0807.1306v1 [hep-ph] 8 Jul 2008

arxXiv

H igh energy factorization
in nucleusnucleus collisions
IT —M ultigluon correlations

Francois G elis"! , Tuom as Lappi®’, R aj1 Venugopalan®’

1. Theory D ivision, PH-TH ,Case C01600,CERN,
CH-211,G eneva 23, Sw itzerland

2. Institut de Physigque T heorique (URA 2306 du CNRS)
CEA /DSM /Saclay,Bat. 774
91191, G ifsurY vette C edex, France

3. Physics D epartm ent, B rookhaven N ational Laboratory
Upton,NY -11973,U SA

A bstract

W e extend previous results (arxX iv: 08042630 hep-ph]) on factoriza—
tion in high-energy nucleusnucleus collisions by com puting the nclusive
m ultiglion spectrum to next-to-leading order. T he factorization form ula
is strictly valid for m ultighion em ission in a slice of rapidity of width

Y s 1. Our results show s that often neglected disconnected graphs
dom nate the inclisive m ultighion spectrum , and are crucial in order to
achieve factorization for this quantity. T hese results provide a dynam ical
fram ework for the G lasma ux tube picture of the striking \ridge"-lke
correlation seen in heavy ion collisions.

1 Introduction

Tn a recentw ork , henceforth referred to asPaper I [1],we investigated the form al
basis for the application of the C olor G lass C ondensate (CG C ) fram ework [2{8]
to the collision of two high energy nuclei. In Paper I, we focused on the for-
malisn to com pute the single glion inclusive spectrum in the Leading Log x
approxin ation. Them ain result of Paper I isa proof that term s containing lead—
Ing logarithm s of 1=x; » that arise in all order loop corrections to this spectrum

can be factorized in the distrdbutions of color sourcesW [ 1,2 ]1in each ofthetwo
nuclei, evolved with the JIM W LK equation [9{16] from the beam rapidity to
the rapidity of the m easured glion. O ne obtains for the single inclisive ghion
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distribution the result
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TheW functionalsare universalproperties of the nuclear wavefunctions at high
energies and (in analogy to the parton distribution fiinctions of collinear factor—
ization) can be extracted from deep inelastic scattering or proton-nucleus scat—
tering experin ents o nuclei. The inclisive single ghion spectrum (AN =d°p ).
that appearsunder the integralin the right hand side is the Leading O rder spec—
trum corresponding to one con guration of the sources 1, { it is cbtained by
solving the classical Yang-M ills equations for this xed distribution of sources.
T his factorization theorem allow s for considerable predictive pow er by relating
m easuram ents in a variety of scattering processes. It should be particularly
usefull at the LHC , where the rapdity reach in protonnucleus and nucleus—
nucleus collisions w ill be considerable and the e ects of energy evolution of the
distribution of color sources clearly visble.

T he derivation of the factorized expression in eg. (1) relied on two essential
steps:

1. The 1-doop corrections to the gluon spectrum can, in the leading logarithm
approxin ation, be expressed as the action of a certain linear operator on
the leading order spectrum !,

2. This operator acting on the initial color elds on the lightcone is, again
in the leading log approxim ation, the JIM W LK Ham iltonian.

In the present paper, we w ill show that a straightforw ard generalization of the
rst of these two steps is su clent to extend our factorization result to nclusive
m ultdglion spectra when all them easured glions are located in a rapidity region

ofmaxmalwidth Y . Sl.

T he paper is organized as follow s. In section 2, we de ne a generating func-
tional for m ultiparticle production in nucleusnucleus collisions. T his extends
to the QCD case our previous results [17,18 ] for a sim ilar ob fct Introduced for
a 3 theory. W e discuss key features of this generating finctional and develop
a diagram m atic interpretation of this obfct. W e show how (at leading order)
its wst derivative can be expressed in term s of classical solutions of the Yang—
M ills equations that obey both advanced and retarded boundary conditions. In
section 3, we consider In detail the inclusive tw o-gluon spectrum . W e obtain an
expression of this spectrum at next-to-leading order (NLO ) using the previously
de ned generating functional. W e end the section by show Ing that the leading
Iogs of 1=x; ;; in this quantity can be factorized in the distribbutions of incom ing
color sources, provided the rapidity separation between the two glions is an all
enough. W e show that our form alism gives rise to the G lasma ux tube pic—
ture [19], which has been suggested as a m echanism to describe the ridge-lke
structure observed in heavy ion collisions at RHIC [20{24]. In section 4, we

LSee the discussion after egs. (40-41) and at the end of section 3.5 in [1].



generalize this factorization result to the case of the inclusive n-gluon spectrum .
K now Ing all the m om ents de nes the com plete probability distrbution. W e
dem onstrate how the leading logarithm ic corrections to the m ultiplicity distri-
bution can be factorized into the JIM W LK evolution of the sources. W e end
w ith a brief sum m ary. T he three appendices are devoted to the m ore technical
aspects of our discussion.

2 G enerating functional

In Paper I, we developed the tools for studying at LO and NLO the single in—
clusive gluon spectrum in AA collisions n the CGC fram ework. O ur goal is to
generalize these technigues to obtain sim ilar results for the n-gluon spectrum .
Tow ards that purpose, we w illde ne in this section a generating fiinctional for
n-gluon production, discuss its properties and develop a diagram m atic interpre—
tation. W e then discuss the LO com putation of the rstderivative of thisob fct
in term s of solutions of classical Yang-M ills equations w ith both retarded and
advanced boundary conditions.

2.1 De nition and properties
W e de ne the generating functional as

2 Z 7
2
F[z(p)] — z(py1) n E(P, noutPOin ; (2)

Pi Pn

where we use the follow Ing com pact notation for phase-space integrals’,

Z Z
d*p
(2 P2E,
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In this de nition, z(p) is an arbitrary function over the 1-gluon phase-space.
The m atrix elam ent squared that appears in the right hand side is in plicitly
sum m ed over the polarizations and colors of the produced gluons. N ote that in
this section, we consider the external current J coupled to the gauge eld to
be xed. This is the case In the Color G Jass Condensate (CGC ) fram ework [8]
where the xed sources represent the large x light cone color charge densities
in the nuclear wavefiinctions. W e w ill address the issue of averaging over the
extemal color sources later in this paper.

T he generating functionalgeneralizes the generating function F (z) we Intro—
duced In ref. [17]. T his previously de ned function is sin ply obtained as

Flzp) zl=F(z); (4)

2W henever the integrand contains py in such integrals, it should be replaced by the positive
on-shell energy po = P 7J.



when z(p) is a constant z . A nother obvious property of F [z(p)] is
Flz(p) 1]l=1: (5)

which is a consequence of the fact that the theory is unitary.

T he generating functionalencapsulates the entire inform ation content of the
nuclear collision w ithin the CGC fram ework. Indeed, if F [z(p)] were known,
one could use it to build an event generator for the early G lasma [25,18,8]
stage of nucleusnucleus collisions. In particular, one can com pute the inclu-
sive m ultighion spectra. For instance, the sihgle inclusive® glion spectrum is

obtained as
dN F[z]
e : ©)
d’p z(p), ;
Likew ise, the inclusive 2-gluon spectrum is obtained by di erentiating F [z]
tw ice,

AN, 2F [z]

&FPpdiq z(p) z@), ,
w here the integral over p and g on the left hand side of this expression is the
average value of N (N 1). Physically, this quantity, in an event, corresponds
to a histogram of all pairs of distinct gluons with momenta (p;q). W e will
discuss the average over all such events later. Egs. (6) and (7) are the two
sin plest exam ples of the use of this generating functional, but in principle one
can derive from it any observable that is related to the distrdbution of glions
produced in the collision. Eq. (7) can be generalized to

; (7)

d"N , °F [z]

= ; (8)
d’p; ‘ppd z(p) W 2P,
for the inclusive n-ghion spectrum . N ote that the lh.s, integrated over the n-
particle phase space, is nom alized to the average valie of N (N 1) (N
n+ 1).
From eg. (8), it is possble to represent the generating functionalF [z ]as
}é 1 Z hyﬁ s i an N
Flz = — d VA : 1 ——————5— 9
()] ~ P; (20:) 1) ©)
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T his form ula w i1l Jater be the basis of our strategy to obtain an expression for
F [z]at Leading Log. W e will rst obtain Leading Log expressions for the n—
gluon spectra?, and will show that the in nite sum in eg. (9) leads to a very
sin ple expression.

3N ote that setting z (p) to zero instead, after taking the functional derivative, one obtains
the di erential probability for producing exactly one gluon in the collision,

dP1 F(z]

d*p ze)l, o5

4W ith the in portant lin itation that the n gluons all sit in a rapidity slice of width Y .
1
s -



Once we know F [z] (with a given accuracy), one can use the fact that its
Taylor coe cientsat z(p) = 0 are the di erential probabilities for producing a
xed num ber of particles®,
Z .
F [z(p)] o d&’p; z( )lidnpn
Z = . Z . .
P Pie®) gp pd

n=0 i=1

(10)

From this second representation of F [z], one can extract from F [z] detailed
inform ation about the distribution of produced gluons.
2.2 D iagram m atic interpretation of F [z]

In order to see w hat are the diagram s that contribute to F [z], et us rstde ne
Z

D Dy i (11)

w ith

Dy ) () d'xdiye® &V (12)

T his operator has already been introduced in [17,18] to write P, In term s of
vacuum diagram s. The only di erence here is that we extend its de nition to
the case of vector particles and QCD . The sum over the gluon polarizations
spans the two physical polarization states. By m in icking the m anipulations

perform ed for scalar elds, one can prove that

2 . 3
Flz(p)l= exp? z(p)Dyo &' le ¥ ; (13)
p

where iV [J ]is the sum of the connected vacuum diagram s evaluated w ith the
extemal current J . It is easy to check that all the form ulas we previously
obtained in [17,18]for P, or for the generating function F (z) are all particular
cases of this form ula.

From the interpretation of the operator D as an operator that m akes cuts
through vacuum diagram s, we see that the functionalF [z (p)]is the sum ofall
the cut vacuum diagram s (connected ornot) in w hich every cut propagatorw ith
mom entum p isweighted by z(p). LetuscalliW [J, ;J ;z]the sum ofallsuch
connected diagram s (before the currentsJ, and J are set equalto the physical
valed ) :

2 3
Z

" Ui 2l expd z(p)D,S eV Vle VU, (14)

P

5N ote that there isno 1=n! in this formula. A quick way to convince oneself that this is
correct is to set z(p) = 1; the integrals over the m om enta p; give the total probabilities Py ,
which add up to unity.



Tt is useful to com pute the st derivative of F [z (p)]w ith respect to z(p),

F [Z]: 1— D, ej_w U, J izl
z(p) (2 P2Ep

(15)

as

F 2] 1 X g
- d*x g* ip (x y) .
Z(p) 2 P2E, ® ) reve v
. . 2
il . e e b (16)
J, x) J (y) J, x) J (y) J,=J =3

The nalexponential in this form ula is nothing but F [z ] itself. T herefore,we
can w rite

Z
hFz] 1 X 4,44 dp (x y)
z(p) = 2 )32Ep p) (p) dxd Yy € Xy
iw i 21w
+ : (17)
J, (x) J (v) J, x) J (v) 3.=0 =g

T his form ula tells us that this quantity ism ade up of only connected diagram s
since W is a sum of connected diagram s. W e also observe that this form ula is
very sin ilar to the form ula for the single inclisive particle spectrum w ith one
very In portant di erence: the function z(p) is not set to 1 at the end, and
therefore appears as a m ultiplicative factor attached to each cut propagator.

2.3 InF [zEF z(p) at leading order

Let us now show that, in the regin e of strong extermal color sources, the ex—
pression In eg. (17) can be expressed at leading order (LO ) in term s of classical
solutions of the Yang-M ills equations.

First of all, note that the rstderivatives W = J areoforder® g ', whike
the second derivative W = J, J isorderg’. Thusthe st temm , com posed
of the product of two wst derivatives, is the leading one. The second term
begins to contribute only at nextto-Jleading order (NLO ).At LO ,we can thus
w rite

InF [z] 1 X g 4,04 o (x )
2 0) = rxE, (P) () dxdye

LO

s XA (y) (18)

®Because W is the sum of connected vacuum graphs, in the presence of external sources
Jg gltyw g?Z.



w here we denote’
iw
A (x) _— : (19)
tree J (X); -5 -g

T he \tree" herem eans we keep only tree diagram s in the expansion of W = J
thatde nesA

A 11 the argum ents developed to com pute the generating function F (z) at
leading order [18] can be extended trivially to the present situation, and one
obtains the follow Ing results :

A isa solution of the classical Yang-M ills equations,

D ;F =J ; (20)

If one decom poses A (x) in Fourierm odes,

x % n o
A (x) £ xoip a)a’, L)+ £1 M(xoip a)a), L(x)
& p
(21)
with a° (x) (e)T%e * % the boundary conditions obeyed by the

p a
chssical ed A (x) can be expressed as sin ple constraints on the Fourier

coe clents 8,

7 1;pa)=f"( 1;pa)=0;

+)

f7%1 50 a)=zE) £+ 1 jp a);

£

'#1ip a)=z@E) £ '+1 ip a): (22)
W e see that the dependence of the classical elds A on the function z(p)
com es entirely from the boundary conditions’, since the YangM ills equations
them selves do not explicitly contain z(p). In tem s of the Fourder coe cients

£, eq. (18) reads

InF [z] _ 1 X f(+)(+l D a)f( )(+1 poa): (23)
Z(p) (2 )32Ep + 4 ’ .

LO a

A (x) depends on function z(p) aswellbut we have om itted it from the notation to keep
notations com pact.

8T he derivation of this result is analogous to the scalar case discussed in detail in section
4.2 of Ref. [17].

N ote that, when z(p) 1, the boundary conditions in egs. (22) becom e

(+)

N (l;pa)zf(

"(1p a)=0;
(+

+

£ 710 @)= £ ¢1p a); £ 1 gp a)=£ Y1 p a):
The two conditionsat x® = +1 inply thatA, (x)= A (x) everyw here. T he two conditions
atx = 1 then mply that lim,0, ; A (x)= 0. Therefore, when z(p) 1, the two
classical elds A Dbecom e identical to the retarded classical eld with a vanishing initial

condition in the rem ote past,and eg. (18) gives the single inclusive gluon spectrum asexpected.



N ote that it depends only on the Fourier coe cients ofthe eldsatx = +1 .

Egs. (20), (22) and (23) do not provide a practical way to obtain the LO
generating functionalF [z (p)]because the solutions depend on boundary condi-
tionsatboth 1 . Itisnotknown atpresenthow to solveYang{M illsequations
w ith sin ultaneous advanced and retarded boundary conditions. N evertheless,
the procedure outlined here provides a pow erflil theoretical tool to com pute
other quantities, that can be obtained as derivatives of the generating func—
tional. A concrete illustration of this strategy is revealed in the case of the
2-glion spectrum in the follow ing section.

3 Two-gluon inclusive spectrum

In this section, we w ill specialize our discussion of the generating fiinctional in
the previous section to the 2-gluon inclisive spectrum at LO and NLO .W ew ill
dem onstrate that, jist as in the case of the single glion spectrum discussed in
Paper I, the leading logarithm contributions that arise at NLO can be absorbed
in the JIM W LK wave functionals of the two nuclei, provided the rapidity sep—
aration between the two gluons is an all enough. A s in Paper I, one obtains
a factorized expression for the leading log 2-glion inclisive spectrum . In the
follow ing section, this result w ill be extended to m ultighion spectra.

3.1 Leading O rder

T he inclusive 2-gluon spectrum is obtained by taking the second derivative of
the generating functional F [z], and by setting the functions z(p) and z(g) to
unity afterwards (see eq. (7)). A ltemately, it is easy to obtain this derivative
from the derivative of nF [z]. W e get

&N, _ DnF [z] InF 2] InF [z] . (24)
d*p d3g z(p) z(q) z(p) Z<q)z(p);Z(q) 1 .

The rsttem issim ply the product oftwo single glion spectra (seeeq. (6)),and
therefore corresponds to the disconnected (independent) production ofa gluon of
mom entum p and a gluon ofm om entum g. Tn contrast,because InF [z ]Jcontains
only connected diagram s, the second termm corresponds to the two gluons being
produced in the sam e graph. Note that these expressions correspond to the
2-gluion spectrum fora xed con guration of the external sources 1. W hen
we average over these sources, som e graphs that were disconnected prior to
averaging becom e connected. T herefore, even the rst term in eg. (24) can lead
to correlations in the m easured 2-gluon spectrum .
The two term s in this expression do not begin at the sam e order in g°. In
our pow er counting,
1 h , ) i
]I’IF[Z]=?CQ+ ag + g + : (25)



This in plies that the rsttemm 1in eg. (24) isoforderg *,while the second term
isoforderg 2 only. For the 2-gluon spectrum , \leading order" thereforem eans
g *,and we sin ply have'®

d?N, dN dnN

- = = 26
PFpdiq dp dq (26)

LO LO LO

No new com putations are necessary here because we know how to express the
single gluon spectrum at LO in tem s of classical solutions of the YangM ills
equations w ith retarded boundary conditions. N ote that at this order the N
term contributing to N, is sublading relative to the N ? contrbution because
it starts only at the order g ? therefore does not appear on the right hand side
ofeg. (26) which isof orderg *.

3.2 Nextto Leading Order - 1T

W e shallnow study the inclusive 2-glion spectrum at NLO {the contribution at
order g % in our power counting. At this order, the tree level contrbution to
second term in eg. (24) m ust be ncluded. W e can w rite therefore

d?N, dN dnN dnN dn InF [z]
—_— = — —_— 4+ = = o : (27)
d3pd3q NLO d3p NLO d3q LO d3p LO d3q Z(p) Z<q)

NLO LO

The rsttwo tem sagain do not require a new com putation because we studied
in great detail the single gluon spectrum at NLO in Paper I [1]. In particular,
w e recall here the previously derived form ula

dn 2
—_— = du
d3p NLO ’l[‘
|— {7}
L,
1X 2z * dN
3 3
+E;a dud’v a ¢ a T a,x a T %LO
— { }
Lo
+ N, P): (28)

In this formula,a x 5 denotessmall eld uctuations that propagate over the
classical eld A . The subscripts indicate that these uctuations begin In the
rem ote past as plane waves ofm om entum  k,polarization and colora. Sim -
iarly, is also a small ed uctuation propagating on top of A, but this
uctuation has a vanishing initial condition in the past and is driven by a non
zero source term . is a surface on which the initial value of the classical elds
are de ned, and d®u is the m easure on this surface. The operator T, is the

100 ne should keep in m ind therefore that \LO " corresponds to di erent powers of g2 for
the single and double inclusive gluon spectra.



generator of translations of the initial eld at thepontu 2 . N , (p)sa

term contributing to the fullexpression. Ttw illnotbe explicited further because

it does not contain a leading logarithm ic contribution { see the discussion of this

term in [1]. Because we are interested here in these leading log contrbutions,

this term w ill be dropped in all further equations in this paper.

At this point, we can rew rite the rst two term s of the rhs. ofegq. (27) as

aN dN dN  dN h oo oan
d‘TpNLO @q : d?pLO d?qNLO B L1+L2 dlSC @ qu '

LO LO

(29)

where the subscript \disc" added to the operator between the square brack-—
ets indicates that when the combination T,T, in L, acts on the product
(N =d3p)(dN =d3q),we keep only the term s where the two T ’s act on the sam e
factor'!. T he subscript here rem inds us that these term s are disconnected con—
tributions that are the product of a function of p and a function ofqg.

3.3 Nextto Leading O rder — II

The third term of eg. (27), nvolving the second derivative of the log of the
generating functional, is new and w ill be com puted here. Fortunately, we need
this term only at leading order{ie. O (g ?). Therefore, our starting point in
evaluating this term is eg. (23). D i erentiating this equation w ith respect to
z(q),we obtain

2IF [z] 1

z(p) z(@) (2 2B,

X h g1 a £ 041 ;0 a)t
%f( )(+l P a)+ ff+)(+l ;P a)¥ .
z(q) z(q)

=y

(30)

Further, di erentiating eg. (21) with respect to z(q), one observes that the

quantities £ )(+ 1 ;p a)= z(q) are the Fourder coe cients of the eld

(31)

atx’ = +1 . The equation ofm otion obeyed by this ob jct can be obtained by
di erentiating, w ith respect to z(q), the equation of m otion for A . In oxder
to do this, it is usefiil to start from the YangM ills equations w ritten in a form
that separates explicitly the kinetic and interaction tem s'? as

h + QU & )

x — = i 2
9 & ¢ A (x) e, =) J (32)

L2], BB = [L2A]B + A[L2B].

12N ote that the di erentiation w ith respect to z(q) does not m odify the gauge xing con—
dition, provided it is linear. T hus, b ,4 obeys the sam e gauge condition as A

10



whereU (A ) isthe Yang-M illspotential in a gaugew ith a linear gauge condition.
D i erentiating this equation w ith respect to z(q), we get
h .
X @( @x b ,(x)=0: (33)
g A (A (x) 7

In otherwords, b (x) obeys the equation ofm otion of sn all uctuations prop—
agating on top of the classical eld A . The boundary conditions necessary
in order to fully determ ine b ,(x) are easily obtained by di erentiating the
egs. (22) with respect to z(q):

B 1p a)=B

P +1 gp a)=zE)B ¢+l jp a)+ (e @f '(+1 5p a);

1;pa=20;

B+l ip a)=z@)b J+1p a)+ (@ a@f '+1;p a);G4)
w here w e have Introduced the obvious notation
W e a) P a) (35)
X ;p a _—
a P 2@Q)

fortheFourier coe cientsofb . W e see thatwehavenon hom ogeneousbound-
ary conditions, which will lead to a non zero b , despite the fact that this uc-
tuation obeys an hom ogeneous equation ofm otion. N ote also that at this point
we can safely set z(p) = 1 since we do not need to di erentiate w ith respect to
z(p) again. This leads to the sin pli cation that when z(p) = 1, the classical
edsA, and A Dbecom e dentical{as can be checked from their boundary con-
ditions (see footnote 9). In fact, their com m on value is nothing but the classical
el that vanishes when x° ! 1 .Wewillsinply denote by A the comm on

valie of these two edsand £ ) (x° ;p a) its Fourier coe cients.

O bviously, egs. (34) are not sin ple retarded boundary conditions. O ur task
isnow to relatethe uctuationsb , and their Fourier coe cientsto uctuations
that satisfy sin ple retarded boundary conditions. ITn order to achieve this, let
us again use the snall eld wuctuationsa , ,. They obey the equation of
m otion (33), and the boundary conditions

a, (&) = (k)T ¥ %; (36)

xY! 1
Note that the elds a’ « » Introduced earlier are the analogue of the a |
in the absence of a background eld. From this de nition, a,x 5 has only
negative energy com ponents at x° ! 1 ,whilkea y ; hasonly positive energy
com ponents In this Iim it. M oreover, the uctuationsa , _ provide a com plkte
basis for the amall eld uctuations that obey eg. (33). From the boundary

conditions of a ?qatxo= 1 ,we see that we m ust have
x .
b, (x)= Sa, L&) (37)
2y



The coe cients X ?qa in these linear decom positions do not depend on space

or tine. The boundary conditions at x° = 1 do not constrain further the
coe cients ¥ ; , but they can be determ ined from the boundary conditions at
x% = +1 . To achieve this end, we introduce the Fourier decom position of the

functionsa , _ (x),

x % n o

a , ) n") &%k a)a’ ) =)+ n')

P P b( P b(
o

P

It is then a sin ple exercise to rew rite the boundary conditionsat x® = +1 as

x 2 n i

2n e p fanl) e = e f e b
a
X % b () () .

feh . b F2n ) b= © 9f ‘e b;
g

(39)

where, to keep the expressions com pact, we have om itted the argum ent x° =
+1 1In all the Fourder coe cients. This can be seen as a system of linear equa—
tions for the coe cients ¥ ;cf . The solution of this system of linear equations is
obtained In appendix A .

Inserting the results in eg. (66) or * ; and Fourierdecom position In eg. (38)
in eq. (37), one can easily determ ine the Fourier coe cients of b . (x) at x% =
+1 (eg.(35). Inserting these into eg. (30),we obtain®?

z
2InF [z] 1 X X X

1
z(p) z(q) 2 (2 F4E,Eq4

LO jz(p)iz(q)=1

Fo) i

h,) . bh, @ o+n, o, @ c £ bt g o

+k a

(+

+ 0 e on”) @ o+ ") e bn @ o £ e b g o

) (

+ n') e on”) @ o+n ) e on @ £ bf g o

)
@ o+ h") eon, . gc £ 7 g o

=8

(+) ()
+ h:k a(p b)hk a
1 X

e o £%7%p off Jp o: (40)

iC

(2 P2E,

W e have therefore obtained an expression for the connected piece of the two

gluon spectrum entirely in term s of Fourier m odes of the classical ed (£¢ )

and the small uctuation eld (h( k) o). The former can be determ ined by

13\ e additionally use egs. (65) to sym m etrize the form ula w ith respect to (p;q).

12



soling the YangM ills equations w ith retarded boundary conditions while the
latter can be determ ined by solving the equations for an all uctuations about
the classical eld, also w ith retarded boundary conditions.

The last term 1n eg. (40), proportionalto (p  g) tin es the sihgle particle
spectrum , arises because the quantity dN ,=d°pd>q is de ned in such a way
that its integral over p and g gives the average valie'? of N (N 1). This
term provides the N contrbution to this quantity. Because the logs in the
multiplicity N arise only at the order O (g°), this term cannot provide any
leading Iog in the 2-gluon spectrum and can thus be dropped.

34 Leading log resum m ation of the 2 gluon spectrum

Com bining the results in eg. (40) and e3.(28) In eq. (27),wenow have a form ula
for the 2-gluon spectrum , including both LO and NLO contrbutions. A sm en—
tioned previously, it can In principle be evalnated, in fiillgenerality, by num erical
solutionsof sm all uctuation partialdi erential equationsw ith retarded bound-—
ary conditions. H ow ever, if one is interested prim arily in the leading logarithm ic
piece of the NLO contributions, we can go signi cantly further analytically. ITn—
deed, aswe willnow show by using the nform ation obtained thus far, we can
com pute the leading logarithm ic contributions to the two gluon spectrum in
perturbation theory.

The rst step In this derivation is to obtain an even m ore com pact form
for eq. (40) by using the linear operator T, that we used previously in the
expression for the 1-loop corrections to the single particle spectrum {see eq. (28).
In Paper I, we dam onstrated explicitly that this operator allow s one to express
the value of a retarded uctuation at a point x In tem s of the value of the

classical eld at the sam e point as
Z

a x)= d’uv a TA x); (41)

where isthe initialsurfaceon which weknow thevalueofthe uctuation. (The

point x is located above this surface.) Perform ing the Fourier decom position of

both sides of this relation, we obtain sin ply the relation between the Fourier

coe cients (atx = +1 ) of the an all uctuation and the classical eld to be
Z

h''¢1 ;p a)= FPue a T '+1 p a): (42)

Applying eq. (42) to the various uctuations that appear In eg. (40), and using
the z(p) = 1 sin pli cation ofeg. (23),

aN - _  hFE] L F 50 of ' o ; (43)
Fp  zlp) © (2 P2E, ° 0

LO z=1;L0 c

1T his can easily be checked on a Poisson distribution, for which the second derivative
InF [zEF z(p) z(q) isexactly zero. W hen we insert this in eg. (24) and integrate over p and
g,we obtain IN (N 1)i= W i® { as expected for a Poisson distribution.
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it is a m atter of sim ple algebra to check that

h 1

InF [z] dN dN dN
= P a)

_ — + L — —
z(p) z@) d’p : connected A°p d*g

LO jz(pliz(q)=1 Lo Lo LO

1 (44)

T he subscript \connected" indicates that one of the T operators in the expres—
sion L, appearing in eg. (28) m ust act on the p-dependent factor and the other
on the g-dependent factor. (Tem s where they both act on the sam e factor
should be excluded.)

W e see now thategs. (29) and (44) can be com bined very easily, because the
sum of \disconnected" and \connected" term s is equivalent to the unrestricted
action of T, T, on the product (AN =d>p)(dN =d>q). W e obtain thus

= ( ) + hL + L ; N N ;
P g &p 1 2 &p &g i

d?N ,
Ppdigq .

LO LO LO LO

(45)

where L; and L, were both introduced previously in eg. (28).
W e shallnow discuss the logarithm ic sihgularities in this expression. F irstly,
P g)@N=dp )., does not contain large logarithm s in x because these logs
start appearing at NLO in the single gluon spectrum . B ecause w e are restricting
our discussion to leading logs, we can therefore discard this term henceforth.
T he logarithm ic divergences in the second and third term s of the rhs. of
eg. (45) can be extracted straightforw ardly by using them ain result of Paper I,

+

L1+ L, = In Hi+ Ih —
! 2LLog M * ! M

Hoy: (46)
Here H i, are the JIM W LK Ham iltonians of the nucleim oving in the + z and

z directions respectively [1,5{7], represent the longitudinalm om enta that
separate the static color sources 1, In each of the nuclei respectively from
the the gauge elds that produce glions at the rapidity of interest, and M
corresponds to the typical longitudinalm om entum scales of the ob fct (the two
gluon spectrum in this case) to which the operator is applied. From eJ. (46) we
obtain

" #

d?’N , ¥ dN dN
= 1+ In Hi+Ih —
Ppdig LLog M * M &p

LO+NLO

47)
A1l of our discussion thus far has been for a xed distrlbution of sources
in the two nuclei. The CGC e ective theory [2{4,9{16], prescribes to average
physical quantities over all the possble con gurations 1, of the fast color
sources representing the pro gctiles, with gauge invardiant weight functionals
W [ 1 ]that descrbe the probability of each con guration. W hen we integrate
ej. (47) over 1, ,we can exploit the hemm iticity of the JIM W LK Ham ilftonians
H 1, In order to Integrate by parts, so that the Ham iltonians are now acting on
the distrdbutions W [ 1,2 ]. By reproducing the argum ents developed in Paper
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I for the single gluon spectrum , we obtain nally the factorization form ula for
inclusive tw o-gluon production,

d?N g dN dN

m = D1 D2 Wy, 1 Wy, 2 —— -

LLog Lo

i (48)

at leading log accuracy. Here the distrdbutions W [ 1] obey the JM W LK
equation

——=HW,[]; (49)

and are evolved thus from non-perturbative initial conditions at the beam ra—
pidities to the rapidities Y1 = In( s=M ¥ )and Y, = In( s=M ) respectively.
In the regin e w here gluon radiation betw een the two tagged gluons is an all, this
form ula resum s all leading logarithm s of 1=x;,; as well as all the rescattering
corrections In (g 1, )" to allorders.

W e now address the prin ary lim itation of the present calculation. A s the
previous discussion hints, it is valid when the m om enta p and g of the two ob-
served gluons are close enough in rapidity so that they have sin ilar longitudinal
com ponents. M ore precisely, we need to have

.n = 1 ; .n = 1: (50)
a

If this is the case,we can sin ply takeM  to be the comm on value'® ofp ;g
Physically, the condition of eg. (50) m eans that the probability of radiating a
glion between the two m easured glions is sm all. W hen the rapidity separation
betw een the two gluons is lJarge such that eg. (50) is violated, we need to resum
gluon em issions betw een the tagged gluons; this would require a generalization
of the present form alism , which is not discussed here.

3.5 Factorization and the ridge in A A collisions

A striking \ridge" structure has been revealed in studies of the near side spec—
trum of correlated pairs of hadrons by the STAR collaboration [20{22]. The
goectrum of correlated pairs on the near side of the detector (de ned by an ac—
com panying unquenched et spectrum ) extends across the entire detector accep—
tance In pseudo-rapidity of order 2 units but is strongly collim ated for az—
Imuthalangles . Prelin inary analyses ofm easurem entsby the PHEN IX [23]
and PHOBO S [24] collaborations appear to corroborate the STAR results. In
the htter case, with a high m om entum trigger, the ridge is observed to span
the wider PHOBO S acceptance in pseudorapidity of 4 units.

In Ref. [19], it was argued that the ridge is form ed as a consequence of
both long range rapidity correlations that are generic in hadronic and nuclear
collisions at high energies, plus the radial ow of the hot partonic m atter that

15Tt is of course not necessary that p* and g* be equal, just that they are close enough so
that it does not m atter w hich value we chose between p* and g' .
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is speci ¢ to high energy nuclear collisions. Let us rst focus on the long range
correlations that are essential to this picture{how are they generated?

In the leading order form alism of the CG C , classical solutions of Yang-M ills
equations are boost invariant [26{29]. Real tin e num erical sin ulations [30{
38] also dem onstrate that the YangM ills elds form ux tubes of a typical
transverse size 1=Q 3 (Where Q ¢ is the saturation scale) w ith parallel chrom of
electric and chrom o{m agnetic eld strengths. (An in portant consequence is
that these G lasma elds [25] have non-trivial topological charge [39].) Now,
in section 3.1, we showed that the leading order 2-glion spectrum , fora xed
con guration of sources, was given by eg. (26). Because each of the single
particle distributions is boost invariant, the two particle spectrum is also, at
this order, independent of the rapidity separation of the gluons. W hile the two
glionsareuncorrelated fora xed con guration of sources, correlationsare built
in through the averaging over the source distributions. In Ref. [19], the source
distrbution wasassum ed to beG aussian as in theM cLerran{Venugopalan M V )
m odel [2{4]. T he ridge spectrum was shown to have the sin ple form

D E
an
p—  C(p;q)P £b - S (51)
ref dN dan s(Qs)
dyp pdpd p dyq qdgd ¢
w here
C o) dN , dN dN . (52)
’ dedzp? dquzq? dedzp? dquzq? ’

and Ky is a num ber of order unity. For further details, we refer the reader to
Ref. [19].

T here are several conceptual issues in this context. Firstly, how does one
Justify this averaging procedure for the 2-gluon spectrum from rst principles?
Secondly, how does one build in energy evolution of the sources? And nally,
do NLO contributions spoil this picture? O ur results In this paper solvem ost of
these conceptual issues. O ur result, in eg. (48), show s that the trivial LO result
of eg. (26) can be prom oted to a full Leading Log result sin ply by averaging
it over the sources 1, {with distributions of sources that evolve according to
the JIM W LK eguation. M ost in portantly, this show s that all higher order
corrections, to leading logs in x;,, do not spoil the form in eg. (51) of the
G lasna ux tube picture and provides com pelling evidence that it is a robust
result beyond LO .A sdiscussed previously, this picture w illhave to bem odi ed
when the rapidity separation between the glions is greater than 1Qs).

T hese Initial state considerationsarenota ected by the nalstate transverse

ow ofthe G lasma ux tubeswhich is the other In portant feature determm ining
the near side ridge seen in heavy ion collisions. Its been shown very recently
that a proper treatm ent of ow and hadronization e ects of the G lasna ux
tubes provides excellent quantitative agreem ent w ith the RHIC data on the
dependence of the ridge am plitude on centrality and as a function of energy, as
well as the angular w idth of the ridge as a function of centrality [40]. Further
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sophisticated treatm ents of both the nnitial state e ects discussed here and the
nal state e ects discussed in R ef. [40], therefore open the door to quantitative
3-D in agihg of heavy ion collisions. A deeper relation between initialand nal
state e ects, as outlined In Paper I, can be obtained by studying quantum
uctuations at NLO , that are not accom panied by logs in x; » ,but grow rapidly
in tin e [41,42] in a m anner analogous to plasn a instabilities [43].

W e should also m ention that the Initial state e ects described here are also
present in proton/deuteron-nucleus collisions [44{46], w ithout the nal state
e ects characteristic of the ridge in nucleusnuclus collisions. T hese collisions
are therefore useflil in order to isolate the initial state e ects and to corroborate
the fram ew ork of m ultiparticle production in high energy Q CD developed here.

4 M ultigluon inclusive spectrum

In this section, we will show how the results of the previous section m odify
m ultiglion probability distrbbutions, w ith the caveat, as previously, that these
glions are em itted in a narrow rapidity window . W e w il also derive a sin ple
expression for the di erential probability of producing n gluons.

4.1 n-glion spectrum at LO and N LO

O ur starting point in evaluating the inclusive n-gluon spectrum is eg. (8). Be—

cause we have thus far obtained expressions up to NLO for the st and second

dertvatives of InF [z], it is convenient to rew rite this expression ast®

d"N Y IhF []
Y )
|p1{ p} :1_{zp)}
° G ) o ()
X 2nrFz] Y InF [z]
+ +

i< j

z(py) Z(pj)kéi_j z ()
i ;

© (qzml o)

Because InF [z]= O (g ?) in our power counting, the LO term in the rh.s. is
oforderg ?",theNLO tem isoforderg 2@ 1), and NNLO and higher tem s
represented by the ellipses are om itted at the level of the present discussion.
The n-gluon spectra on the lh.s. of eg. (53) are quantities that, forn > 1, are
given by the rsttem on the rh.s. By com puting them to NLO we gain access
to the rst correction to the Poisson distridbution, the deviation of the variance
of the m ultiplicity distrbution from the Poissonian result N (N 1)i= W £
and the corresponding m odi cations for the higherm om ents of the distrdbution.
W e refer to the appendix C for a m ore detailed discussion of the interpretation
of our result for the probability distribution of the gluon m ultiplicity.

16T his form ula is obtained by replacing F [z]by exp(InF [z]) in eq. (8).
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At leading order, only the st term contributes, and we obtain (fora xed
distrbution of sources)

d"N, ¥ aN
T —— = (54)
&p;  Cppd, | Ppy
At next to leading order, we have
d"N X' AN Y aN
3 3 = 3 3
dpl pndivLo i:ldpiNLO jgidpj Lo
X 2InF [z] RAENGIY
;) z(Py) a3 G2)
<y Z B z2ps) | k6 ijj Pr 1o

A 1 the ob kcts that appear in this equation are known already from the discus-
sion in Paper I and the previous section. In [1], we showed that
G (56)
&p 1 2 &p yeo \P) 7

NLO LO

where L; and L, are de ned in eg. (28). In the previous section, we showed
that!’

InF [z hod N aN
— -, = Lz == = ; (57)
Z(p) Z(q)LO connected d P Lo d q Lo
where we rem ind the reader that the subscript \connected" attached to the

operatorL, indicates that the two operatorsT it containsdo not sim ultaneously
act on the sam e ob fct.

4.2 Leading Log resum m ation

If we com bine the term s In egs. (56) and (57), we get sin ply

__d'Na i.+LiW AN (58)
3 3 L L 3 :
d P1 pnquo LLog i=1 d Py Lo

Using again eg. (46) and follow Ing the steps that lead from eg. (47) to
eg. (48), we arrive at the all order leading log n-gluon spectrum

d3p1 3pndLLOg ! 2 EEE Y2 2
dN dN
@p, . @p . ¥

O nceagain,oneneadsallthe rapidity di erencesbetw een the n m easured gluons
to be much smaller than 1, to ensure all lading logarithm ic contrbutions
are resumm ed by this formula.

"W e are ignoring the term e 9) :3% because it does not contribute in the leading
LO

logarithm ic approxim ation in x as discussed previously.
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4.3 G enerating functional in a sm all rapidity slice

Eqg. (59) provides a com plete description ofgluon production in the leading log x
approxin ation when one considers a slice In rapdity ofwidth Y s 1.0One
can summ arize these results into a generating functional ¥, . | [z(p)] de ned
from the \master" F [z(p)]as

z (p)= 2z(P) fyp2y FLy+t

z (p)= 1 otherw ise
(60)

Setting the argum ent of the generating functional to unity outside of the phase

Spoace region of Interest m eans that we de ne observables that are com pletely

inclusive w ith respect to this unobserved part of the phase space.

W e see from eg. (9) that F [z (p)] can be obtained by m ultiplying eq. (59)
by (z (p;) 1) ({2 1)=n!, ntegrating over the n-gluon phase space and
summ Ing over n. Because z (p) is unity outside of the strip of width Y in
rapidity, the n-glion spectrum outside of the regin e of validity of egq. (59) is
not needed. T his procedure leads to a sin ple exponentiation of the leading log
factorized form ula for the generating functionalF , | as

Y
Fo.o.z@E)] = D1 D o2 Wy .. v 1 Wy .+y 2
3
dN 7
d*p

LO

YZTY
expd &p (z(p) 1) : (61)

Y
Y 2

T his leading log result for the generating functional, In tum, allow sus to extract
the corresponding form ula for the di erential probability of producing exactly
n glions in the rapidity slice of Interest. T his gives

4Py ’ D D , W W
—_ = 1 2 Ypeam Y 1 Ypeam + ¥ 2
d3p1 3pndLLog b b
2 . 3
Yy —-

LN o g ep 162

— ex —_ :

n! d3pl Lo d3p“ Lo ° F d3p Lo

Yy L

T his sin ple result, valid, we em phasize, In the leading log approxin ation, sug—
gests that the particle distribution in a an all rapidity slice can be w ritten as the
average over , ofa Poisson distribution w ith the leading log corrections com —
pletely factorized into the JIM W LK evolution of the sources. N ote that, despite
appearances, €J. (62) isnot a Poisson distribution after the integration over the
sources, because particles produced uncorrelated in each con guration of ; and

» are correlated iIn the averaged distribution because of the correlations am ong

the color sources'® .

18For instance, two color sources m ay be correlated because they result from the splitting
of a com m on \ancestor" in the course of JIM W LK evolution.

19



In general, even for a xed distribution of sources, the probability distribu—
tion is not Poissonian [17]. To som e extent, the fact that we get a Poissonian
functional form in the Integrand of eg. (62) is a consequence of the way we
have organized our calculation. In eg. (53) we are perform ing a weak coupling
expansion of the m om ents N (N 1) (N n + 1)i, that includes the
orders g %" and the lading log part of the order g 2™ )| Temn s starting at
the order g 2™ 2) are beyond the accuracy of our calculation, and therefore
their valie in our form ulas are arbitrary. T he arbitrariness of these subleading
termm s In uences the precise form of the resulting generating functional. For
exam ple, if we had perform ed the weak coupling expansion of N " i instead of
W (N 1) (N n+ 1)i, we would have obtained a di erent generating
functional. O f course, the two generating functionals so obtained would lead to
the sam e m om ents of the distribution to the order of our calculation. T he non-
trivial aspect of our result in eg. (62) is that all the deviations from a Poisson
distribution that result from the large logarithm sofx at NLO can be factorized
into the JIM W LK evolution of the sources. Equation (62) show show these cor-
rectionsm odify the n gluon production probabilities. T he Poissonian nature of
the m ultiplicity distribution and deviations from it are discussed in m ore detail
in appendix C .

5 Conclusion and outlook

W e deam onstrated In this paper that our result of Paper I on initial state
JM W LK factorization for the single nclisive gluon spectrum in nucleusnucleus
collisions can be extended to inclisive m ultighion spectra. O ur result is vald
provided all the gluons are produced in a rapidity window ofwidth Y . s .
Our nalresul for the generating finctional for m ultiglion production, in the
leading logarithm ic approxim ation in xi,,, is very sin ple; the distrdoution of
glions produced in the stated rapidity window can be written as the average
over the JIM W LK -evolved distributions of sources of a Poisson distrbution. It
is in portant to keep in m ind that the result of this source average is not a
P oisson distribution, due to the correlations betw een the evolved color sources.

A swe discussed In section 3.5, our results are of great interest In detailed
In aging of the space{tin e evolution of nucleus{nucleus collisions. An in portant
Ingredient in future studies w ill be to extend the present result to the case of
correlations betw een gluons produced at rapidity di erences TL.oY.A @l
leading log com putation of these initial long range rapidity correlations requires
that one denti es and resum s the additional large logarithm ic corrections that
m ay arise when the rapidities In the two-gluon spectrum are w dely separated.

An Important caveat (also applicable to our previous study of the single
glion spectrum in nucleusnucleus collisions) is that nal state e ects, related
to the grow th of unstable uctuations, need to be resumm ed. W hile the de-
tails are still unknown, the structure of the result is known. T he result of the
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resum m ation of unstable uctuations,as shown In Paper I, can be expressed as
Z
. + +
0 i DA, DFE, W, ¥ W

LLog+ LInst
Z

%,

Da(m) £lam)]0o,, [ + a;¥, + al: (63)

Here, we have traded the sources ~ » In covariant gauge for the corresponding
gauge elds &, 2 r% ~1. The functional #la(u)] is the spectrum of sm all

uctuations of the classical el on the forward light-cone. In Paper I, 0 cor-
responded to the single inclusive spectrum but this form ula also applies to the
m ultighion spectrum because the proof does not depend on the nature of the
observable being m easured. H ow ever, the com plete functional form of #la(u)]
is stillunknown{fora st attem pt, seeRef. [47].

T hese considerations are eased som ew hat ifwe take the \dilute{dense" lim it
of proton/deuteron {nucleus collisions because we don'’t expect instabilities to
play a mapr role in that case. Several studies have been perform ed in this
lin it [44{46 ,48{50]. A particular focus is on the applicability of the so called
AGK cutting rules [51{54]. W e plan to address these issues In a future work.

A cknow ledgem ents

R .V s work is supported by the US D epartm ent of Energy under DOE Con-—
tract No. DE-AC02-98CH10886. F G .'s work is supported in part by Agence
N ationale de 1a R echerche via the programm e ANR -06-BLAN -0285-01.

A Fourier coe cientsofsmall uctuation elds

W e w ill outline here the solution to the system of equations

x & h “) “) :
+ +
Fen) e FAnl) e b= @ @f e b;
a
x tn () () !
2n ). e KAn') b= ® qf '@ b;
2 x

(64)

that was obtained in eg. (39). W e had previously derived analogous equations
in the case of a sin pler scalar theory In [17]. However, In [17], we did not
m anage to solve these equations and suggested that onem ay have to solve them

num erically. It tums out that one can in fact obtain an analytical solution of
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the egs. (39), thanks to the relations

X Zh( ) ()
+
h o bh, @ o .
? x (+) () o 3 .
h, . bh,  (@c=(2) 2By P Q)
X Zh( ) (+)
+
h, ', bh, _ (@ c) .
g 1
H) oo . @c=@2)P w2, ® 9;
Z n :
* h") @ pnp")’ 1) p)h! " lfo-
+kap ) ka(q c) ka(p )+k a(q c) = ’
a
" |
X h i
') e oh, @ H). e bh, o =0: (65)
r'ak

T hese relations are the m athem atical consequence of the unitary tem poralevo—
Jution of small uctuations on top of the classical ed A (x). In particular,
an orthonom albasis of solutions of eg. (33) rem ains orthonomm alat any later
tin e. A proof of these form ulas is presented In appendix B . Thanks to these
relations, it is easy to invert the system of equations (39), and one gets

1 x ho ) +) .
+
}:;:m h') @ 0 g+ b @ b @ b ;
o
1 X h i
i T AR P ANl CR
S o
(66)
B Unitary evolution of sm all uctuations
Consider the partialdi erential equation
h i
GU (& )
( 9 & e,) " Px)=0; (67)

@A 5 (x)EA | (x)

where we have written explicitly all the color indices. W e assum e that the
background color eld in which the wave propagates is real. For a generic
solution a(x) of this equation, de ne the follow ing vectors :

a ;oa a x) a °%x) ; (68)
where the dot m eans a derivative w ith respect to time. Then, it is trivial to
check that the follow ing \scalar product",

z h i
. 3 a b
ar 2 a: ig ap d'x g XA, x) 3
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where , is the second Paulim atrix, is independent of tine when a; and a,
are two solutions of eg. (67).
Then, if the a ¢ 5 (x) are the retarded solutions of eq. (67) whose initial

conditions at x° ! 1 are (k)T%e * X one can check explicitly that
aixa 28ik00%0 = (2 P2y 0 a0 (k K);
axa 28 k0% = (2 2B 0w kK);
dix a 2@ k0% = @ xa 28+x00% = 0: (70)

(Since all these scalar products are tin e independent, it is su cient to check
these relations by calculating the integralin the rh.s. ofeg. (69) for the corre—
sponding initial conditions.)
Consider now a generic solution a (x) of eg. (67). Since the solutions
a , , (%) span the entire space of solutions, we can w rite
x %2 h i
a axat FPaca (71)

a

where the coe cients * 2 do not depend on tin e. By using the orthogonality
relations obeyed by the vectors a 5 ,one obtains

k a . k a _ .
= d kx a 24 7 + = d4+k a 24a (72)

Inserting these relations back into eg. (71), one gets the follow Ing dentity,
x %2 h i
d+k a A+k a ad xa @ xa = 29 be 7 (73)

Ay

which is valid over the space of solutions of eg. (67). (T he Lorentz indices ;
and color indices b;c do not appear explicitly in the lh.s., but are part of the
de nition of the vectors a and a {see eg. (68).) This relation is vald at
all tim es, and is the expression of the fact that the unitary evolution of sm all

uctuations preserves the com pleteness of the set of states a ¢

Let us now Introduce states a’ « a r that are the analogue of the states

a x a Inthevacuum (ie.when thebackground el iszero). Naturally, they
are jast plane waves a’ K oa= (k)T?e ¥ *that we have introduced in order
to perform the Fourier decom position of classical elds and sm all uctuations.
T he Fourder coe cients h k) (@ c) of the uctuationsa _ can be obtained
as:

(+) ()
W/ o= a% . zaxa 7 b/ po=al,. 2a«a
(74)
(T hese relations are valid only In the regionsw here the interactions are sw itched
o ,ie. when x° ! 1 . In the rest of the discussion, we are only interested

in these Fourder coe cientsin the lmitx ! +1 .) By multplying eg. (73) by

23



aop , 2ontheleftand by af% on the right and using (h o, _(p ¢)) =

q c
h o ., c¢),weobtain the ollow ing relation am ong these Fourier coe cients :
x 2h
« ) + %
h, , . bh (g ©)
- i
"k ) =9
hy, e bh, L@ c)= o (27 2B, (P q);

which is nothing but a com pact way of w riting the four egs. (65).

C Poisson distribution

At rstsight,eq. (62) appears to be the average over the distributions of sources
of a Poisson distrbbution. This seem s to contradict a result we stressed in
[17], that the distrlbbution of m ultiplicities calculated In a xed con guration
of sources 1, is not a Poisson distrbution. For the sake of the discussion in
this appendix, let us introduce the generating function F (z) for the m ultiplicity
distribution in the region of rapidity [Y Y=2;Y + Y=2]. In the language of
the present paper, it is obtained by using in eg. (61) a constant function z(p)
whose value is equal to the num ber z.

Consider st this generating function for a given con guration 1, of the
extemal color sources. In [17], F (z) was param eterized ast®

IhF (z) b (z"  1); (76)

and w e had obtained the form ula for the probability P,, of producing n particles
in the portion of phase-space under consideration to be
X X
Po=e 2B = b, . :b (77)

|
:1p'r1

P + pt=m

In Ref. [17],we also showed that b is the sum of all the cut connected vacuum
graphs, w here exactly r intermal lines are cut. Because b, isa sum of connected
graphs, it has a perturbative expansion that starts at the order 1=g?,

1
bhb=— 1 §
g

In particular, all the b, have a priorithe sam e order of m agnitude. H ow ever, it
is easy to see that eg. (77) is a Poisson distrdbution only in the exceptional case
w here?®

bh60; bhh=0 forr 2 (79)

19C om pared to the notations used in [17], we absorb the factors of 1=g? into the de nition
of the num bers by .

29From eq.(77) and thede nition oftheby ,wehaveF (z) Y  z"P,.Then,itisinmediate
to check that InF (z) should be a polynom ialofdegree one in the case ofa P oisson distribution.
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Since for a generic eld theory, theb, forr 2 have no reason to vanish or to
be am aller than by , the distrbution of them ultiplicities in a xed con guration
of sources is In general not a Poisson distrdbbution. M oreover, since b, 3; are
of the sam e order in g2 as by , the deviations from a Poisson distribution is an
e ect of order unity, not a subleading correction.

Tn order to m ake the connection w ith the present paper easier, it is preferable
to param eterize F (z) as

InF (z) oz 1F: (80)
k=1

(T his serdes starts at the ndex k = 1,because F (1) = 0.) The num bers ¢, are
related to the num bers b, by
® k ®
by = L 1 fo i o= by ; (81)
k=r r=k

w here the }; are the binom ialcoe cients. Thederivativesof nF (z) evaluated

at z = 1 are best expressed In term s of the coe clentscy as

@* InF (z)

Az =kl : (82)

z=1

Let us now rephrase our results in this Janguage. T he nclisive n-particle spec—
trum is the nth derivative of F (z) at z = 1. T hese derivatives read

FYU1)=q ;
FOL) =<+ 20 ;
F(S)(l): Ci‘l‘ 6Cc + 6C3 ; (83)

A I the coe cientscy are sum s of connected vacuum graphs, and therefore start
at the order 1=g°, up to logarithm s. At Leading O rder, we thus keep only

FO'Q) =kl : (84)
LO

At this order of truncation, one can obviously get a Poisson distribution, since
this approxim ation is com patble with ¢ = c3 = =0, 3es Iy = =
0. However, the coe clents b,;3; could have any valie of order g 2 w ithout
a ecting our Leading O rder truncation. T he arbitrary choice one is allowed to
m ake for these subleading termm s In general alters the Poissonian nature of the
distribution.

T he actual paradox arises only at the Next to Leading O rder. T here, one
keeps the term s

F (1) =l +nal, 'l +n'al ’le], : (85)
LO+NLO ‘-{Z_} | { }

g2(n 1) bg
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T his does not correspond to a Poisson distribution anym ore, since one needs a
non-zero by in order to obtain these form ulas. In fact, at this order of truncation,
one hasl, = ¢ whilk the higher b, ’s are still zero. Even worse, our calculation
of the second derivative of nF show s that ¢; is enhanced by a large logarithm ,
and is actually of order g 2 In(1=x, ;) rather than the naive expectation g 2.
T herefore, not only the distribution is not Poissonian, but the deviations from

a Poisson distrbution are logarithm ically large.

However, the m ain result of the present paper is that one can obtain the
NLO corrections to the inclusive n-particle spectra by the action of a certain
operator on the product ofn 1-particle spectra at LO . In the present language,
this reads

F (1) = 1+Li+L; [a], : (86)
LO+NLO

R em em ber that so farallthediscussion isfora xed con guration of the sources
12 . Then, by averaging over these sources and by using the hem iticity of the
operator L1 + L, ,one can transfer the action of this operator from the quantity
[ ro to the distrbution of sources. A s we have seen, this am ounts to letting
the distrbution of sources evolve according to the JIM W LK equation. In other
words, eg. (85) deviates strongly from a Poisson distrbution, but does so in
such a way that all correlations can be interpreted as com Ing from correlations

am ong the sources that are generated by the JIM W LK evolution.

Let us end this appendix with a word of caution in the interpretation of
eg. (61). Strictly speaking, our Leading Log approxin ation gives us control
only over the g 2 In(l=x; ) part of the coe cientb,, but not over itsg 2 part
(without a log). The Jatter would only show up In a Next to Leading Log
calculation. Thism eans that in principle one could m odify the argum ent of the
exponential In the integrand of eq. (61) by a term of second degree in z(p) 1
and w ith a coe cient oforder g 2, w ithout a ecting any of our results for the
Inclusive gluon spectra at the order at which we calculate them . O bviously,
such a m odi cation of the Integrand In eg. (61) would be a deviation from a
Poisson distribbution. Thus, the statem ent according to which the deviations
from Poisson come from the JIM W LK evolution of the distrbutions of the
sources 1 is true only for the largest of these deviations{ie. those that are
enhanced by large logarithm softhem om entum fractions x; ;; . O ther deviations
from Poisson exist, that are not enhanced by such logarithm s{these are beyond
the scope of the present calculation.
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