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1. Introduction

The Toolkit for Multivariate Analysis (TMVA) provides a ROGIntegrated environment for
the processing and parallel evaluation of sophisticatelfivatiate classification techniques. The
classification is done in terms of two event categories,ggnal and background. While TMVA is
specifically designed for the needs of high-energy phy$its_) applications it is not necessarily
restricted to those. The idea behind this software packatgeprovide a large variety of powerful
multivariate classifiers in one common environment, allayfior easy use and comparison of the
different classification techniques for any give problervVA provides convenient preprocessing
possibilities for the data prior to feeding them into anyhf tlassifiers. Many auxiliary informa-
tion is provided about the data like the correlation matviegiable ranking and separation power
and finally a full efficiency versus background rejectionveuof the trained classifiers. With this
information the user is in the position to quickly find the iol data selection procedure for his
selection problem. The package currently includes:

e Rectangular cut optimisation;

e Projective likelihood estimation;

e Multi-dimensional likelihood estimation (PDE range-sgaand k-NN);
e Linear and nonlinear discriminant analysis (H-Matrix, &g FDA);

¢ Artificial neural networks (three different implementais);

e Support Vector Machine;

e Boosted/bagged decision trees;

e Predictive learning via rule ensembles.

The TMVA software package consists of object-oriented anpmntations in C++/ROOT for
each of these discrimination techniques and auxiliarystsakch as parameter fitting and variable
transformations. It provides training, testing and perfance evaluation algorithms and visuali-
sation scripts. A short description of the various classifie given in Sec. 4 while a detailed de-
scription including the options available for tuning thdiridual classifiers is given in the TMVA
manual [1].

TMVA is an open source product and distributed either viaR@OT package [2] and sep-
arately via sourceforge [3]. Several similar combined maittate classification (“machine learn-
ing”) packages exist with rising importance in most fieldssoience and industry. In the HEP
community there is alsBtatPatternRecognitiof, 5]. The idea of parallel training and evaluation
of MVA-based classification in HEP has been pioneered byCibeneliuspackage, developed by
the Tagging Group of the BABAR Collaboration [6].
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2. Data Preprocessing, Training and Testing

Training and testing of the classifiers is performed withuke of user-supplied data sets with
known event classification. These data are supplied in fdreitber ROOT trees or ASCII text
filest. Individual event weights may be attributed when specifietthé data set, allowing the use of
Monte Carlo that include weighted eveAt®One is able to select any subset of variables provided in
the data set, as well as variable combinations and formjulstsas they are available for tie aw
command of a ROOT tree. All classifiers see the same trainatg dnd are afterwards tested
all on the same test data, which is an independet data settfrerraining data. The evaluation
prescriptions are the same for all classifierska&tory class organises the interaction between the
user and the TMVA analysis steps including preanalysis aadrpcessing of the training data to
assess basic properties of the chosen variables as inha tdeissifiers.

As preanalysis, the linear correlation coefficients of theui variables are calculated and
displayed, and a preliminary ranking is derived (which igdesuperseded by classifier-specific
variable rankings).

Preprocessing of the data set includes the applicationrafertional preselection cuts that are
common for all classifiers. In addition there is the pos#ibflor two variables transformations,
decorrelation via the square-root of the covariance mainik via a principal component decom-
position. The latter transformations can be individualypsen for any particular classifier. Each
classifier writests transformation into its weight file once the training hasvasged. The weight
files contain all information for later application of thaitmed classifier. For testing and application
of a classifier, the transformation is read from the weigktdihd a corresponding transformation
is then applied during the application of the trained cfassto event data provided in the same
format as the original training data.

Removing linear correlations from the data sample may b&ulfe classifiers that intrinsi-
cally do not take into account variable correlations as f@maple the projective likelihood. Be-
cause in most realistic use cases correlations are préisisnesults in a loss of performance. Also
other classifiers, such as rectangular cuts or decision,teg®l even multidimensional likelihood
approaches underperform in presence of variable cowakati

A demonstration of the decorrelation procedure is showngnE This shows the decorrela-
tion applied to a toy Monte Carlo with linearly correlateddg®aussian distributed variables, that
is supplied together with the TMVA package.

After the training, the classifiers are subjected to testind evaluation in order to assess
their performances. The optimal classifier to be used foregifp analysis strongly depends on
the problem at hand and no general recommendations can &e. givo ease the choice TMVA
computes and displays a number of benchmark quantitieslear o compare the classifiers using
the independent test sample. These quantities are

e Thesignal efficiency at three representative background efimies(the efficiency is equal to
1-—rejection) obtained from a cut on the classifier output. Ajsen is the area of the back-

Iwhile training and testing is performed on statisticallgépendent data samples to ensure an unbiased testing, a
third data sample would be needed for a fully unbiased p@dioce estimate in case parameter tuning of the individual
classifiers is involved in the procedure.

2Some limitations when using negative event weights may bewrtered.
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Figure 1: Correlation between input variables. Left: correlatiorsieen var3 and var4 for signal training
events from a toy Monte Carlo. Right: the same after applgitigear decorrelation transformation.

ground rejection versus signal efficiency function (thgdarthe area the better the overall
performance).

e Theseparation(S*)of a classifiery, defined by the integral [6]

1 [ (9s(y) — 98(y)?
82 = = / %d 5 21
73] s @
whereys andyg are the signal and background PDFsypfespectively. The separation is
zero for identical signal and background shapes, and itefanshapes with no overlap.

e The discriminatiorsignificanceof a classifier, defined by the difference between the classifi
means for signal and background divided by the quadraticdutireir root-mean-squares.

In addition, smooth background rejection/efficiency versignal efficiency curves are written to
the target ROQOT file. This and many other results and contot$ fike the MVA-output distribu-
tions (Fig. 2), variable distributions, correlation me#$ and scatter plots as well as classifier spe-
cific information like the neural network architecture aomeeniently plotted using custom made
ROOT macros executed via a graphical user interface thagsovith the TMVA distribution.

The TMVA training/testing job runs alternatively as a RO@fit, as a standalone executable,
where TMVA shared library is linked, or as a python script the PyROOT interface. Each
classifier trained in one of these applications writes itffigniration and training results in a result
(“weight”) file.

3. Classifier Application

The application of the trained classifiers to select evemis fa data sample with unknown
signal and background composition is handled via a lightgiiteReaderobject. It reads and inter-
prets the weight files of the chosen classifier and can bededlin any C++ executable, ROOT
macro or python analysis job.
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Figure 2: Example plots for classifier output distributions for sipaad background events from the aca-
demic test sample. Shown are likelihood (upper left), PDOigessearch (upper right), MLP (lower left) and
boosted decision trees.

For standalone use of the trained classifiers, TMVA also igaes lightweight C++ response
classes, which contain the encoded information from theyltdiles such that these are not re-
quired anymore. These classes do not depend on TMVA or RO€Xhan on any other external
library.

Emphasis has been put on the clarity and functionality ofFdetory and Reader interfaces to
the user applications, which will hardly exceed a few linesamle. All classifiers run with reason-
able default configurations and should have satisfyingoperénce for average applications. Itis
stressed however that, to solve a concrete problem, aflifiexs require at least some specific tun-
ing to deploy their maximum classification capability. Wdual optimisation and customisation
of the classifiers is achieved via configuration strings #natdetailed in [1].

4. The Classifiers

All TMVA classifying methods inherit from a common base dawhich implements basic
functionality common to all classifiers. Options common ddirclassifiers that can be specified
upon booking include the possibility to normalise the inparttiables, variable transformations as



TMVA, the Toolkit for Multivariate Data Analysis Helge Voss

l Background rejection versus Signal efficiency

TMVA
1 N ﬁ TT7T TTTT UL I TTITT TTTT LU TTT I7

Z 09
o F T~ 3
(3] - .
= 08[ .
c L .
> - .
S 07 ]
2 C .
8 0.6F —
@ - MVA Method: .
0.5F Fisher ]
- —— MLP \\
0.4 BDT k
- ——— PDERS \
03" =—— Likelihood H
0 2 Co 1 11 11 1.1 1 1 111 1 111 1 1111 1111 - 1L 11 [ W

o 01 02 03 04 05 06 07 08 09 1
Signal efficiency

Figure 3: Example for the background rejection versus signal eff@yjerbtained by cutting on the classifier
outputs for the events of the test sample.

preprocessing, the possibility to create probability dgrignctions from the resulting MVA-output
distributions and the level of printout generated duringligation and testing.

4.1 Rectangular Cut optimisation

Although not a real multivariate classifier, the simplest amost common technique for se-
lecting signal events from a mixed sample of signal and backyl events is the application of an
ensemble of rectangular cuts on discriminating variallegike all other classifiers in TMVA, the
cut classifier only returns a binary response (sigmddackground).

The optimisation of cuts performed by TMVA maximises the kzaound rejection at given
signal efficiency, and scans over the full range of the |lafiantity. Dedicated analysis optimisation
for which, e.g., the signaignificanceis maximised rather than the background rejection requires
the expected signal and background yields to be known beifmpé/ing the cuts. This is not the
case for a multi-purpose discrimination and hence not ugeiMiVA. However, the cut ensemble
leading to maximum significance corresponds to a partieutaiking point on the efficiency curve,
and can hence be easily derived after the cut optimisatian Bas converget!.

TMVA cut optimisation is performed with the use of multivate parameter fits. Satisfactory
results for the fitting are obtained with either Monte Cadmgling or a Genetic Algorithm, both

8 Assuming a large enough number of events so that Gaussiistisis applicable, the significance for a signal is
given by = eg Ny /\/ €5 N + E4(E7) N, whereggg) andNg g, are the signal and background efficiencies for a
cut ensemble and the event yields before applying the agpectively. The background efficiengyis expressed as a
function of &5 using the TMVA evaluation curve obtained form the test darapgle. The maximum significance is then
found at the root of the derivative

A7 28B(£S)N3+€S<Ns— “%‘%NB)
des 2(esNs+ &a(e5)Ns) Y2

=0, (4.1)

which depends on the problem.
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implemented in TMVA.
The training events are sortedbimary treesprior to the optimisation, which significantly re-
duces the computing time required to determine the numbmrasfts passing a given cut ensembile.

4.2 Projective likelihood estimation

The maximum likelihood classification is based on buildirg@del of one dimensional prob-
ability density functions (PDFs) from the training datatttegoroduces the input variables for signal
and background. For a given event, the likelihood for beihgignal type is obtained by multi-
plying the signal probability densities of all input vardes, and normalising this by the sum of the
signal and background likelihoods. Correlations amongréti@bles are ignored.

The probability density functions are constructed eithghistogramming the variable distri-
butions in the training data with subsequent spline smagtbi using an unbinned kernel density
estimator.

4.3 Multi-dimensional likelihood estimation (k-NN and PDErange-search )

These are generalisations of the projective likelihoodgifaer tony,, dimensions, wherey,,
is the number of input variables used. If the multidimenald®DF for signal and background were
known, the multi-dimensional likelihood would exploit thadl information contained in the input
variables, and would hence be optimal. In practice howéwxege training samples are necessary to
sufficiently populate the multidimensional phase space fgwod estimate of the underlying PBF.
Kernel estimation or event counting methods are typicadlgduto approximate the shape of the
PDF for finite training statistics.

The k-nearest neighbour (k-NN) method compares an obséiest) event to reference events
from a training data set. It searches for a fixed number ofeslbevents in the training sample.
The fraction of signal events in the neighbourhood is thexdwss a probability density estimator
(PDE) for the test event’s phase space point. To enhancetisisity within the volume, instead
of pure counting of the events, a polynomial Kernel estinvaltéch weighs events according to
their distance from the test event is implemented as well.

A variant of the k-NN classifier is thEDE range searchor PDERS that has been suggested
in Ref. [7]. Here the PDE for a given test event is obtained dynting the (normalised) number
of signal and background (training) events that occur in adfixolume around the test event.
The classification of the test event may then be conductecherbasis of the majority of the
nearest training events. In the TMVA implementation, ithg-dimensional volume that encloses
the "vicinity" is user-defined and can also be adaptive taena certain number of events in the
volume. Again, a number of kernel functions may be used tgktahe reference events according
to their distance from the test event. The mulit-dimenditikalihood estimators use sorted binary
trees to reduce the computing time for the range search.

4.4 Linear and nonlinear discriminant analysis (H-Matrix, Fisher, FDA)

The linear discriminant analysis generally finds a hypempla the variable phase space that
(best) separates signal from background. The standardochefhFisher discriminants [8] works

4Due to correlations between the input variables, only aspase of the full phase space may be populated.
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in a linear transformed variable space where projected th@axis defining the separating hy-
perplane, the events of different classes are pushed as farsaible away from each other, while
events of a same class are confined in a close vicinity. Tleality property of this classifier is

reflected in the metric with which "far apart" and "close wity" are determined: the covariance
matrix of the discriminating variable space.

The H-Matrix method is a simple estimator built on the retatiifference of the two multi-
variate x?-values of the event being compatible with either signg) (r background X3). The
respectivexé(B)—values are calculated using the sample means for signddasidyround and their
respective covariance matrices obtained from the traidatg.

The function discriminant analysis (FDA) lets the user @d®any parametrised function as
discrimination boundary and FDA fits the parameters to guieng the signal (background) func-
tion value to be as close as possible to 1 (0). Its advantagetbg more involved and automatic
nonlinear discriminators is the simplicity and transpasenf the discrimination expression. A
shortcoming is that FDA will underperform for involved ptems with complicated, phase space
dependent nonlinear correlations, where it will be diffidal guess a discriminating function for
the decision boundary.

4.5 Artificial neural networks

Artificial neural networks (ANNS) are classifiers that felbd weighted input variables of a test
event into a set of nodes also called neurons. Each nodeages@n output as response of the input
according to its (non linear) activation function which agther be fed as input into consecutive
nodes or used as an output, i.e. the final response of the mketWith each node acting as a basis
function, an appropriate choice of arrangement and numbeapdes and their interconnecting
weights in principle allows to approximate any decision fiary. For a given node arrangement
(architecture) the training of a neural network consistBrafing the interconnecting weights such
that the separation between background and signal eveptiisised.

There are three different implementations of ANNs in TMVA, lzeing feed-forward net-
works. This means that the nodes are arranged in an arraycwritiections only in one direction,
i.e. forward, from the input nodes (through the hidden layéowards the output nodes without
cycles or loops.

The CFANN was adapted from a FORTRAN code developed at theddsiié Blaise Pascal
in Clermont-Ferrand and which uses random Monte Carlo Samfbr the weight fitting during
training. The other two networks both use standard backggation during the weight optimisa-
tion. One is an interface to the network already previousiplemented in ROOT and the other
is our own development offering additional flexibility caraing the choice of different activation
functions.

4.6 Support Vector Machine

Support Vector Machines are non-linear discriminatioroatgms following an idea from [9,
10] to separate signal and background by a simple linearrpige in a non-linear transformed
variable space. The hyperplane is completely defined bwihete that are closest to the separating
plane. These events are also calledghpport vectors The actual variable space transformation
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allowing for the linear hyperplane separation of signal badkground is never actually specified
or calculated but replaced by the choice of so called kenmettfons that define a (non linear)
metric in the variable space. Polynomial, Sigmoidal andsSeun kernel functions are available in
TMVA. Their parameters (i.e. the with of the Gaussian) areéahosen in order to adapt to the
size and structure of the non-linear features that need tmptired in the decision boundary of
the data.

4.7 Boosted/bagged decision trees

A decision tree is a classifier that is structured as a binas. tFor each test event, repeated
left/right (yes/no) decisions are performed on a singleéade at a time until the event reaches
a so called leaf node which classifies it as being either kignhackground. The collection of
leaf nodes split the phase space into many disjunct regh@tisate classified as being either signal
or background like. The tree structure is defined during taming (tree building) phase, when
starting from the whole training sample, consecutive lyirsatits are determined using the variable
and cut value that allows maximum separation between saymabackground at the time. When
the splitting is finished, the node is classified as eithenaigr background depending on the
majority of training events that end up in it.

In TMVA, the stop criteria for the splitting during the trang phase is given by the minimum
number of events which is demanded for a leaf node. Small etsntif events in leaf nodes are
able to capture small features in the phase space disctingnsignal from background. How-
ever this may easily result in over-training, i.e. the captf statistial fluctuations in the training
sample rather than genuine features of the underlying PBpsuning algorithm with adjustable
prune strength is applied after the tree building to remadagssically insignificant nodes from the
decision tree.

Boosted decision trees represent an extension to a singigiatetree. The classification of
individuals of an ensemble of decision trees are combinddrta a classifier which is given by
a (weighted) majority vote of the classificaion from the indisal decision trees. The individual
trees are derived from the same training sample by reweiglitie events. In TMVA, the standard
AdaBoost [11] algorithm is implemented, which calculates boost weight used in the next tree
building depending on the number of misclassified trainvgnés in the previously trained tree.

Rather than performing boosting in order to create an enkeaflilecision trees, bagging as
defined in [12] uses randomly drawn events taken from theér@idraining sample with replace-
ment to construct different training samples. An ensembldegision trees is then constructed
from the collection of training samples derived by this asapling. A variant of this idea imple-
mented in TMVA uses random event weights to create diffenaiming samples from which the
decision trees in the ensemble are constructed.

Both bagging and boosting stabilise the response of thesidedrees with respect to fluctua-
tions in the training sample.

4.8 Predictive learning via rule ensembles

This classifier is a TMVA implementation of Friedman-PomsdduleFit method described
in [13]. Its idea is to use an ensemble of so-caltas to create a scoring function with good
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classification power. Each rule is defined by a simple seqehcuts which either selects signal
or background. The easiest way to create an ensemble ofisulesxtract it from an ensemble
of decision trees where every node in a tree (except the m)ncorresponds to a sequence of
cuts required to reach the node from the root node, and caedaeded as a rule. The rules give
a response value of 1 if an events satisfies the respectigeandtO otherwise and are regarded as
basis function for the final classifier. The latter is constied as linear combinations of the rules in
the ensemble resulting in a scoring function as respondeedRtileFit classifier.

The coefficients (rule weights) of the linear combinatioattinaximise the separation power
between signal and background events are calculated usmegutarised minimisation proce-
dure [14].

4.9 Classifier Discussion

There is obviously no general answer to the question whiaksdier should be used. To
guide the user, we have attempted an assessment of varieventeclassifier properties in Table 1.
Simplicity is a virtue, but only if it is not at the expense abctimination power. Robustness
with respect to overtraining could become an issue whenrtiriig sample is scarce. Some
methods require more attention than others in this regasdeXample, boosted decision trees are
particularly vulnerable to overtraining if used withouteaTo circumvent overtraining a problem-
specific adjustment of the pruning strength parameter isired,

To assess whether a linear discriminant analysis (LDA)catbel sufficient for a classification
problem, the user is advised to analyse the correlationshgrttte discriminating variables by
inspecting scatter and profile plots (it is not enough totghie correlation coefficients, which by
definition are linear only). Using an LDA greatly reduces tiuenber of parameters to be adjusted
and hence allow smaller training samples. It usually is sblauth respect to generalisation to larger
data samples. For intermediate problems, the functiorridistant analysis (FDA) with some
selected nonlinearity may be found sufficient. It is alwagsful to cross-check its performance
against several of the sophisticated nonlinear classifiesge how much can be gained over the
use of the simple and very transparent FDA.

For problems that require a high degree of optimisation dlwdvao form a large number
of input variables, complex nonlinear methods like neurtivorks, the support vector machine,
boosted decision trees and/or RuleFit are more appropriate

Very involved multi-dimensional variable correlationstiwistrong nonlinearities are usually
best mapped by the multidimensional probability densitinestors such as PDERS and k-NN.

For RuleFit we emphasize that the TMVA implementation d&fdéom Friedman-Popescu’s
original code [13], with (yet) slightly better robustnessdaout-of-the-box performance for the
latter version. In particular, the behaviour of the origicade with respect to nonlinear correlations
and the curse of dimensionality would have merited two Stakée also point out that the excellent
performance for by majority linearly correlated input \adalies is achieved somewhat artificially by
adding a Fisher-like term to the RuleFit classifier (thigigtfor both implementations).

5An interface to Friedman-Popescu’s original code has nammplemented in TMVA.

10
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CLASSIFIERS
CRITERIA Cuts Likeli- PDE- k-NN H- Fisher ANN BDT Rule- SVM
hood RS Matrix Fit

No or linear * *k * * * ok *% * ** *
Perfor- correlations
mance Nonlinear o o *k ok o o *ok *k ** **

correlations

Training o Hok Hok Hok *ok Fok * o * o
Speed

Response ** ** [¢] * ** ** ** * *k *
Robust- Overtraining *ox * * * *ok Fok * o * *ok
ness Weak variables #x * o o *k *k * *k * *
Curse of dimensionality o ok o o Hox Hox * * *
Transparency ** *k * * *x *x o o o o

Table 1: Assessment of classifier properties. The symbols standhéattributes “good”#x), “fair” (x)
and “bad” ). “Curse of dimensionality” refers to the “burden” of reced increase in training statistics and
processing time when adding more input variables. See alsonents in text. The FDA classifier is not
represented here since its properties depend on the chasetioh.

5. Conclusion

TMVA is a toolkit that unifies highly customisable multivateé classification algorithms in
a single framework thus ensuring convenient use and antolgigzerformance assessment as all
classifiers see the same training and test data, and aremdlfollowing the same prescription.

Source code and library of TMVA-v.3.5.0 and higher versiars part of the standard ROOT
distribution kit (v5.14 and higher). The newest TMVA devaloent version can be downloaded
from Sourceforge.net at http://tmva.sf.net.
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