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We examine the possible extension of the parameter space of the minimal supersymmetric extension of

the standard model (MSSM), as expressed via the renormalization-group equations in terms of universal

soft supersymmetry-breaking terms at the unification scale, to include tachyonic input scalar masses.

Many models with negative masses-squared for scalars at the unification scale may be viable because the

small sizes of the masses-squared allow them to change signs during the renormalization-group evolution

to the electroweak scale. However, in many cases, there is, in addition to the electroweak vacuum, a much

deeper high-scale vacuum located along some F- and D-flat direction in the effective potential for the

MSSM. We perform a numerical search for such vacua in both the constrained MSSM (CMSSM) and a

variant with nonuniversal Higgs masses (NUHM). We discuss the circumstances under which the

existence of such a deep charge- and color-breaking vacuum is consistent with standard cosmology. A

crucial role is played by the inflation-induced scalar masses, whereas thermal effects are often irrelevant.

DOI: 10.1103/PhysRevD.78.075006 PACS numbers: 12.60.Jv, 11.30.Qc

I. MOTIVATION

Understanding the allowed parameter space in versions
of the minimal supersymmetric extension of the standard
model (MSSM) with grand unified theory (GUT) inspired
boundary conditions is a research programme that gains
motivation at the onset of the LHC. In the constrained
MSSM (CMSSM), in which gaugino and scalar masses
are unified at the GUT scale, and its generalizations with
nonuniversal boundary conditions, e.g., for the Higgs sca-
lar masses (NUHM), the identity and relic density of the
lightest supersymmetric particle (LSP) place strong con-
straints on the parameter space [1]. For example, in models
with small values of the unified scalar mass, m0, and large
values of the gaugino mass, m1=2, the LSP is typically the

lighter spartner of the � lepton. This region of the MSSM
parameter space would predict charged dark matter and
hence would be excluded if R-parity is conserved and the
~�1 is stable. However, this corner of parameter space might
be allowed if the gravitino is lighter than the ~�1 and
becomes the LSP [2], as may occur in mSUGRA models
[3]. In this case, the ~�1 decays to the gravitino LSP and is
subject to important astrophysical constraints that do not
exclude this region. If the gravitino is the LSP, the CMSSM
parameter space may even extend to negative values of m2

0

[4].1 In this paper, we argue against excluding all of this
region because of unreasoning tachyophobia.
One can define an effective MSSM model by specifying

its mass parameters at the weak scale. In models with
relatively light squark masses, the renormalization-group
equations (RGEs) for the scalar masses may then lead to
m2ðQ0Þ ¼ 0, for some value of Q0 in the range MW <
Q0 <MGUT, with m2ðQÞ< 0 for Q>Q0. This raises the
question whether there is a dangerous charge- and color-
breaking (CCB) vacuum.2 The answer to this question
depends on two factors: whether there are potentially large
logarithmic corrections to the potential which are not
absorbed in the running of mass parameters and whether
there are significant nonrenormalizable terms in the effec-
tive potential. In general these vacua, determined by mini-
mization of the tree-level scalar potential, occur with
vacuum expectation values (vevs) of order v2 � jm2j �
Q2

0. However,m
2ðQÞ< 0 and the existence of F- and D-flat

directions in the MSSM leads to runaway to vðQÞ �Q for
Q>Q0, where logarithmic corrections are small. Such a
CCB vacuum would exist if there were no nonrenormaliz-
able terms in the effective potential, but such terms are in
general present, and their magnitudes determine where the
runaway vev is stabilized and hence whether the existence
and location of such a CCB vacuum can be calculated

2For discussions concerning CCB vacua in the CMSSM, see
[7].

1Negative scalar masses squared also appear at the high-
energy scale [5] in a version of mirage mediation [6].
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reliably. Thus, as argued in [8], for certain parameter
choices, vevs will indeed be generated with vðQÞ �Q
for Q>Q0, ensuring the existence of the CCB vacuum
unless new physics between the GUT and electroweak
scale is introduced. Here we will enlarge upon this idea
and identify the flat directions that are primarily respon-
sible in the CMSSM and NUHM.

However, it is possible that such CCBs could be toler-
ated [9], if the Universe would have fallen naturally into
our false electroweak (EW) vacuum as the cosmological
temperature decreased, and if the lifetime of this vacuum
for tunnelling into the true CCB vacuum is much longer
than the present age of the Universe. Whether the EW
vacuum is in fact preferred by cosmology depends, in
particular, on the scalar masses-squared generated during
inflation. If these masses-squared are positive and of the
order of the square of the Hubble parameter, the ‘‘more
symmetric’’ EW vacuum is favored. On the other hand, if
these are negative, as in the Affleck-Dine scenario for
baryogenesis [10], the Universe would remain trapped in
the true CCB vacuum [11].

The present article delineates regions of parameter space
for which high-scale CCB vacua are present. We study
both the CMSSM and less constrained models with non-
universal Higgs masses (NUHM) [12,13]. For each choice
of GUT-scale parameters, we follow the analysis of [14] for
determining the set of problematic flat directions and the
lowest order of GUT- or Planck-scale nonrenormalizable
operators whose appearance might lift the flat direction.
The existence of CCB vacua will depend on both the order
of the nonrenormalizable operator and the fundamental
scale associated with it. In the case of the CMSSM, there
are wedges of parameter space with m2

0 < 0 where no

MSSM sfermion is tachyonic at the EW scale. However,
these regions generally have calculable CCB vacua, as-
suming that the mass scale M� in the nonrenormalizable
interaction that stabilizes the high-scale vacuum is greater
than or equal to MGUT. Such regions would be acceptable
in suitable cosmological scenarios that populate exclu-
sively the EW vacuum. Similar questionable tachyonic
regions occur also in the NUHM, even if m2

0 > 0, due to

the (independent) squared masses for Higgses being nega-
tive. However, we emphasize again that these regions
would be acceptable in cosmological scenarios that avoid
populating high-scale vacua: one should not be unreason-
ingly tachyophobic.

II. CCBS ALONG FLAT DIRECTIONS IN THE
MSSM

The tree-level scalar potential can be written schemati-
cally (including soft supersymmetry-breaking contribu-
tions) as

V ¼ 1
2
~m2ðQÞ�2 þ 1

4�ðQÞ�4; (2.1)

where, for simplicity, we have neglected cubic terms and �

may vanish along some directions in � space. We assume
as well that some set of soft supersymmetry-breaking
scalar masses have ~m2ðQÞ< 0 for Q above some scale
Q0, for a particular choice of GUT-scale parameters in
the CMSSM or NUHM. Along a generic direction in field
space, with �ðQÞ � g4 where g is some gauge coupling,

minimization of the tree-level potential yields a vev at� ¼
vðQÞ ¼ ½� ~m2ðQÞ=�ðQÞ�1=2 which is of similar order to the
supersymmetry-breaking scale, m3=2. However, one-loop

corrections to the potential will have the form �V �
~m2ðQÞvðQÞ2 ln½vðQÞ2=Q2� and, for v � Q0, the large log-
arithms may reduce significantly the reliability of the CCB
vacuum calculation.
On the other hand, the appearance of negative mass-

squared ~m2 would have important implications for the
moduli � of the flat directions in the MSSM where � ¼
0, since the tree-level solution yields a runaway vev.
However, we expect high-scale nonrenomalizable opera-
tors to regulate the runaway behavior in such a case. In the
presence of a nonrenormalizable superpotential WNR of
degree n (see Appendix A), the effective potential becomes

V ¼ ~m2j�j2 þ juj2
M2ðn�3Þ

�
j�j2ðn�1Þ (2.2)

and the runaway direction for the modulus � is stabilized.
In (2.2), u is an Oð1Þ dimensionless coupling constant and
M� is the cutoff scale associated with the dynamics that
generatesWNR. Depending on the circumstance, it could be
between the unification scale and the Planck scale. The
modulus� then acquires a vev whose order of magnitude is
given by

v � ½� ~m2M2ðn�3Þ
� �1=ð2ðn�2ÞÞ ð�j�jÞ: (2.3)

General properties of flat directions and the operators
which lift them are found in Appendix A, and examples
of specific MSSM flat directions are given in Appendix B.
The one-loop correction to the scalar potential can be

written as

�V1-loop ¼ N

64�2
g2v2 ~m2

avg ln
g2v2

Q2
; (2.4)

where N is the number of multiplets that get masses at the
scale m ¼ gv. The cancellation between boson and fer-
mion loops has been taken into account, as is apparent from
the factor ~m2

avg. This is an average soft supersymmetry-

breaking mass-squared, determined from the one-loop con-
tributions of the N states.
If v is small, the overall loop correction can be large

relative to the tree-level potential (2.2), which satisfies V �
Oð ~m2v2Þ near the minimum, rendering the tree-level
analysis unreliable. We introduce a parameter � that rep-
resents the boundary where this large-logarithm problem
occurs:

v & �Q ) unreliable; v * �Q ) reliable: (2.5)
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Since v shuts off at low Q in the models we consider, it is
possible, in principle, that the tree-level analysis may never
be reliable. We have nothing to say about such models in
this article, except that they are not excluded by our
analysis. On the other hand, when we find a vev v and
there is a regime of Q for which this tree-level result is
reliable, a vacuum state really exists at some large value of
the modulus �. The existence of this deep vacuum at large
field values—generally CCB—has cosmological implica-
tions, which we discuss below. To determine the parameter
�, we note that the loop correction (2.4) is comparable to
the tree term ~m2v2 when

N

64�2
g2 ln

v2

Q2
��1 ) � ¼ expð�32�2=Ng2Þ: (2.6)

When v � �Q, we can reliably state that at least two vacua
exist: the electroweak (good) vacuum and the high-scale
(bad) one.

Now a word on numbers: in (2.6), we should take
1=10< g2 < 1=2, corresponding to the running constants
between the EW and GUT scales. The number N depends
on the flat direction but would typically range between
Oð10Þ and Oð100Þ. For the larger value of N, we have � &
Oð10�3Þ; moreover, � falls exponentially as N decreases,
so it is generically much smaller than 10�3. In other words,
the loop factor suppression g2=64�2 means that the loga-
rithmic enhancement must be quite large before the tree-
level analysis becomes unreliable. As a consequence, the
RG-improved tree-level analysis is generally a reliable
indicator of the high-scale vacuum.

As an example, consider the LLec flat directions in the
MSSM. Eleven chiral multiplets participate in the mass
matrix once renormalizable superpotential terms are ac-
counted for, namely ei, �i, e

c
i ,H

0
d,H

�
d . The moduli space is

C3 once D- and F-flatness constraints are taken into ac-
count [14]. Thus eight chiral multiplets get OðvÞ masses,
although in some cases they are suppressed by very small
Yukawa couplings yei , corresponding to D-moduli whose
flatness is lifted by the renormalizable superpotential.3

Furthermore, SUð2Þ �Uð1Þ gauge multiplets get OðgvÞ
masses. Each chiral multiplet contributes 2 to N, because it
includes a complex scalar and a Weyl fermion. A similar
contribution comes from each of the four vector multiplets
contained in SUð2Þ �Uð1Þ. Thus N ¼ 2ð8þ 4Þ ¼ 24.
Even if we assume the GUT-scale value g2 ¼ 1=2, we
already get �� 4� 10�12. In actuality, for many of the
masses we should use ðyei Þ2 � g2 and � is even much
smaller still. The result is that we trust the tree-level
analysis for practically all v=Q: it is a robust result that
we have at least these two vacua, and the cosmological
arguments apply.

Figure 1 represents schematically several generic cases
for the possible variation with Q of the vev vðQÞ. For each
of the curves #1–#4, vðQÞ � 0 at large Q, but vðQÞ ! 0 at
small Q. In each of the cases #1–#3, the condition (2.5) is
satisfied over some range of Q and hence, according to the
arguments presented above, the existence of a high-scale
vacuum can be predicted reliably in each of these cases.
These are representative of what happens in much of the
parameter space that we study below in specific CMSSM
and NUHM scenarios. On the other hand, when we con-
sider curve #4 in Fig. 1, we see that, over the entire range of
Q, the tree-level prediction cannot be trusted, owing to the
persistence of large logarithms. For this reason, we exer-
cise caution and choose not to apply the cosmological
constraint in such a case. In some specific cases, a one-
or two-loop analysis might be reliable, and the possibility
of a high-scale (bad) minimum could be examined in more
detail. However, studies of such possibilities lie beyond the
scope of this work, where we restrict ourselves conserva-
tively to the criterion (2.5).

III. THE COSMOLOGICAL CONSTRAINT

Having established the criteria for determining the ex-
istence of a high-scale vacuum (which we apply to specific
CMSSM and NUHM models in the following two sec-
tions), we now turn our attention to the cosmology of
models with high-scale vacua, asking how problematic
their existence may be. Such a global CCB vacuum with
v�Q 	 MW is separated from the local charge- and
color-conserving minimum at the origin (or the EW scale
if the Higgses are the scalars in question) by a potential
barrier. As argued in [9], this model remains perfectly
acceptable if the Universe is trapped in the local minimum
near or at the origin, as the time scale for producing a

v =    Qε
v

Q

v =
 Q

v =
 Q

/g

#1

#2
#3
#4

FIG. 1. Curves of the flat-direction vev v ¼ vðQÞ (solid lines)
versus various constraint curves (dashed lines). In regions where
vðQÞ lies above the dashed lines, the tree-level effective potential
is a reliable indicator for the existence of a high-scale (bad)
vacuum, according to the criterion (2.5).

3The LLe moduli that inhabit C3 are lifted by the nonrenor-
malizable superpotential and get Oð ~mÞ masses, which can be
ignored in the loop corrections.
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bubble of lower high-scale vacuum is generally much
longer than the age of the Universe.

However, in models with negative m2
0ðMGUTÞ, there are

many such vacua corresponding to different flat directions,
and each has a larger domain of attraction than that of the
EW vacuum. Thus, for arbitrary initial conditions, the
system is overwhelmingly likely to end up in one of the
‘‘bad’’ vacua. However, this question must be analyzed in
some appropriate cosmological setting, which introduces
two extra ingredients affecting the shape of the effective
potential: inflation and thermal effects. During inflation,
supersymmetry is broken by the vacuum energy, which
results in an extra contribution to the soft scalar masses,
of the general form [15]

�m2 ¼ cH2; (3.1)

where H is the Hubble expansion rate during the infla-
tionary epoch. The dynamics of the flat directions depend
crucially on the sign of c, which is model dependent. For a
minimal Kähler potential, c ¼ 3. On the other hand, for a
no-scale Kähler potential, the induced scalar masses are
zero at the tree level and loop corrections generate c < 0
for flat directions not involving the stop [16].

We now consider different possibilities for the coeffi-
cient c, considering first the possibility c > 0. We assume
also that the initial value of the flat-direction field � is
1017 GeV, in which case Vð�Þ � Vinflaton, and the evolu-
tion of � does not affect the Hubble constant significantly
until the late stage when H�m3=2. In this case, � obeys

the equation of motion

€�þ 3H _�þ V0ð�Þ ¼ 0; (3.2)

where H is a slowly varying function of time that can be
described by an adiabatic approximation. For our purposes,
V 0 can be approximated by cH2� until H becomes com-
parable to m3=2. The effect of the nonrenormalizable term

in Vð�Þ is less significant. The general solution of (3.2) is

�ðtÞ ¼ C1 exp½12Hð�3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 4c

p Þt�
þ C2 exp½12Hð�3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 4c
p Þt�; (3.3)

where C1;2 are determined by the initial conditions.

We consider first the classical evolution. For c ¼ Oð1Þ,
the magnitude of� scales as�ðtÞ � exp½�Oð1ÞHt�. Thus,
within 5–10 Hubble times, � will be of order H even if its
initial value was very large4 and, within the next �30
Hubble times, � will be of the electroweak scale.

We next take into account the de Sitter quantum fluctua-
tions, which play an important role in the dynamics of flat
directions [11]. For a scalar field of mass �H [17],

h�2i �H2: (3.4)

It is then clear that at large �, the classical damping

dominates and when � becomes comparable to H, these
quantum fluctuations are as important as the classical
evolution. From that moment on, � undergoes random
oscillations of order H per Hubble time plus classical
damping which decreases its magnitude by a factor Oð1Þ
per Hubble time. As HðtÞ decreases, so does the amplitude
of random oscillations about the origin. At the time when
the soft term m2

0 becomes relevant (which is after the

‘‘inflaton oscillation’’ era), the amplitude of oscillations
is Oðm3=2Þ. The field settles at the origin and the quantum

oscillations are too small to reach the barrier separating the
two minima, which is further than Oðm3=2Þ away from the

origin. Therefore, the presence of a deep CCB minimum
would not be problematic for c� 1.
However, these conclusions do not in general apply for

small positive c: 0< c � 1, which is a borderline case.
First, the classical evolution is slow and, second, the am-
plitude of quantum oscillations is larger: h�2i ’
3H2=ð8�2cÞ. Whether the field settles at the origin at the
end of inflation depends on further specifics of the infla-
tionary model as well as the magnitude of c.
For c 
 0 (see [15]), the minimum of the potential

during (as well as after) inflation is at large �. Classical
evolution will drive � towards this minimum, whose po-
sition is a slowly evolving function of time. At H �m3=2,

the field freezes at the CCB minimum, and the quantum
fluctuations do not play any significant role. It is important
to note also that thermal effects are irrelevant at large �
and cannot destabilize the CCB minimum. This is because
all the fields � couple and receive masses of order �
(multiplied by the gauge or Yukawa couplings). Thus
they are heavy and cannot be thermalized. Consequently,
no thermal mass term T2�2 is generated by thermal loops.5

We thus conclude that, for c 
 0, the presence of deep
CCB minima is ruled out by cosmological considerations.
This applies, in particular, to models with the Heisenberg
symmetry [18], including no-scale models of supergravity
[19]. Furthermore, this precludes the possibility of the
Affleck-Dine (AD) mechanism for baryogenesis [10],
which requires negative c [15]. Concretely, this applies to
the cases #1–#3 of Fig. 1, in which the existence of such a
bad high-scale CCB can be predicted reliably. On the other
hand, even these cases would not be excluded for positive
c� 1, and possibly also for small positive c.
We remark finally that we have neglected the trilinear

soft supersymmetry-breaking A-terms in the above consid-
erations. In general, one expects A-terms of order H to be
generated during inflation. If their magnitude is a few times
larger than H, an additional local minimum at large �
appears even for positive c� 1. Given a large initial value
of �, the field will evolve to this minimum and remain

4Here we take H � 1013�14 GeV and �0 � 1017 GeV.

5Note that, although � itself is light, it has no self-interactions
at the renormalizable level.
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there after inflation. Thus, deep CCB vacua can be prob-
lematic even for c� 1, if the A-terms are sufficiently large.

In what follows, we will examine specific CMSSM and
NUHM parameter sets for which ~m2 < 0 at some high
renormalization scale, with the aim of elucidating whether
one should worry about them.

IV. TACHYONS IN THE CMSSM

We begin by considering the parameter space of the
CMSSM, in which all gaugino masses are unified at a
common scale (where gauge-coupling unification occurs)
with the common value m1=2. Similarly, all soft scalar

masses are unified at the same renormalization scale with
a common value m0, as are the trilinear terms with a
common value A0. The remaining free parameters are the
ratio of the two Higgs vevs, parametrized by tan�, and the
sign of the 	 parameter.

For each choice of these four input parameters (plus the
sign of	), the low-energy spectrum can be determined and
compared with phenomenological and cosmological con-
straints. In Fig. 2, we show the ðm1=2; m0Þ plane for two

fixed values of tan�, both for 	> 0 and A0 ¼ 0. The sign
displayed on the vertical axis is actually the sign of m2

0, so

what is displayed is m2
0=jm0j, strictly speaking. In panel

(a), we have fixed tan� ¼ 10 and, for m2
0 > 0, we see

results common in many CMSSM studies [1]. The dark
(brown) shaded region corresponds to the region for which
the stau is the LSP and as such this region is normally
excluded unless the gravitino is in fact the LSP.6 The

medium (green) shaded region, at low m1=2 is excluded

by the constraint arising from the branching ratio of b !
s
. The vertical dashed line is the chargino mass contour at
104 GeV, and the nearly vertical dot-dashed line is the
Higgs mass contour at 114 GeV, as obtained using
FeynHiggs [21]. Only regions to the right of these lines
are allowed by LEP. The pink band bordered by black solid
curves is the region where supersymmetric corrections to
the standard-model calculation of ðg� 2Þ	 match the ex-

perimental measurement of ðg� 2Þ	 within 2-� uncertain-

ties (between the dashed curves agreement occurs at the
1-� level). Finally, in the (turquoise) shaded region that
tracks the stau LSP boundary at large m1=2, the relic

density of the lightest neutralino would lie in the range
of the cold dark matter density determined by WMAP and
other observations [22], if this neutralino were the LSP.
Also shown in Fig. 2(a) is a large (pink) shaded region at

low m1=2 and negative m2
0 where one of the sfermions is

tachyonic at the electroweak scale. This region is also
excluded. Of particular interest to us here is the region
wherem2

0 < 0 but the shading indicates that the lighter stau
is the lightest spartner of a standard-model particle but is
not tachyonic at the electroweak scale: we repeat that parts
of this region may in principle be viable [4] if the gravitino
is in fact the LSP. We perform our scan of the parameter
space in this region looking for flat directions which could
lead to a bad high-scale minimum of the potential.
According to the analysis of [14], the QQuue flat direc-

tion is not fully lifted until degree n ¼ 9, so from Eq. (2.3)
we see that v along this direction is quite close to the
nonrenormalizable mass scale M�. The dot-dashed curves
in Fig. 2 labeled by M� demarcate regions for which we
find solutions to vðQÞ ¼ Q: for a given value of M�, all
regions below the corresponding curve admit solutions to
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FIG. 2 (color). Portions of the CMSSM (m1=2, m0) planes for (a) tan� ¼ 10 and (b) tan� ¼ 50. The notations are described in the
text. The lower pink region is excluded because the lighter stau would be tachyonic at the EW scale. The regions below the dash-dotted
curves have problematic high-scale tachyons for the indicated values of M� if � ¼ 1, while for � & 10�3 all regions with m2

0 < 0 are

excluded.

6Note that, even in this case, much of the region shown is
excluded due to effects during and after big-bang nucleosynthe-
sis involving the bound state of the stau and He: see [20] and
references therein.
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vðQÞ ¼ Q. Thus, below the curves we find a bad CCB
vacuum that might invalidate the corresponding choice of
parameters, subject to the cosmological considerations
discussed in the previous section. When M� ¼ MP, all
regions with m2

0 < 0 have this problem. Because all of

the scalars have ~m2
i < 0 at high enough scale when m2

0 <
0, this flat direction always has a reliable bad CCB mini-
mumwhen we take � & 10�3, for allM� � MGUT. Thus all
CMSSM models with m2

0 < 0 and � & 10�3 are problem-

atic according to our analysis.
In panel (b) of Fig. 2, we show the analogous parameter

plane when tan� ¼ 50,	> 0, and A0 ¼ 0. The part of the
ðm1=2; m0Þ plane shown is dominated by regions where the

stau is the lightest sparticle apart from the gravitino
(shaded dark brown) and where the stau is tachyonic at
the EW scale (shaded pink). The standard CMSSM phe-
nomenologically and cosmologically acceptable regions
occur at m1=2 > 200 GeV, and so are not visible in the

part of the ðm1=2; m0Þ plane displayed. The wedge-shaped

brown region with m2
0 
 0 has a calculable high-scale

CCB minimum, as was the case tan� ¼ 10. For this rea-
son, we do not display planes with intermediate choices of
tan�. We have also scanned the CMSSM planes with A0 �
0, and the results are qualitatively similar to those shown
here.

To summarize, because in practice � & 10�3 for any
possible flat direction, and more especially for the
QQuue one, the CMSSM with m2

0 < 0 always has a bad

CCB vacuum. However, this may not be populated, when
cosmological considerations are taken into account.

V. TACHYONS IN THE NUHM

One alternative to the CMSSM is the NUHM, where the
scalar partners of the quarks and leptons still unify at
MGUT, but the soft supersymmetry-breaking scalar masses
associated with the two Higgs doublets do not. This class
of models has, effectively, two additional free parameters
relative to the CMSSM. These are often chosen to be the
weak-scale values of 	 and the Higgs pseudoscalar mass,
mA. Whilst it is certainly possible within the context of the
NUHM to choose m2

0 < 0 (leading to the same difficulty

with the QQuue flat direction as in the CMSSM), prob-
lems with CCB can already occur for certain choices of 	
andmA even whenm

2
0 > 0. This is because, when the weak

scale j	j is large, typically one or both of the Higgs
squared masses m2

1;2 ¼ 	2 þ ~m2
1;2 is negative at the GUT

scale, a problem that is accentuated at small mA. In this
case, the squark and slepton masses-squared remain posi-
tive throughout the RGE evolution, avoiding the QQuue
flat direction problem, and vevs v � Q for all Q may
develop along theH1H2 flat direction, because this is lifted
by a lower-order nonrenormalizable term (n ¼ 4). As a
consequence, a larger fraction of the parameter space is
allowed.

At scalesQ not too far above the EW scale, one begins to
see the EW vacuum. The negative masses-squared of
MSSM Higgses can lead to unacceptable vacua with
CCB also at this low scale. We do not include the details
of such low-scale CCB vacua in the analysis, as this would
require a much more careful treatment of loop corrections
and contributions from all soft supersymmetry-breaking
operators. For this reason, we terminate the NUHM analy-
sis at Q ¼ 10 TeV in our numerical studies.
In Fig. 3, we show examples of (	, mA) planes in the

NUHM for fixed m1=2 ¼ 300 GeV, m0 ¼ 100 GeV, and

A0 ¼ 0 with tan� ¼ 10 (panels a, c, and e) and tan� ¼ 50
(panels b, d, and f). We use the same shadings as used for
the CMSSM to denote regions excluded by b ! s

(shaded medium (green)), which excludes much of the
parameter space at	< 0, and a region in which the lighter
stau would be the lightest spartner of a standard-model
particle (shaded dark (brown)). This includes two areas
with relatively small	 andmA, for tan� ¼ 10, and most of
the left side of the plane for tan� ¼ 50. New to this figure
are regions shaded dark (blue) for which the sneutrino is
the lightest spartner of a standard-model particle, that are
seen at large 	 and mA, for tan� ¼ 10, and in the upper
right of the planes, for tan� ¼ 50. At least parts of the
regions with a light stau or sneutrino could be allowed if
the gravitino is the LSP. Once again, the dashed vertical
lines at small 	 show the 104 GeV chargino mass contour.
The thin blue lines show the contour wheremA ¼ 2m� and

the regions of good neutralino relic density near these lines
correspond to the rapid-annihilation funnel region familiar
from the CMSSM at large tan�. Other strips with an
acceptable neutralino LSP relic density appear in the stau
and sneutrino coannihilation regions, running parallel to
boundaries of the brown and blue regions, and in a ‘‘cross-
over’’ strip close to the chargino exclusion, where the
neutralino is a mixed gaugino/Higgsino state.
We show in each panel of Fig. 3 three dot-dashed con-

tours with differing M�. The inner curves (with the lowest
values of j	j) correspond toM� ¼ MP, whereas the middle

and outer curves correspond toM� ¼ MP=
ffiffiffiffiffiffiffi
8�

p
andMGUT,

respectively. The areas outside these contours may be
problematic, depending on the cosmological scenario, as
discussed previously. In panel (a) of Fig. 3, we have chosen
� ¼ 1 and tan� ¼ 10. The problematic region is when
j	j * 1000 GeV, reducing to j	j * 750 GeV for small
mA. When � is decreased to 10�3 (panel c) and 10�6 (panel
e), the problematic regions extend down to smaller values
of j	j, reaching as low as �550 GeV for � ¼ 10�6 and
small mA, essentially independent of M�.
The most immediately noticeable features of the (	,mA)

planes for tan� ¼ 50, shown in panels (b), (d), and (f) of
Fig. 3, are the greater extent of the stau LSP region when
	 & 1000 GeV, and the greater extent of the sneutrino
LSP region when 	 * 1000 GeV. In between, the prob-
lematic tachyonic regions depend more sensitively on the
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value ofM� than was the case for tan� ¼ 10, and also vary
more as � is reduced. Once again, it is the regions of large
	 that are problematic.

Whereas in the CMSSM case the stau was always lighter
than the lightest neutralino in the tachyonic region, so that
it could be cosmologically acceptable only if the gravitino
were the LSP, in the NUHM case the tachyonic region also
includes parts of the WMAP strips where the LSP is the

neutralino and it has an acceptable relic density. The cross-
over strip, the stau coannihilation region and parts of the
snu coannihilation strip, and parts of the rapid-annihilation
funnel with an acceptable neutralino relic density are all in
the nontachyonic parts of the (	, mA) planes for tan� ¼
10. These regions also have acceptable b ! s
 for 	> 0.
In the case of tan� ¼ 50, parts of the stau coannihilation
strip and the rapid-annihilation funnel are again tachyon-
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FIG. 3 (color). Portions of the NUHM (	, mA) planes for m1=2 ¼ 300 GeV, m0 ¼ 100 GeV, A0 ¼ 0 and ða; c; eÞ tan� ¼ 10,
ðb; d; fÞ tan� ¼ 50. The notations are described in the text. The regions outside the inner dash-dotted curves have problematic high-
scale tachyons for higher values of M�.
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free. We emphasize yet again that the tachyonic regions at
larger j	j are not necessarily excluded: that would depend
on the cosmological scenario and whether it avoids the
high-scale vacuum in the early Universe.

In Fig. 4, we show more examples of (	, mA) planes,
this time with m1=2 ¼ 500 GeV, m0 ¼ 300 GeV, and

A0 ¼ 0. We see that there are regions at larger mA, par-
ticularly for 	> 0, where the LEP Higgs constraint is
respected. As in Fig. 3, the problematic tachyonic regions

extend to smaller j	j as mA decreases, and as � decreases
from 1 to 10�6. The potential tachyonic problem is re-
stricted essentially to j	j * 1000 GeV.
Turning to panels (b), (d), and (f) in Fig. 4, for tan� ¼

50, we see that the stau LSP region extends to between
	� 400 GeV (for small mA) and 	� 1000 GeV (for
large mA). The problematic tachyon region is now only at
larger 	, varying between a range >2000 GeV for � ¼ 1
and large mA to �1150 GeV for � ¼ 10�6 and small mA.

 -2000  -1000 0 1000 2000
100

200

300

400

500

600

700

800

900

1000

m
A

 (
G

eV
)

µ (GeV)

tan β = 10 , m1/2 = 500 , m0 = 300, ε = 1

00020001002
100

200

300

400

500

600

700

800

900

1000

m
A

 (
G

eV
)

µ (GeV)

tan β = 50 , m1/2 = 500 , m0 = 300, ε = 1

 -2000  -1000 0 1000 2000
100

200

300

400

500

600

700

800

900

1000

m
A

 (G
eV

)

µ (GeV)

tan β = 10 , m1/2 = 500 , m0 = 300, ε = 10-3

00020001002
100

200

300

400

500

600

700

800

900

1000

m
A

 (G
eV

)

µ (GeV)

tan β = 50 , m1/2 = 500 , m0 = 300, ε = 10-3

 -2000  -1000 0 1000 2000
100

200

300

400

500

600

700

800

900

1000

m
A

 (G
eV

)

µ (GeV)

tan β = 10 , m1/2 = 500 , m0 = 300, ε = 10-6
1000

00020001002
100

200

300

400

500

600

700

800

900

1000

m
A

 (G
eV

)

µ (GeV)

tan β = 50 , m1/2 = 500 , m0 = 300, ε = 10-6
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scale tachyons for higher values of M�.
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In all cases, the portion of the WMAP strip where the relic
neutralino density is controlled by stau coannihilation is in
the safe region, as well as a portion of the rapid-
annihilation funnel where m� �mA=2. Whether the other

regions are acceptable would depend on the cosmological
scenario. Note that the entire regions shown in panels (b),
(d), and (f) are favored by g	 � 2.

Comparing Figs. 3 and 4, we see (unsurprisingly) that
the problematic tachyonic NUHM regions grow as m0

decreases. As we noted above, it is also possible to con-
sider m2

0 < 0 in the NUHM. For example, for m1=2 ¼
300 GeV and m2

0=
ffiffiffiffiffiffiffiffiffi
jm2

0j
q

¼ �100 GeV, with M� ¼ MGUT

and � ¼ 1, CCB vacua appear at high scale when j	j>
1000 GeV for mA * 800 GeV and j	j> 1500 GeV for
lower mA. When � ¼ 10�3 for the same case, the entire
plane is problematic. Similarly, when M� ¼ MP for any
value of �, the entire plane is problematic.

VI. SUMMARY

We have discussed in this paper the constraints that are
imposed on supersymmetric models by the presence of the
Universe in our familiar EW vacuum. We have argued that
models with tachyonic spin-zero fields at some high input
scale are not necessarily excluded. The renormalization-
group evolution of tachyonic masses to low scales may
change their signs, in which case the standard EW vacuum
would be a local minimum of the effective potential.
However, in addition to this vacuum, there may be a
much deeper high-scale vacuum located along some F-
and D-flat direction in the effective potential, with field
values fixed by some higher-order nonrenormalizable in-
teraction. We discuss the circumstances under which the
existence and location of such a high-scale vacuum can be
calculated reliably.

Such high-scale vacua usually break both color and
charge conservation. In general, the lifetime for decay of
the EW vacuum to this unacceptable lower minimum of the
effective potential is much longer than the age of the
Universe, so future decay into such a vacuum is not of
immediate concern. A more relevant question is whether
the Universe would have fallen into such a vacuum during
its past history. This depends whether the effective scalar
masses-squared acquired large positive or negative contri-
butions / H2 during inflation. If these contributions were
Oð1Þ and positive, only the EW vacuum would be popu-
lated. On the other hand if these contributions were nega-
tive (and possibly if they were positive but small), the high-
scale vacuum would be populated.

We have then explored the conditions under which the
CMSSM or the NUHM (with its two extra parameters) has
a calculable high-scale vacuum. If these conditions are not
satisfied, there is no reason to be tachyophobic. Even if
these conditions are satisfied, and there is a calculable
high-scale vacuum, whether it is catastrophic or not de-

pends on early cosmology, and there is still no need to be
tachyophobic.
Unreasoning tachyophobia is never justified: one must

examine rationally whether any specific tachyonic spin-
zero field is dangerous, depending on the evolution of the
Universe within one’s favored cosmological scenario.
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APPENDIX A: GENERALITIES

Here we give a concise review of the well-known nature
of the flat directions that will be considered. This appendix
is included to serve as a reminder and to set our notation.
We begin our discussion by ignoring the superpotential

and soft terms, which are included later. We assume com-
plex scalar fields�i with a canonical Kähler potential, with
vevs denoted by vi. We take vi to correspond to a super-
symmetric vacuum, Da ¼ 0, in the standard notation.
Viewed as a vector space, the vi are the null vectors of
the (Hermitian) mass-squared matrix:

X
k

�vkM
2
k �‘

¼ X
k;a

g2a
@Da

@vk

@Da

@ �v �‘

�vk ¼
X
a

g2aD
a @D

a

@ �v �‘

¼ 0:

(A1)

Correspondingly, there exists a projection operator into this
null space:

Pij ¼
vi �vjP
k

jvkj2
; (A2)

which may be used to construct the modulus field �, which
is the scalar field tangential to the null space defined by P:

� ¼ X
j

�vjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k jvkj2

q �j: (A3)

In addition, there are the other modes �, that are orthogo-
nal to � in the space of the �i, i.e.:

� ¼ X
i

��i �i:
X
i

�i �vi ¼ 0;
X
i

��i �
�
i ¼ ��: (A4)

We now consider the effect of the soft masses on the
modulus field �. When the change of variables (A3) is
made, we obtain

Vsoft 3
X
i

~m2
i j�ij2 3

P
i jvij2 ~m2

iP
k jvkj2

j�j2 � ~m2j�j2: (A5)

In the case of a flat direction characterized by a single
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monomial

� ¼ Y
i

�ni
i ; (A6)

the D-flatness constraint

�� i ¼ @�

@�i

� const 8 i (A7)

yields

jvij2 ¼ ni � const 8 i: (A8)

It follows that in this case the modulus soft mass-squared
appearing in (A5) is

~m 2 ¼
P

i ni ~m
2
iP

k nk
; (A9)

where we see that the weights are nothing but the powers in
the monomial. Because we specialize to the case of mono-
mial flat directions (A6) in our study, we use (A9) to
determine the soft masses of moduli. The cases that we
are interested in are those with

~m 2ðQÞ< 0; (A10)

where Q is the running scale. In such a case, the modulus
runs away from the origin along the flat direction.

Next we introduce the nonrenormalizable superpotential
term that lifts the flat direction at large field values and
stabilizes the modulus against the runaway behavior:

WNR ¼ 1

Mn�3�
�n�1

X


s� þ t

nMn�3�
�n: (A11)

Here s, t are coupling strengths. The fields � represent
the nonmodulus modes (A4). Below, we make the simpli-
fying assumption that only a single flat direction is ‘‘turned
on,’’ so that h�i ¼ 0.

In Appendix B we provide examples that yield the two
types of terms appearing in (A11). We remark that manifest
gauge invariance is typically lost when we use the basis �,
�, as reflected in the appearance of the �n coupling. As
illustrated by the examples provided in Appendix B, the
power law dependences on ~m2 and M� exhibited in (2.3)
are quite generic.

The nonrenormalizable superpotential (A11) may well
be the result of the exchanges of states with mass scaleM�
that have been integrated out. The scaleM� could be as low
as the GUT scale, if appropriate GUT representations are
coupled to the MSSM content. Alternatively, M� could be
as high as the Planck scale, if it is due to the exchange of
quantum-gravitational excitations. Another possibility is
that M� � Ms � 4 to 5� 1017 GeV, the perturbative het-
erotic string scale.

Whatever M� happens to be, the scalar potential for the
modulus � is given by (2.2). One finds that juj2 � jtj2 þP

jsj2 combines the coupling constants appearing in
(A11). Since ~m2 < 0, the minimum is obtained at

j�j ¼
�� ~m2M2ðn�3Þ

�
juj2ðn� 1Þ

�
1=ð2ðn�2ÞÞ

: (A12)

In the numerical analysis of flat directions that we perform,
we specify the vev v of the modulus � according to the
power law that has just been obtained, namely (2.3). As we
have commented above, this estimate is consistent with a
detailed analysis of the nonrenormalizable interactions that
are allowed in the MSSM. For our purposes, such an order
of magnitude estimate is sufficient.

APPENDIX B: EXAMPLES OF FLAT DIRECTION
LIFTS

1. Lift of the HuHd flat direction

The leading nonrenormalizable superpotential term that
achieves this is

WNR ¼ t

M�
ðHuHdÞ2; (B1)

where t is a coupling constant. We choose the variant of the
flat direction for which the neutral components H0

u and H
0
d

get vevs that are equal. In that case the modulus � and
orthogonal modes � are

� ¼ 1ffiffi
2

p ðH0
u þH0

dÞ; �1 ¼ 1ffiffi
2

p ðH0
u �H0

dÞ;
�2 ¼ Hþ

u ; �3 ¼ H�
d :

(B2)

Using these redefinitions, we find that

~W NR ¼ t

4M�
�4 þOð�2Þ; (B3)

where symmetries forbid ��
3 terms. One such symmetry

is H0
u $ H0

d, which imposes symmetry under �1 ! ��1

with �, �2, �3 invariant, which forbids a �1�
3 term. The

other symmetry is H0
u ! �H0

u, H
0
d ! �H0

d, which im-

poses symmetry under � ! ��, �1 ! ��1 with �2, �3

invariant. This symmetry forbids �2�
3 and �3�

3. Thus we
see that the coefficients s in (A11) vanish for the present
case. The formula (A12) applies for the vev, with u ! t
and n ¼ 4. Note that ~m2 ¼ j	j2 þ ð ~m2

Hu
þ ~m2

Hd
Þ=2< 0

must hold for this vev to run away, where 	 is as usual
the (tree-level) MSSM Higgsino mixing term.

2. Lift of the L1L2�
c flat direction

We choose the direction where the vevs of

�e ¼ 	 ¼ �c ¼ v; �	 ¼ e ¼ 0: (B4)

The leading nonrenormalizable superpotential term that
lifts this flat direction is

WNR ¼ � 9s

M2�
ðHuL2ÞðL1L2Þ�c; (B5)

where the parentheses indicate the SUð2Þ invariants and the
coefficient has been selected to provide a simple final
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answer, as becomes evident shortly. As usual, s is a dimen-
sionless coupling constant. The modulus � and orthogonal
modes � can be parametrized as

� ¼ 1ffiffi
3

p ð�e þ	þ �cÞ; �1 ¼ 1ffiffi
2

p ð�e �	Þ;
�2 ¼ 1ffiffi

6
p ð�e þ	� 2�cÞ; �3 ¼ H0

u;
(B6)

with �4;5;6 corresponding to the other superfields �	, e,

Hþ
u . One finds

WNR ¼ s

M2�
�3�

4 þOð�2Þ: (B7)

Thus the stabilization term is of the form of the first term in
(A11). The �5 term, with coefficient t, is forbidden by
matter parity. Symmetry arguments also forbid ��

4 with
 ¼ 1, 2, 4, 5, 6. The formula (A12) applies for the vev,
with u ! s and n ¼ 5.

APPENDIX C: METHOD OF SCAN

In this appendix we summarize the workflow used for
our analysis of flat directions.

(1) Starting from unification-scale boundary conditions
m0,M1=2, A0, and electroweak scale tan�, we evolve

the RGEs to the EW scale, iterating 	 and B	 until
valid electroweak symmetry breaking (EWSB) is
obtained. We exclude automatically any model
with tachyonic squarks or sleptons at the low scale.

(2) Next, we loop through all flat directions enumerated
in [14] (limiting ourselves to monomials (A6)) and
perform an analysis over the range of running scales
Q � 10 TeV (see the discussion in Sec. V):

(a) We check whether ~m2 < 0 for the weighted sum
(A9). The powers ni and masses ~m2

i that appear in
this sum depend on the flat direction that is chosen;
because the mass parameters depend on Q, so does
the weighted sum ~m2;

(b) For values of Q such that ~m2 < 0, we determine the
corresponding vev v using (2.3);

(c) We then compare v to �Q for various values of �:
(i) If v 
 �Q for all Q, our analysis does not show the

existence of a CCB minimum;
(ii) Otherwise, the CCB vacuum does exist since the

RG-improved analysis tells us that there is a poten-
tial minimum at large v and the one-loop corrections
are small over some range of Q for which the vev is
nonzero.
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