Data-driven estimations of Standard Model backgrounds to SUSY searches

Federica Legger (Max-Planck-Institut für Physik, Munich) on behalf of the ATLAS collaboration

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

SUSY searches in ATLAS

For this talk: focus on R-parity conserving, gravitino mediated (**mSUGRA**) models

- LSP is stable \rightarrow large missing energy
- Sparticles produced in pairs \rightarrow cascade decays
- Signature: Multi jets + leptons + missing transverse energy (E_{T miss})
- Baseline selection cuts:
 - at least 4 jets with PT>50GeV
 - at least 1 jet with PT>100GeV
 - n leptons (e, μ) with PT > 20 GeV, n=0,1,...
 - E_{T.miss} > min(100 GeV, 0.2 *Meff)
 - Transverse Sphericity > 0.2

- Effective mass $M_{eff} = \sum_{i=1}^{N} p_T^{jet,i} + \sum_{i=1}^{N} p_T^{lep,i} + E_{T,miss}$
 - Total event activity
 - correlated to mass of sparticles

- Other topics:
 - **GMSB** (SUSY breaking mediated by gauge interaction, LSP is gravitino), **Split-SUSY**. Signature • very analysis dependent (high pt photons, long lived sparticles)
 - Exclusive measurements •

ATLAS sensitivity to SUSY

- MET + 4 jets + leptons
- Cut on effective mass optimized to get best signal significance
- Background uncertainties from data-driven methods (assuming 1 fb-1)
 - top/W/Z (20%) + QCD (50%) + 1/sqrt(N_{background})

SM backgrounds to SUSY searches

Should be estimated from data because of poor knowledge of:

- Underlying Event
- Parton Showering
- Cross-sections

- Parton Distribution Functions
- Detector Calibration (jets, E_{T miss})
- Limited Monte Carlo statistics

Data-driven background estimation

- Estimate SM backgrounds in a **signal region** where SUSY may be present;
- SUSY may be discovered if an excess of events with respect to SM predictions is found;
- Derive prediction from a control region, similar to signal region but with no SUSY
 - unbiased estimation of SM background, enough statistics, low SUSY contamination

QCD	jet smearing		_
Semileptonic top (tau)	hadronic tau decay		de Tor
Z -> vv	from Z ->II (replacement + MC)		
Top + W	transverse mass (invariant mass of $E_{_{\mathrm{T,miss}}}$ and		6
	lepton pt) method		
	combined fit		
Semileptonic top tt -> bbqqlv	explicit kinematic reconstruction and selection on top mass (top box method)		epton ode
Dileptonic top	HT2 (=lepton pt + 2,3,4 leading jets pt) method		- E
tt -> bblvlv	kinematic reconstruction		
	top redecay		J
In the following, a statistic of 1 fb ⁻¹ is assumed			
	Federica Legger, SUSY08, Seoul		5

QCD background

- Neutrinos emitted from semileptonic decays of b/c (real E_{T,miss})
- Mismeasurement of jet energies (fake E_{T,miss})
- In both cases, E_{T,miss} points in one of the jet directions
- QCD background can be estimated from data from multi-jet events with no E_{T,miss}
 - Measure jet response function from events where E_{T,miss} is (anti-)parallel to a jet
 - Apply to smear (all) jet pt in seed events with low E_{T,miss}
 - Normalization to QCD jet events with E_{T,miss} < 50 GeV

Statistic uncertainties ~1%

Systematic uncertainties ~60%

from biased event selection, statistics in non-gaussian tail and jet response function measurement low SUSY contamination

Replacement Z -> vv

- Control sample:
 - □ reconstructed Z->ee or Z-> $\mu\mu$ events
- Replace charged leptons with neutrinos

 \Box E_{T.miss} is given by pt(II)~pt(Z)

 Correct for lepton identification efficiency

from data with tag and probe method

- Correct for acceptance cuts (MC)
- Get Z->vv distributions (normalization and shape)
 - Use extrapolation or MC to get the shape in low stat region

Statistic uncertainties: 13% Systematic uncertainties: 8%

lepton ID efficiency measurement and $E_{T,miss}$ scale

low SUSY contamination

Dileptonic tt: kinematic reconstruction

Solve system of equations for jets with pt > 20 GeV

$$\begin{split} m_W^2 &= (p_{l1} + p_{\nu 1})^2 \\ m_W^2 &= (p_{l2} + p_{\nu 2})^2 \\ m_t^2 &= (p_{l1} + p_{\nu 1} + p_{b1})^2 \\ m_t^2 &= (p_{l2} + p_{\nu 2} + p_{b2})^2 \\ E_x^{miss} &= p_{(\nu 1)x} + p_{(\nu 2)x} \\ E_y^{miss} &= p_{(\nu 1)y} + p_{(\nu 2)y} \end{split}$$

- Quartic equation: 0, 2 or 4 solutions
- no solutions: SUSY event, semi-leptonic ttbar, ...
- 2 or 4 solutions: dileptonic top

Dileptonic tt: kinematic reconstruction

- Dileptonic top with one lepton missed because it is
 - a tau (51%)
 - Misidentified (20%)
 - □ Inside a jet (17%)
 - □ Not in acceptance (9%)
 - Both leptons are taus (3%)
- Control sample selection: 2
 leptons, 3 jets, nb b-jet pairs > 0
- Normalization in low E_{T,miss} region

Statistical error: 10% Systematic uncertainties ~20% Jet energy scale, normalization SUSY contamination: 50%

- Contribution estimated in the control sample by
 - Replacing a lepton with a tau
 - Removing a lepton
- Recalculate event variables, then apply 1lepton SUSY selection

Dileptonic tt: top redecay

- Tag seed events (with low E_{T,miss}) containing 2 tops
- Reconstruct 4-momentum of tops
- Redecay/hadronize with Pythia
- Simulate decay products with fast simulation (ATLFAST)
- Remove from seed event original decay products and merge new ones
- Apply standard SUSY selection cuts on merged events
- Normalization to *data* in low E_{T,miss} region

Statistic uncertainties ~30% Systematic uncertainties ~30% SUSY contamination ~60%

Conclusions

- Main SM backgrounds to SUSY searches are tt, W+jets, Z+jets, QCD events
- Several methods are being developed in ATLAS to estimate SM backgrounds
 - Complementary methods are necessary for such a crucial issue!!!

	Stat.	Syst	SUSY	_
QCD	1%	60%	<1%	g g
Semileptonic top (tau)	6%	10-15%	<1%	
Ζ -> νν	8-13%	10-15%	<1%	
Top + W	4-8%	15%	15%	de pt
Semileptonic top	5%	22%	<1%	
Dileptonic top	10%	20%	50%	÷ `
	As	ssuming 1 fb [.]	1	

- Presence of SUSY will affect background estimates, however SUSY excess will be larger (even with 1fb-1)
- Data-driven estimation methods are necessary to keep background under control and key to SUSY discovery

Spare slides

tt + W: transverse mass

- Semileptonic top can contribute to 0lepton mode searches when the lepton is not identified
 - Tau, out of acceptance, inside jet
- Control sample
 - SUSY selection + MT < 100 GeV +1 lepton
- The isolated lepton is then removed from the event, and all kinematic variables recalculated
- Normalization
 - 100 GeV < MET< 200 GeV
- QCD estimation also included
- SUSY contamination:
 - extract from control sample

Semileptonic tt (with tau)

Independent event reconstruction on hadronic and leptonic side

- Hadronic top: W (dijet combination with mass closest to PDG value) + closest bjet (in $\Delta R)$
- Leptonic W: tau + MET (collinear approximation)

Dileptonic tt: top redecay

- Dileptonic top selection
 - J45_xE50 jet + MET trigger
 - 2 jets with pt > 20 GeV
 - 2 OS leptons pt > 20 GeV
 - MET < ½ (pt(lepton1) + pt(lepton2))
 - mass(lepton,jet) < 155 GeV
 - Solve system for p(v)
- Semileptonic top, W, Z contribution estimated from MET distribution from events with MT < 100 GeV
 - hard MT cut (MT>150 GeV) \rightarrow semileptonic background is sub-dominant.
 - events in Jacobian peak smeared with MC function to simulate tail of MT distribution

tt + W: transverse mass

- Transverse mass and MET uncorrelated
- Control sample
 - SUSY selection + MT < 100 GeV
- SUSY contamination: extract from control sample
 - assume same SUSY signal ratio in control and signal region for all SUSY samples

Missing ET

Syst. error

< 5%

7%

8%

< 5%

Background in $C = D \times B/A$

Jet energy scale

Lepton ID efficiency

MC@NLO vs ALPGEN

MC parameter variation (ALPGEN)

Dileptonic tt with one misidentified lepton: HT2

- Control sample
 - SUSY selection + HT2 < 300 GeV

$$HT2 = \sum_{i=2}^{4} p_T^{\text{jet}i} + p_T^{\text{lepton}}$$

- Normalization region:
 - HT2 > 300 GeV and 8<MET significance<14 (low MET region)

Systematic uncertainties (MC) ~20% Systematic uncertainties (detector) ~20%

Semileptonic tt: top box

- Reconstruct leptonic W assuming neutrino from W responsible for all MET
- Reconstruct "best" (mass closest to top mass) leptonic top with one of the leading jets
- Reconstruct best hadronic W with the three remaining leading jets
- Reconstruct best hadronic top
- Top box cuts (define control sample)

 $M_{Top-lep}$ - M_{Top} | < 25 GeV M_{W-had} - M_W | < 15 GeV $M_{Top-had}$ - M_{Top} | < 25 GeV

Extrapolation to signal region using MC

Source	Contribution %		
Jet energy scale	20		
E_T scale	2		
MC Model dependence of R_{tt}	8		
Systematic uncertainties ~22%			

tt + W: combined fit

- Fit three observables: MET, MT and Mtop (invariant mass of 3 jets with largest vector PT sum)
- Sideband: SUSY selection + MT < 150 GeV OR MET < 200 GeV</p>
- Signal: SUSY selection + MT > 150 GeV AND MET > 200 GeV
- All SUSY models (except SU4) have similar behavious in SB region in MT and MET → build a model background only vs background+SUSY
- Relax all parameters except the SUSY ansatz shape

0-lepton search mode

- Selection cuts:
 - at least 4 jets with PT>50GeV
 - □ at least 1 jet with PT>100GeV

 - □ MET > 100 GeV
 - MET > 0.2 effective mass
 - □ Transverse Sphericity ST > 0.2
 - $\Box \ \Delta \varphi(\text{ET} \text{jet } i) > 0.2 \ (i = 1, 2, 3)$

Main backgrounds:

□ tt	SM	0-l
□ W+iets	tt	62%
	W	17%
	Z	10%
	QCD	10%

1-lepton search mode

- Selection cuts:
 - □ at least 4 jets with PT>50GeV
 - □ at least 1 jet with PT>100GeV
 - □ 1 lepton (e, μ) with PT > 20 GeV
 - □ MET > 100 GeV
 - MET > 0.2 effective mass
 - □ Transverse Sphericity ST > 0.2
 - transverse mass(lepton, ET) >
 100GeV
- Main backgrounds:

□ tt

W+jets

Object definition

Electrons

- \square Pt > 10 GeV and |eta|<2.5
- Veto on events with an electron in the crack (1.37<|eta|<2.5)
- \Box Calorimeter isolation in a cone (0.2) <10 GeV
- Angular distance to closest jet > 0.4 (after overlap removal)

Muons

- Pt > 10 GeV and |eta|<2.5
- Chi2 > 100
- Calorimeter isolation in a cone (0.2) <10 GeV
- Angular distance to closest jet > 0.4 (after overlap removal)

Jets

• Pt > 20 GeV and |eta|<2.5

Electron/Jet overlap removal

- Jets matching an electron within 0.2 cone
- Transverse sphericity: use all jets with |eta|<2.5 and leptons</p>
- Effective mass: use 4 leading jets with |eta|<2.5 and leptons</p>

MC background estimation

Will ROUGHLY be subject to the following uncertainties:

•	Underlying Event & Parton Distribution Functions	20%
•	Cross-sections	50%
	 No NLO calculations for tt 	
•	Parton Showering	50%
	After accurate normalization to data has been made	
•	Detector Calibration (JES, MET)	30%
•	Detector simulation	100%
•	Limited Monte Carlo statistics	

Background estimation for multileptons analysis

OS 2-lepton & tau searches

MT method

HT2 method

Top redecay

Top kinematic reconstruction

- SS 2-lepton searches
 - □ Lepton isolation

Cross sections at LHC

mSUGRA benchmark points

- We consider the following points in the mSUGRA parameter space:
 - SU1 $m_0 = 70$ GeV, $m_{1/2} = 350$ GeV, $A_0 = 0$, $\tan \beta = 10$, $\mu > 0$. Coannihilation region with nearly degenerate $\tilde{\chi}_1^0$ and $\tilde{\ell}$.
 - SU2 $m_0 = 3550$ GeV, $m_{1/2} = 300$ GeV, $A_0 = 0$, $\tan \beta = 10$, $\mu > 0$. Focus point region near boundary where $\mu^2 < 0$, so light Higgsions which annihilate efficiently.
 - SU3 $m_0 = 100$ GeV, $m_{1/2} = 300$ GeV, $A_0 = -300$ GeV, $\tan \beta = 6$, $\mu > 0$. Bulk region: relatively light sleptons enhance LSP annihilation.
 - SU4 $m_0 = 200$ GeV, $m_{1/2} = 160$ GeV, $A_0 = -400$ GeV, $\tan \beta = 10$, $\mu > 0$. Low mass point close to Tevatron bound.
 - SU6 $m_0 = 320$ GeV, $m_{1/2} = 375$ GeV, $A_0 = 0$, $\tan \beta = 50$, $\mu > 0$. Funnel region with $2M_{\tilde{\chi}_1^0} \approx M_A$. Since $\tan \beta \gg 1$, A is wide and τ decays dominate.
 - SU8.1 $m_0 = 210$ GeV, $m_{1/2} = 360$ GeV, $A_0 = 0$, $\tan\beta = 40$, $\mu > 0$. Variant of coannihilation region with $\tan\beta \gg 1$, so that only $M(\tilde{\tau}_1) M(\tilde{\chi}_1^0)$ is small.
- For all these points, gluino mass < 1 TeV, and it's 6-8x neutralino mass. For all points except SU2, squark and gluino masses are comparable, therefore they are strongly produced and decay giving hard jets, leptons and MET.</p>