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A bstract

W e extend previous results (arXiv: 0804.2630 [hep-ph])on factoriza-

tion in high-energy nucleus-nucleuscollisions by com puting the inclusive

m ultigluon spectrum to next-to-leading order. The factorization form ula

is strictly valid for m ultigluon em ission in a slice of rapidity of width

�Y � �
� 1
s . O urresults shows thatoften neglected disconnected graphs

dom inate the inclusive m ultigluon spectrum ,and are crucialin order to

achieve factorization forthisquantity.These resultsprovidea dynam ical

fram ework for the G lasm a 
ux tube picture ofthe striking \ridge"-like

correlation seen in heavy ion collisions.

1 Introduction

In arecentwork,henceforth referred toasPaperI[1],weinvestigated theform al

basisfortheapplication oftheColorG lassCondensate(CG C)fram ework [2{8]

to the collision oftwo high energy nuclei. In Paper I,we focused on the for-

m alism to com pute the single gluon inclusive spectrum in the Leading Log x

approxim ation.Them ain resultofPaperIisaproofthatterm scontaininglead-

ing logarithm sof1=x1;2 thatarisein allorderloop correctionsto thisspectrum

can befactorized in thedistributionsofcolorsourcesW [�1;2]in each ofthetwo

nuclei,evolved with the JIM W LK equation [9{16]from the beam rapidity to

the rapidity ofthe m easured gluon. O ne obtainsforthe single inclusive gluon
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distribution the result

�
dN

d3p

�

L L og

=

Z

[D �1][D �2]W Ybeam � Y [�1]W Ybeam + Y [�2]
dN

d3p

�
�
�
�
L O

: (1)

TheW functionalsareuniversalpropertiesofthenuclearwavefunctionsathigh

energiesand (in analogy to theparton distribution functionsofcollinearfactor-

ization)can beextracted from deep inelasticscattering orproton-nucleusscat-

tering experim entso� nuclei.The inclusive single gluon spectrum (dN =d3p)
L O

thatappearsundertheintegralin therighthand sideistheLeadingO rderspec-

trum corresponding to one con�guration ofthe sources�1;2 { itisobtained by

solving the classicalYang-M illsequationsforthis�xed distribution ofsources.

Thisfactorization theorem allowsforconsiderablepredictive powerby relating

m easurem ents in a variety ofscattering processes. It should be particularly

usefulat the LHC,where the rapidity reach in proton-nucleus and nucleus-

nucleuscollisionswillbeconsiderableand the e�ectsofenergy evolution ofthe

distribution ofcolorsourcesclearly visible.

The derivation ofthe factorized expression in eq.(1)relied on two essential

steps:

1.The1-loop correctionstothegluon spectrum can,in theleadinglogarithm

approxim ation,be expressed asthe action ofa certain linearoperatoron

the leading orderspectrum 1,

2.Thisoperatoracting on the initialcolor�eldson the light-cone is,again

in the leading log approxim ation,the JIM W LK Ham iltonian.

In the presentpaper,we willshow thata straightforward generalization ofthe

�rstofthesetwo stepsissu�cientto extend ourfactorization resultto inclusive

m ultigluon spectra when allthem easured gluonsarelocated in a rapidity region

ofm axim alwidth �Y . � � 1
s .

Thepaperisorganized asfollows.In section 2,wede�nea generating func-

tionalfor m ultiparticle production in nucleus-nucleus collisions. This extends

to theQ CD caseourpreviousresults[17,18]fora sim ilarobjectintroduced for

a �3 theory. W e discusskey featuresofthisgenerating functionaland develop

a diagram m atic interpretation ofthisobject. W e show how (atleading order)

its�rstderivative can be expressed in term sofclassicalsolutionsofthe Yang-

M illsequationsthatobey both advanced and retarded boundary conditions.In

section 3,weconsiderin detailtheinclusivetwo-gluon spectrum .W eobtain an

expression ofthisspectrum atnext-to-leadingorder(NLO )usingthepreviously

de�ned generating functional.W e end the section by showing thatthe leading

logsof1=x1;2 in thisquantity can befactorized in thedistributionsofincom ing

colorsources,provided the rapidity separation between the two gluonsissm all

enough. W e show that our form alism gives rise to the G lasm a 
ux tube pic-

ture [19],which hasbeen suggested as a m echanism to describe the ridge-like

structure observed in heavy ion collisions at RHIC [20{24]. In section 4,we

1See the discussion after eqs.(40-41) and atthe end ofsection 3.5 in [1].
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generalizethisfactorization resultto thecaseoftheinclusiven-gluon spectrum .

K nowing allthe m om ents de�nes the com plete probability distribution. W e

dem onstrate how the leading logarithm ic correctionsto the m ultiplicity distri-

bution can be factorized into the JIM W LK evolution ofthe sources. W e end

with a briefsum m ary.The threeappendicesaredevoted to the m oretechnical

aspectsofourdiscussion.

2 G enerating functional

In PaperI,we developed the toolsforstudying atLO and NLO the single in-

clusivegluon spectrum in AA collisionsin the CG C fram ework.O urgoalisto

generalize these techniquesto obtain sim ilarresultsforthe n-gluon spectrum .

Towardsthatpurpose,wewillde�ne in thissection a generating functionalfor

n-gluon production,discussitspropertiesand develop a diagram m aticinterpre-

tation.W ethen discusstheLO com putation ofthe�rstderivativeofthisobject

in term sofsolutionsofclassicalYang-M illsequationswith both retarded and

advanced boundary conditions.

2.1 D e�nition and properties

W e de�ne the generating functionalas

F [z(p)]�

1X

n= 0

1

n!

Z

p1

� � �

Z

p
n

z(p1)� � � z(pn)

�
�
�


p1 � � � pnout

�
�0in

���
�
2

; (2)

whereweusethe following com pactnotation forphase-spaceintegrals2,

Z

p

� � � �

Z
d3p

(2�)32E p

� � � : (3)

In this de�nition,z(p) is an arbitrary function over the 1-gluon phase-space.

The m atrix elem ent squared that appears in the right hand side is im plicitly

sum m ed overthepolarizationsand colorsoftheproduced gluons.Notethatin

thissection,we considerthe externalcurrentJ� coupled to the gauge �eld to

be �xed.Thisisthe case in the ColorG lassCondensate (CG C)fram ework [8]

where the �xed sourcesrepresentthe large x lightcone colorcharge densities

in the nuclear wavefunctions. W e willaddress the issue ofaveraging overthe

externalcolorsourceslaterin thispaper.

Thegeneratingfunctionalgeneralizesthegeneratingfunction F (z)weintro-

duced in ref.[17].Thispreviously de�ned function issim ply obtained as

F [z(p)� z
�]= F (z�); (4)

2W henevertheintegrand containsp0 in such integrals,itshould bereplaced by thepositive

on-shellenergy p0 = jpj.
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when z(p)isa constantz�.Anotherobviousproperty ofF [z(p)]is

F [z(p)� 1]= 1: (5)

which isa consequenceofthe factthatthe theory isunitary.

Thegeneratingfunctionalencapsulatestheentireinform ation contentofthe

nuclear collision within the CG C fram ework. Indeed,ifF [z(p)]were known,

one could use it to build an event generator for the early G lasm a [25,18,8]

stage ofnucleus-nucleus collisions. In particular,one can com pute the inclu-

sive m ultigluon spectra. For instance,the single inclusive3 gluon spectrum is

obtained as
dN

d3p
=

�F [z]

�z(p)

�
�
�
�
z� 1

: (6)

Likewise, the inclusive 2-gluon spectrum is obtained by di�erentiating F [z]

twice,

dN 2

d3pd3q
=

�2F [z]

�z(p)�z(q)

�
�
�
�
z� 1

; (7)

where the integraloverp and q on the lefthand side ofthisexpression isthe

averagevalue ofN (N � 1). Physically,thisquantity,in an event,corresponds

to a histogram ofallpairs ofdistinct gluons with m om enta (p;q). W e will

discuss the average over allsuch events later. Eqs.(6) and (7) are the two

sim plestexam plesofthe use ofthisgenerating functional,butin principle one

can derive from it any observable that is related to the distribution ofgluons

produced in the collision.Eq.(7)can be generalized to

dnN n

d3p1 � � � d3pn
=

�nF [z]

�z(p1)� � � �z(pn)

�
�
�
�
z� 1

; (8)

forthe inclusive n-gluon spectrum . Note thatthe l.h.s,integrated overthe n-

particle phase space,is norm alized to the average value ofN (N � 1)� � � (N �

n + 1).

From eq.(8),itispossibleto representthe generating functionalF [z]as

F [z(p)]=

1X

n= 0

1

n!

Z h nY

i= 1

d
3
pi (z(pi)� 1)

i
dnN n

d3p1 � � � d3pn
: (9)

Thisform ula willlaterbe the basisofourstrategy to obtain an expression for

F [z]at Leading Log. W e will�rst obtain Leading Log expressions for the n-

gluon spectra4,and willshow that the in�nite sum in eq.(9) leads to a very

sim pleexpression.

3N ote thatsetting z(p)to zero instead,after taking the functionalderivative,one obtains

the di�erentialprobability forproducing exactly one gluon in the collision,

dP1

d3p
=

�F [z]

�z(p)

˛

˛

˛

˛

z� 0

:

4W ith the im portantlim itation thatthe n gluonsallsitin a rapidity slice ofwidth �Y .

�
� 1
s .

4



O nce we know F [z](with a given accuracy),one can use the fact that its

Taylorcoe�cientsatz(p)= 0 are the di�erentialprobabilitiesforproducing a

�xed num berofparticles5,

F [z(p)]=

1X

n= 0

Z h nY

i= 1

d
3
pi z(pi)

i
dnPn

d3p1 � � � d3pn
: (10)

From this second representation ofF [z],one can extract from F [z]detailed

inform ation aboutthe distribution ofproduced gluons.

2.2 D iagram m atic interpretation ofF [z]

In orderto seewhatarethediagram sthatcontributeto F [z],letus�rstde�ne

D �

Z

p

D p ; (11)

with

D p �
X

�

�
�

�
(p)���(p)

�

Z

d
4
x d

4
y e

ip� (x� y)
� x� y

�

�J
�

+ (x)

�

�J�
�
(y)

: (12)

This operator has already been introduced in [17,18]to write Pn in term s of

vacuum diagram s. The only di�erence here isthatwe extend its de�nition to

the case ofvector particles and Q CD.The sum over the gluon polarizations

� spansthe two physicalpolarization states. By m im icking the m anipulations

perform ed forscalar�elds,onecan provethat

F [z(p)]= exp

2

4

Z

p

z(p)D p

3

5 e
iV [J

�

+
]
e
� iV

�
[J

�

�
]

�
�
�
J
�

+
= J

�

�
= J�

; (13)

whereiV [J�]isthesum oftheconnected vacuum diagram sevaluated with the

externalcurrent J�. It is easy to check that allthe form ulas we previously

obtained in [17,18]forPn orforthe generating function F (z)areallparticular

casesofthisform ula.

From the interpretation ofthe operatorD asan operatorthatm akescuts

through vacuum diagram s,we see thatthe functionalF [z(p)]isthe sum ofall

thecutvacuum diagram s(connected ornot)in which everycutpropagatorwith

m om entum p isweighted by z(p).LetuscalliW [J
�

+ ;J
�

�
;z]thesum ofallsuch

connected diagram s(beforethecurrentsJ
�

+ and J
�

�
aresetequaltothephysical

valueJ�):

e
iW [J

�

+
;J

�

�
;z]
� exp

2

4

Z

p

z(p)D p

3

5 e
iV [J

�

+
]
e
� iV

�
[J

�

�
]
: (14)

5N ote that there is no 1=n!in this form ula. A quick way to convince oneselfthat this is

correct is to set z(p)= 1;the integrals over the m om enta pi give the totalprobabilities Pn ,

which add up to unity.
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Itisusefulto com pute the �rstderivativeofF [z(p)]with respectto z(p),

�F [z]

�z(p)
=

1

(2�)32E p

D p e
iW [J

�

+
;J

�

�
;z]

�
�
�
�
J
�

+
= J

�

�
= J�

: (15)

Perform ingexplicitly thederivativescontained in eq.(12),thiscan berewritten

as

�F [z]

�z(p)
=

1

(2�)32E p

X

�

�
�

�
(p)���(p)

�

Z

d
4
x d

4
y e

ip� (x� y)
� x� y

�

�
�iW

�J
�

+ (x)

�iW

�J�
�
(y)

+
�2iW

�J
�

+ (x)�J
�
�
(y)

�

e
iW [J

�

+
;J

�

�
;z]

�
�
�
J
�

+
= J

�

�
= J�

:(16)

The �nalexponentialin thisform ula isnothing butF [z]itself. Therefore,we

can write

� lnF [z]

�z(p)
=

1

(2�)32E p

X

�

�
�

�
(p)���(p)

�

Z

d
4
xd

4
y e

ip� (x� y)
� x� y

�

�
�iW

�J
�

+ (x)

�iW

�J�
�
(y)

+
�2iW

�J
�

+ (x)�J
�
�
(y)

�

J
�

+
= J

�

�
= J�

: (17)

Thisform ula tellsusthatthisquantity ism adeup ofonly connected diagram s

since iW isa sum ofconnected diagram s.W e also observethatthisform ula is

very sim ilarto the form ula forthe single inclusive particle spectrum with one

very im portant di�erence: the function z(p) is not set to 1 at the end,and

thereforeappearsasa m ultiplicativefactorattached to each cutpropagator.

2.3 �lnF [z]=�z(p)at leading order

Let us now show that,in the regim e ofstrong externalcolor sources,the ex-

pression in eq.(17)can beexpressed atleading order(LO )in term sofclassical

solutionsofthe Yang-M illsequations.

Firstofall,note thatthe �rstderivatives�W =�J
�

�
areoforder6 g� 1,while

the second derivative �2W =�J
�

+ �J
�
�
isorderg0.Thusthe �rstterm ,com posed

ofthe product oftwo �rst derivatives,is the leading one. The second term

beginsto contribute only atnext-to-leading order(NLO ).AtLO ,we can thus

write

� lnF [z]

�z(p)

�
�
�
�
L O

=
1

(2�)32E p

X

�

���(p)���(p)

Z

d
4
xd

4
y e

ip� (x� y)

� �x� yA
�

+ (x)A
�
�
(y); (18)

6Because W is the sum ofconnected vacuum graphs,in the presence ofexternalsources

J
�

�
� g� 1,W � g� 2.
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wherewedenote7

A
�
�(x) �

tree

�iW

�J
�
� (x)

�
�
�
�
J
�

+
= J

�

�
= J�

: (19)

The\tree" herem eanswekeep only treediagram sin theexpansion of�W =�J
�

�

thatde�nesA �
�.

Allthe argum ents developed to com pute the generating function F (z) at

leading order [18]can be extended trivially to the present situation,and one

obtainsthe following results:

� A�� isa solution ofthe classicalYang-M illsequations,

�
D �;F

��
�
= J

�
; (20)

� Ifone decom posesA��(x)in Fourierm odes,

A
�
�(x)�

X

�;a

Z

p

n

f
(+ )
� (x0;p�a)a

0�

� p�a
(x)+ f

(� )
� (x0;p�a)a

0�

+ p�a
(x)

o

;

(21)

with a
0�

� p�a
(x)� �

�

�
(p)T ae� ip� x,the boundary conditions obeyed by the

classical�eld A �
�(x)can beexpressed assim pleconstraintson theFourier

coe�cients8,

f
(+ )

+ (� 1 ;p�a)= f
(� )

�
(� 1 ;p�a)= 0;

f
(+ )

�
(+ 1 ;p�a)= z(p)f

(+ )

+ (+ 1 ;p�a);

f
(� )

+ (+ 1 ;p�a)= z(p)f
(� )

�
(+ 1 ;p�a): (22)

W e see that the dependence of the classical�elds A
�

�
on the function z(p)

com esentirely from the boundary conditions9,since the Yang-M illsequations

them selves do notexplicitly contain z(p). In term s ofthe Fouriercoe�cients

f
(� )

�
,eq.(18)reads

� lnF [z]

�z(p)

�
�
�
�
L O

=
1

(2�)32E p

X

�;a

f
(+ )

+ (+ 1 ;p�a)f
(� )

�
(+ 1 ;p�a): (23)

7A
�

�
(x)dependson function z(p)aswellbutwe have om itted itfrom the notation to keep

notations com pact.
8The derivation ofthis result isanalogous to the scalar case discussed in detailin section

4.2 ofR ef.[17].
9N ote that,when z(p)� 1,the boundary conditions in eqs.(22) becom e

f
(+ )

+
(� 1 ;p�a)= f

(� )

�
(� 1 ;p�a)= 0 ;

f
(+ )

�
(+ 1 ;p�a)= f

(+ )

+
(+ 1 ;p�a); f

(� )

+
(+ 1 ;p�a)= f

(� )

�
(+ 1 ;p�a):

The two conditionsatx0 = + 1 im ply thatA + (x)= A � (x)everywhere. The two conditions

at x0 = � 1 then im ply that lim x0! � 1
A � (x) = 0. Therefore, when z(p) � 1, the two

classical �elds A
�

�
becom e identical to the retarded classical �eld with a vanishing initial

condition in therem otepast,and eq.(18)givesthesingleinclusivegluon spectrum asexpected.
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Notethatitdependsonly on the Fouriercoe�cientsofthe �eldsatx 0 = + 1 .

Eqs.(20),(22) and (23) do not provide a practicalway to obtain the LO

generating functionalF [z(p)]becausethesolutionsdepend on boundary condi-

tionsatboth � 1 .Itisnotknown atpresenthow tosolveYang{M illsequations

with sim ultaneous advanced and retarded boundary conditions. Nevertheless,

the procedure outlined here provides a powerfultheoreticaltoolto com pute

other quantities,that can be obtained as derivatives ofthe generating func-

tional. A concrete illustration ofthis strategy is revealed in the case ofthe

2-gluon spectrum in the following section.

3 T wo-gluon inclusive spectrum

In thissection,we willspecialize ourdiscussion ofthe generating functionalin

theprevioussection to the2-gluon inclusivespectrum atLO and NLO .W ewill

dem onstrate that,justasin the case ofthe single gluon spectrum discussed in

PaperI,theleading logarithm contributionsthatariseatNLO can beabsorbed

in the JIM W LK wave functionalsofthe two nuclei,provided the rapidity sep-

aration between the two gluons is sm allenough. As in Paper I,one obtains

a factorized expression for the leading log 2-gluon inclusive spectrum . In the

following section,thisresultwillbe extended to m ultigluon spectra.

3.1 Leading O rder

The inclusive 2-gluon spectrum is obtained by taking the second derivative of

the generating functionalF [z],and by setting the functions z(p) and z(q) to

unity afterwards(see eq.(7)). Alternately,it is easy to obtain this derivative

from the derivativeoflnF [z].W e get

d2N 2

d3p d3q
=

� lnF [z]

�z(p)

� lnF [z]

�z(q)
+

�2 lnF [z]

�z(p)�z(q)

�
�
�
�
z(p);z(q)� 1

: (24)

The�rstterm issim ply theproductoftwosinglegluon spectra(seeeq.(6)),and

thereforecorrespondstothedisconnected (independent)production ofagluonof

m om entum p and agluon ofm om entum q.In contrast,becauselnF [z]contains

only connected diagram s,thesecond term correspondsto thetwo gluonsbeing

produced in the sam e graph. Note that these expressions correspond to the

2-gluon spectrum fora �xed con�guration ofthe externalsources�1;2. W hen

we average over these sources,som e graphs that were disconnected prior to

averagingbecom econnected.Therefore,even the�rstterm in eq.(24)can lead

to correlationsin the m easured 2-gluon spectrum .

The two term sin thisexpression do notbegin atthe sam e orderin g2. In

ourpowercounting,

lnF [z]=
1

g2

h

c0 + c1 g
2 + c2 g

4 + � � �

i

: (25)
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Thisim pliesthatthe�rstterm in eq.(24)isoforderg� 4,whilethesecond term

isoforderg� 2 only.Forthe2-gluon spectrum ,\leading order" thereforem eans

g� 4,and wesim ply have10

d2N 2

d3pd3q

�
�
�
�
L O

=
dN

d3p

�
�
�
�
L O

dN

d3q

�
�
�
�
L O

: (26)

No new com putationsare necessary here because we know how to expressthe

single gluon spectrum at LO in term s ofclassicalsolutions ofthe Yang-M ills

equationswith retarded boundary conditions. Note thatatthisorderthe � N

term contributing to N 2 issubleading relative to the N
2 contribution because

itstartsonly attheorderg� 2 thereforedoesnotappearon therighthand side

ofeq.(26)which isoforderg� 4.

3.2 N ext to Leading O rder -I

W eshallnow study theinclusive2-gluon spectrum atNLO {thecontribution at

orderg� 2 in ourpowercounting. Atthis order,the tree levelcontribution to

second term in eq.(24)m ustbe included.W e can write therefore

d2N 2

d3pd3q

�
�
�
�
N L O

=
dN

d3p

�
�
�
�
N L O

dN

d3q

�
�
�
�
L O

+
dN

d3p

�
�
�
�
L O

dN

d3q

�
�
�
�
N L O

+
�2 lnF [z]

�z(p)�z(q)

�
�
�
�
L O

: (27)

The�rsttwo term sagain do notrequirea new com putation becausewestudied

in greatdetailthe single gluon spectrum atNLO in PaperI[1]. In particular,

werecallherethe previously derived form ula

dN

d3p

�
�
�
�
N L O

=

" Z

�

d
3
~u
�
� � Tu �

| {z }
L 1

+
1

2

X

�;a

Z

k

Z

�

d
3~u d

3~v
�
a� k�a � Tu ��a+ k�a � Tv�

| {z }
L 2

#

dN

d3p

�
�
�
�
L O

+ �N
N L O

(p): (28)

In thisform ula,a� k�a denotessm all�eld 
uctuationsthatpropagateoverthe

classical�eld A . The subscripts indicate that these 
uctuations begin in the

rem otepastasplanewavesofm om entum � k,polarization � and colora.Sim -

ilarly, � is also a sm all�eld 
uctuation propagating on top of A , but this


uctuation hasa vanishing initialcondition in the pastand isdriven by a non

zero sourceterm .� isa surfaceon which theinitialvalueoftheclassical�elds

are de�ned,and d3~u is the m easure on this surface. The operatorTu is the

10O ne should keep in m ind therefore that \LO " corresponds to di�erent powers ofg2 for

the single and double inclusive gluon spectra.
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generatoroftranslationsofthe initial�eld atthe pointu 2 �. �N
N L O

(p)isa

term contributingtothefullexpression.Itwillnotbeexplicited furtherbecause

itdoesnotcontain a leading logarithm iccontribution{seethediscussion ofthis

term in [1]. Because we are interested here in these leading log contributions,

thisterm willbe dropped in allfurtherequationsin thispaper.

Atthispoint,wecan rewritethe �rsttwo term softhe r.h.s.ofeq.(27)as

dN

d3p

�
�
�
�
N L O

dN

d3q

�
�
�
�
L O

+
dN

d3p

�
�
�
�
L O

dN

d3q

�
�
�
�
N L O

=

h

L1 + L2

i

disc

dN

d3p

�
�
�
�
L O

dN

d3q

�
�
�
�
L O

;

(29)

where the subscript \disc" added to the operator between the square brack-

ets indicates that when the com bination TuTv in L2 acts on the product

(dN =d3p)(dN =d3q),wekeep only theterm swherethetwoT’sacton thesam e
factor11.Thesubscripthererem indsusthattheseterm saredisconnected con-

tributionsthatarethe productofa function ofp and a function ofq.

3.3 N ext to Leading O rder -II

The third term ofeq.(27),involving the second derivative ofthe log ofthe

generating functional,isnew and willbe com puted here.Fortunately,we need

this term only at leading order{i.e. O (g� 2). Therefore,our starting point in

evaluating this term is eq.(23). Di�erentiating this equation with respect to

z(q),we obtain

�2 lnF [z]

�z(p)�z(q)

�
�
�
�
L O

=
1

(2�)32E p

�
X

�;a

h�f
(+ )

+ (+ 1 ;p�a)

�z(q)
f
(� )

�
(+ 1 ;p�a)+ f

(+ )

+ (+ 1 ;p�a)
�f

(� )

�
(+ 1 ;p�a)

�z(q)

i

:

(30)

Further, di�erentiating eq.(21) with respect to z(q), one observes that the

quantities�f
(� )
� (+ 1 ;p�a)=�z(q)arethe Fouriercoe�cientsofthe �eld

b
�
�;q(x)�

�A��(x)

�z(q)
(31)

atx0 = + 1 .Theequation ofm otion obeyed by thisobjectcan beobtained by

di�erentiating,with respect to z(q),the equation ofm otion for A �
�. In order

to do this,itisusefulto startfrom the Yang-M illsequationswritten in a form

thatseparatesexplicitly the kinetic and interaction term s12 as

h

� xg�
�
� @x�@

�
x

i

A
�
�(x)�

@U (A �)

@A �;�(x)
= J

�
� ; (32)

11
ˆ

L 2

˜

disc
A B =

ˆ

L 2A
˜

B + A
ˆ

L 2B
˜

.
12N ote that the di�erentiation with respect to z(q) does not m odify the gauge �xing con-

dition,provided itislinear.Thus,b
�
�;q obeys the sam e gauge condition asA

�
� .
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whereU (A )istheYang-M illspotentialin agaugewith alineargaugecondition.

Di�erentiating thisequation with respectto z(q),weget

h

� xg�
�
� @x�@

�
x �

@U (A �)

@A ��(x)@A
�
�(x)

i

b
�
�;q(x)= 0 : (33)

In otherwords,b��;q(x)obeystheequation ofm otion ofsm all
uctuationsprop-

agating on top ofthe classical�eld A �. The boundary conditions necessary

in order to fully determ ine b��;q(x) are easily obtained by di�erentiating the

eqs.(22)with respectto z(q):

b
(+ )

+ ;q(� 1 ;p�a)= b
(� )

� ;q(� 1 ;p�a)= 0 ;

b
(+ )

� ;q(+ 1 ;p�a)= z(p)b
(+ )

+ ;q(+ 1 ;p�a)+ �(p � q)f
(+ )

+ (+ 1 ;p�a);

b
(� )

+ ;q(+ 1 ;p�a)= z(p)b
(� )

� ;q(+ 1 ;p�a)+ �(p � q)f
(� )

�
(+ 1 ;p�a);(34)

wherewehaveintroduced the obviousnotation

b
(�)
�;q(x

0;p�a)�
�f

(�)
� (x0;p�a)

�z(q)
(35)

fortheFouriercoe�cientsofb �
�;q.W eseethatwehavenon hom ogeneousbound-

ary conditions,which willlead to a non zero b��;q despitethefactthatthis
uc-

tuation obeysan hom ogeneousequation ofm otion.Notealso thatatthispoint

wecan safely setz(p)= 1 sincewedo notneed to di�erentiate with respectto

z(p) again. This leads to the sim pli�cation that when z(p)= 1,the classical

�eldsA
�

+ and A
�

�
becom eidentical{ascan bechecked from theirboundary con-

ditions(seefootnote9).In fact,theircom m on valueisnothing buttheclassical

�eld thatvanisheswhen x0 ! � 1 .W e willsim ply denote by A� the com m on

valueofthesetwo �eldsand f(� )(x0;p�a)itsFouriercoe�cients.

O bviously,eqs.(34)arenotsim pleretarded boundary conditions.O urtask

isnow torelatethe
uctuationsb��;q and theirFouriercoe�cientsto
uctuations

thatsatisfy sim ple retarded boundary conditions. In orderto achieve this,let

us again use the sm all�eld 
uctuations a
�

� k�a
. They obey the equation of

m otion (33),and the boundary conditions

a
�

� k�a
(x) =

x0! � 1

�
�

�
(k)T a

e
� ik� x

; (36)

Note that the �elds a
0�

� k�a
introduced earlier are the analogue ofthe a

�

� k�a

in the absence of a background �eld. From this de�nition, a+ k�a has only

negativeenergy com ponentsatx0 ! � 1 ,whilea� k�a hasonly positiveenergy

com ponentsin thislim it.M oreover,the 
uctuationsa
�

� k�a
providea com plete

basis for the sm all�eld 
uctuations that obey eq.(33). From the boundary

conditionsofa��;q atx
0 = � 1 ,we seethatwem usthave

b
�

� ;q(x)=
X

�;a

Z

k



k�a
� ;q a

�

� k�a
(x): (37)
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The coe�cients 
 k�a
� ;q in these linear decom positions do not depend on space

or tim e. The boundary conditions at x0 = � 1 do not constrain further the

coe�cients
 k�a
� ;q ,butthey can be determ ined from the boundary conditionsat

x0 = + 1 . To achieve thisend,we introduce the Fourierdecom position ofthe

functionsa
�

� k�a
(x),

a
�

� k�a
(x)�

X

�;b

Z

p

n

h
(+ )

� p�b
(x0;k�a)a

0�

� p�b
(x)+ h

(� )

� p�b
(x0;k�a)a

0�

+ p�b
(x)

o

:(38)

Itisthen a sim ple exerciseto rewritethe boundary conditionsatx0 = + 1 as

X

�;a

Z

k

h



k�a
� ;q h

(+ )

� k�a
(p�b)� 


k�a
+ ;q h

(+ )

+ k�a
(p�b)

i

= �(p � q)f(+ )(p�b);

X

�;a

Z

k

h



k�a
+ ;q h

(� )

+ k�a
(p�b)� 


k�a
� ;q h

(� )

� k�a
(p�b)

i

= �(p � q)f(� )(p�b);

(39)

where,to keep the expressionscom pact,we have om itted the argum entx0 =

+ 1 in allthe Fouriercoe�cients.Thiscan be seen asa system oflinearequa-

tionsforthecoe�cients
 k�a
� ;q .Thesolution ofthissystem oflinearequationsis

obtained in appendix A.

Insertingtheresultsin eq.(66)for
k�a
� ;q and Fourierdecom position in eq.(38)

in eq.(37),one can easily determ ine the Fouriercoe�cientsofb
�

� ;q(x)atx
0 =

+ 1 (eq.(35).Inserting these into eq.(30),weobtain13

�2 lnF [z]

�z(p)�z(q)

�
�
�
�
L O ;z(p );z(q )= 1

=
1

2

1

(2�)64E pE q

X

�;a

X

�;b

X

�;c

Z

k

�

(
�

h
(� )

+ k�a
(p�b)h

(� )

� k�a
(q�c)+ h

(� )

� k�a
(p�b)h

(� )

+ k�a
(q�c)

�

f
(+ )(p�b)f(+ )(q�c)

+

�

h
(+ )

+ k�a
(p�b)h

(+ )

� k�a
(q�c)+ h

(+ )

� k�a
(p�b)h

(+ )

+ k�a
(q�c)

�

f
(� )(p�b)f(� )(q�c)

+

�

h
(� )

+ k�a
(p�b)h

(+ )

� k�a
(q�c)+ h

(� )

� k�a
(p�b)h

(+ )

+ k�a
(q�c)

�

f
(+ )(p�b)f(� )(q�c)

+

�

h
(+ )

+ k�a
(p�b)h

(� )

� k�a
(q�c)+ h

(+ )

� k�a
(p�b)h

(� )

+ k�a
(q�c)

�

f
(� )(p�b)f(+ )(q�c)

)

�
1

(2�)32E p

�(p � q)
X

�;c

f
(+ )(p�c)f(� )(p�c): (40)

W e have therefore obtained an expression for the connected piece ofthe two

gluon spectrum entirely in term s ofFourierm odes ofthe classical�eld (f(� ))

and the sm all
uctuation �eld (h
(� )

� k�a
). The form er can be determ ined by

13W e additionally use eqs.(65) to sym m etrize the form ula with respect to (p;q).
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solving the Yang-M illsequationswith retarded boundary conditionswhile the

lattercan be determ ined by solving the equationsforsm all
uctuationsabout

the classical�eld,also with retarded boundary conditions.

The lastterm in eq.(40),proportionalto �(p � q)tim esthe single particle

spectrum , arises because the quantity dN 2=d
3pd3q is de�ned in such a way

that its integralover p and q gives the average value14 ofN (N � 1). This

term provides the � N contribution to this quantity. Because the logs in the

m ultiplicity N arise only at the order O (g0), this term cannot provide any

leading log in the 2-gluon spectrum and can thusbe dropped.

3.4 Leading log resum m ation ofthe 2 gluon spectrum

Com biningtheresultsin eq.(40)and eq.(28)in eq.(27),wenow havea form ula

forthe 2-gluon spectrum ,including both LO and NLO contributions.Asm en-

tioned previously,itcan in principlebeevaluated,in fullgenerality,bynum erical

solutionsofsm all
uctuation partialdi�erentialequationswith retarded bound-

aryconditions.However,ifoneisinterested prim arilyin theleadinglogarithm ic

pieceoftheNLO contributions,wecan go signi�cantly furtheranalytically.In-

deed,aswe willnow show by using the inform ation obtained thusfar,we can

com pute the leading logarithm ic contributions to the two gluon spectrum in

perturbation theory.

The �rst step in this derivation is to obtain an even m ore com pact form

for eq.(40) by using the linear operatorTu that we used previously in the

expression forthe1-loop correctionstothesingleparticlespectrum {seeeq.(28).

In PaperI,wedem onstrated explicitly thatthisoperatorallowsoneto express

the value ofa retarded 
uctuation at a point x in term s ofthe value ofthe

classical�eld atthe sam epointas

a
�(x)=

Z

�

d
3~u

�
a� Tu �A �(x); (41)

where�istheinitialsurfaceonwhich weknow thevalueofthe
uctuation.(The

pointx islocated abovethissurface.) Perform ing theFourierdecom position of

both sides ofthis relation,we obtain sim ply the relation between the Fourier

coe�cients(atx 0 = + 1 )ofthe sm all
uctuation and the classical�eld to be

h
(�)(+ 1 ;p�a)=

Z

�

d
3~u

�
a� Tu �f(�)(+ 1 ;p�a): (42)

Applying eq.(42)to thevarious
uctuationsthatappearin eq.(40),and using

the z(p)= 1 sim pli�cation ofeq.(23),

dN

d3p

�
�
�
�
L O

=
� lnF [z]

�z(p)

�
�
�
�
z= 1;L O

=
1

(2�)32E p

X

�;c

f
(+ )(p�c)f(� )(p�c); (43)

14This can easily be checked on a Poisson distribution, for which the second derivative

� lnF [z]=�z(p)�z(q)isexactly zero.W hen we insertthisin eq.(24)and integrate overp and

q,we obtain hN (N � 1)i= hN i2 { as expected fora Poisson distribution.
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itisa m atterofsim ple algebra to check that

�2 lnF [z]

�z(p)�z(q)

�
�
�
�
L O ;z(p );z(q)= 1

= � �(p � q)
dN

d3p

�
�
�
�
L O

+

h

L2

i

connected

dN

d3p

�
�
�
�
L O

dN

d3q

�
�
�
�
L O

:(44)

Thesubscript\connected" indicatesthatoneoftheT operatorsin theexpres-

sion L2 appearing in eq.(28)m ustacton thep-dependentfactorand theother

on the q-dependent factor. (Term s where they both act on the sam e factor

should be excluded.)

W eseenow thateqs.(29)and (44)can becom bined very easily,becausethe

sum of\disconnected" and \connected" term sisequivalentto the unrestricted

action ofTuTv on the product(dN =d3p)(dN =d3q).W e obtain thus

d2N 2

d3pd3q

�
�
�
�
N L O

= � �(p � q)
dN

d3p

�
�
�
�
L O

+

h

L1 + L2

i
dN

d3p

�
�
�
�
L O

dN

d3q

�
�
�
�
L O

;

(45)

whereL1 and L2 wereboth introduced previously in eq.(28).

W eshallnow discussthelogarithm icsingularitiesin thisexpression.Firstly,

�(p � q)(dN =d3p)
L O

doesnotcontain large logarithm sin x because these logs

startappearingatNLO in thesinglegluon spectrum .Becausewearerestricting

our discussion to leading logs,we can therefore discard this term henceforth.

The logarithm ic divergences in the second and third term s of the r.h.s. of

eq.(45)can beextracted straightforwardly by using them ain resultofPaperI,

L1 + L2 =
LLog

ln

�
�+

M +

�

H 1 + ln

�
��

M �

�

H 2 : (46)

Here H 1;2 are the JIM W LK Ham iltoniansofthe nucleim oving in the + z and

� z directionsrespectively [1,5{7],�� representthelongitudinalm om enta that

separate the static color sources �1;2 in each ofthe nucleirespectively from

the the gauge �elds that produce gluons at the rapidity ofinterest,and M �

correspondsto thetypicallongitudinalm om entum scalesoftheobject(thetwo

gluon spectrum in thiscase)to which theoperatorisapplied.From eq.(46)we

obtain

d2N 2

d3pd3q

�
�
�
�
L O + N L O

=
LLog

"

1+ ln

�
�+

M +

�

H 1 + ln

�
��

M �

�

H 2

#

dN

d3p

�
�
�
�
L O

dN

d3p

�
�
�
�
L O

:

(47)

Allofour discussion thus far has been for a �xed distribution ofsources �1;2
in the two nuclei. The CG C e�ective theory [2{4,9{16],prescribesto average

physicalquantities over allthe possible con�gurations �1;2 of the fast color

sources representing the projectiles, with gauge invariant weight functionals

W [�1;2]thatdescribetheprobability ofeach con�guration.W hen weintegrate

eq.(47)over�1;2,wecan exploittheherm iticity oftheJIM W LK Ham iltonians

H 1;2 in orderto integrateby parts,so thattheHam iltoniansarenow acting on

the distributions W [�1;2]. By reproducing the argum ents developed in Paper

14



Iforthe single gluon spectrum ,we obtain �nally the factorization form ula for

inclusivetwo-gluon production,

�
d2N 2

d3pd3q

�

L L og

=

Z
�
D �1

��
D �2

�
W Y1

�
�1
�
W Y2

�
�2
� dN

d3p

�
�
�
�
L O

dN

d3q

�
�
�
�
L O

; (48)

at leading log accuracy. Here the distributions W [�1;2]obey the JIM W LK

equation
@W

Y
[�]

@Y
= H W

Y
[�]; (49)

and are evolved thus from non-perturbative initialconditionsatthe beam ra-

pidities to the rapiditiesY1 = ln(
p
s=M + ) and Y2 = ln(

p
s=M � ) respectively.

In theregim ewheregluon radiation between thetwotagged gluonsissm all,this

form ula resum s allleading logarithm s of1=x1;2 as wellas allthe rescattering

correctionsin (g�1;2)
n to allorders.

W e now addressthe prim ary lim itation ofthe presentcalculation. As the

previousdiscussion hints,itisvalid when the m om enta p and q ofthe two ob-

served gluonsarecloseenough in rapidity so thatthey havesim ilarlongitudinal

com ponents.M oreprecisely,weneed to have

�s ln

�
p+

q+

�

� 1 ; �s ln

�
p�

q�

�

� 1: (50)

Ifthisisthecase,wecan sim ply takeM � to bethecom m on value15 ofp� ;q� .

Physically,the condition ofeq.(50)m eans thatthe probability ofradiating a

gluon between thetwo m easured gluonsissm all.W hen therapidity separation

between thetwo gluonsislargesuch thateq.(50)isviolated,weneed to resum

gluon em issionsbetween the tagged gluons;thiswould requirea generalization

ofthe presentform alism ,which isnotdiscussed here.

3.5 Factorization and the ridge in A A collisions

A striking \ridge" structure hasbeen revealed in studiesofthe nearside spec-

trum ofcorrelated pairs ofhadrons by the STAR collaboration [20{22]. The

spectrum ofcorrelated pairson the nearsideofthe detector(de�ned by an ac-

com panyingunquenched jetspectrum )extendsacrosstheentiredetectoraccep-

tancein pseudo-rapidity oforder�� � 2 unitsbutisstrongly collim ated foraz-

im uthalangles��.Prelim inary analysesofm easurem entsby thePHENIX [23]

and PHO BO S [24]collaborationsappearto corroborate the STAR results. In

the latter case,with a high m om entum trigger,the ridge is observed to span

the widerPHO BO S acceptancein pseudo-rapidity of�� � 4 units.

In Ref.[19],it was argued that the ridge is form ed as a consequence of

both long range rapidity correlationsthatare generic in hadronic and nuclear

collisionsathigh energies,plusthe radial
ow ofthe hotpartonic m atterthat

15Itisofcourse notnecessary that p+ and q+ be equal,justthat they are close enough so

that itdoes not m atter which value we chose between p+ and q+ .
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isspeci�cto high energy nuclearcollisions.Letus�rstfocuson thelong range

correlationsthatareessentialto thispicture{how arethey generated?

In theleading orderform alism oftheCG C,classicalsolutionsofYang-M ills

equations are boost invariant [26{29]. Realtim e num ericalsim ulations [30{

38]also dem onstrate that the Yang-M ills �elds form 
ux tubes ofa typical

transverse size 1=Q s (where Q s is the saturation scale)with parallelchrom o{

electric and chrom o{m agnetic �eld strengths. (An im portant consequence is

that these G lasm a �elds [25]have non-trivialtopologicalcharge [39].) Now,

in section 3.1,we showed thatthe leading order2-gluon spectrum ,fora �xed

con�guration of sources, was given by eq.(26). Because each of the single

particle distributions is boost invariant,the two particle spectrum is also,at

thisorder,independentofthe rapidity separation ofthe gluons.W hilethe two

gluonsareuncorrelated fora�xed con�guration ofsources,correlationsarebuilt

in through the averaging overthe sourcedistributions.In Ref.[19],the source

distribution wasassum ed tobeG aussian asin theM cLerran{Venugopalan(M V)

m odel[2{4].The ridgespectrum wasshown to havethe sim pleform

��
p
�ref

� C (p;q)

D
dN

dy

E

D
dN

dyp pdpd�p

E D
dN

dyq qdqd�q

E =
K

N

�s(Q s)
; (51)

where

C (p;q)�

�
dN 2

dypd
2p

?
dyqd

2q
?

�

�

�
dN

dypd
2p

?

� �
dN

dyqd
2q

?

�

; (52)

and K N isa num beroforderunity. Forfurtherdetails,we referthe readerto

Ref.[19].

There are severalconceptualissues in this context. Firstly,how does one

justify thisaveraging procedureforthe 2-gluon spectrum from �rstprinciples?

Secondly,how does one build in energy evolution ofthe sources? And �nally,

do NLO contributionsspoilthispicture? O urresultsin thispapersolvem ostof

theseconceptualissues.O urresult,in eq.(48),showsthatthetrivialLO result

ofeq.(26) can be prom oted to a fullLeading Log result sim ply by averaging

it over the sources �1;2{with distributions ofsources that evolve according to

the JIM W LK equation. M ost im portantly, this shows that allhigher order

corrections,to leading logs in x1;2, do not spoilthe form in eq.(51) ofthe

G lasm a 
ux tube picture and providescom pelling evidence thatitisa robust

resultbeyond LO .Asdiscussed previously,thispicturewillhaveto bem odi�ed

when therapidity separation between the gluonsisgreaterthan �� 1s (Q s).

Theseinitialstateconsiderationsarenota�ected bythe�nalstatetransverse


ow oftheG lasm a 
ux tubeswhich istheotherim portantfeaturedeterm ining

the near side ridge seen in heavy ion collisions. Its been shown very recently

that a proper treatm ent of
ow and hadronization e�ects ofthe G lasm a 
ux

tubes provides excellent quantitative agreem ent with the RHIC data on the

dependenceoftheridgeam plitudeon centrality and asa function ofenergy,as

wellasthe angularwidth ofthe ridge asa function ofcentrality [40]. Further
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sophisticated treatm entsofboth the initialstatee�ectsdiscussed hereand the

�nalstatee�ectsdiscussed in Ref.[40],thereforeopen thedoorto quantitative

3-D im aging ofheavy ion collisions.A deeperrelation between initialand �nal

state e�ects, as outlined in Paper I,can be obtained by studying quantum


uctuationsatNLO ,thatarenotaccom panied by logsin x1;2,butgrow rapidly

in tim e [41,42]in a m anneranalogousto plasm a instabilities[43].

W e should also m ention thatthe initialstate e�ectsdescribed herearealso

present in proton/deuteron-nucleus collisions [44{46],without the �nalstate

e�ectscharacteristic ofthe ridge in nucleus-nucleuscollisions. These collisions

arethereforeusefulin orderto isolatetheinitialstatee�ectsand to corroborate

thefram ework ofm ultiparticleproduction in high energy Q CD developed here.

4 M ultigluon inclusive spectrum

In this section,we willshow how the results ofthe previous section m odify

m ulti-gluon probability distributions,with thecaveat,aspreviously,thatthese

gluonsare em itted in a narrow rapidity window. W e willalso derive a sim ple

expression forthe di�erentialprobability ofproducing n gluons.

4.1 n-gluon spectrum at LO and N LO

O urstarting pointin evaluating the inclusive n-gluon spectrum iseq.(8). Be-

causewehavethusfarobtained expressionsup to NLO forthe�rstand second

derivativesoflnF [z],itisconvenientto rewritethisexpression as16

dnN n

d3p1 � � � d3pn
| {z }

O ( 1

g2n
+ � � �)

=

nY

i= 1

� lnF [z]

�z(pi)
| {z }

O ( 1

g2n
+ � � �)

+
X

i< j

�2 lnF [z]

�z(pi)�z(pj)

Y

k6= i;j

� lnF [z]

�z(pk)

| {z }

O ( 1

g2(n �1)
+ � � �)

+ � � � (53)

Because lnF [z]= O (g� 2)in ourpowercounting,the LO term in the r.h.s. is

oforderg� 2n,theNLO term isoforderg� 2(n� 1),and NNLO and higherterm s

represented by the ellipses are om itted at the levelofthe present discussion.

The n-gluon spectra on the l.h.s.ofeq.(53)are quantitiesthat,forn > 1,are

given by the�rstterm on ther.h.s.By com puting them to NLO wegain access

to the �rstcorrection to the Poisson distribution,the deviation ofthe variance

ofthe m ultiplicity distribution from the Poissonian resulthN (N � 1)i= hN i2

and thecorrespondingm odi�cationsforthehigherm om entsofthedistribution.

W ereferto the appendix C fora m oredetailed discussion oftheinterpretation

ofourresultforthe probability distribution ofthe gluon m ultiplicity.

16Thisform ula isobtained by replacing F [z]by exp(lnF [z])in eq.(8).
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Atleading order,only the �rstterm contributes,and weobtain (fora �xed

distribution ofsources)

dnN n

d3p1 � � � d3pn

�
�
�
�
L O

=

nY

i= 1

dN

d3pi

�
�
�
�
L O

: (54)

Atnextto leading order,wehave

dnN n

d3p1 � � � d3pn

�
�
�
�
N L O

=

nX

i= 1

dN

d3pi

�
�
�
�
N L O

Y

j6= i

dN

d3pj

�
�
�
�
L O

+
X

i< j

�2 lnF [z]

�z(pi)�z(pj)

�
�
�
�
L O

Y

k6= i;j

dN

d3pk

�
�
�
�
L O

:(55)

Alltheobjectsthatappearin thisequation areknown already from thediscus-

sion in PaperIand the previoussection.In [1],weshowed that

dN

d3p

�
�
�
�
N L O

=

h

L1 + L2

i
dN

d3p

�
�
�
�
L O

+ �N
N L O

(p); (56)

where L1 and L2 are de�ned in eq.(28). In the previous section,we showed

that17

�2 lnF [z]

�z(p)�z(q)

�
�
�
�
L O

=

h

L2

i

connected

dN

d3p

�
�
�
�
L O

dN

d3q

�
�
�
�
L O

; (57)

where we rem ind the reader that the subscript \connected" attached to the

operatorL2 indicatesthatthetwooperatorsT itcontainsdonotsim ultaneously

acton the sam eobject.

4.2 Leading Log resum m ation

Ifwecom binethe term sin eqs.(56)and (57),wegetsim ply

dnN n

d3p1 � � � d3pn

�
�
�
�
N L O

=
LLog

h

L1 + L2

i nY

i= 1

dN

d3pi

�
�
�
�
L O

: (58)

Using again eq. (46) and following the steps that lead from eq. (47) to

eq.(48),wearriveatthe allorderleading log n-gluon spectrum
�

dnN n

d3p1 � � � d3pn

�

L L og

=

Z
�
D �1

��
D �2

�
W Y1

�
�1
�
W Y2

�
�2
�

�
dN

d3p1

�
�
�
�
L O

� � �
dN

d3pn

�
�
�
�
L O

:(59)

O nceagain,oneneedsalltherapiditydi�erencesbetween then m easured gluons

to be m uch sm aller than �� 1s ,to ensure allleading logarithm ic contributions

areresum m ed by thisform ula.

17W e are ignoring the term � �(p � q) dN

d3p

˛

˛

˛

L O

because itdoesnotcontribute in the leading

logarithm ic approxim ation in x as discussed previously.
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4.3 G enerating functionalin a sm allrapidity slice

Eq.(59)providesacom pletedescription ofgluon production in theleadinglogx

approxim ation when oneconsidersa slicein rapidity ofwidth �Y � � � 1
s .O ne

can sum m arize these results into a generating functionalF
Y ;� Y

[z(p)]de�ned

from the \m aster" F [z(p)]as

F
Y ;� Y

[z(p)]= F [z�(p)] with

(

z
�(p)= z(p) if yp 2

�
Y �

� Y

2
;Y + � Y

2

�

z
�(p)= 1 otherwise

:

(60)

Setting theargum entofthegenerating functionalto unity outsideofthephase

space region ofinterestm eans that we de�ne observablesthat are com pletely

inclusivewith respectto thisunobserved partofthe phasespace.

W e see from eq.(9)thatF [z�(p)]can be obtained by m ultiplying eq.(59)

by (z�(p1)� 1)� � � (z�(pn)� 1)=n!,integratingoverthen-gluon phasespaceand

sum m ing over n. Because z�(p) is unity outside ofthe strip ofwidth �Y in

rapidity,the n-gluon spectrum outside ofthe regim e ofvalidity ofeq.(59) is

notneeded.Thisprocedureleadsto a sim ple exponentiation ofthe leading log

factorized form ula forthe generating functionalF
Y ;� Y

as



F

Y ;� Y
[z(p)]

�

L L og

=

Z
�
D �1

��
D �2

�
W Ybeam � Y

�
�1
�
W Ybeam + Y

�
�2
�

� exp

2

6
4

Y + � Y

2Z

Y �
� Y

2

d
3
p (z(p)� 1)

dN

d3p

�
�
�
�
L O

3

7
5 : (61)

Thisleadinglogresultforthegeneratingfunctional,in turn,allowsustoextract

the corresponding form ula forthe di�erentialprobability ofproducing exactly

n gluonsin the rapidity sliceofinterest.Thisgives
�

dnPn

d3p1 � � � d3pn

�

L L og

=

Z
�
D �1

��
D �2

�
W Ybeam � Y

�
�1
�
W Ybeam + Y

�
�2
�

�
1

n!

dN

d3p1

�
�
�
�
L O

� � �
dN

d3pn

�
�
�
�
L O

exp

2

6
4�

Y + � Y

2Z

Y �
� Y

2

d
3
p

dN

d3p

�
�
�
�
L O

3

7
5 :(62)

Thissim ple result,valid,we em phasize,in the leading log approxim ation,sug-

geststhattheparticledistribution in asm allrapidity slicecan bewritten asthe

averageover�1;2 ofa Poisson distribution with theleading log correctionscom -

pletely factorized into theJIM W LK evolution ofthesources.Notethat,despite

appearances,eq.(62)isnota Poisson distribution aftertheintegration overthe

sources,becauseparticlesproduced uncorrelated in each con�guration of�1 and

�2 arecorrelated in theaveraged distribution becauseofthecorrelationsam ong

the colorsources18.

18For instance,two color sources m ay be correlated because they result from the splitting

ofa com m on \ancestor" in the course ofJIM W LK evolution.
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In general,even fora �xed distribution ofsources,the probability distribu-

tion isnotPoissonian [17]. To som e extent,the factthatwe geta Poissonian

functionalform in the integrand ofeq.(62) is a consequence ofthe way we

have organized ourcalculation.In eq.(53)we are perform ing a weak coupling

expansion ofthe m om ents hN (N � 1)� � � � � (N � n + 1)i,that includes the

ordersg� 2n and the leading log partofthe orderg� 2(n� 1). Term sstarting at

the order g� 2(n� 2) are beyond the accuracy ofour calculation,and therefore

theirvalue in ourform ulasare arbitrary.The arbitrarinessofthese subleading

term s in
uences the precise form ofthe resulting generating functional. For

exam ple,ifwe had perform ed the weak coupling expansion ofhN niinstead of

hN (N � 1)� � � � � (N � n + 1)i,we would have obtained a di�erent generating

functional.O fcourse,thetwo generating functionalsso obtained would lead to

thesam em om entsofthedistribution to theorderofourcalculation.Thenon-

trivialaspectofourresultin eq.(62)isthatallthe deviationsfrom a Poisson

distribution thatresultfrom thelargelogarithm sofx atNLO can befactorized

into theJIM W LK evolution ofthesources.Equation (62)showshow thesecor-

rectionsm odify then gluon production probabilities.ThePoissonian natureof

them ultiplicity distribution and deviationsfrom itarediscussed in m oredetail

in appendix C.

5 C onclusion and outlook

W e dem onstrated in this paper that our result of Paper I on initial state

JIM W LK factorizationforthesingleinclusivegluonspectrum in nucleus-nucleus

collisionscan be extended to inclusive m ultigluon spectra. O urresultis valid

provided allthegluonsareproduced in a rapidity window ofwidth �Y . � � 1
s .

O ur�nalresultforthe generating functionalform ultigluon production,in the

leading logarithm ic approxim ation in x1;2,is very sim ple;the distribution of

gluons produced in the stated rapidity window can be written as the average

overtheJIM W LK -evolved distributionsofsourcesofa Poisson distribution.It

is im portant to keep in m ind that the result ofthis source average is not a

Poisson distribution,dueto the correlationsbetween theevolved colorsources.

As we discussed in section 3.5,ourresults are ofgreatinterestin detailed

im agingofthespace{tim eevolution ofnucleus{nucleuscollisions.An im portant

ingredientin future studies willbe to extend the presentresultto the case of

correlationsbetween gluonsproduced atrapidity di�erences�� 1
s . �Y .A full

leading log com putation oftheseinitiallong rangerapidity correlationsrequires

thatoneidenti�esand resum sthe additionallargelogarithm iccorrectionsthat

m ay arisewhen the rapiditiesin the two-gluon spectrum arewidely separated.

An im portant caveat (also applicable to our previous study ofthe single

gluon spectrum in nucleus-nucleuscollisions)isthat�nalstate e�ects,related

to the growth ofunstable 
uctuations,need to be resum m ed. W hile the de-

tailsare stillunknown,the structure ofthe resultisknown. The resultofthe
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resum m ation ofunstable
uctuations,asshown in PaperI,can beexpressed as

hO i
LLog+ LInst

=

Z
�
D eA

+
1

��
D eA

�

2

�
W

Y 1

�
eA
+
1

�
W

Y 2

�
eA
�

2

�

�

Z
�
D a(~u)

�
eZ[a(~u)]O

L O
[eA +

1 + a;eA
�

2 + a]: (63)

Here,we have traded the sources ~�1;2 in covariantgaugeforthe corresponding

gauge �elds eA
�

1;2 � 1

r
2
?

~�1;2. The functional eZ[a(~u)]is the spectrum ofsm all


uctuationsofthe classical�eld on the forward light-cone. In PaperI,O cor-

responded to the single inclusive spectrum butthisform ula also appliesto the

m ultigluon spectrum because the proofdoes notdepend on the nature ofthe

observable being m easured. However,the com plete functionalform of eZ[a(~u)]

isstillunknown{fora �rstattem pt,seeRef.[47].

Theseconsiderationsareeased som ewhatifwetakethe\dilute{dense"lim it

ofproton/deuteron{nucleus collisions because we don’t expect instabilities to

play a m ajor role in that case. Severalstudies have been perform ed in this

lim it [44{46,48{50]. A particularfocus is on the applicability ofthe so called

AG K cutting rules[51{54].W e plan to addressthese issuesin a future work.
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A Fourier coe� cients ofsm all
 uctuation � elds

W e willoutlineherethe solution to the system ofequations

X

�;a

Z

k

h



k�a
� ;q h

(+ )

� k�a
(p�b)� 


k�a
+ ;q h

(+ )

+ k�a
(p�b)

i

= �(p � q)f(+ )(p�b);

X

�;a

Z

k

h



k�a
+ ;q h

(� )

+ k�a
(p�b)� 


k�a
� ;q h

(� )

� k�a
(p�b)

i

= �(p � q)f(� )(p�b);

(64)

thatwasobtained in eq.(39). W e had previously derived analogousequations

in the case ofa sim pler scalar theory in [17]. However,in [17],we did not

m anageto solvetheseequationsand suggested thatonem ay haveto solvethem

num erically. Itturnsoutthatone can in factobtain an analyticalsolution of
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the eqs.(39),thanksto the relations

X

�;a

Z

k

h

h
(+ )

� k�a
(p�b)h

(� )

+ k�a
(q�c)

� h
(+ )

+ k�a
(p�b)h

(� )

� k�a
(q�c)

i

= (2�)3����bc2E p�(p � q);

X

�;a

Z

k

h

h
(� )

+ k�a
(p�b)h

(+ )

� k�a
(q�c)

� h
(� )

� k�a
(p�b)h

(+ )

+ k�a
(q�c)

i

= (2�)3����bc2E p�(p � q);

X

�;a

Z

k

h

h
(+ )

+ k�a
(p�b)h

(+ )

� k�a
(q�c)� h

(+ )

� k�a
(p�b)h

(+ )

+ k�a
(q�c)

i

= 0;

X

�;a

Z

k

h

h
(� )

+ k�a
(p�b)h

(� )

� k�a
(q�c)� h

(� )

� k�a
(p�b)h

(� )

+ k�a
(q�c)

i

= 0: (65)

Theserelationsarethem athem aticalconsequenceoftheunitary tem poralevo-

lution ofsm all
uctuations on top ofthe classical�eld A (x). In particular,

an orthonorm albasisofsolutionsofeq.(33)rem ainsorthonorm alatany later

tim e. A proofofthese form ulasis presented in appendix B. Thanksto these

relations,itiseasy to invertthe system ofequations(39),and onegets



k�a
+ ;q =

1

(2�)32E q

X

�;b

h

h
(� )

� k�a
(q�b)f(+ )(q�b)+ h

(+ )

� k�a
(q�b)f(� )(q�b)

i

;



k�a
� ;q =

1

(2�)32E q

X

�;b

h

h
(� )

+ k�a
(q�b)f(+ )(q�b)+ h

(+ )

+ k�a
(q�b)f(� )(q�b)

i

:

(66)

B U nitary evolution ofsm all
 uctuations

Considerthe partialdi�erentialequation

h

(� xg�
�
� @x�@

�
x)�

ab
�

@U (A �)

@A �a�(x)@A
�

�b
(x)

i

a
�b(x)= 0; (67)

where we have written explicitly allthe color indices. W e assum e that the

background color �eld in which the wave propagates is real. For a generic

solution a(x)ofthisequation,de�ne the following vectors:

�
�a
�
�

�
a�a(x)

_a�a(x)

�

;


a
�
��

�
a� �a(x) _a� �a(x)

�
; (68)

where the dot m eans a derivative with respect to tim e. Then,it is trivialto

check thatthe following \scalarproduct",



a1

�
��2

�
�a2

�
� ig���ab

Z

d
3
x

h

_a
� �a

1 (x)a�b2 (x)� a
� �a

1 (x)_a�b2 (x)

i

; (69)

22



where �2 is the second Paulim atrix,is independent oftim e when a
�

1 and a
�

2

aretwo solutionsofeq.(67).

Then,ifthe a� k�a(x) are the retarded solutions ofeq.(67) whose initial

conditionsatx0 ! � 1 are�
�

�
(k)T ae� ik� x,onecan check explicitly that



a+ k�a

�
��2

�
�a+ k0�0a0

�
= (2�)32E k ���0 �aa0 �(k � k

0
);



a� k�a

�
��2

�
�a� k0�0a0

�
= � (2�)32E k ���0 �aa0 �(k � k

0
);



a+ k�a

�
��2

�
�a� k0�0a0

�
=


a� k�a

�
��2

�
�a+ k0�0a0

�
= 0 : (70)

(Since allthese scalar products are tim e independent,it is su�cient to check

theserelationsby calculating the integralin ther.h.s.ofeq.(69)forthe corre-

sponding initialconditions.)

Consider now a generic solution a�(x) of eq. (67). Since the solutions

a
�

� k�a
(x)span the entirespaceofsolutions,wecan write

�
�a
�
�
X

�;a

Z

k

h



k�a
�

�
�a� k�a

�
+ 


k�a
+

�
�a+ k�a

�i

; (71)

wherethe coe�cients
 k�a
�

do notdepend on tim e.By using the orthogonality

relationsobeyed by the vectors
�
�a� k�a

�
,oneobtains



k�a
�

= �


a� k�a

�
��2

�
�a
�

; 

k�a
+ =



a+ k�a

�
��2

�
�a
�
: (72)

Inserting theserelationsback into eq.(71),onegetsthe following identity,

X

�;a

Z

k

h�
�a+ k�a

�

a+ k�a

�
��

�
�a� k�a

�

a� k�a

�
�
i

= �2g
��
�
bc
; (73)

which isvalid overthe space ofsolutionsofeq.(67).(The Lorentzindices�;�

and colorindicesb;c do notappearexplicitly in the l.h.s.,butare partofthe

de�nition ofthe vectors
�
�a
�
and



a
�
�{see eq.(68).) This relation is valid at

alltim es,and isthe expression ofthe factthatthe unitary evolution ofsm all


uctuationspreservesthe com pletenessofthe setofstates
�
�a� k�a

�

Let us now introduce states
�
�a0

� k�a

�
,that are the analogue ofthe states

�
�a� k�a

�
in thevacuum (i.e.when thebackground �eld iszero).Naturally,they

are justplane wavesa
0�

� k�a
= �

�

�
(k)T ae� ik� xthatwe have introduced in order

to perform the Fourierdecom position ofclassical�eldsand sm all
uctuations.

The Fourier coe�cients h
(� )

� k�a
(p�c) ofthe 
uctuations a

�

� �a
can be obtained

as:

h
(+ )

� k�a
(p�c)= �



a
0
� p�c

�
��2

�
�a� k�a

�
; h

(� )

� k�a
(p�c)=



a
0
+ p�c

�
��2

�
�a� k�a

�
:

(74)

(Theserelationsarevalid only in theregionswheretheinteractionsareswitched

o�,i.e. when x0 ! � 1 . In the restofthe discussion,we are only interested

in theseFouriercoe�cientsin thelim itx 0 ! + 1 .) By m ultiplying eq.(73)by
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a0
�p�b

�
��2 on theleftand by �2

�
�a0

�0q�c

�
on therightand using (h�

�0k�a
(p�c))

�
=

h
� �

� �0k�a
(p�c),weobtain thefollowingrelation am ongtheseFouriercoe�cients:

X

�;a

Z

k

h

h
(� �)

+ k�a
(p�b)h

(+ �
0
)

� k�a
(q�c)

� h
(� �)

� k�a
(p�b)h

(+ �
0
)

+ k�a
(q�c)

i

= ���0 �(2�)
3
����bc2E p�(p � q);

(75)

which isnothing buta com pactway ofwriting the foureqs.(65).

C Poisson distribution

At�rstsight,eq.(62)appearstobetheaverageoverthedistributionsofsources

of a Poisson distribution. This seem s to contradict a result we stressed in

[17],that the distribution ofm ultiplicities calculated in a �xed con�guration

ofsources�1;2 is nota Poisson distribution. Forthe sake ofthe discussion in

thisappendix,letusintroducethegenerating function F (z)forthem ultiplicity

distribution in theregion ofrapidity [Y � �Y=2;Y + �Y=2].In thelanguageof

the presentpaper,itisobtained by using in eq.(61)a constantfunction z(p)

whosevalueisequalto the num berz.

Consider�rstthis generating function fora given con�guration �1;2 ofthe

externalcolorsources.In [17],F (z)wasparam eterized as19

lnF (z)�

1X

r= 1

br(z
r
� 1); (76)

and wehad obtained theform ulafortheprobability Pn ofproducing n particles

in the portion ofphase-spaceunderconsideration to be

Pn = e
�

P

r
br

nX

p= 1

1

p!

X

r1+ � � � + rp= n

br1 � � � brp : (77)

In Ref.[17],wealso showed thatbr isthesum ofallthecutconnected vacuum

graphs,whereexactly r internallinesarecut.Becausebr isa sum ofconnected

graphs,ithasa perturbativeexpansion thatstartsatthe order1=g2,

br =
1

g2
� 1� g

2
� � � � (78)

In particular,allthebr havea priorithe sam eorderofm agnitude.However,it

iseasy to seethateq.(77)isa Poisson distribution only in theexceptionalcase

where20

b1 6= 0 ; br = 0 forr� 2 : (79)

19Com pared to the notations used in [17],we absorb the factorsof1=g2 into the de�nition

ofthe num bersbr.
20From eq.(77)and thede�nition ofthebr,wehaveF (z)�

P

n
zn Pn .Then,itisim m ediate

to check thatlnF (z)should bea polynom ialofdegreeonein thecaseofa Poisson distribution.
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Since fora generic �eld theory,the br forr� 2 haveno reason to vanish orto

besm allerthan b1,thedistribution ofthem ultiplicitiesin a �xed con�guration

ofsources is in generalnot a Poisson distribution. M oreover,since b2;3;� � �are

ofthe sam e orderin g2 asb1,the deviationsfrom a Poisson distribution isan

e�ectoforderunity,nota subleading correction.

In ordertom aketheconnection with thepresentpapereasier,itispreferable

to param eterizeF (z)as

lnF (z)�

1X

k= 1

ck(z� 1)k : (80)

(Thisseriesstartsatthe index k = 1,because F (1)= 0.) The num bersck are

related to the num bersbk by

br =

1X

k= r

�
k

r

�

(� 1)k� rck ; ck =

1X

r= k

�
r

k

�

br ; (81)

wherethe
�
k

r

�
arethebinom ialcoe�cients.ThederivativesoflnF (z)evaluated

atz = 1 arebestexpressed in term softhe coe�cientsc k as

@k lnF (z)

@zk

�
�
�
�
z= 1

= k!ck : (82)

Letusnow rephraseourresultsin thislanguage.Theinclusiven-particlespec-

trum isthe nth derivativeofF (z)atz = 1.Thesederivativesread

F
(1)(1)= c1 ;

F
(2)(1)= c

2
1 + 2c2 ;

F
(3)(1)= c

3
1 + 6c1c2 + 6c3 ;� � � (83)

Allthecoe�cientsc k aresum sofconnected vacuum graphs,and thereforestart

atthe order1=g2,up to logarithm s.AtLeading O rder,wethuskeep only

F
(n)(1)

�
�
�
L O

= [c1]
n

L O
: (84)

Atthisorderoftruncation,one can obviously geta Poisson distribution,since

thisapproxim ation iscom patible with c2 = c3 = � � � = 0,i.e. b2 = b3 = � � � =

0. However,the coe�cients b 2;3;� � �could have any value oforderg� 2 without

a�ecting ourLeading O rdertruncation.The arbitrary choiceone isallowed to

m ake forthese subleading term sin generalaltersthe Poissonian nature ofthe

distribution.

The actualparadox arisesonly atthe Next to Leading O rder. There,one

keepsthe term s

F
(n)(1)

�
�
�
L O + N L O

= [c1]
n

L O
| {z }

g�2n

+ n[c1]
n� 1

L O
[c1]N L O

+ n![c1]
n� 2

L O
[c2]L O

| {z }

g�2(n �1) � log

: (85)
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Thisdoesnotcorrespond to a Poisson distribution anym ore,since one needsa

non-zerob2 in ordertoobtain theseform ulas.In fact,atthisorderoftruncation,

onehasb2 = c2 while the higherbr’sarestillzero.Even worse,ourcalculation

ofthesecond derivativeoflnF showsthatc2 isenhanced by a largelogarithm ,

and is actually oforderg� 2 ln(1=x1;2) rather than the naive expectation g� 2.

Therefore,notonly the distribution isnotPoissonian,butthe deviationsfrom

a Poisson distribution arelogarithm ically large.

However,the m ain result ofthe present paper is that one can obtain the

NLO correctionsto the inclusive n-particle spectra by the action ofa certain

operatoron theproductofn 1-particlespectra atLO .In thepresentlanguage,

thisreads

F
(n)(1)

�
�
�
L O + N L O

=
�
1+ L1 + L2

�
[c1]

n

L O
: (86)

Rem em berthatsofarallthediscussion isfora�xed con�guration ofthesources

�1;2.Then,by averaging overthesesourcesand by using theherm iticity ofthe

operatorL1 + L2,onecan transfertheaction ofthisoperatorfrom thequantity

[c1]
n
L O

to the distribution ofsources. Aswe have seen,thisam ountsto letting

thedistribution ofsourcesevolveaccording to theJIM W LK equation.In other

words,eq.(85) deviates strongly from a Poisson distribution,but does so in

such a way thatallcorrelationscan beinterpreted ascom ing from correlations

am ong the sourcesthataregenerated by the JIM W LK evolution.

Let us end this appendix with a word ofcaution in the interpretation of

eq.(61). Strictly speaking,our Leading Log approxim ation gives us control

only overthe g� 2 ln(1=x1;2)partofthe coe�cientb 2,butnotoveritsg
� 2 part

(without a log). The latter would only show up in a Next to Leading Log

calculation.Thism eansthatin principleonecould m odify theargum entofthe

exponentialin the integrand ofeq.(61)by a term ofsecond degreein z(p)� 1

and with a coe�cientoforderg � 2,withouta�ecting any ofourresultsforthe

inclusive gluon spectra at the order at which we calculate them . O bviously,

such a m odi�cation ofthe integrand in eq.(61) would be a deviation from a

Poisson distribution. Thus,the statem ent according to which the deviations

from Poisson com e from the JIM W LK evolution of the distributions of the

sources�1;2 is true only for the largestofthese deviations{i.e. those thatare

enhanced by largelogarithm softhem om entum fractionsx1;2.O therdeviations

from Poisson exist,thatarenotenhanced by such logarithm s{thesearebeyond

the scopeofthe presentcalculation.
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