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The very precise quadrupole magnets used for the final focus section of the FFTB (Final Focus Test Beam) at
SLAC were fabricated and tested. Two of the three quadrupole magnets that are placed just before the focal point
have strong field gradients and relatively small apertures. The ratios of the sextupole and the octupole components
to the quadrupole component are limited to very small values to avoid increasing the beam spot sizes. The normal
and skew octupole components, which have about several times larger limit values than those of the sextupole, can
be brought within the limit by severe pole machining and assembly tolerances. However, the sextupole component
limits (both normal and skew) are too small. We therefore suppressed the sextupole components to be less than
10~* by independent excitations of the trim coils wound around the magnet poles.
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1 INTRODUCTION

As a future colliding machine! for continuing to explore the energy frontier in the ete™
interaction, the electron-positron linear collider is the subject of active research in various
places throughout the world.

Linear colliders of the next generation will require a luminosity of between 1033 and 1
cm~2sec™!, which is required to investigate very rare events. The key problems concerning
the final focus system (FFS), which must be overcome in order to increase the luminosity
to such an amount, are to have very small beam spot sizes and to keep the beam cross
section flat at the interaction point (IP) in order to minimize the beamstrahlung radiation
emitted as energetic electrons or positrons interact with the strong electromagnetic field of
the opposing bunch. The FFS at the final stage of a linear collider must strongly focus beams
and produce the very small flat beam size of several hundred nanometers wide and a few
nanometers high at the IP. The optics of the final focus system are being actively studied.
The basis of the FFS is an achromatic system for the given parameters of the incoming beam
with a large geometrical demagnification factor, and with chromatic aberrations introduced
into the beam at the IP controlled by local optical elements.
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In order to test such a final focus scheme experimentally using the 50GeV electron beams
from the SLAC linac, an international collaboration has been formed to design and construct
a Final Focus Test Beam (FFTB).2:3 The goal of the FFTB is to produce electron bunches
with transverse dimensions of 1 um wide and 60 nm high at the focal point; in addition
to this, the FFTB is used to test the alignment, stability and instrumentation requirements
necessary to produce small beam spots.

In this paper we describe the design, fabrication, magnetic field measurements and method
of sextupole component cancellation of the three magnets (QC2, QX1 and QC1) placed just
before the IP in the final transformer of the FFTB.

2 DESIGN OF MAGNETS

The FFTB beam line is composed of five optical modules; these are, from the end of the
linac to the IP, the beta matching section (BM), the horizontal chromatic correction section
(CCX), the beta exchange section (BX), the vertical chromatic correction section (CCY)
and the final transformer (FT).*>7 The three quadrupole magnets (QC2, QX1 and QC1)
are placed before the IP, and are referred to as the final quadrupole doublet because the
polarities of QX1 and QC1 are the same and opposite to that of QC2, which is a focusing
quadrupole magnet.

These quadrupole magnets have strong field gradients and relatively small apertures, that
correspond to ten sigma of the beam sizes. Especially the defocusing magnets (QC1 and
QX1) produce very strong field gradients; their field strength at the pole surface are 1.2
and 1.4T, respectively, because these provide a very strong focus in order to produce very
small beam spot sizes. Since the field strength of QX1 is too strong to generate a good field
gradient using poles of soft iron, the poles and the return yokes are made of an alloy of
iron and cobalt (Fe 49%,Co 49%,V 2%), the saturation flux density of which is about 20%
higher than that of soft iron. The other two magnets are made of normal soft iron.

The field components of higher order harmonics of these magnets are limited to a very
small amount. The limit values for the sextupole and octupole are determined so that the
allowed increase in the spot size from the aberrations is set to 2% per aberration of one
quadrupole magnet.%7 The upper-limit values of the sextupole and octupole field errors are
listed in Table 1.

For all magnets, the allowed normal and skew sextupole fields at the pole surface relative
to the quadrupole field are of the order of 10™*. If we estimate the displacement errors
of the poles from the allowed sextupole fields, using the first-order perturbation theory
of Halbach,? the allowed rotational and azimuthal displacements are estimated to be very
small, say 1 um or less. It is very difficult or/and very expensive to fabricate quadrupole
magnets with such small machining and alignment errors.

On the other hand, the allowed octupole relative fields are several times larger than
the sextupole field. The corresponding allowed displacement errors are about 5~20 pm.
Therefore, we determined that we should set the fabrication tolerances of the magnets based
on the maximum octupole field errors and that we should suppress the sextupole field errors
by independent excitations of four trim coils wound around each pole. This strategy lowers
fabrication cost.
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TABLE 1: Demands for the quadrupole magnets.

QC1 QX1 QC2
Aperture radius R(mm) 6.5 10.0 26.0
Pole length L(mm) 1114.0 300.0 2000.0
Field gradient k(T/m) 176.9 138.0 36.7
B /B® limit at R 12x1074 2.0x1074 1.0x107*
B /B® limit at R 1.8x1074 3.2x107* 0.8x10™4
BY® /B® limitatR 6.7x1074 1.9x1073 4.7x10
normal
B® /B® limitatR 1.3x1073 1.6x1073 3.1x1074
skew
Pole displacement (pm) <5 <20 <13

Since the differences in the thermal expansions between poles due to the difference in
the heat transfer from the coils produce unwanted higher order fields, we enlarged the cross
sections of the coils in order to lower the current densities; this makes the outer sizes of
magnet large.

The shape of pole and yoke of the quadrupole magnets are determined by 2-dimensional
field calculations using POISSON; these are shown in Figure 1; the magnet parameters are
listed in Table 2.

3 FABRICATION AND DIMENSION MEASUREMENTS

Before fabrication of QC1,QX1 and QC2, we produced a half-length model of QC1 in order
to study how to machine and assemble such a precise magnet, and what structure is suitable
for a precise assembly.

QC1 QX1 Qc2

|

o 100 200mm

Scale

FIGURE 1: Cross sections of the quadrant of the quadrupole magnets.
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TABLE 2: Parameters of the final focus quadrupole magnets.

QC1 QX1 QC2
Yoke and pole
Aperture radius R(mm) 6.5 10.0 26.0
Pole length /(mm) 1114.0 300.0 2000.0
Total width (mm) 400.0 400.0 460.0
Material S10C Fe-Co S10C
Main coil
No. of turns/pole 18 28 28
Max. current (A) 250 250 500
Trim coil
No. of turns/pole 18 26 20
Max. current (A) 10 10 10

Based on the R&D, we decided that the magnet be divided into four parts by the horizontal
and vertical symmetric planes. After cutting and annealing, as a final process of machining,
each part of pole and yoke was ground by an NC-grinding machine. The grinding was
carefully carried out by measuring the shape, straightness, flatness and dimensions of the
pole as well as the split planes by a 3-dimensional coordinate measuring machine(3D-
CMM), whose measurement errors were about 1um. We could assemble the half-length
model with errors of 3um.

The same procedure was applied to the fabrication of all quadrupole magnets. The shapes
and positions of the poles at both ends along the length were measured by the 3D-CMM.
The deviations from the ideal curve and position are almost equal to the tolerances, or less.
We show, as an example, the result of a measurement of the poles of QC1 in Figure 2.

4 FIELD MEASUREMENTS

The magnetic field of the quadrupole magnet integrated along the magnet length direction
was picked up by a long one-turn coil made of thin gold-coated W wire of S0um diameter
whose rotation frequency was 2Hz. The induced voltage was amplified and filtered with a
DC amplifier, and a Fourier analysis was carried out using a dynamic signal analyzer. The
coordinate system that we defined is shown in Figure 3. The polarities of the poles during
the measurements and the defined pole numbers are also shown.

4.1 Excitation measurements

The excitation curves for three quadrupole magnets were obtained by measurements of the
voltage signal from the quadrupole field component. Since we did not measure the field
distributions along the magnet length, the coil calibrations were carried out assuming that
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FIGURE 2: Shapes and displacements of the poles of QC1 measured by the 3D-CMM. The dashed lines indicate
the ideal shape and position, and the dot-and-dashed lines indicate the allowable errors.

Pole2(N) |
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\ Trim coil 1
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FIGURE 3: Definition of the coordinate system, pole number and polarity.
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FIGURE 4: Excitation curve of QC1. The solid line is a least-squares fitted curve.

the increasing ratio of the field gradient in the non-saturated region is equal to that of the
2-dimensional field calculation, and that the integrated value is proportional to the field
gradient.

In Figure 4, we show the excitation curve of QC1. For convenience of the current setting,
we determined the curve of the excitation current (/) as a function of the field gradient (k);
we assumed the curve can be expressed as

’

{ c1 + 2k (k < c3)
I =

ca + csk + cgk? + c7k3 + cgk* (k> ¢3)

where c; are constants and with the condition that the two functions and their derivatives
have the same values at k = ¢3. This condition reduces the number of constants to six. The

six constants were determined by a least-squares fit; this curve is also indicated by the solid
line in the figure.

4.2 Harmonic components measurements

We measured integrated harmonics of the magnetic field of the quadrupole magnets with
a long rotating coil at several excitation currents. Although the trigger pulses for the start
of sampling were generated when the coil wire crossed the xz-plane(x > 0), the actual
sampling began a little after the trigger pulse; the time delay depends on the setting of the
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frequency range of the dynamic signal analyzer. Since it is very difficult to coincide the
sampling start time with the wire crossing time, due to the reason mentioned above, we
could not measure the normal and skew quadrupole components separately. We therefore
assumed that only the normal quadrupole component exists, and we normalized the higher
order harmonic components with the normal quadrupole component.

We made the fluctuations of the rotating speed of the coil as small as possible by using
precisely aligned air bearings, which support the coil, and by using a servo motor, the
rotation speed of which is controlled by an encoder output signal. However, we observed a
small variation on the order of 10~ in the rotation speed, which can be written as

0=y (1 + ZamCOS(m(¢+V))) ;

m=1

where ¢ is the azimuthal angle. Since the radial component of the magnetic field is expressed
as

B, = Z b™ cos (ng + 8,),
n=1

the induced voltage becomes

V & rean Z b™ cos (ng + 8,)

n=1

+ rewo Z

m,n=1

{cos ((n+m)¢p +my +38,)

+ cos ((n —m)¢p —my + 8,)},

where r. is the radius of the rotating coil. Thus, the harmonic components of this perturbation
couple with the large quadrupole signal and generate false components on the order of
10~4. In the measurements, since the phase and the amplitude of false harmonics were
constant, the false component moved on a circle around the unperturbed value in a phase
plane, the abscissa and the ordinate of which denote the normal and skew components of
the harmonics, when we changed the angle between the coil plane and the phase of the
rotation of the servo motor, which corresponds to changing y. We, therefore, carried out
measurements by changing the angle, and deduced the unperturbed values by least-squares
fitting of a circle.

Another source of false harmonics is a displacement of the coil rotation axis with respect
to the magnetic center.” When the rotation axis is displaced parallel to the field axis, the
false signal of an N-th order is generated from an 2n-pole field component. The amplitude
of the false signal is

n—1
IBfIYalse|=< - )p’”lB(”)Ip=pc, N=n-m, 1<m<n-1,
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where p. and p are the coil radius and the displacement normalized by the aperture radius. If
we make p sufficiently small, the remaining false component is mainly dipole component,
which is generated by a strong quadrupole component in a quadrupole magnet. Since in our
measurements we set p to be of the order of 1073, the perturbations to the sextupole and
the higher order harmonics are considered to be negligibly small.

By the method mentioned above, we deduced the normalized normal and skew coeffi-
cients of the n-th harmonic component at the aperture radius: a,/|az| and b, /|az|.

The magnetic field in the aperture is expressed as

B, (%) =189 (%)"—1 {1’% sin(ng) + bn COS(ndJ)} ;

=1 |az|

By (%) _ _Z |B®)| (%)n—l {% cos(ng) — bn sin(n¢)} ;

= |az]

where R is the aperture radius and |B| is the absolute value of the quadrupole field at
the aperture radius. From the assumption and the polarity shown in Figure 3, b2/|az| =0
and ay/|az| = —1. For all of the quadrupole magnets we observed shifts of the dipole,
sextupole and dodecapole components as the pole saturates; this may have been due to a
slight difference in the saturation properties of the poles (about 1~ 2% difference). However,
we could not observe clear shifts of the octupole and decapole components.

The measured coefficients at the maximum excitation current of QC1,QX1 and QC2 are
listed in Table 3; as an example, the phase plane plots of coefficients of n = 3 and n = 4 of
QC2 are shown in Figure 5. The normal and skew octupole components of QCI and QC2
are within the limit values given by optics calculations, as we expected from the measured
deviation of the pole position. However, for QX1, the octupole components are slightly
larger than those expected based on the position measurements. This may result from the
fringe field region, since the ratio of the length to the aperture radius of QX1 is smaller than
those of the other magnets.

5 SEXTUPOLE COMPONENTS SUPPRESSION

As mentioned previously, we could not keep the sextupole components within the tolerances
which are given by optical calculations, because the corresponding machining and assembly
errors are too small. Therefore, in order not to increase the beam spot sizes at the focal point,
we must suppress both the normal and skew sextupole components by some method. This
can be done with independent excitations of four trim coils wound around the poles.°
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FIGURE 5: Phase plane plots of the measured sextupole and octupole coefficients of QC2. The numerals labeled
give the values of the main excitation currents.

According to the perturbation theory of Halbach,® excitation of the k-th pole of a
quadrupole magnet(see Figure 6) generates the n-th harmonic field. The generated field
at the aperture radius normalized by the quadrupole field is expressed as

AB _(n) —int(2k—1)] .
n=\y Jn €Xp B E— (ie), k=1,2,3 and 4,
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TABLE 3: Measured normalized coefficients of harmonics at the maximum current.

Harmonics (n) an/laz|(1073) bn/laz|(1073)

3 0.82 +£0.05 1.23 £0.05

QC1(250A) 4 2020+ 0.18 079 £ 0.15
5 -0.48 +0.18 -0.23 £0.20

6 12.30 £ 0.70 -1.50+1.12

3 0.92 +0.25 0.40 + 0.26

QX1(250A) 4 0.64 + 0.66 2.63 +0.63
5 -4.35+1.03 2.31+1.01

6 12.39 +3.51 -0.35+542

3 0.48 +0.05 1.10 &+ 0.05

QC2(500A) 4 -0.41 +0.11 0.36 £ 0.11
5 0.39 +0.07 -0.44 + 0.07

6 3.76 £0.20 0.15+0.20

where ¢ is a real number representing the additional excitation of the k-th pole normalized
by the main excitation; N = 2 in this case. Here, the positive ¢ is the excitation which
increases the magnetic scalar potential of the pole. The coefficients (%) Jn = (%)%
were calculated and are listed in the table in Halbach’s paper.® The normal and the skew
components of the field correspond to (A B,) and I(A B,), respectively.

In the normal-skew phase plane, a trim coil excitation produces a vector. For a

sextupole, the generated components produce a vector which is expressed as (%) Jn€
exp {Lk;@ﬂ]
monics. We can generate any vector with excitations of pole 1(or/and pole 3) and pole
2(or/and pole 4). Therefore, we can suppress the inherent sextupole components of the
quadrupole magnet by excitations of the trim coils. By this suppression, other harmonics,
mainly the dipole and quadrupole components, are also generated. As for the quadrupole
component, if we set Iy = —1I3 and I = — Iy, the additional quadrupole strength generated
by each pole cancels each other(see Figure 6). The additional dipole components move the
magnetic center. However, if the error sextupole and the error dipole components come from
the same source (say, a slight difference in the saturation character of the pole material),
the additional dipole components will also be suppressed by this method.

We measured the dependence of the amplitude of the generated harmonics on the trim-coil
excitations in order to experimentally determine the coefficient {% Jnlexp.

. In Figure 6, we show this situation together with the case of other har-

We assume that a vector A, (a, b) in the phase plane expresses an inherent #-th harmonic
component of a quadrupole magnet. Also, the excitation of one trim coil generates another
vector of the n-th harmonic component, whose amplitude is proportional to the current of

the trim coil (/;); as mentioned above, this vector is expressed as ?n (CI’ ch ), where

V2’ V2
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FIGURE 6: Generated vectors by excitations of the trim coils. The trim coil current that increases the magnetic
scalar potential of a pole means ¢>0. Since the coefficient (n/N) j, is negative for n=5, the generated vectors by
trim coils 1,2,3 and 4 have the same directions as in the n=1 case.

c is a constant to be determined. The square of the amplitude of the summed vector
% .
?n = A,+ ? nis

2 2
CaP= ( —Cl’) (b —CI’>
I'C a+ 7 + b+ 7
= (cI,)? + (a + b)(cI)V2 + a* + b?,

which is a quadratic function of /;. In Figure 7, we show the dependence of the squares
of the amplitude of the harmonics of n = 1 and n = 3 of QX1 on the trim coil current;
the solid lines are least-squared curves of quadratic functions of I;. For n = 4, 5 and 6, we
could not find any clear dependence, as expected by Halbach’s theory.

From the value of ¢ for n = 3 and the measured sextupole components, we obtained
the trim coil current of each pole in order to suppress the sextupole components, these are
shown in Figure 8 as the functions of the main coil current. The curves are fitted curves in
the same procedures as stated previously, assuming that the curve is expressed by a linear
and a quadratic function.
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FIGURE 7: Trim-coil current dependence of the squared relative amplitudes of n=1 and n=3 of QXI1. The
symbols (triangle, diamond, star and hexagon) indicate the data of trim coil 1, 2, 3 and 4, respectively. The solid
lines are least-squared fitted quadratic curves.

Since the additional excitation (¢) is expressed as € = %, where N; and N, are the

number of turns of the trim coil and the main coil and I,,, is an excitation current of the main
coil, ¢ is expressed as

il
c= —
NI LN exp.
As the function of the main excitation current for n = 1 and n = 3 of QX1 and QC2,
the ratios of {4 jx }exp_ t0 {4 jn} o0, » Which is given by Halbach,® are shown in Figure 9.
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FIGURE 8: Trim-coil current for suppression of the inherent sextupole components. The solid lines are for trim
1(1y) and trim 3(—13). The dashed lines are for trim 4(I4) and trim 2(—I,). In order not to change the quadrupole

strength, the relations I;= —I3 and I4=—1I, must hold.
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FIGURE 9: Main current dependence of the ratios of { % Jn }exp to { v Jn }theo of QX1 and QC2. The stars and
diamonds denote the dipole and sextupole case, respectively.

The ratios for both cases are 0.9 ~ 1.0 in the non-saturated region, but decrease as the
iron core becomes saturated.

9 CONCLUSION

We fabricated very precise quadrupole magnets (QC1,QX1 and QC2) for the final focus
lenses in the FFTB line and measured the integrated harmonic components of the magnetic
field. The magnets were machined and assembled with errors of about 5,10 and 15 um
for QC1,QX1 and QC2, which are almost the same or slightly smaller than the machining
and assembly tolerances given by the limit values of the octupole components. However,
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the tolerances are not sufficient to make sextupole components smaller than the values
given by the optics calculations. The sextupole components were therefore suppressed by
independent excitations of the trim coils wound around the poles. This method can be
applied to cases in which machining and assemble tolerances are too small to make the
sextupole components small.

We found that the first-order perturbation theory by Halbach® is very useful to estimate
the machining and assembly tolerances and to estimate the trim coil current for cancellation
of the dipole and/or sextupole components.
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