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1. Introduction

The Toolkit for Multivariate Analysis (TMVA) provides a ROOT-integrated environment for
the processing and parallel evaluation of sophisticated multivariate classification techniques. The
classification is done in terms of two event categories, e.g.signal and background. While TMVA is
specifically designed for the needs of high-energy physics (HEP) applications it is not necessarily
restricted to those. The idea behind this software package is to provide a large variety of powerful
multivariate classifiers in one common environment, allowing for easy use and comparison of the
different classification techniques for any give problem. TMVA provides convenient preprocessing
possibilities for the data prior to feeding them into any of the classifiers. Many auxiliary informa-
tion is provided about the data like the correlation matrix,variable ranking and separation power
and finally a full efficiency versus background rejection curve of the trained classifiers. With this
information the user is in the position to quickly find the optimal data selection procedure for his
selection problem. The package currently includes:

• Rectangular cut optimisation;

• Projective likelihood estimation;

• Multi-dimensional likelihood estimation (PDE range-search and k-NN);

• Linear and nonlinear discriminant analysis (H-Matrix, Fisher, FDA);

• Artificial neural networks (three different implementations);

• Support Vector Machine;

• Boosted/bagged decision trees;

• Predictive learning via rule ensembles.

The TMVA software package consists of object-oriented implementations in C++/ROOT for
each of these discrimination techniques and auxiliary tools such as parameter fitting and variable
transformations. It provides training, testing and performance evaluation algorithms and visuali-
sation scripts. A short description of the various classifiers is given in Sec. 4 while a detailed de-
scription including the options available for tuning the individual classifiers is given in the TMVA
manual [1].

TMVA is an open source product and distributed either via theROOT package [2] and sep-
arately via sourceforge [3]. Several similar combined multivariate classification (“machine learn-
ing”) packages exist with rising importance in most fields ofscience and industry. In the HEP
community there is alsoStatPatternRecognition[4, 5]. The idea of parallel training and evaluation
of MVA-based classification in HEP has been pioneered by theCorneliuspackage, developed by
the Tagging Group of the BABAR Collaboration [6].
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2. Data Preprocessing, Training and Testing

Training and testing of the classifiers is performed with theuse of user-supplied data sets with
known event classification. These data are supplied in form of either ROOT trees or ASCII text
files1. Individual event weights may be attributed when specified in the data set, allowing the use of
Monte Carlo that include weighted events2. One is able to select any subset of variables provided in
the data set, as well as variable combinations and formulas,just as they are available for theDraw
command of a ROOT tree. All classifiers see the same training data and are afterwards tested
all on the same test data, which is an independet data set fromthe training data. The evaluation
prescriptions are the same for all classifiers. AFactoryclass organises the interaction between the
user and the TMVA analysis steps including preanalysis and preprocessing of the training data to
assess basic properties of the chosen variables as input to the classifiers.

As preanalysis, the linear correlation coefficients of the input variables are calculated and
displayed, and a preliminary ranking is derived (which is later superseded by classifier-specific
variable rankings).

Preprocessing of the data set includes the application of conventional preselection cuts that are
common for all classifiers. In addition there is the possibility for two variables transformations,
decorrelation via the square-root of the covariance matrixand via a principal component decom-
position. The latter transformations can be individually chosen for any particular classifier. Each
classifier writesits transformation into its weight file once the training has converged. The weight
files contain all information for later application of the trained classifier. For testing and application
of a classifier, the transformation is read from the weight file and a corresponding transformation
is then applied during the application of the trained classifier to event data provided in the same
format as the original training data.

Removing linear correlations from the data sample may be useful for classifiers that intrinsi-
cally do not take into account variable correlations as for example the projective likelihood. Be-
cause in most realistic use cases correlations are present,this results in a loss of performance. Also
other classifiers, such as rectangular cuts or decision trees, and even multidimensional likelihood
approaches underperform in presence of variable correlations.

A demonstration of the decorrelation procedure is shown in Fig. 1. This shows the decorrela-
tion applied to a toy Monte Carlo with linearly correlated and Gaussian distributed variables, that
is supplied together with the TMVA package.

After the training, the classifiers are subjected to testingand evaluation in order to assess
their performances. The optimal classifier to be used for a specific analysis strongly depends on
the problem at hand and no general recommendations can be given. To ease the choice TMVA
computes and displays a number of benchmark quantities in order to compare the classifiers using
the independent test sample. These quantities are

• Thesignal efficiency at three representative background efficiencies(the efficiency is equal to
1− rejection) obtained from a cut on the classifier output. Alsogiven is the area of the back-

1While training and testing is performed on statistically independent data samples to ensure an unbiased testing, a
third data sample would be needed for a fully unbiased performance estimate in case parameter tuning of the individual
classifiers is involved in the procedure.

2Some limitations when using negative event weights may be encountered.
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Figure 1: Correlation between input variables. Left: correlations between var3 and var4 for signal training
events from a toy Monte Carlo. Right: the same after applyinga linear decorrelation transformation.

ground rejection versus signal efficiency function (the larger the area the better the overall
performance).

• Theseparation〈S2〉of a classifiery, defined by the integral [6]

〈S2〉 =
1
2

∫

(ŷS(y)− ŷB(y))2

ŷS(y)+ ŷB(y)
dy, (2.1)

whereŷS and ŷB are the signal and background PDFs ofy, respectively. The separation is
zero for identical signal and background shapes, and it is one for shapes with no overlap.

• The discriminationsignificanceof a classifier, defined by the difference between the classifier
means for signal and background divided by the quadratic sumof their root-mean-squares.

In addition, smooth background rejection/efficiency versus signal efficiency curves are written to
the target ROOT file. This and many other results and control plots like the MVA-output distribu-
tions (Fig. 2), variable distributions, correlation matrices and scatter plots as well as classifier spe-
cific information like the neural network architecture are conveniently plotted using custom made
ROOT macros executed via a graphical user interface that comes with the TMVA distribution.

The TMVA training/testing job runs alternatively as a ROOT script, as a standalone executable,
where TMVA shared library is linked, or as a python script viathe PyROOT interface. Each
classifier trained in one of these applications writes its configuration and training results in a result
(“weight”) file.

3. Classifier Application

The application of the trained classifiers to select events from a data sample with unknown
signal and background composition is handled via a light-weight Readerobject. It reads and inter-
prets the weight files of the chosen classifier and can be included in any C++ executable, ROOT
macro or python analysis job.
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Figure 2: Example plots for classifier output distributions for signal and background events from the aca-
demic test sample. Shown are likelihood (upper left), PDE range search (upper right), MLP (lower left) and
boosted decision trees.

For standalone use of the trained classifiers, TMVA also generates lightweight C++ response
classes, which contain the encoded information from the weight files such that these are not re-
quired anymore. These classes do not depend on TMVA or ROOT, neither on any other external
library.

Emphasis has been put on the clarity and functionality of theFactory and Reader interfaces to
the user applications, which will hardly exceed a few lines of code. All classifiers run with reason-
able default configurations and should have satisfying performance for average applications. It is
stressed however that, to solve a concrete problem, all classifiers require at least some specific tun-
ing to deploy their maximum classification capability. Individual optimisation and customisation
of the classifiers is achieved via configuration strings thatare detailed in [1].

4. The Classifiers

All TMVA classifying methods inherit from a common base class, which implements basic
functionality common to all classifiers. Options common forall classifiers that can be specified
upon booking include the possibility to normalise the inputvariables, variable transformations as
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Figure 3: Example for the background rejection versus signal efficiency obtained by cutting on the classifier
outputs for the events of the test sample.

preprocessing, the possibility to create probability density functions from the resulting MVA-output
distributions and the level of printout generated during application and testing.

4.1 Rectangular Cut optimisation

Although not a real multivariate classifier, the simplest and most common technique for se-
lecting signal events from a mixed sample of signal and background events is the application of an
ensemble of rectangular cuts on discriminating variables.Unlike all other classifiers in TMVA, the
cut classifier only returns a binary response (signalor background).

The optimisation of cuts performed by TMVA maximises the background rejection at given
signal efficiency, and scans over the full range of the latterquantity. Dedicated analysis optimisation
for which, e.g., the signalsignificanceis maximised rather than the background rejection requires
the expected signal and background yields to be known beforeapplying the cuts. This is not the
case for a multi-purpose discrimination and hence not used by TMVA. However, the cut ensemble
leading to maximum significance corresponds to a particularworking point on the efficiency curve,
and can hence be easily derived after the cut optimisation scan has converged.3

TMVA cut optimisation is performed with the use of multivariate parameter fits. Satisfactory
results for the fitting are obtained with either Monte Carlo sampling or a Genetic Algorithm, both

3 Assuming a large enough number of events so that Gaussian statistics is applicable, the significance for a signal is
given byS = εS NS /

√

εS NS + εB(εS )NS , whereεS(B) andNS(B) are the signal and background efficiencies for a
cut ensemble and the event yields before applying the cuts, respectively. The background efficiencyεB is expressed as a
function ofεS using the TMVA evaluation curve obtained form the test data sample. The maximum significance is then
found at the root of the derivative

dS

dεS
= NS

2εB(εS)NB + εS

(

NS−
dεB(εS)

dεS
NB

)

2(εSNS+ εB(εS)NB)3/2
= 0, (4.1)

which depends on the problem.
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implemented in TMVA.
The training events are sorted inbinary treesprior to the optimisation, which significantly re-

duces the computing time required to determine the number ofevents passing a given cut ensemble.

4.2 Projective likelihood estimation

The maximum likelihood classification is based on building amodel of one dimensional prob-
ability density functions (PDFs) from the training data that reproduces the input variables for signal
and background. For a given event, the likelihood for being of signal type is obtained by multi-
plying the signal probability densities of all input variables, and normalising this by the sum of the
signal and background likelihoods. Correlations among thevariables are ignored.

The probability density functions are constructed either by histogramming the variable distri-
butions in the training data with subsequent spline smoothing or using an unbinned kernel density
estimator.

4.3 Multi-dimensional likelihood estimation (k-NN and PDErange-search )

These are generalisations of the projective likelihood classifier tonvar dimensions, wherenvar

is the number of input variables used. If the multidimensional PDF for signal and background were
known, the multi-dimensional likelihood would exploit thefull information contained in the input
variables, and would hence be optimal. In practice however,huge training samples are necessary to
sufficiently populate the multidimensional phase space fora good estimate of the underlying PDF.4

Kernel estimation or event counting methods are typically used to approximate the shape of the
PDF for finite training statistics.

The k-nearest neighbour (k-NN) method compares an observed(test) event to reference events
from a training data set. It searches for a fixed number of closest events in the training sample.
The fraction of signal events in the neighbourhood is then used as a probability density estimator
(PDE) for the test event’s phase space point. To enhance the sensitivity within the volume, instead
of pure counting of the events, a polynomial Kernel estimatewhich weighs events according to
their distance from the test event is implemented as well.

A variant of the k-NN classifier is thePDE range search, or PDERS, that has been suggested
in Ref. [7]. Here the PDE for a given test event is obtained by counting the (normalised) number
of signal and background (training) events that occur in a fixed volume around the test event.
The classification of the test event may then be conducted on the basis of the majority of the
nearest training events. In the TMVA implementation, thenvar-dimensional volume that encloses
the "vicinity" is user-defined and can also be adaptive to ensure a certain number of events in the
volume. Again, a number of kernel functions may be used to weight the reference events according
to their distance from the test event. The mulit-dimensional likelihood estimators use sorted binary
trees to reduce the computing time for the range search.

4.4 Linear and nonlinear discriminant analysis (H-Matrix, Fisher, FDA)

The linear discriminant analysis generally finds a hyperplane in the variable phase space that
(best) separates signal from background. The standard method of Fisher discriminants [8] works

4Due to correlations between the input variables, only a sub-space of the full phase space may be populated.
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in a linear transformed variable space where projected ontothe axis defining the separating hy-
perplane, the events of different classes are pushed as far as possible away from each other, while
events of a same class are confined in a close vicinity. The linearity property of this classifier is
reflected in the metric with which "far apart" and "close vicinity" are determined: the covariance
matrix of the discriminating variable space.

The H-Matrix method is a simple estimator built on the relative difference of the two multi-
variateχ2-values of the event being compatible with either signal (χ2

S) or background (χ2
B). The

respectiveχ2
S(B)-values are calculated using the sample means for signal andbackground and their

respective covariance matrices obtained from the trainingdata.

The function discriminant analysis (FDA) lets the user choose any parametrised function as
discrimination boundary and FDA fits the parameters to it, requiring the signal (background) func-
tion value to be as close as possible to 1 (0). Its advantage over the more involved and automatic
nonlinear discriminators is the simplicity and transparency of the discrimination expression. A
shortcoming is that FDA will underperform for involved problems with complicated, phase space
dependent nonlinear correlations, where it will be difficult to guess a discriminating function for
the decision boundary.

4.5 Artificial neural networks

Artificial neural networks (ANNs) are classifiers that feed the weighted input variables of a test
event into a set of nodes also called neurons. Each node generates an output as response of the input
according to its (non linear) activation function which caneither be fed as input into consecutive
nodes or used as an output, i.e. the final response of the network. With each node acting as a basis
function, an appropriate choice of arrangement and number of nodes and their interconnecting
weights in principle allows to approximate any decision boundary. For a given node arrangement
(architecture) the training of a neural network consists offinding the interconnecting weights such
that the separation between background and signal event is optimised.

There are three different implementations of ANNs in TMVA, all being feed-forward net-
works. This means that the nodes are arranged in an array withconnections only in one direction,
i.e. forward, from the input nodes (through the hidden layers) towards the output nodes without
cycles or loops.

The CFANN was adapted from a FORTRAN code developed at the Université Blaise Pascal
in Clermont-Ferrand and which uses random Monte Carlo sampling for the weight fitting during
training. The other two networks both use standard back-propagation during the weight optimisa-
tion. One is an interface to the network already previously implemented in ROOT and the other
is our own development offering additional flexibility concerning the choice of different activation
functions.

4.6 Support Vector Machine

Support Vector Machines are non-linear discrimination algorithms following an idea from [9,
10] to separate signal and background by a simple linear hyperplane in a non-linear transformed
variable space. The hyperplane is completely defined by the events that are closest to the separating
plane. These events are also called thesupport vectors. The actual variable space transformation
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allowing for the linear hyperplane separation of signal andbackground is never actually specified
or calculated but replaced by the choice of so called kernel functions that define a (non linear)
metric in the variable space. Polynomial, Sigmoidal and Gaussian kernel functions are available in
TMVA. Their parameters (i.e. the with of the Gaussian) are tobe chosen in order to adapt to the
size and structure of the non-linear features that need to becaptured in the decision boundary of
the data.

4.7 Boosted/bagged decision trees

A decision tree is a classifier that is structured as a binary tree. For each test event, repeated
left/right (yes/no) decisions are performed on a single variable at a time until the event reaches
a so called leaf node which classifies it as being either signal or background. The collection of
leaf nodes split the phase space into many disjunct regions that are classified as being either signal
or background like. The tree structure is defined during the training (tree building) phase, when
starting from the whole training sample, consecutive binary splits are determined using the variable
and cut value that allows maximum separation between signaland background at the time. When
the splitting is finished, the node is classified as either signal or background depending on the
majority of training events that end up in it.

In TMVA, the stop criteria for the splitting during the training phase is given by the minimum
number of events which is demanded for a leaf node. Small numbers of events in leaf nodes are
able to capture small features in the phase space discriminating signal from background. How-
ever this may easily result in over-training, i.e. the capture of statistial fluctuations in the training
sample rather than genuine features of the underlying PDFs.A pruning algorithm with adjustable
prune strength is applied after the tree building to remove statistically insignificant nodes from the
decision tree.

Boosted decision trees represent an extension to a single decision tree. The classification of
individuals of an ensemble of decision trees are combined toform a classifier which is given by
a (weighted) majority vote of the classificaion from the individual decision trees. The individual
trees are derived from the same training sample by reweighting the events. In TMVA, the standard
AdaBoost [11] algorithm is implemented, which calculates the boost weight used in the next tree
building depending on the number of misclassified training events in the previously trained tree.

Rather than performing boosting in order to create an ensemble of decision trees, bagging as
defined in [12] uses randomly drawn events taken from the original training sample with replace-
ment to construct different training samples. An ensemble of decision trees is then constructed
from the collection of training samples derived by this re-sampling. A variant of this idea imple-
mented in TMVA uses random event weights to create differenttraining samples from which the
decision trees in the ensemble are constructed.

Both bagging and boosting stabilise the response of the decision trees with respect to fluctua-
tions in the training sample.

4.8 Predictive learning via rule ensembles

This classifier is a TMVA implementation of Friedman-Popscus’ RuleFit method described
in [13]. Its idea is to use an ensemble of so-calledrules to create a scoring function with good

9



P
o
S
(
A
C
A
T
)
0
4
0

TMVA, the Toolkit for Multivariate Data Analysis Helge Voss

classification power. Each rule is defined by a simple sequence of cuts which either selects signal
or background. The easiest way to create an ensemble of rulesis to extract it from an ensemble
of decision trees where every node in a tree (except the root node) corresponds to a sequence of
cuts required to reach the node from the root node, and can be regarded as a rule. The rules give
a response value of 1 if an events satisfies the respective cuts and 0 otherwise and are regarded as
basis function for the final classifier. The latter is constructed as linear combinations of the rules in
the ensemble resulting in a scoring function as response of the RuleFit classifier.

The coefficients (rule weights) of the linear combination that maximise the separation power
between signal and background events are calculated using aregularised minimisation proce-
dure [14].

4.9 Classifier Discussion

There is obviously no general answer to the question which classifier should be used. To
guide the user, we have attempted an assessment of various relevant classifier properties in Table 1.
Simplicity is a virtue, but only if it is not at the expense of discrimination power. Robustness
with respect to overtraining could become an issue when the training sample is scarce. Some
methods require more attention than others in this regard. For example, boosted decision trees are
particularly vulnerable to overtraining if used without care. To circumvent overtraining a problem-
specific adjustment of the pruning strength parameter is required.

To assess whether a linear discriminant analysis (LDA) could be sufficient for a classification
problem, the user is advised to analyse the correlations among the discriminating variables by
inspecting scatter and profile plots (it is not enough to print the correlation coefficients, which by
definition are linear only). Using an LDA greatly reduces thenumber of parameters to be adjusted
and hence allow smaller training samples. It usually is robust with respect to generalisation to larger
data samples. For intermediate problems, the function discriminant analysis (FDA) with some
selected nonlinearity may be found sufficient. It is always useful to cross-check its performance
against several of the sophisticated nonlinear classifiersto see how much can be gained over the
use of the simple and very transparent FDA.

For problems that require a high degree of optimisation and allow to form a large number
of input variables, complex nonlinear methods like neural networks, the support vector machine,
boosted decision trees and/or RuleFit are more appropriate.

Very involved multi-dimensional variable correlations with strong nonlinearities are usually
best mapped by the multidimensional probability density estimators such as PDERS and k-NN.

For RuleFit we emphasize that the TMVA implementation differs from Friedman-Popescu’s
original code [13], with (yet) slightly better robustness and out-of-the-box performance for the
latter version. In particular, the behaviour of the original code with respect to nonlinear correlations
and the curse of dimensionality would have merited two stars.5 We also point out that the excellent
performance for by majority linearly correlated input variables is achieved somewhat artificially by
adding a Fisher-like term to the RuleFit classifier (this is true for both implementations).

5An interface to Friedman-Popescu’s original code has now been implemented in TMVA.
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CLASSIFIERS

CRITERIA Cuts Likeli-
hood

PDE-
RS

k-NN H-
Matrix

Fisher ANN BDT Rule-
Fit

SVM

Perfor-
No or linear
correlations

⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆⋆ ⋆ ⋆⋆ ⋆

mance Nonlinear
correlations

◦ ◦ ⋆⋆ ⋆⋆ ◦ ◦ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆

Training ◦ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆ ◦ ⋆ ◦
Speed

Response ⋆⋆ ⋆⋆ ◦ ⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆⋆ ⋆

Robust- Overtraining ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆⋆ ⋆ ◦ ⋆ ⋆⋆

ness Weak variables ⋆⋆ ⋆ ◦ ◦ ⋆⋆ ⋆⋆ ⋆ ⋆⋆ ⋆ ⋆

Curse of dimensionality ◦ ⋆⋆ ◦ ◦ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆

Transparency ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆⋆ ⋆⋆ ◦ ◦ ◦ ◦

Table 1: Assessment of classifier properties. The symbols stand for the attributes “good” (⋆⋆), “fair” ( ⋆)
and “bad” (◦). “Curse of dimensionality” refers to the “burden” of required increase in training statistics and
processing time when adding more input variables. See also comments in text. The FDA classifier is not
represented here since its properties depend on the chosen function.

5. Conclusion

TMVA is a toolkit that unifies highly customisable multivariate classification algorithms in
a single framework thus ensuring convenient use and an objective performance assessment as all
classifiers see the same training and test data, and are evaluated following the same prescription.

Source code and library of TMVA-v.3.5.0 and higher versionsare part of the standard ROOT
distribution kit (v5.14 and higher). The newest TMVA development version can be downloaded
from Sourceforge.net at http://tmva.sf.net.
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