curves at lJarge g, 1n this
gure correspond to those found using respectively egs. (A_14d) and egs. (A_I7) of the A ppendix,
nam ely, to inverting the Fourier transform to leading and next-to-Jeading log accuracy (with
Iy = 2¢ ® ). The sizable di erence between these two results even for g, as large as 10 G &V
show s the instability of the truncation of the Fourder transform to nite log accuracy discussed
In the introduction and zrst stressed in ref. [61].

T he other prescriptions displayed in - g.[2 are the b, prescription, w here the Fourder inversion
is perform ed after replacing bw ith b, eg. (229),with by, = b, ,whereb, = 726G eV ! istheNLO
Landau pole eq. (Z20); them inin al prescription (M P ) w here the Fourder inversion is perform ed
along the deform ed path of ref. [7], and the B orel prescription eg. 3. 1) with C = 1.

In g.[3d we further show the dependence of the Borel prescription on the param eter C
which characterizes the higher tw ist term included in the resumm ation egs. (3.13[3.14), as it is
varied between tw ist four and tw ist eight. Because all these choices provide valid resum m ation
prescriptions, this variation provides an estin ate of the ambiguity which is intrinsic of the
resum m ation procedure: indeed, the b, and m inim al prescription, also shown in this gure,
are well w ithin the band of variation as g ! 0. These plots show that the ambiguity in the
resum m ation procedure is negligble forg, & 5Ge&V, ftramains smallforg & 2G&V,and it
only blowsup as g approaches the Landau pole.

W e can further elucidate the origin of these results by studying the e ect of the various
prescriptions when the divergent sum eq. (2.21]) is truncated, so the Fourder inversion can be
perform ed term by term . Consider speci cally the rst term in the serdes, nam ely, the nverse
Fourier transform of L. The exact result is given by eq. (A1) fork = 1,

Z
— dZBejQTEhﬁ: 2. (4.4)
2 P&

The M P reproduces this exact result, because ]n(}:§=f32) is analytic on the positive real B axis,
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F igure 3: D ependence of the results shown In  g.[2 for the B orel prescription on the param eterC .
T he vertical Iine at g, = 156 M &V indicates the position of the Landau pole.

and a deform ation of the integration contour has no e ect; a branch cut on the positive real B
axis only arises after sum m ation of the whole series.
T he Borel prescription yields instead
Z

g 2

— =— 1 e
b2 BP ql'z
asone can see by settihg h; = + and hy = 0 orallk 6 1 in ey. (3.10). The exact result
ismodi ed by the Introduction of a correction of twist 2(1 + C ). Note that the higher twist
correction is tiny at large Q 2, of order 10° for C 1 and Q% = 10* Gev?. Ifwe use the
alterative B orel prescription RC’( s;L) eg. (39) we get Instead

Z

|(‘1

Ehedr by (45)

L p 2 C
dZBequ b hﬁ = — 1 ec_ 1+ _
2 joF BPO qrz
50 the two prescriptions are indeed seen to di er by a higher tw ist tem .
Finally, the result of the replacem ent of bby b, eq. (229) can be com puted analytically in

(4.6)

tem s of the Bessel function K ; :
Z
d*pe B n

&

KOs

U sing the asym ptotic behaviourK ; (z)

z! 1

vanishes faster than any power of 1=(by, ¢ ) or g,

n I #
p? o3 7
—  del P — 1+ —
2 & f2
2 h i
e Pn g K1Bng ) - (4.7)
e? =pE,weseethatthecorrectjon factor n eg. (4.17)
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For higher order powers of L the sam e qualitative behaviour is found usihg the various
prescriptions discussed here. Nam ely, the M P gives the exact Fourder transform eg. (B_1]); the
BP gives a result which di ers from it by a higher tw ist term , and the b, prescription gives a
result which di ers from it by a term which is exponentially suppressed in 1=y, O )-

W e thus see that the way di erent prescriptions tackle the divergence of the perturbative
expansion is the ollow ng. In the LL and NLL case, the divergent series eg. (2.24) is m ade
convergent by truncating the Fourier inversion to nite order, ie. by only retaining a nite
num ber of term s In the Inner sum over j. This, as discussed in Section 2, leads e ectively to
an expansion In powers of S(qf ) which has very poor convergence properties at amn all g, even
when Q is large. The M P and BP both provide an asym ptotic sum of the divergent series:
the BP ram oves the divergence by inclusion of a higher tw ist term , and the M P by a suitable
analytic continuation, w hich corresponds [4]to the inclusion of term swhich arem ore suppressed
than any power of Q2. At large Q 2, the higher tw ist term of the BP is negligible so these two
prescriptions are essentially indistinguishable when applied to convergent series. W hen applied
to the divergent resum m ed expansion displayed In  gs.[2H3 they only di er in the region where g,
approaches the Landau pole, so the high {order behaviour of the series becom e relevant. F inally,
the b, prescription m odi es the divergent serdes by inchlision ofa term which ism ore suppressed
than any power of 1=(oy, & ). W hen applied to a convergent serdes, this prescription produces
a result that di ers sizably from that of the BP when g° Q2 and it approaches the Landau
pole: this is because the scale of the correction term is set by Q2 for the BP, and by ¢ for
the b, prescription. At the resumm ed level, however, the e ective scale of power suppressed
term s becom es ¢ also for the BP (com pare 5. (3.20)), so all resum m ation prescriptions lead
essentially to the sam e result.

5 Summ ary

W e have constructed a resum m ation prescription for transverse m om entum distribbutions which
extends to this case the Borel prescription previously proposed for threshold resumm ation [8,91].
T he construction is based on the cbservation that the reason why a resumm ation prescription
is needed in the rst place is that the perturbative expansion of resumm ed results in g, space
in powers of (Q?) diverges. The Borel prescription tackles this divergence by summ ing the
convergent B orel transform of the divergent serdies, and then m aking the Borel inversion nite by
Inclusion of a higher tw ist term . T he origihal divergent serdes is an asym ptotic expansion of the
result obtained thus. The Borel prescription is easily am enable to num erical In plem entation;
being based on a bgpace resumm ation it is easy to match to xed{order resuls, and it is
perturbatively stable.

There is som e freedom in this prescription, param etrized by a real param eter C , related to
the twist t of the tarm included in order to obtain convergence by t= 2(C + 1). W hereas C
m ay be chosen to take any value, it is convenient to choose a value which corresponds to tw ists
which already appear in the expansion of the obsarvable being considered. Indeed, physical
observables m ust be independent of the choice of C , and thus if an unphysical tw ist term is
Introduced, it m ust be com pensated by an ejqual and opposite pow er suppressed term which is
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thereby arti cially introduced by this choice.

C om parison of the Borel prescription to other available resum m ations, such as them inin al
prescription or the b, m ethod, show s that at Jarge Q 2 they lead to results which are extrem ely
stable and which only di er when g, approaches the Landau pole. In fact, variation of the
param eter C of the Borel prescription provides a reliable estin ate of the ambiguity in the
resum m ation procedure. Forqg, & 2 G &V this am biguity appears to be negligibly sn all, even in
the region of a few G &V where the in pact of the resum m ation is sizable. T his is in contrast to
the case of threshold resum m ation, where it was found [9] that the am biguity is aln ost as large
as the e ect of the resumm ation itself in m ost of the kinem atic region where the resum m ation
is relevant.

O ur results contradict the w despread prejudice that transverse m om entum resumm ation is
a ected by sizable am biguities, and it show s that, at least as ong asQ isas largeastheW mass
and g, as large as the nucleon m ass perturbative resum m ation of transverse m om entum distri-
butions provides reliable and stable results. T he Borel prescription provides a new m ethod for
perform ing this resum m ation which hasm ore stablem atching properties than the b, prescription
and m ight be num erically advantageous over the w idely used m inin al prescription.

A cknow ledgem ents: W e thank G . A Itarelli for discussions. This work was partly sup-
ported by the European network HEPTO O LS under contract M RTN-C T 2006035505 and by a
PR IN 2006 grant (Ttaly).
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A A ppendix

In this appendix, we collect som e results on two-din ensional Fourder transform s of powers of
Jogarithm s.

F irst, we com pute the exact Fourder transform w ith respect to B of the k{th power of In* %%
(with Iy a constant). W e get

Z K1
a2b i4 ¢ B kb%_ () k (3) d x5
e n 2=2M %0) &)+ 2 M P20 —nTE @ 1)
o7 o 3 dg? .
w here
1
M ()= % Elf)); A 2)

and the + distrilbutions are de ned by
Z

1
& D & , = 0: @ 3)
0

In order to prove . (&_1l), we de ne a generating fiinction

K
oo B RS N N ,
;)= g ; L —hg—ﬁ (o5 ):O- (A 4)
W e have 7, | Z . }:g
dhe® @ )= dbba g ) = ® 5)
0 o7
where we have used polar coordinates for B, and the Integral representation of the 0-th order
Bessel function 7
— i izcos
Jo(Z)— d e H (A-6)
2
T he Integral can be com puted by m eans of the dentity
Z
o L 3t3ts 1
dxx J (ax)= 2 a T a> 0; Re 1< Re <: A7)
0 3tz 2 2
We nd Z
hedr P B y=2 M () @ 8)
W emay now replace n .
1 T 1
g = & + = &) A 9)
+
consistent w ith the de nition eg. (B_.3). W e get
g d
he P B )= 2M - : A 10
®©; ) () &) %3 + (& 10)
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Evaluating the k-th deriwative of both sides with respect to at = 0 leads inmeadiately
to eq. (&_). Note that the tetn j = k is excluded from the sum because it vanishes upon
di erentiation w ith respect to ¢*. For ¢ strictly larger than zero, both the term proportional
to (4)and the + prescription have no e ect.

Let us now tum to the evaluation of the Fourder transform to xed logarithm ic accuracy.
Equation (A_J) shows that the Fourier transform of the k-+th power of Inb is proportional to
1=¢ tines the (k  1)-th power of the Jog of the Fourder conjugate variable Ind (lkeading log
approxin ation), but also Includes term s proportional to all lower pow ers of this log. The N"LL
approxin ation corresponds to including tem s up to j = n i the sum in eg. (A1), ie. such
that the power of n&® isby n + 1 units Iower than the power of In (F=(7).

The NLL and N?LL approxin ations are particularly sin ple due to the fact that

M<1>(0)=Jn%+2 . @ 11)
2
M ()= ]n%+ 2 & @ 12)

where g 05772 is the Euler constant. It follow s In particular that iflg = 2e *, the NLL
and NNLL tem s in eg. (A_1]) vanish [12].
A useful form of the N"LL approxin ation can be obtained noting that
Z 4 }Cé

M 0)= del(x)]nj;: @ 13)
0

Tt ollow s that eg. B1]) (or& > 0, ie. neglecting distributions) can be rew ritten as

Z Z K
e d !
dzfyem“b]nk§=2— dx J; (x) anfmng; :
15 da¢z x

The N"LL approxin ation can then be obtained by retaining the rstn tem s In the binom ial

(A 14)

k
expansion of & + ]n%z in this equation.

This result is particularly useful in that it allow s the com putation in closed form of som e
Fourier transform s of generic functions to xed logarithm ic accuracy. Speci cally, consider a
function

F(L)= FpL*: (A 15)
k=0
Its Fourder transform to LL accuracy is given by
Z Z
2N i1 b a * ' k d
FberPF (L) =2— Fy dxJ; (x) "¢ = 2—F (n&): (A 16)
k=0

LL dq*;r2 0 dq*;r2

This result was given in ref. [51].
Onemay think that because of egs. (A_11HA 12) eg. (A J10) with Iy = 2¢ ® autom atically
provides a result which is correct to N2LL accuracy. This, however, is not true if F (L) is
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a physical ocbservable, such as a crosssection. Indeed, In this case the N"LL approxin ation
to it isde ned by expansion of its logarithm : for exam ple f F (L) isidenti ed with ( ¢; L)
eg. (2.12), the expansion of it to subsequent logarithm ic order is given by the expansion eg. (Z.19)
of S( s; L)=In ( 5; L),andnotof ( s; L) iself. TheNLL approxin ation to the Fourder
Inverse of F (L) m ay however be calculated exactly iIn term s of G (L) hF (L).One nds

Z Z

dhe bp (1)) = 2— dxJ; (x) exp Go+ G Jnﬁ
NLL dqf 0 ’ ' x?
d
= 2—F (h& )M %(n ; A 17
& (h& )M G(Ing) @ 17)
w here
G (L) ]nF(L)=GO+GIJn§;+O anﬁé ; @A 18)
X X
w ith
Go=G (h&); G:1=G(In&): @ 19)

T his is the result found in ref. [6].
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