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We extend previous results from the preceding paper on factorization in high energy nucleus-nucleus

collisions by computing the inclusive multigluon spectrum to next-to-leading order. The factorization

formula is strictly valid for multigluon emission in a slice of rapidity of width �Y � ��1
s . Our results

shows that often neglected disconnected graphs dominate the inclusive multigluon spectrum, and are

crucial in order to achieve factorization for this quantity. These results provide a dynamical framework for

the Glasma flux tube picture of the striking ‘‘ridge’’-like correlation seen in heavy ion collisions.
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I. INTRODUCTION

In the previous article, henceforth referred to as Paper I
[1], we investigated the formal basis for the application of
the color glass condensate (CGC) framework [2–8] to the
collision of two high energy nuclei. In Paper I, we focused
on the formalism to compute the single gluon inclusive
spectrum in the leading log x approximation. The main
result of Paper I is a proof of the fact that the leading
logarithms of 1=x1;2 that arise in all order loop corrections

to this spectrum can be factorized in the distributions of
color sources W½�1;2� in each of the two nuclei, evolved

with the JIMWLK equation [9–16] from the beam rapidity
to the rapidity of the measured gluon. One obtains for the
single inclusive gluon distribution the result�

dN

d3p

�
LLog

¼
Z
½D�1�½D�2�WYbeam�Y½�1�

�WYbeamþY½�2� dN
d3p

��������LO
: (1)

The W functionals are universal properties of the nuclear
wave functions at high energies and (in analogy to the
parton distribution functions of collinear factorization)
can be extracted from deep inelastic scattering or proton-
nucleus scattering experiments off nuclei. The inclusive
single gluon spectrum ðdN=d3pÞLO that appears under the
integral in the right-hand side (r.h.s.) is the leading order
spectrum corresponding to one configuration of the sources
�1;2—it is obtained by solving the classical Yang-Mills

equations for this fixed distribution of sources. This facto-
rization theorem allows for considerable predictive power
by relating measurements in a variety of scattering pro-
cesses. It should be particularly useful at the CERN LHC,
where the rapidity reach in proton-nucleus and nucleus-
nucleus collisions will be considerable and the effects of
energy evolution of the distribution of color sources clearly
visible.

The derivation of the factorized expression in Eq. (1)
relied on two essential steps:

(1) The 1-loop corrections to the gluon spectrum can, in
the leading logarithm approximation, be expressed
as the action of a certain linear operator on the
leading order spectrum.1

(2) This operator acting on the initial color fields on the
light cone is, again in the leading log approximation,
the JIMWLK Hamiltonian.

In the present paper, we will show that a straightforward
generalization of the first of these two steps is sufficient to
extend our factorization result to inclusive multigluon
spectra when all the measured gluons are located in a
rapidity region of maximal width �Y & ��1

s .
The paper is organized as follows. In Sec. II, we define a

generating functional for multiparticle production in
nucleus-nucleus collisions. This extends to the QCD case
our previous results [17,18] for a similar object introduced
for a �3 theory. We discuss key features of this generating
functional and develop a diagrammatic interpretation of
this object. We show how (at leading order) its first deriva-
tive can be expressed in terms of classical solutions of the
Yang-Mills equations that obey both advanced and re-
tarded boundary conditions. In Sec. III, we consider in
detail the inclusive 2-gluon spectrum. We obtain an ex-
pression of this spectrum at next-to-leading order (NLO)
using the previously defined generating functional. We end
the section by showing that the leading logs of 1=x1;2 in this
quantity can be factorized in the distributions of incoming
color sources, provided the rapidity separation between the
two gluons is small enough. We show that our formalism
gives rise to the Glasma flux tube picture [19], which has
been suggested as a mechanism to describe the ridgelike
structure observed in heavy ion collisions at the
Relativistic Heavy Ion Collider (RHIC) [20–24]. In
Sec. IV, we generalize this factorization result to the case
of the inclusive n-gluon spectrum. The knowledge of all
the moments defines completely the distribution of proba-

1See the discussion after Eqs. (40) and (41) and at the end of
Sec. 3.5 in [1].
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bilities. We demonstrate how the leading logarithmic cor-
rections to the multiplicity distribution can be factorized
into the JIMWLK evolution of the sources. We end with a
brief summary. The three appendixes are devoted to the
more technical aspects of our discussion.

II. GENERATING FUNCTIONAL

In Paper I, we developed the tools for studying at LO and
NLO the single inclusive gluon spectrum in AA collisions
in the CGC framework. Our goal is to generalize these
techniques to obtain similar results for the n-gluon spec-
trum. Towards that purpose, we will define in this section a
generating functional for n-gluon production, discuss its
properties, and develop a diagrammatic interpretation. We
then discuss the LO computation of the first derivative of
this object in terms of solutions of classical Yang-Mills
equations with both retarded and advanced boundary
conditions.

A. Definition and properties

We define the generating functional as

F ½zðpÞ� � X1
n¼0

1

n!

Z
p1

� � �
Z
pn

zðp1Þ � � � zðpnÞ

� jhp1 � � �pnoutj0inij2; (2)

where we use the following compact notation for phase-
space integrals,2

Z
p
� � � �

Z d3p

ð2�Þ32Ep

� � � : (3)

In this definition, zðpÞ is an arbitrary function over the 1-
gluon phase space. The matrix element squared that ap-
pears in the right-hand side is implicitly summed over the
polarizations and colors of the produced gluons. Note that
in this section, we consider the external current J� coupled
to the gauge field to be fixed. This is the case in the CGC
framework [8] where the fixed sources represent the large x
light-cone color charge densities in the nuclear wave func-
tions. We will address the issue of averaging over the
external color sources later in this paper.

The generating functional generalizes the generating
function FðzÞ we introduced in Ref. [17]. This previously
defined function is simply obtained as

F ½zðpÞ � z�� ¼ Fðz�Þ; (4)

where zðpÞ is a constant z�. Another obvious property of
F ½zðpÞ� is

F ½zðpÞ � 1� ¼ 1 (5)

which is a consequence of the fact that the theory is unitary.

The generating functional encapsulates the entire infor-
mation content of the nuclear collision within the CGC
framework. Indeed, if F ½zðpÞ� were known, one could use
it to build an event generator for the early Glasma [8,18,25]
stage of nucleus-nucleus collisions. In particular, one can
compute the inclusive multigluon spectra. For instance, the
single inclusive3 gluon spectrum is obtained as

dN

d3p
¼ �F ½z�

�zðpÞ
��������z�1

: (6)

Likewise, the inclusive 2-gluon spectrum is obtained by
differentiating F ½z� twice,

dN2

d3pd3q
¼ �2F ½z�

�zðpÞ�zðqÞ
��������z�1

; (7)

where the integral over p and q on the left-hand side (l.h.s.)
of this expression is the average value of NðN � 1Þ.
Physically, this quantity, in an event, corresponds to a
histogram of all pairs of distinct gluons with momenta
ðp; qÞ. We will discuss the average over all such events
later. Equations (6) and (7) are the two simplest examples
of the use of this generating functional, but, in principle,
one can derive from it any observable that is related to the
distribution of gluons produced in the collision.
Equation (7) can be generalized to

dnNn

d3p1 � � � d3pn

¼ �nF ½z�
�zðp1Þ � � ��zðpnÞ

��������z�1
; (8)

for the inclusive n-gluon spectrum. Note that the l.h.s.,
integrated over the n-particle phase space, is normalized to
the average value of NðN � 1Þ � � � ðN � nþ 1Þ.
From Eq. (8), it is possible to represent the generating

functional F ½z� as

F ½zðpÞ� ¼ X1
n¼0

1

n!

Z �Yn
i¼1

d3piðzðpiÞ � 1Þ
�

� dnNn

d3p1 � � � d3pn

: (9)

This formula will later be the basis of our strategy to obtain
an expression for F ½z� at leading log. We will first obtain
leading log expressions for the n-gluon spectra,4 and will
show that the infinite sum in Eq. (9) leads to a very simple
expression.
Once we know F ½z� (with a given accuracy), one can

use the fact that its Taylor coefficients at zðpÞ ¼ 0 are the

2Whenever the integrand contains p0 in such integrals, it
should be replaced by the positive on-shell energy p0 ¼ jpj.

3Note that setting zðpÞ to zero instead, after taking the func-
tional derivative, one obtains the differential probability for
producing exactly one gluon in the collision,

dP1

d3p
¼ �F ½z�

�zðpÞ
��������z�0

:

4With the important limitation that the n gluons all sit in a
rapidity slice of width �Y & ��1

s .
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differential probabilities for producing a fixed number of
particles,5

F ½zðpÞ� ¼ X1
n¼0

Z �Yn
i¼1

d3pizðpiÞ
�

dnPn

d3p1 � � �d3pn

: (10)

From this second representation of F ½z�, one can extract
from F ½z� detailed information about the distribution of
produced gluons.

B. Diagrammatic interpretation of F ½z�
In order to see what diagrams contribute to F ½z�, let us

first define

D �
Z
p
Dp; (11)

with

Dp � X
�

�
�
� ðpÞ�	�ðpÞ�

Z
d4xd4yeip�ðx�yÞhxhy

� �

�J�þðxÞ
�

�J	�ðyÞ : (12)

This operator has already been introduced in [17,18] to
write Pn in terms of vacuum diagrams. The only difference
here is that we extend its definition to the case of vector
particles and QCD. The sum over the gluon polarizations �
spans the two physical polarization states. By mimicking
the manipulations performed for scalar fields, one can
prove that

F ½zðpÞ� ¼ exp

�Z
p
zðpÞDp

�
eiV½J

�
þ�e�iV�½J���

��������J
�
þ¼J

��¼J�
;

(13)

where iV½J�� is the sum of the connected vacuum dia-
grams evaluated with the external current J�. It is easy to
check that all the formulas we previously obtained in
[17,18] for Pn or for the generating function FðzÞ are all
particular cases of this formula.

From the interpretation of the operatorD as an operator
that makes cuts through vacuum diagrams, we see that the
functional F ½zðpÞ� is the sum of all the cut vacuum dia-
grams (connected or not) in which every cut propagator
with momentum p is weighted by zðpÞ. Let us call
iW ½J�þ; J��; z� the sum of all such connected diagrams
(before the currents J�þ and J�� are set equal to the physical
value J�):

eiW ½J�þ;J��;z� � exp

�Z
p
zðpÞDp

�
eiV½J

�
þ�e�iV�½J���: (14)

It is useful to compute the first derivative of F ½zðpÞ�
with respect to zðpÞ,

�F ½z�
�zðpÞ ¼ 1

ð2�Þ32Ep

Dpe
iW ½J�þ;J��;z�

��������J�þ¼J��¼J�
: (15)

Performing explicitly the derivatives contained in Eq. (12),
this can be rewritten as

�F ½z�
�zðpÞ ¼ 1

ð2�Þ32Ep

X
�

��� ðpÞ�	�ðpÞ�

�
Z

d4xd4yeip�ðx�yÞhxhy

�
�iW
�J

�
þðxÞ

�iW
�J	�ðyÞ

þ �2iW
�J

�
þðxÞ�J	�ðyÞ

�
eiW ½J�þ;J��;z�

��������J
�
þ¼J

��¼J�
:

(16)

The final exponential in this formula is nothing but F ½z�
itself. Therefore, we can write

� lnF ½z�
�zðpÞ ¼ 1

ð2�Þ32Ep

X
�

�
�
� ðpÞ�	�ðpÞ�

�
Z

d4xd4yeip�ðx�yÞhxhy

�
�iW
�J

�
þðxÞ

�iW
�J	�ðyÞ

þ �2iW
�J

�
þðxÞ�J	�ðyÞ

�
J
�
þ¼J

��¼J�
: (17)

This formula tells us that this quantity is made up of only
connected diagrams since iW is a sum of connected
diagrams. We also observe that this formula is very similar
to the formula for the single inclusive particle spectrum
with one very important difference: the function zðpÞ is not
set to 1 at the end, and therefore appears as a multiplicative
factor attached to each cut propagator.

C. � lnF ½z�=�zðpÞ at leading order

Let us now show that, in the regime of strong external
color sources, the expression in Eq. (17) can be expressed
at LO in terms of classical solutions of the Yang-Mills
equations.
First of all, note that the first derivatives �W =�J

�
� are

of order6 g�1, while the second derivative �2W =�J
�
þ�J	�

is order g0. Thus the first term, composed of the product of
two first derivatives, is the leading one. The second term
begins to contribute only at NLO. At LO, we can thus write

� lnF ½z�
�zðpÞ

��������LO
¼ 1

ð2�Þ32Ep

X
�

���ðpÞ��	ðpÞ

�
Z

d4xd4yeip�ðx�yÞhxhyA
�
þðxÞA	�ðyÞ;

(18)
5Note that there is no 1=n! in this formula. A quick way to

convince oneself that this is correct is to set zðpÞ ¼ 1; the
integrals over the momenta pi give the total probabilities Pn,
which add up to unity.

6Because W is the sum of connected vacuum graphs, in the
presence of external sources J

�
� 	 g�1, W 	 g�2.
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where we denote7

A �
� ðxÞ�

tree

�iW
�J�� ðxÞ

��������J
�
þ¼J

��¼J�
: (19)

The ‘‘tree’’ here means we keep only tree diagrams in the
expansion of �W =�J

�
� that defines A�

� .
All the arguments developed to compute the generating

function FðzÞ at leading order [18] can be extended trivi-
ally to the present situation, and one obtains the following
results:

(i) A�
� is a solution of the classical Yang-Mills equa-

tions,

½D�;F �	� ¼ J	: (20)

(ii) If one decomposes A�
� ðxÞ in Fourier modes,

A �
� ðxÞ �

X
�;a

Z
p

�
fðþÞ
� ðx0;p�aÞa0��p�aðxÞ

þ fð�Þ
� ðx0;p�aÞa0�þp�aðxÞ

�
; (21)

with a0��p�aðxÞ � ��� ðpÞTae�ip�x, the boundary conditions

obeyed by the classical field A�
� ðxÞ can be expressed as

simple constraints on the Fourier coefficients,8

fðþÞ
þ ð�1;p�aÞ ¼ fð�Þ� ð�1;p�aÞ ¼ 0;

fðþÞ� ðþ1;p�aÞ ¼ zðpÞfðþÞ
þ ðþ1;p�aÞ;

fð�Þ
þ ðþ1;p�aÞ ¼ zðpÞfð�Þ� ðþ1;p�aÞ:

(22)

We see that the dependence of the classical fields A�
� on

the function zðpÞ comes entirely from the boundary con-
ditions,9 since the Yang-Mills equations themselves do not
explicitly contain zðpÞ. In terms of the Fourier coefficients

fð�Þ
� , Eq. (18) reads

�lnF ½z�
�zðpÞ

��������LO
¼ 1

ð2�Þ32Ep

X
�;a

fðþÞ
þ ðþ1;p�aÞfð�Þ� ðþ1;p�aÞ:

(23)

Note that it depends only on the Fourier coefficients of the
fields at x0 ¼ þ1.
Equations (20), (22), and (23) do not provide a practical

way to obtain the LO generating functional F ½zðpÞ� be-
cause the solutions depend on boundary conditions at both
�1. It is not known at present how to solve Yang-Mills
equations with simultaneous advanced and retarded bound-
ary conditions. Nevertheless, the procedure outlined here
provides a powerful theoretical tool to compute other
quantities, which can be obtained as derivatives of the
generating functional. A concrete illustration of this strat-
egy is revealed in the case of the 2-gluon spectrum in the
following section.

III. TWO-GLUON INCLUSIVE SPECTRUM

In this section, we will specialize our discussion of the
generating functional in the previous section to the 2-gluon
inclusive spectrum at LO and NLO. We will demonstrate
that, just as in the case of the single gluon spectrum
discussed in Paper I, the leading logarithm contributions
that arise at NLO can be absorbed in the JIMWLK wave
functionals of the two nuclei, provided the rapidity sepa-
ration between the two gluons is small enough. As in
Paper I, one obtains a factorized expression for the leading
log 2-gluon inclusive spectrum. In the following section,
this result will be extended to multigluon spectra.

A. Leading order

The inclusive 2-gluon spectrum is obtained by taking the
second derivative of the generating functionalF ½z�, and by
setting the functions zðpÞ and zðqÞ to unity afterwards [see
Eq. (7)]. Alternately, it is easy to obtain this derivative from
the derivative of lnF ½z�. We get

d2N2

d3pd3q
¼ � lnF ½z�

�zðpÞ
� lnF ½z�
�zðqÞ þ �2 lnF ½z�

�zðpÞ�zðqÞ
��������zðpÞ;zðqÞ�1

:

(24)

The first term is simply the product of two single gluon
spectra [see Eq. (6)], and therefore corresponds to the
disconnected (independent) production of a gluon of mo-
mentum p and a gluon of momentum q. In contrast,
because lnF ½z� contains only connected diagrams, the
second term corresponds to the two gluons being produced
in the same graph. Note that these expressions correspond
to the 2-gluon spectrum for a fixed configuration of the
external sources �1;2. When we average over these sources,

some graphs that were disconnected prior to averaging
become connected. Therefore, even the first term in
Eq. (24) can lead to correlations in the measured 2-gluon
spectrum.

7A�
�ðxÞ depends on the function zðpÞ as well, but we have

omitted it from the notation to keep notations compact.
8The derivation of this result is analogous to the scalar case

discussed in detail in Sec. 4.2 of Ref. [17].
9Note that, when zðpÞ � 1, the boundary conditions in

Eqs. (22) become

fðþÞ
þ ð�1;p�aÞ ¼ fð�Þ� ð�1;p�aÞ ¼ 0;

fðþÞ� ðþ1;p�aÞ ¼ fðþÞ
þ ðþ1;p�aÞ;

fð�Þ
þ ðþ1;p�aÞ ¼ fð�Þ� ðþ1;p�aÞ:

The two conditions at x0 ¼ þ1 imply that AþðxÞ ¼ A�ðxÞ
everywhere. The two conditions at x0 ¼ �1 then imply that
limx0!�1A�ðxÞ ¼ 0. Therefore, when zðpÞ � 1, the two clas-
sical fields A�

� become identical to the retarded classical field
with a vanishing initial condition in the remote past, and Eq. (18)
gives the single inclusive gluon spectrum as expected.
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The two terms in this expression do not begin at the
same order in g2. In our power counting,

lnF ½z� ¼ 1

g2
½c0 þ c1g

2 þ c2g
4 þ � � ��: (25)

This implies that the first term in Eq. (24) is of order g�4,
while the second term is of order g�2 only. For the 2-gluon
spectrum, ‘‘leading order’’ therefore means g�4, and we
simply have10

d2N2

d3pd3q

��������LO
¼ dN

d3p

��������LO

dN

d3q

��������LO
: (26)

No new computations are necessary here because we know
how to express the single gluon spectrum at LO in terms of
classical solutions of the Yang-Mills equations with re-
tarded boundary conditions. Note that at this order the
�N term contributing to N2 is subleading relative to the
N2 contribution because it starts only at the order g�2 and
therefore does not appear on the right-hand side of Eq. (27)
which is of order g�4.

B. Next-to-leading order—I

We shall now study the inclusive 2-gluon spectrum at
NLO–the contribution at order g�2 in our power counting.
At this order, the tree-level contribution to the second term
in Eq. (24) must be included. We can therefore write

d2N2

d3pd3q

��������NLO
¼ dN

d3p

��������NLO

dN

d3q

��������LO
þ dN

d3p

��������LO

dN

d3q

��������NLO

þ �2 lnF ½z�
�zðpÞ�zðqÞ

��������LO
: (27)

The first two terms again do not require a new computation
because we studied in great detail the single gluon spec-
trum at NLO in Paper I [1]. In particular, we recall here the
previously derived formula

dN

d3p

��������NLO
¼
�Z

�
d3 ~u½
 �Tu�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

L1

þ1

2

X
�;a

Z
k

Z
�
d3 ~ud3 ~v½a�k�a �Tu�½aþk�a �Tv�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L2

�

� dN

d3p

��������LO
þ�NNLOðpÞ: (28)

In this formula, a�k�a denotes small field fluctuations that
propagate over the classical field A. The subscripts in-
dicate that these fluctuations begin in the remote past as
plane waves of momentum�k, polarization �, and color a.

Similarly, 
 is also a small field fluctuation propagating on
top of A, but this fluctuation has a vanishing initial
condition in the past and is driven by a nonzero source
term. � is a surface on which the initial value of the
classical fields are defined, and d3 ~u is the measure on
this surface. The operator Tu is the generator of trans-
lations of the initial field at the point u 2 �. �NNLOðpÞ
is a term contributing to the full expression. It will not be
made more explicit here because it does not contain a
leading logarithmic contribution—see the discussion of
this term in [1]. Because we are interested here in these
leading log contributions, this term will be dropped in all
further equations in this paper.
At this point, we can rewrite the first two terms of the

r.h.s. of Eq. (27) as

dN

d3p

��������NLO

dN

d3q

��������LO
þ dN

d3p

��������LO

dN

d3q

��������NLO

¼ ½L1 þL2�disc dN
d3p

��������LO

dN

d3q

��������LO
; (29)

where the subscript ‘‘disc’’ added to the operator between
the square brackets indicates that when the combination
TuTv in L2 acts on the product ðdN=d3pÞðdN=d3qÞ, we
keep only the terms where the two T’s act on the same
factor.11 The subscript here reminds us that these terms are
disconnected contributions that are the product of a func-
tion of p and a function of q.

C. Next-to-leading order—II

The third term of Eq. (27), involving the second deriva-
tive of the log of the generating functional, is new and will
be computed here. Fortunately, we need this term only at
leading order—i.e.Oðg�2Þ. Therefore, our starting point in
evaluating this term is Eq. (23). Differentiating this equa-
tion with respect to zðqÞ, we obtain
�2 lnF ½z�
�zðpÞ�zðqÞ

��������LO
¼ 1

ð2�Þ32Ep

X
�;a

�
�fðþÞ

þ ðþ1;p�aÞ
�zðqÞ

� fð�Þ� ðþ1;p�aÞ

þ fðþÞ
þ ðþ1;p�aÞ�f

ð�Þ� ðþ1;p�aÞ
�zðqÞ

�
:

(30)

Further, differentiating Eq. (21) with respect to zðqÞ, one
observes that the quantities �fð�Þ

� ðþ1;p�aÞ=�zðqÞ are the
Fourier coefficients of the field

b��;qðxÞ � �A�
� ðxÞ

�zðqÞ (31)

at x0 ¼ þ1. The equation of motion obeyed by this object
can be obtained by differentiating, with respect to zðqÞ, the

10One should keep in mind therefore that ‘‘LO’’ corresponds to
different powers of g2 for the single and double inclusive gluon
spectra. 11½L2�discAB ¼ ½L2A�Bþ A½L2B�.
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equation of motion for A�
� . In order to do this, it is useful

to start from the Yang-Mills equations written in a form
that separates explicitly the kinetic and interaction terms12

as

½hxg�
	 � @x�@

	
x �A�

� ðxÞ � @UðA�Þ
@A�;	ðxÞ ¼ J	� ; (32)

where UðAÞ is the Yang-Mills potential in a gauge with a
linear gauge condition. Differentiating this equation with
respect to zðqÞ, we get

�
hxg�

	 � @x�@
	
x � @UðA�Þ

@A�	ðxÞ@A�
� ðxÞ

�
b��;qðxÞ ¼ 0:

(33)

In other words, b��;qðxÞ obeys the equation of motion of
small fluctuations propagating on top of the classical field
A�. The boundary conditions necessary in order to fully
determine b��;qðxÞ are easily obtained by differentiating
Eqs. (22) with respect to zðqÞ:
bðþÞ
þ;qð�1;p�aÞ ¼ bð�Þ�;qð�1;p�aÞ ¼ 0;

bðþÞ�;qðþ1;p�aÞ ¼ zðpÞbðþÞ
þ;qðþ1;p�aÞ

þ �ðp� qÞfðþÞ
þ ðþ1;p�aÞ;

bð�Þ
þ;qðþ1;p�aÞ ¼ zðpÞbð�Þ�;qðþ1;p�aÞ

þ �ðp� qÞfð�Þ� ðþ1;p�aÞ; (34)

where we have introduced the obvious notation

bð�Þ�;qðx0;p�aÞ � �f
ð�Þ
� ðx0;p�aÞ
�zðqÞ (35)

for the Fourier coefficients of b
�
�;q. We see that we have

nonhomogeneous boundary conditions, which will lead to
a nonzero b��;q despite the fact that this fluctuation obeys a
homogeneous equation of motion. Note also that at this
point we can safely set zðpÞ ¼ 1 since we do not need to
differentiate with respect to zðpÞ again. This leads to the
simplification that when zðpÞ ¼ 1, the classical fields A�

þ
and A�� become identical—as can be checked from their
boundary conditions (see footnote 9). In fact, their common
value is nothing but the classical field that vanishes when
x0 ! �1. We will simply denote by A� the common

value of these two fields and fð�Þðx0;p�aÞ its Fourier
coefficients.

Obviously, Eqs. (34) are not simple retarded boundary
conditions. Our task is now to relate the fluctuations b

�
�;q

and their Fourier coefficients to fluctuations that satisfy
simple retarded boundary conditions. In order to achieve
this, let us again use the small field fluctuations a

�
�k�a.

They obey the equation of motion (33), and the boundary
conditions

a
�
�k�aðxÞ ¼

x0!�1
�
�
� ðkÞTae�ik�x: (36)

Note that the fields a0��k�a introduced earlier are the ana-

logue of the a
�
�k�a in the absence of a background field.

From this definition, aþk�a has only negative energy com-
ponents at x0 ! �1, while a�k�a has only positive energy
components in this limit. Moreover, the fluctuations a��k�a

provide a complete basis for the small field fluctuations
that obey Eq. (33). From the boundary conditions of a

�
�;q at

x0 ¼ �1, we see that we must have

b��;qðxÞ ¼
X
�;a

Z
k
�k�a�;qa

�
�k�aðxÞ: (37)

The coefficients �k�a�;q in these linear decompositions do not

depend on space or time. The boundary conditions at x0 ¼
�1 do not constrain further the coefficients �k�a�;q , but they

can be determined from the boundary conditions at x0 ¼
þ1. To achieve this end, we introduce the Fourier decom-
position of the functions a

�
�k�aðxÞ,

a��k�aðxÞ �
X
;b

Z
p
fhðþÞ

�pbðx0; k�aÞa0��pbðxÞ

þ hð�Þ
�pbðx0; k�aÞa0�þpbðxÞg: (38)

It is then a simple exercise to rewrite the boundary con-
ditions at x0 ¼ þ1 as

X
�;a

Z
k
½�k�a�;qh

ðþÞ
�k�aðpbÞ � �k�aþ;qh

ðþÞ
þk�aðpbÞ�

¼ �ðp� qÞfðþÞðpbÞ;
X
�;a

Z
k
½�k�aþ;qh

ð�Þ
þk�aðpbÞ � �k�a�;qh

ð�Þ
�k�aðpbÞ�

¼ �ðp� qÞfð�ÞðpbÞ;

(39)

where, to keep the expressions compact, we have omitted
the argument x0 ¼ þ1 in all the Fourier coefficients. This
can be seen as a system of linear equations for the coef-
ficients �k�a�;q . The solution of this system of linear equa-

tions is obtained in Appendix A.
Inserting the results of Eqs. (A3) for �k�a�;q into Eq. (37),

one can easily determine the Fourier coefficients of b��;qðxÞ
at x0 ¼ þ1 [Eq. (35)]. Inserting these into Eq. (30), we
obtain13,14

12Note that the differentiation with respect to zðqÞ does not
modify the gauge fixing condition, provided it is linear. Thus,
b
�
�;q obeys the same gauge condition as A�

� .

13We additionally use Eqs. (A2) to symmetrize the formula
with respect to ðp; qÞ.
14The part of this formula which is bilinear in the objects
hð�Þ�k�a generalizes to the dense regime (i.e. to the presence of
a strong background field) 2-gluon production vertex obtained in
[26,27] in the course of the derivation of the Balitsky-Fadin-
Kuraev-Lipatov equation at NLO.
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�2 lnF ½z�
�zðpÞ�zðqÞ

��������LO;zðpÞ;zðqÞ¼1
¼ 1

2

1

ð2�Þ64EpEq

X
�;a

X
�;b

X
;c

Z
k
fðhð�Þ

þk�aðp�bÞhð�Þ
�k�aðqcÞ

þ hð�Þ
�k�aðp�bÞhð�Þ

þk�aðqcÞÞfðþÞðp�bÞfðþÞðqcÞ þ ðhðþÞ
þk�aðp�bÞhðþÞ

�k�aðqcÞ
þ hðþÞ

�k�aðp�bÞhðþÞ
þk�aðqcÞÞfð�Þðp�bÞfð�ÞðqcÞ þ ðhð�Þ

þk�aðp�bÞhðþÞ
�k�aðqcÞ

þ hð�Þ
�k�aðp�bÞhðþÞ

þk�aðqcÞÞfðþÞðp�bÞfð�ÞðqcÞ þ ðhðþÞ
þk�aðp�bÞhð�Þ

�k�aðqcÞ

þ hðþÞ
�k�aðp�bÞhð�Þ

þk�aðqcÞÞfð�Þðp�bÞfðþÞðqcÞg � 1

ð2�Þ32Ep

�ðp� qÞX
;c

fðþÞðpcÞfð�ÞðpcÞ:

(40)

We have therefore obtained an expression for the con-
nected piece of the 2-gluon spectrum entirely in terms of
Fourier modes of the classical field (fð�Þ) and the small
fluctuation field (hð�Þ

�k�a). The former can be determined by
solving the Yang-Mills equations with retarded boundary
conditions, while the latter can be determined by solving
the equations for small fluctuations about the classical
field, also with retarded boundary conditions.

The last term in Eq. (40), proportional to �ðp� qÞ times
the single particle spectrum, arises because the quantity
dN2=d

3pd3q is defined in such a way that its integral over
p and q gives the average value15 of NðN � 1Þ. This term
provides the �N contribution to this quantity. Because the
logs in the multiplicity N arise only at the orderOðg0Þ, this
term cannot provide any leading log in the 2-gluon spec-
trum and can thus be dropped.

D. Leading log resummation of the 2-gluon spectrum

Combining the results in Eqs. (28) and (40) in Eq. (27),
we now have a formula for the 2-gluon spectrum, including
both LO and NLO contributions. As mentioned previously,
it can, in principle, be evaluated, in full generality, by
numerical solutions of small fluctuation partial differential
equations with retarded boundary conditions. However, if
one is interested primarily in the leading logarithmic piece
of the NLO contributions, we can go significantly further
analytically. Indeed, as we will now show by using the
information obtained thus far, we can compute the leading
logarithmic contributions to the 2-gluon spectrum in per-
turbation theory.

The first step in this derivation is to obtain an even more
compact form for Eq. (40) by using the linear operator Tu

that we used previously in the expression for the 1-loop
corrections to the single particle spectrum—see Eq. (28).
In Paper I, we demonstrated explicitly that this operator
allows one to express the value of a retarded fluctuation at a

point x in terms of the value of the classical field at the
same point as

a�ðxÞ ¼
Z
�
d3 ~u½a � Tu�A�ðxÞ; (41)

where � is the initial surface on which we know the value
of the fluctuation. (The point x is located above this sur-
face.) Performing the Fourier decomposition of both sides
of this relation, we obtain simply the relation between the
Fourier coefficients (at x0 ¼ þ1) of the small fluctuation
and the classical field to be

hð�Þðþ1;p�aÞ ¼
Z
�
d3 ~u½a � Tu�fð�Þðþ1;p�aÞ: (42)

Applying Eq. (42) to the various fluctuations that appear in
Eq. (40), and using the zðpÞ ¼ 1 simplification of Eq. (23),

dN

d3p

��������LO
¼ � lnF ½z�

�zðpÞ
��������z¼1;LO

¼ 1

ð2�Þ32Ep

X
;c

fðþÞðpcÞfð�ÞðpcÞ; (43)

it is a matter of simple algebra to check that

�2 lnF ½z�
�zðpÞ�zðqÞ

��������LO;zðpÞ;zðqÞ¼1
¼��ðp�qÞ dN

d3p

��������LO

þ½L2�connected dN
d3p

��������LO

dN

d3q

��������LO
:

(44)

The subscript ‘‘connected’’ indicates that one of the T
operators in the expression L2 appearing in Eq. (28)
must act on the p-dependent factor and the other on the
q-dependent factor. (Terms where they both act on the
same factor should be excluded.)
We see now that Eqs. (29) and (44) can be combined

very easily, because the sum of ‘‘disconnected’’ and con-
nected terms is equivalent to the unrestricted action of
TuTv on the product ðdN=d3pÞðdN=d3qÞ. We thus obtain

15This can easily be checked on a Poisson distribution, for
which the second derivative � lnF ½z�=�zðpÞ�zðqÞ is exactly
zero. When we insert this in Eq. (24) and integrate over p and
q, we obtain hNðN � 1Þi ¼ hNi2—as expected for a Poisson
distribution.
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d2N2

d3pd3q

��������NLO
¼ ��ðp� qÞ dN

d3p

��������LO

þ ½L1 þL2� dN
d3p

��������LO

dN

d3q

��������LO
; (45)

where L1 and L2 were both introduced previously in
Eq. (28).

We shall now discuss the logarithmic singularities in this
expression. First, �ðp� qÞðdN=d3pÞLO does not contain
large logarithms in x because these logs start appearing at
NLO in the single gluon spectrum. Because we are restrict-
ing our discussion to leading logs, we can therefore discard
this term henceforth. The logarithmic divergences in the
second and third terms of the r.h.s. of Eq. (45) can be
extracted straightforwardly by using the main result of
Paper I,

L 1 þL2 ¼
LLog

ln

	
�þ

Mþ



H 1 þ ln

	
��

M�



H 2: (46)

Here H 1;2 are the JIMWLK Hamiltonians of the nuclei

moving in the þz and �z directions, respectively [1,5–7];
�� represent the longitudinal momenta that separate the
static color sources �1;2 in each of the nuclei, respectively,

from the gauge fields that produce gluons at the rapidity of
interest; and M� correspond to the typical longitudinal
momentum scales of the object (the 2-gluon spectrum in
this case) to which the operator is applied. From Eq. (46)
we obtain

d2N2

d3pd3q

��������LOþNLO
¼

LLog

�
1þ ln

	
�þ

Mþ



H 1 þ ln

	
��

M�



H 2

�

� dN

d3p

��������LO

dN

d3q

��������LO
: (47)

All of our discussion thus far has been for a fixed distri-
bution of sources �1;2 in the two nuclei. The CGC effective

theory [2–4,9–16] prescribes to average physical quantities
over all the possible configurations �1;2 of the fast color

sources representing the projectiles, with gauge invariant
weight functionals W½�1;2� that describe the probability of

each configuration. When we integrate Eq. (47) over �1;2,

we can exploit the Hermiticity of the JIMWLK
Hamiltonians H 1;2 in order to integrate by parts, so that

the Hamiltonians are now acting on the distributions
W½�1;2�. By reproducing the arguments developed in

Paper I for the single gluon spectrum, we finally obtain
the factorization formula for inclusive 2-gluon production,

�
d2N2

d3pd3q

�
LLog

¼
Z
½D�1�½D�2�WY1

½�1�WY2
½�2� dN

d3p

��������LO

� dN

d3q

��������LO
; (48)

at leading log accuracy. Here the distributions W½�1;2�
obey the JIMWLK equation

@WY½��
@Y

¼ HWY½��; (49)

and are evolved thus from nonperturbative initial condi-
tions at the beam rapidities to the rapidities Y1 ¼
lnð ffiffiffi

s
p

=MþÞ and Y2 ¼ lnð ffiffiffi
s

p
=M�Þ, respectively. In the re-

gime where gluon radiation between the two tagged gluons
is small, this formula resums all leading logarithms of
1=x1;2 as well as all the rescattering corrections in

ðg�1;2Þn to all orders.

We now address the primary limitation of the present
calculation. As the previous discussion hints, it is valid
when the momenta p and q of the two observed gluons are
close enough in rapidity so that they have similar longitu-
dinal components. More precisely, we need to have

�s ln

	
pþ

qþ




 1; �s ln

	
p�

q�




 1: (50)

If this is the case, we can simply take M� to be the
common value16 of p�, q�. Physically, the condition of
Eq. (50) means that the probability of radiating a gluon
between the two measured gluons is small. When the
rapidity separation between the two gluons is large such
that Eq. (50) is violated, we need to resum gluon emissions
between the tagged gluons; this would require a general-
ization of the present formalism, which is not discussed
here.

E. Factorization and the ridge in AA collisions

A striking ridge structure has been revealed in studies of
the near-side spectrum of correlated pairs of hadrons by the
STAR Collaboration [20–22]. The spectrum of correlated
pairs on the near side of the detector (defined by an
accompanying unquenched jet spectrum) extends across
the entire detector acceptance in pseudorapidity of order
��	 2 units but is strongly collimated for azimuthal
angles ��. Preliminary analyses of measurements by the
PHENIX [23] and PHOBOS [24] collaborations appear to
corroborate the STAR results. In the latter case, with a high
momentum trigger, the ridge is observed to span the wider
PHOBOS acceptance in pseudorapidity of ��	 4 units.
In Ref. [19], it was argued that the ridge is formed as a

consequence of both long range rapidity correlations that
are generic in hadronic and nuclear collisions at high
energies, plus the radial flow of the hot partonic matter
that is specific to high energy nuclear collisions. Let us first
focus on the long range correlations that are essential to
this picture—how are they generated?
In the leading order formalism of the CGC, classical

solutions of Yang-Mills equations are boost invariant [28–
31]. Real-time numerical simulations [32–40] also demon-

16It is of course not necessary that pþ and qþ be equal, just that
they are close enough so that it does not matter which value we
choose between pþ and qþ.
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strate that the Yang-Mills fields form flux tubes of a typical
transverse size 1=Qs (whereQs is the saturation scale) with
parallel chromo-electric and chromo-magnetic field
strengths. (An important consequence is that these
Glasma fields [25] have nontrivial topological charge
[41].) In Sec. III A, we showed that the leading order 2-
gluon spectrum, for a fixed configuration of sources, was
given by Eq. (26). Because each of the single particle
distributions is boost invariant, the two-particle spectrum
is also, at this order, independent of the rapidity separation
of the gluons. While the two gluons are uncorrelated for a
fixed configuration of sources, correlations are provided by
the averaging over the source distributions. In Ref. [19],
the source distribution was assumed to be Gaussian as in
the McLerran-Venugopalan (MV) model [2–4]. The ridge
spectrum was shown to have the simple form

��ffiffiffiffiffiffiffiffi
�ref

p � Cðp; qÞ hdNdyi
h dN
dyppdpd�p

ih dN
dyqqdqd�q

i ¼
KN

�sðQsÞ ; (51)

where

Cðp; qÞ �
�

dN2

dypd
2p?dyqd2q?

�
�

�
dN

dypd
2p?

�

�
�

dN

dyqd
2q?

�
; (52)

and KN is a number of order unity. For further details, we
refer the reader to Ref. [19].

There are several conceptual issues in this context. First,
how does one justify this averaging procedure for the 2-
gluon spectrum from first principles? Second, how does
one take into account the energy evolution of the sources?
And finally, do NLO contributions spoil this picture? The
results in this paper solve most of these conceptual issues.
Our result in Eq. (48) shows that the trivial LO result of
Eq. (26) can be promoted to a full leading log result simply
by averaging it over the sources �1;2—with distributions of

sources that evolve according to the JIMWLK equation.
Most importantly, this shows that the higher order correc-
tions, to leading logs in x1;2, do not spoil the form in

Eq. (51) of the Glasma flux tube picture. Moreover, this
factorization provides compelling evidence that it is a
robust result beyond LO. As discussed previously, this
picture will have to be modified when the rapidity separa-
tion between the gluons is greater than ��1

s ðQsÞ.
These initial state considerations are not affected by the

final state transverse flow of the Glasma flux tubes, which
is the other important feature determining the near-side
ridge seen in heavy ion collisions. It has been shown very
recently that a proper treatment of flow and hadronization
effects of the Glasma flux tubes provides excellent quanti-
tative agreement with the RHIC data on the dependence of
the ridge amplitude on centrality and as a function of
energy, as well as the angular width of the ridge as a
function of centrality [42]. Further sophisticated treatments

of both the initial state effects discussed here and the final
state effects discussed in Ref. [42] therefore open the door
to quantitative 3-D imaging of heavy ion collisions. A
deeper relation between initial and final state effects, as
outlined in Paper I, can be obtained by studying quantum
fluctuations at NLO that are not accompanied by logs in
x1;2, but grow rapidly in time [43,44] in a manner analo-

gous to plasma instabilities [45].
We should also mention that the initial state effects

described here are also present in proton/deuteron-nucleus
collisions [46–48], without the final state effects character-
istic of the ridge in nucleus-nucleus collisions. These
collisions are therefore useful in order to isolate the initial
state effects and to corroborate the framework of multi-
particle production in high energy QCD developed here.

IV. MULTIGLUON INCLUSIVE SPECTRUM

In this section, we will show how the results of the
previous section modify multigluon probability distribu-
tions, with the caveat, as previously, that these gluons are
emitted in a narrow rapidity window. We will also derive a
simple expression for the differential probability of pro-
ducing n gluons.

A. n-gluon spectrum at LO and NLO

Our starting point in evaluating the inclusive n-gluon
spectrum is Eq. (8). Because we have thus far obtained
expressions up to NLO for the first and second derivatives
of lnF ½z�, it is convenient to rewrite this expression as17

dnNn

d3p1 � � � d3pn|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Oð 1

g2nþ���Þ

¼ Yn
i¼1

� lnF ½z�
�zðpiÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Oð 1
g2nþ���Þ

þX
i<j

�2 lnF ½z�
�zðpiÞ�zðpjÞ

Y
k�i;j

� lnF ½z�
�zðpÞk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Oð 1
g2ðn�1Þþ���Þ

þ � � � (53)

Because lnF ½z� ¼ Oðg�2Þ in our power counting, the LO
term in the r.h.s. is of order g�2n, the NLO term is of order

g�2ðn�1Þ, and next-to-next-to-leading order and higher
terms represented by the ellipses are omitted at the level
of the present discussion. The n-gluon spectra on the l.h.s.
of Eq. (53) are quantities that, for n > 1, are given by the
first term on the r.h.s. By computing them to NLO we gain
access to the first correction to the Poisson distribution, the
deviation of the variance of the multiplicity distribution
from the Poissonian result hNðN � 1Þi ¼ hNi2, and the
corresponding modifications for the higher moments of

17This formula is obtained by replacing F ½z� by expðlnF ½z�Þ in
Eq. (8).
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the distribution. We refer to Appendix C for a more de-
tailed discussion of the interpretation of our result for the
probability distribution of the gluon multiplicity.

At leading order, only the first term contributes, and we
obtain (for a fixed distribution of sources)

dnNn

d3p1 � � �d3pn

��������LO
¼ Yn

i¼1

dN

d3pi

��������LO
: (54)

At next-to-leading order, we have

dnNn

d3p1 ���d3pn

��������NLO
¼Xn

i¼1

dN

d3pi

��������NLO

Y
j�i

dN

d3pj

��������LO

þX
i<j

�2 lnF ½z�
�zðpiÞ�zðpjÞ

��������LO

Y
k�i;j

dN

d3pk

��������LO
:

(55)

All the objects that appear in this equation are known
already from the discussion in Paper I and the previous
section. In [1], we showed that

dN

d3p

��������NLO
¼ ½L1 þL2� dN

d3p

��������LO
þ�NNLOðpÞ; (56)

where L1 and L2 are defined in Eq. (28). In the previous
section, we showed that18

�2 lnF ½z�
�zðpÞ�zðqÞ

��������LO
¼ ½L2�connected dN

d3p

��������LO

dN

d3q

��������LO
; (57)

where we remind the reader that the subscript ‘‘connected’’
attached to the operatorL2 indicates that the two operators
T it contains do not simultaneously act on the same object.

B. Leading log resummation

If we combine the terms in Eqs. (56) and (57), we get
simply

dnNn

d3p1 � � �d3pn

��������NLO
¼

LLog
½L1 þL2�

Yn
i¼1

dN

d3pi

��������LO
: (58)

Using again Eq. (46) and following the steps that lead
from Eq. (47) to Eq. (48), we arrive at the all-order leading
log n-gluon spectrum�

dnNn

d3p1 � � �d3pn

�
LLog

¼
Z
½D�1�½D�2�WY1

½�1�WY2
½�2�

� dN

d3p1

��������LO
� � � dN

d3pn

��������LO
: (59)

Once again, one needs all the rapidity differences between
the n-measured gluons to be much smaller than ��1

s , to

ensure all leading logarithmic contributions are resummed
by this formula.

C. Generating functional in a small rapidity slice

Equation (60) provides a complete description of gluon
production in the leading log x approximation when one
considers a slice in rapidity of width �Y 
 ��1

s . One can
summarize these results into a generating functional
F Y;�Y½zðpÞ� defined from the ‘‘master’’ F ½zðpÞ� as

F Y;�Y½zðpÞ� ¼ F ½z�ðpÞ� with�
z�ðpÞ ¼ zðpÞ if yp 2 ½Y � �Y

2 ; Y þ �Y
2 �

z�ðpÞ ¼ 1 otherwise:

(60)

Setting the argument of the generating functional to
unity outside of the phase-space region of interest means
that we define observables that are completely inclusive
with respect to this unobserved part of the phase space.
We see from Eq. (9) that F ½z�ðpÞ� can be obtained by

multiplying Eq. (59) by ðz�ðp1Þ � 1Þ � � � ðz�ðpnÞ � 1Þ=n!,
integrating over the n-gluon phase space and summing
over n. Because z�ðpÞ is unity outside of the strip of width
�Y in rapidity, the n-gluon spectrum outside of the regime
of validity of Eq. (59) is not needed. This procedure leads
to a simple exponentiation of the leading log factorized
formula for the generating functional F Y;�Y as

hF Y;�Y½zðpÞ�iLLog ¼
Z
½D�1�½D�2�WYbeam�Y½�1�

�WYbeamþY½�2� � exp

�Z Yþð�Y=2Þ

Y�ð�Y=2Þ

� d3pðzðpÞ � 1Þ dN
d3p

��������LO

�
: (61)

This leading log result for the generating functional, in
turn, allows us to extract the corresponding formula for the
differential probability of producing exactly n gluons in the
rapidity slice of interest. This gives�

dnPn

d3p1 � � �d3pn

�
LLog

¼
Z
½D�1�½D�2�WYbeam�Y½�1�

�WYbeamþY½�2� 1n!
dN

d3p1

��������LO

� �� � dN

d3pn

��������LO

� exp

�
�
Z Yþð�Y=2Þ

Y�ð�Y=2Þ
d3p

dN

d3p

��������LO

�
:

(62)

This simple result, valid, we emphasize, in the leading log
approximation, suggests that the particle distribution in a
small rapidity slice can be written as the average over �1;2

of a Poisson distribution with the leading log corrections
completely factorized into the JIMWLK evolution of the
sources. Note that, despite the fact that the integrand con-

18We are ignoring the term ��ðp� qÞ dN
d3p

jLO because it does
not contribute in the leading logarithmic approximation in x as
discussed previously.
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tains a Poisson distribution, the l.h.s. of Eq. (62) is not a
Poisson distribution after the integration over the sources,
because particles produced uncorrelated in each configu-
ration of �1 and �2 are correlated in the averaged distribu-
tion because of the correlations among the color sources.19

In general, even for a fixed distribution of sources, the
probability distribution is not Poissonian [17]. To some
extent, the fact that we get a Poissonian functional form in
the integrand of Eq. (62) is a consequence of the way we
have organized our calculation. In Eq. (53) we are perform-
ing a weak coupling expansion of the moments hNðN �
1Þ � . . . � ðN � nþ 1Þi, that includes the orders g�2n and

the leading log part of the order g�2ðn�1Þ. Terms starting at

the order g�2ðn�2Þ are beyond the accuracy of our calcu-
lation, and therefore their values in our formulas are arbi-
trary. The arbitrariness of these subleading terms
influences the precise form of the resulting generating
functional. For example, if we had performed the weak
coupling expansion of hNni instead of hNðN � 1Þ . . . ðN �
nþ 1Þi, we would have obtained a different generating
functional. Of course, the two generating functionals so
obtained would lead to the same moments of the distribu-
tion to the order of our calculation. The nontrivial aspect of
our result in Eq. (62) is that all the deviations from a
Poisson distribution that result from the large logarithms
of x at NLO can be factorized into the JIMWLK evolution
of the sources. Equation (62) shows how these corrections
modify the n-gluon production probabilities. The
Poissonian nature of the multiplicity distribution and de-
viations from it are discussed in more detail in Appendix C.

V. CONCLUSION AND OUTLOOK

We demonstrated in this paper that our result of Paper I
on initial state JIMWLK factorization for the single inclu-
sive gluon spectrum in nucleus-nucleus collisions can be
extended to inclusive multigluon spectra. Our result is
valid provided all the gluons are produced in a rapidity
window of width �Y & ��1

s . Our final result for the gen-
erating functional for multigluon production, in the leading
logarithmic approximation in x1;2, is very simple; the

distribution of gluons produced in the stated rapidity win-
dow can be written as the average over the JIMWLK-
evolved distributions of sources of a Poisson distribution.
It is important to keep in mind that the result of this source
average is not a Poisson distribution, due to the correlations
between the evolved color sources.

As we discussed in Sec. III E, our results are of great
interest in detailed imaging of the space-time evolution of
nucleus-nucleus collisions. An important ingredient in fu-
ture studies will be to extend the present result to the case
of correlations between gluons produced at rapidity differ-

ences ��1
s & �Y. A full leading log computation of these

initial long range rapidity correlations requires that one
identifies and resums the additional large logarithmic cor-
rections that may arise when the rapidities in the 2-gluon
spectrum are widely separated. In the dilute regime, it was
noted in [49] that k?-factorization is broken when two
gluons are produced with a large rapidity separation be-
tween them; therefore, it will be interesting to see whether
the same conclusion holds in the JIMWLK framework
discussed here.
An important caveat (also applicable to our previous

study of the single gluon spectrum in nucleus-nucleus
collisions) is that final state effects, related to the growth
of unstable fluctuations, need to be resummed. While the
details are still unknown, the structure of the result is
known. The result of the resummation of unstable fluctua-
tions, as shown in Paper I, can be expressed as

hOiLLogþLInst ¼
Z
½D ~Aþ

1 �½D ~A�
2 �WY1

½ ~Aþ
1 �WY2

½ ~A�
2 �

�
Z
½Dað ~uÞ� ~Z½að ~uÞ�

�OLO½ ~Aþ
1 þ a; ~A�

2 þ a�: (63)

Here, we have traded the sources ~�1;2 in covariant gauge

for the corresponding gauge fields ~A�
1;2 � 1

r2
?
~�1;2. The

functional ~Z½að ~uÞ� is the spectrum of small fluctuations
of the classical field on the forward light cone. In Paper I,
O corresponded to the single inclusive spectrum, but this
formula also applies to the multigluon spectrum because
the proof does not depend on the nature of the observable
being measured. However, the complete functional form of
~Z½að ~uÞ� is still unknown—for a first attempt, see Ref. [50].
These considerations are eased somewhat if we take the

‘‘dilute-dense’’ limit of proton/deuteron-nucleus collisions
because we do not expect instabilities to play a major role
in that case. Several studies have been performed in this
limit [46–48,51–53]. A particular focus is on the applica-
bility of the so-called Abramovsky-Gribov-Kancheli cut-
ting rules [49,54–56]. We plan to address these issues in a
future work.
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APPENDIX A: FOURIER COEFFICIENTS OF
SMALL FLUCTUATION FIELDS

We will outline here the solution to the system of equa-
tions

19For instance, two color sources may be correlated because
they result from the splitting of a common ‘‘ancestor’’ in the
course of JIMWLK evolution.
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X
�;a

Z
k
½�k�a�;qh

ðþÞ
�k�aðpbÞ � �k�aþ;qh

ðþÞ
þk�aðpbÞ�

¼ �ðp� qÞfðþÞðpbÞ;
X
�;a

Z
k
½�k�aþ;qh

ð�Þ
þk�aðpbÞ � �k�a�;qh

ð�Þ
�k�aðpbÞ�

¼ �ðp� qÞfð�ÞðpbÞ;

(A1)

that was obtained in Eq. (39). We had previously derived
analogous equations in the case of a simpler scalar theory
in [17]. However, in [17], we did not manage to solve these
equations, and suggested that one may have to solve them
numerically. It turns out that one can in fact obtain an
analytical solution of Eqs. (39), thanks to the relations

X
�;a

Z
k
½hðþÞ

�k�aðp�bÞhð�Þ
þk�aðqcÞ � hðþÞ

þk�aðp�bÞhð�Þ
�k�aðqcÞ� ¼ ð2�Þ3���bc2Ep�ðp� qÞ;

X
�;a

Z
k
½hð�Þ

þk�aðp�bÞhðþÞ
�k�aðqcÞ � hð�Þ

�k�aðp�bÞhðþÞ
þk�aðqcÞ� ¼ ð2�Þ3���bc2Ep�ðp� qÞ;

X
�;a

Z
k
½hðþÞ

þk�aðp�bÞhðþÞ
�k�aðqcÞ � hðþÞ

�k�aðp�bÞhðþÞ
þk�aðqcÞ� ¼ 0;

X
�;a

Z
k
½hð�Þ

þk�aðp�bÞhð�Þ
�k�aðqcÞ � hð�Þ

�k�aðp�bÞhð�Þ
þk�aðqcÞ� ¼ 0:

(A2)

These relations are the mathematical consequence of the
unitary temporal evolution of small fluctuations on top of
the classical fieldAðxÞ. In particular, an orthonormal basis
of solutions of Eq. (33) remains orthonormal at any later
time. A proof of these formulas is presented in
Appendix B. Thanks to these relations, it is easy to invert
the system of equations (39), and one gets

�k�aþ;q ¼ 1

ð2�Þ32Eq

X
;b

½hð�Þ
�k�aðqbÞfðþÞðqbÞ

þ hðþÞ
�k�aðqbÞfð�ÞðqbÞ�;

�k�a�;q ¼ 1

ð2�Þ32Eq

X
;b

½hð�Þ
þk�aðqbÞfðþÞðqbÞ

þ hðþÞ
þk�aðqbÞfð�ÞðqbÞ�:

(A3)

APPENDIX B: UNITARY EVOLUTION OF SMALL
FLUCTUATIONS

Consider the partial differential equation�
ðhxg�

	�@x�@
	
x Þ�ab� @UðA�Þ

@A�a	ðxÞ@A�
�bðxÞ

�
a�bðxÞ¼0;

(B1)

where we have written explicitly all the color indices. We
assume that the background color field in which the wave
propagates is real. For a generic solution aðxÞ of this
equation, define the following vectors:

jai � a�aðxÞ
_a�aðxÞ

	 

; haj � a��aðxÞ _a��aðxÞ� 

; (B2)

where the dot means a derivative with respect to time.

Then, it is trivial to check that the following ‘‘scalar
product,’’

ha1j� 1ja2i � ig�	�ab

Z
d3x½ _a��a

1 ðxÞa	b2 ðxÞ
� a

��a
1 ðxÞ _a	b2 ðxÞ�; (B3)

where � 2 is the second Pauli matrix, is independent of
time when a

�
1 and a

�
2 are two solutions of Eq. (B1).

Then, if the a�k�aðxÞ are the retarded solutions of
Eq. (B1) whose initial conditions at x0 ! �1 are
��� ðkÞTae�ik�x, one can check explicitly that

haþk�aj�2jaþk0�0a0 i ¼ ð2�Þ32Ek���0�aa0�ðk� k0Þ;
ha�k�aj�2ja�k0�0a0 i ¼ �ð2�Þ32Ek���0�aa0�ðk� k0Þ;
haþk�aj�2ja�k0�0a0 i ¼ ha�k�aj�2jaþk0�0a0 i ¼ 0: (B4)

(Since all these scalar products are time independent, it is
sufficient to check these relations by calculating the inte-
gral in the r.h.s. of Eq. (B3) for the corresponding initial
conditions.)
Consider now a generic solution a�ðxÞ of Eq. (B1).

Since the solutions a��k�aðxÞ span the entire space of

solutions, we can write

jai � X
�;a

Z
k
½�k�a� ja�k�ai þ �k�aþ jaþk�ai�; (B5)

where the coefficients �k�a� do not depend on time. By
using the orthogonality relations obeyed by the vectors
ja�k�ai, one obtains

�k�a� ¼ �ha�k�aj�2jai; �k�aþ ¼ haþk�aj�2jai:
(B6)
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Inserting these relations back into Eq. (B5), one gets the
following identity,

X
�;a

Z
k
½jaþk�aihaþk�aj � ja�k�aiha�k�aj� ¼ �2g

�	�bc;

(B7)

which is valid over the space of solutions of Eq. (B1). [The
Lorentz indices �, 	 and color indices b, c do not appear
explicitly in the l.h.s., but are part of the definition of the
vectors jai and haj—see Eq. (B2).] This relation is valid at
all times, and is the expression of the fact that the unitary
evolution of small fluctuations preserves the completeness
of the set of states ja�k�ai.

Let us now introduce states ja0
�k�ai, that are the ana-

logue of the states ja�k�ai in the vacuum (i.e. when the
background field is zero). Naturally, they are just plane

waves a0��k�a ¼ ��� ðkÞTae�ik�x that we have introduced in

order to perform the Fourier decomposition of classical
fields and small fluctuations. The Fourier coefficients

hð�Þ
�k�aðpcÞ of the fluctuations a���a can be obtained as

hðþÞ
�k�aðpcÞ ¼ �ha0

�pcj�2ja�k�ai;
hð�Þ
�k�aðpcÞ ¼ ha0

þpcj�2ja�k�ai:
(B8)

(These relations are valid only in the regions where the
interactions are switched off, i.e. when x0 ! �1. In the
rest of the discussion, we are only interested in these
Fourier coefficients in the limit x0 ! þ1.) By multiplying
Eq. (B7) by ha0

�p�bj�2 on the left and by �2ja0
�0qci on the

right and using ðh��0k�aðpcÞÞ� ¼ h��
��0k�aðpcÞ, we obtain

the following relation among these Fourier coefficients:

X
�;a

Z
k
½hð��Þ

þk�aðp�bÞhðþ�0Þ
�k�aðqcÞ

� hð��Þ
�k�aðp�bÞhðþ�0Þ

þk�aðqcÞ�
¼ ���0�ð2�Þ3���bc2Ep�ðp� qÞ; (B9)

which is nothing but a compact way of writing the four
equations (A2).

APPENDIX C: POISSON DISTRIBUTION

At first sight, Eq. (62) appears to be the average over the
distributions of sources of a Poisson distribution. This
seems to contradict a result we stressed in [17], that the
distribution of multiplicities calculated in a fixed configu-
ration of sources �1;2 is not a Poisson distribution. For the

sake of the discussion in this appendix, let us introduce the
generating function FðzÞ for the multiplicity distribution in
the region of rapidity ½Y � �Y=2; Y þ �Y=2�. In the lan-
guage of the present paper, it is obtained by using in
Eq. (61) a constant function zðpÞ whose value is equal to
the number z.

Consider first this generating function for a given con-
figuration �1;2 of the external color sources. In [17], FðzÞ
was parametrized as20

lnFðzÞ � X1
r¼1

brðzr � 1Þ; (C1)

and we had obtained the formula for the probability Pn of
producing n particles in the portion of phase space under
consideration to be

Pn ¼ e
�P

r

br Xn
p¼1

1

p!

X
r1þ���þrp¼n

br1 � � � brp : (C2)

In Ref. [17], we also showed that br is the sum of all the cut
connected vacuum graphs, where exactly r internal lines
are cut. Because br is a sum of connected graphs, it has a
perturbative expansion that starts at the order 1=g2,

br ¼ 1

g2
� 1 � g2 � � � � (C3)

In particular, all the br have a priori the same order of
magnitude. However, it is easy to see that Eq. (C2) is a
Poisson distribution only in the exceptional case where21

b1 � 0; br ¼ 0 for r � 2: (C4)

Since for a generic field theory the br for r � 2 have no
reason to vanish or to be smaller than b1, the distribution of
the multiplicities in a fixed configuration of sources is, in
general, not a Poisson distribution. Moreover, since b2;3;���
are of the same order in g2 as b1, the deviations from a
Poisson distribution are an effect of order unity, not a
subleading correction.
In order to make the connection with the present paper

easier, it is preferable to parametrize FðzÞ as

lnFðzÞ � X1
k¼1

ckðz� 1Þk: (C5)

[This series starts at the index k ¼ 1, because Fð1Þ ¼ 0.]
The numbers ck are related to the numbers bk by

br ¼
X1
k¼r

k
r

	 

ð�1Þk�rck; ck ¼

X1
r¼k

r
k

	 

br; (C6)

where the
k
r

	 

are the binomial coefficients. The deriva-

tives of lnFðzÞ evaluated at z ¼ 1 are best expressed in
terms of the coefficients ck as

@k lnFðzÞ
@zk

��������z¼1
¼ k!ck: (C7)

20Compared to the notations used in [17], we absorb the factors
of 1=g2 into the definition of the numbers br.
21From Eq. (C2) and the definition of the br, we have FðzÞ �P
nz

nPn. Then, it is immediate to check that lnFðzÞ should be a
polynomial of degree 1 in the case of a Poisson distribution.
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Let us now rephrase our results in this language. The
inclusive n-particle spectrum is the nth derivative of FðzÞ
at z ¼ 1. These derivatives read

Fð1Þð1Þ ¼ c1; Fð2Þð1Þ ¼ c21 þ 2c2;

Fð3Þð1Þ ¼ c31 þ 6c1c2 þ 6c3; � � �
(C8)

All the coefficients ck are sums of connected vacuum
graphs, and therefore start at the order 1=g2, up to loga-
rithms. At leading order, we thus keep only

FðnÞð1ÞjLO ¼ ½c1�nLO: (C9)

At this order of truncation, one can obviously get a Poisson
distribution, since this approximation is compatible with
c2 ¼ c3 ¼ � � � ¼ 0, i.e. b2 ¼ b3 ¼ � � � ¼ 0. However, the
coefficients b2;3;��� could have any value of order g�2

without affecting our leading order truncation. The arbi-
trary choice one is allowed to make for these subleading
terms, in general, alters the Poissonian nature of the
distribution.

The actual paradox arises only at the next-to-leading
order. There, one keeps the terms

FðnÞð1ÞjLOþNLO ¼ ½c1�nLO|fflffl{zfflffl}
g�2n

þ n½c1�n�1
LO ½c1�NLO þ n!½c1�n�2

LO ½c2�LO|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g�2ðn�1Þ�log

:

(C10)

This does not correspond to a Poisson distribution any-
more, since one needs a nonzero b2 in order to obtain these
formulas. In fact, at this order of truncation, one has b2 ¼
c2 while the higher br’s are still zero. Even worse, our
calculation of the second derivative of lnF shows that c2 is
enhanced by a large logarithm, and is actually of order
g�2 lnð1=x1;2Þ rather than the naive expectation g�2.

Therefore, not only is the distribution not Poissonian, but
the deviations from a Poisson distribution are logarithmi-
cally large.

However, the main result of the present paper is that one
can obtain the NLO corrections to the inclusive n-particle
spectra by the action of a certain operator on the product of
n 1-particle spectra at LO. In the present language, this
reads

FðnÞð1ÞjLOþNLO ¼ ½1þL1 þL2�½c1�nLO: (C11)

Remember that, so far, all the discussion is for a fixed
configuration of the sources �1;2. Then, by averaging over

these sources and by using the Hermiticity of the operator
L1 þL2, one can transfer the action of this operator from
the quantity ½c1�nLO to the distribution of sources. As we

have seen, this amounts to letting the distribution of
sources evolve according to the JIMWLK equation. In
other words, Eq. (C10) deviates strongly from a Poisson
distribution, but does so in such a way that all correlations
can be interpreted as coming from correlations among the
sources that are generated by the JIMWLK evolution.
Let us end this appendix with a word of caution in the

interpretation of Eq. (61). Strictly speaking, our leading log
approximation gives us control only over the g�2 lnð1=x1;2Þ
part of the coefficient b2, but not over its g

�2 part (without
a log). The latter would only show up in a next-to-leading-
log calculation. This means that, in principle, one could
modify the argument of the exponential in the integrand of
Eq. (61) by a term of second degree in zðpÞ � 1 and with a
coefficient of order g�2, without affecting any of our
results for the inclusive gluon spectra at the order at which
we calculate them. Obviously, such a modification of the
integrand in Eq. (61) would be a deviation from a Poisson
distribution. Thus, the statement according to which the
deviations from a Poisson distribution come from the
JIMWLK evolution of the distributions of the sources
�1;2 is true only for the largest of these deviations—i.e.

those that are enhanced by large logarithms of the momen-
tum fractions x1;2. Other deviations from Poisson exist, that

are not enhanced by such logarithms—these are beyond the
scope of the present calculation.
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