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We study the fields produced by a beam circulating in a smooth toroidal chamber with walls of finite
conductivity. At high frequencies the beam can excite resonant modes of the chamber having phase
velocity equal to the particle velocity. The frequencies of these synchronous modes are widely spaced
and depend sensitively on the .revolution frequency woo The associated longitudinal coupling
impedance, Z(n, nwo), has relatively broad peaks as a function of the azimuthal mode number n. In
typical cases Re Z(n, nwo)/n reaches values of several ohms in the lowest modes. The lowest mode
has n somewhat greater than nR3

/
2 /w 1l2h, where R is the trajectory radius, and the cross section of

the chamber is a rectangle of width wand height h. Although the frequencies are typically quite high,
it is not excluded that the large coupling impedance could lead to fast microwave instabilities of a
short bunch.

1. INTRODUCTION

We discuss the fields produced by an arbitrary particle beam following a circular
trajectory inside a toroidal vacuum chamber. The torus has a rectangular cross
section, as shown in Fig. 1, and the walls have finite conductivity. Our interest in
this problem stems from a general concern about the sources of beam coupling
impedance at high frequencies, well beyond the beam-tube cutoff. The trend
toward shorter particle bunches in storage rings and linacs encourages such
concern.

It has long been known that classical synchrotron radiation, shielded by
conducting surfaces, would entail a large self-force on the beam at sufficiently
high frequencies. Several models led to quantitative results, for instance a system
of two parallel plates with circular beam orbit in a plane midway between the
plates. In this model, the self-force leads to energy loss characterized by a
coupling impedance Z(n, w) such that

ReZ(n, nwo) I ~300.[Q
n max R'

where the distance between the plates is 2g, and R is the orbit radius. Here n is

t Work supported by the Department of Energy, contract DE-AC03-76SFOO515.
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z
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(2)

FIGURE 1 Toroidal vacuum chamber with cylindrical cross section of width wand height h = 2g.
The inner (outer) torus radius is a (b). The origin for cylindrical coordinates is at the midplane of the
torus.

the azimuthal mode number, and Wo = f3c /R is the revolution frequency. The
value of n at which Re Z/n achieves the maximum of Eq. (1) is roughly (R/g)3/2.

The open structure of two parallel plates allows radiation of energy to infinity.
The analogous phenomenon in the closed toroidal structure is radiation into
resonant modes of the chamber. If the walls have infinite conductivity, the energy
remains forever in the resonant field mode; otherwise it is dissipated in wall
heating. Nonresonant loss of beam energy is usually negligible by comparison,
being of the same magnitude as the usual resistive-wall effect in a straight beam
tube; hence, it is zero for infinite conductivity. The frequency of the first
resonance in Z(n, nwo) is comparable to the frequency of maximum radiation for
the open parallel-plate system. For typical wall materials, the peak toroidal values
of Re Z/n exceed substantially the parallel-plate value [Eq. (1)].

For the lowest resonant mode the dispersion relation of the toroidal structure is
approximated closely at large n by

C [(1CPb)2 (31C)2/3 ]1/2w(n)=- -- +n2 + - n 4
/
3

b h 4 '

where b is the outer radius and h is the height of the chamber, as defined in
Fig. 1. The synchronism condition, the requirement that the phase velocity of the
longitudinal field be equal to the particle velocity, is won = f3cn /R. For a
synchronous mode to exist at some n, the asymptotic slope of the curve ,w(n),
which is c/b, must be less than the slope of the line w = won, so that the curve
and the line may intersect. Thus,

b
f3->1R . (3)

Typically the curve w(n) and the line w = won intersect at a very small angle, so
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that n at the point of intersection is a sensitive function of 000. The synchronous
resonant frequency is therefore a sensitive function of the orbit radius R. A
related circumstance is that resonance peaks in Z(n, nwo), the latter regarded as
a function of n, are much broader than the natural line width of the resonance.
When n changes by one unit, w(n) changes by an amount dw / dn ~ c/b that is
close to 000. Therefore, Z(n + 1, [n + 1](00 ) is close to Z(n, nwo); the peak is
thereby broadened.

Because of the peculiar features of the impedance, we defer any comments on
the implications of our results for beam stability. We do not recommend an
uncritical application of conventional formulas for the threshold of instability. A
re-examination of the Vlasov analysis of bunched beam stability seems
appropriate in the present case.

Since the theory of classical synchrotron radiation has evolved over many
years, there are numerous points of contact between our work and earlier
efforts. I

-
18 Schwinger2 and Schiff3 discussed shielded coherent radiation in 1945

and 1946. Neil8 treated our problem in his Ph.D. thesis, and made further studies
in collaboration with Judd, Laslett, and Sessler.8 Laslett and Lewish9 studied
relevant properties of Bessel functions and stated formulas for the quality factor
of a toroidal chamber. Faltens and Laslett13 and J. Bisognano (private com
munication) did much to encourage our work by emphasizing the result from Eq.
(1) and its probable general import. Bart's technique15 for treating planar
resistive walls was essential to our results. L. Smith (unpublished notes, 1985)
sketched a treatment of the toroidal chamber, using methods similar to those of
Neil. Recent workl

6-20 on the transverse self-force of particles in curved orbits
involves some of the same calculations that we have pursued. After this work was
completed, we learned of a recent analysis of our problem by K.-Y. Ng (Ref. 24).
Also, one of the authors and Ng extended the present treatment to obtain the
reactive impedance at all frequencies up to the lowest resonance (Ref. 25).

Of the various works, those of Neil et ale and Ng are most similar to ours in
scope. We use different techniques at several points, usually chosen for
mathematical clarity, and discuss some physical points and parameter ranges not
covered in the other papers. Most of the previous discussions have been based on
an expansion in eigenfunctions of the structure. We prefer a Fourier-Bessel
expansion which does not employ eigenfunctions. This expansion, which appears
along with the eigenfunction development in Neil's thesis, leads to a relatively
transparent formula for the impedance and is much easier to evaluate in
nonresonant regions. Near a resonance, the two expansions lead to roughly the
same calculations. We also differ from other authors in the treatment of wall
resistance. All other authors have treated wall resistance perturbatively, by
integrating an approximate expression for the Poynting vector over the metallic
surfaces. This yields definite formulas for the quality factor Q, but gives no
information about the importance of higher-order effects. We prefer to solve the
field equations subject to the resistive-wall boundary condition, so as to
incorporate the higher-order effects completely. This method reveals shortcom
ings in the treatment of planar walls (top and bottom of the chamber) that are not
apparent in the usual treatment. Our formulation shows how to overcome the
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(4)

difficulties through a coupled-mode treatment, but we have not carried the
computation that far in the present work.

The case of a beam circulating in a cylindrical "pillbox" chamber is similar to
the toroidal case in most important respects, but somewhat easier to analyze. To
make our story simple we first treat the cylindrical problem, in Section 2, and
then give the obvious generalizations to handle the torus, in Section 3. Sections 2
and 3 end with formulas for the longitudinal coupling impedance in terms of
Bessel functions. In Section 4 we evaluate the impedance at low frequency,
finding a very small value. In Section 5 we employ appropriate asymptotic
expansions of Bessel functions to locate resonance poles at high frequencies and
to find the pole residues that determine R/Q. We find a rather accurate explicit
formula for the frequency of synchronous resonant modes. If the beam is not too
close to the inner wall of the torus, the results for the pillbox and torus are nearly
identical.
, For studies of beam stability, it is important to account for the resistance of the
vacuum-chamber walls. In Section 6 we give a treatment of wall resistance that is
valid close to the resonances. At frequencies away from the resonances, it is
difficult to include resistance on the planar walls (top and bottom). Since our
impedance is dominated by the resonances, this is not a great drawback.

In Section 7 we give numerical results for the impedance of the toroidal
chamber with wall resistance and try to explain peculiar features of the
impedance in terms of the dispersion relation.

Our notation for special functions follows Ref. 21, Abramowitz and Stegun.
We refer to equation numbers in that book following this example: A.-S. 9.3.35.

We hope to treat beam stability and transverse impedances in later papers.

2. FIELDS AND LONGITUDINAL COUPLING IMPEDANCE FOR A
CYLINDRICAL CHAMBER

In this section, we find expressions for the fields produced by a beam circulating
in a cylindrical pillbox chamber, assuming that the wall conductivity is infinite. In
solving this preliminary problem we set down the definitions and apparatus
required for the rest of the work and provide a useful way of viewing the full
problem of the torus.

We put a = 0 (see Fig. 1) to obtain a cylindrical chamber of radius b and height
h = 2g. We use cylindrical coordinates (r, (J, z) with the z-axis along the
symmetry axis of the cylinder and with the origin at the centroid of the chamber;
thus the plane surfaces are at z = ±g. We use mks units and adopt the usual
definition of 2 0 , the "impedance of free space":

(Ito) 112 1
2 0 = - = ltoC = - = 120 nQ.

Eo EoC

We shall first express the fields produced by an arbitrary charge-current
distribution and then specialize for the particle beam of interest. All components
of the fields can be expressed in terms of Fourier amplitudes of Hz and Ez.
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Accordingly, we begin with the Fourier expansions,

Hz(r, (J, z, t) = J~oo dwe-iwtn~oo einIJ P~l sin a'p(z + g)Hznp(r, w), (5)

Ez(r, (J, z, t) = J~oo dwe-iwt n~oo e
inIJ p~o cos a'p(z + g)Eznp(r, w), (6)

where the wave number for the z-direction is

1rp
lXp = 2g .

The other components will have similar expansions. In each component the
z-dependent factor is either sin lXp(Z + g) or cos lXp(Z + g), chosen according to
the following scheme:

(En Ho , H n Eo)~ (sin, cos, cos, sin). (8)

The forms of Hz, E r , and Eo were chosen to meet the boundary conditions

z= ±g, (9)

term by term in the Fourier developments. The forms of the other fields were
selected so that the source-free Maxwell equations would also be satisfied term-by
term. For a consistent term-by-term satisfaction of the Maxwell equations with
sources, we must also expand the current and charge in Fourier series, with
z-dependent factor sin lXp(Z'+ g) or cos lXp(Z + g) chosen as follows:

(10)

One might ask whether our Fourier series in z actually represent general
solutions of Maxwell's equations, since one usually expects both sines and cosines
to be present in a generally valid expansion. By considering an artificial
odd or even extension of each field to an interval of twice the length h, one can
show that the expansions are indeed general.

After substituting the series in Maxwell's equations, and taking Fourier
transforms with respect to t, (J, and z, one gets a set of equations for the
r-dependent Fourier amplitudes. The equations may be solved algebraically to
express all amplitudes in terms of Hznp and E znp . The calculation yields

-1[ aE znp W (n .)]
Ernp = y~ a'p ----a;- +~ 2 0 -; Hznp + iJrnp ,

i [W 1 aE znp (n .)]
HIJnp = y~ ~ 2

0
----a;- + a'p -; Hznp + iJrnp ,

_ 1 [W 1 n (aHznp )]H rnp -2 --z-Eznp + (Xp --+JOnp ,
yeo r ar

_ -i [n W (aHznp )]E onp -2" lXp-Eznp +-Zo --+JOnp ,
yP rear

(11)

(12)

(13)

(14)
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where the "radial wave number," yp, is defined by

Y;= (~r-a;. (15)

(16)

Here, and in much of the following, we use abbreviated notation in which the
dependence of amplitudes on r and OJ is not indicated. Maxwell's equations also
imply the radial wave equations, which serve to determine Hznp and Eznp :

1 a (aHznp ) (2 n
2

) 1 a .n
;ar r---a;:- + yp- r2 Hznp=-;ar(rJonp)+l-;.Jrnp,

(17)

When the sources J, p are zero, the general solution of Eq. (16) or (17) is a linear
combination of In(Ypr) and Yn(Ypr), linearly independent Bessel functions.
Equivalently, it is a linear combination of In(rpr) and Kn(rpr), the modified
Bessel functions, where

(18)

It is convenient to use the former representation when y; > 0 and the latter when
r; > 0, so that we always deal with functions of real argument. Since our
discussion emphasizes resonances, for which y; > 0, we give our general formulas
in terms of In, Yn and provide some translations to the In, Kn basis where
appropriate.

In the presence of sources, the general solution is the sum of the general
solution of the source-free equation and any particular solution of the equation
with sources. Thus we may write the general solutions of Eqs. (16) and (17) as

Eznp(r) = AnpJn(Ypr) + BnpYn(Ypr) + eznp(r), (19)

Hznp(r) = CnpJn(Ypr) + DnpYn(Ypr) + hznp(r), (20)

where ez and hz are particular solutions of the inhomogeneous equations.
In the present pillbox problem, the solutions Eqs. (19) and (20) must be

bounded at r = O. Let us choose ez and hz so that eznp(O) = 0, hznp(O) = 0; we shall
see how to do this presently. With that choice we must have Bnp = Dnp = 0, since
Yn(Ypr) is unbounded at r = O. In the torus problem, the Yn term is allowed and
necessary.

Particular solutions of the inhomogeneous equations are derived easily by the
method of variation of parameters (equivalently, by finding the Green function of
the Bessel differential operator). A calculation yields .

eznp(r) = - i [In(ypr)f Udu Yn(Ypu) - Yn(Ypr) f u duJn(ypu) ]

x Zo[-i ~JznP(U)+ apcPnp(u)l (21)
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(22)

hznp(r) = -i[Jn(Ypr)fUdu Yn(Ypu) - Yn(Ypr)fUdUJn(Ypu)]

[
1 a .n]

X ---[uJenp(u)]+z-Jrnp(U).
uau U

It is easy to check that these are indeed solutions, if one recalls the value of the
Wronskian,

(23)

We choose the lower limit, a, so that all charges are located at points with r > a,
and a > O. In the work of Section 3, a will be the inner torus radius. Now for
r = 0 the integrals in Eqs. (21) and (22) will not encompass any points where
charge or current is nonzero, and eznp(O) = 0, hznp(O) = 0, as promised above.

In addition to the boundary conditions [Eq. (9)] on the planar surfaces, we
have conditions on the cylindrical surfaces,

r=b. (24)

Referring to Eqs. (13) and (14), we see that these conditions will be met if

aHznp (b) = o.
ar (25)

Now Eq. (25) determines A np , Cnp in Eqs. (19) and (20), since Bnp = Dnp = o.
Thus the determination of Eznp and Hznp is complete:

(26)

(27)

where primes denote derivatives.
Having found the solution for general sources, we now take a particular source

to compute the longitudinal coupling impedance. We describe a rigid bunch of
particles with total charge q, following a circular trajectory of radius R in the
median plane of the chamber, z = 0, and having angular revolution frequency

f3c
000 =-R·

The charge density is taken to be

p(r, 8, z, t) = qA(8 - OOot)H(z)W(r),

(28)

(29)

where ),,(8 + 2n) = ),,(8), and H(z) and W(r) are concentrated near z = 0 and
r = R, respectively. The corresponding current, which with Eq. (29) satisfies the
continuity equation, is

(30)
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with

The functions in Eq. (29) are normalized so that

r
2

n: A(O) dO = 1, Jg dzH(z) = 1, jb rdrW(r) = 1.
Jo -g a

The Fourier transform of Eq. (29) with respect to 8, z, t gives

Pnp(r, w) = qAnD(w - won )HpW(r),

( )
_ f3crPnp(r, w)

JOnp r, w - R '

1 12.7tAn=- e-inO A(8)d8.
2Jr 0

(31)

(32)

(33)

(34)

(35)

(36)

Recall that by Eq. (10) the functions P and Jo are to be expanded in
sin ll'p(z + g), so that

Hp = ~ Jg dzH(z) sin Il'p(z + g).
g -g

We assume for simplicity that the beam profile is symmetrical about the median
plane, H(z) = H(-z), in which case

1 Jrp JgHp = - sin -2 dzH(z) cos ll'pZ,
g -g

which is nonzero only for odd p. Consequently, only odd-p modes of the fields
are excited, and we may forget the rest. To obtain explicit formulas for the
integrals of Eqs. (21) and (22), we take a vertical ribbon beam,

W(r) = <5(r - R) .
R

(37)

The generalization to allow an arbitrary W(r) is not difficult, but in general
requires numerical integration of Eqs. (21) and (22).

Using Eqs. (32), (33), and (37) in Eqs. (21) and (22), we find the particular
solutions

(38)

Jr
hznp(r) = -2" cIlYpf3cqn( Ypr, YpR)8(r - R),

and their derivatives
, ) Jreznp(r = - 2" cIlapYpZorn(Ypr, YpR)fJ(r - R),

h~np(r)= -~ <I>y;!3csn(ypr, YpR)O(r - R)

-cIlf3c _<5(_r_-_R_)
R '

(39)

(40)

(41)
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cI> = qHpAnD(00 - nooo),

e(x)={l, x~O,
0, x<o

and, in the notation of Abramowitz and Stegun,21 the Bessel function cross
products are

Pn(x, y) = In(x)Yn(y) - Yn(x)Jn(y),

qn(x, y) = In(x)Y~(y) - Yn(x)J~(y),

rn(x, y) =J~(x)Yn(Y)- Y~(x)Jn(Y),

sn(x, y) =J~(x)Y~(y)- Y~(x)J~(y).

The longitudinal coupling impedance, Z(n, (0), is defined by

-2nR (Eon((0) = Z(n, 00 )Ion ((0),

(42)

(43)

(44)

(45)

(46)

where the angle brackets denote an average over the beam cross section. If we
suppose that the beam is confined to a rectangle of area Doo x Dh, we have

1 JR +C,W/2 JC,h/2
(Eon((0) =~ ~h dr dzEon(r, z, (0).

uW u R-c,w/2 -c,h/2

(47)

(48)

Some authors take the value of the field at the center of the beam rather than
this average; the difference is usually not important. The Fourier amplitude of the
current, I on (oo) is given in the model of Eq. (33) as

L
b Jg f3cqAn D( 00 - nooo)

Ion ((0) = dr dzJon(r, z, (0) = .
a ~ R

We can now assemble the longitudinal electric field from Eqs. (14), (26), (27),
(38), and (41). The result is

Notice that the term JOnp has been cancelled by the second term of h~np. The
terms in Eq. (49) with factor fJ(r - R) tend to zero as r tends to R from above.
Therefore Eo is continuous in r at r = R but has a discontinuous derivative. The
derivative would be continuous if Eq. (37) were replaced by an r-distribution of
finite width.
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where
(50)

(51)

(52)

_ (_ )(p-l)/2 ~ sin [(JrP, 6h )/2h]
Ap - 1 2 (rep oh)/2h Hp .

If H(z) is rectangular (Le., constant over a width 6h and zero elsewhere) then

Ap = (Sin(~;~:jJ;:h]r

We use this model of H(z) for specific evaluations of the impedance. Smoother
functions will lead to faster convergence of the sum over p, but that feature is not
very significant. The most important contributions, far and away, are from
resonances in modes with P = 1.

3. FIELDS AND LONGITUDINAL COUPLING IMPEDANCE FOR A
TOROIDAL CHAMBER

We now modify the work of the previous section to treat fields in the toroidal
chamber shown in Fig. 1 with a '* O. The only new feature concerns the boundary
conditions on the inner cylindrical wall, r =a. As in Eqs. (24) and (25), these
conditions are satisfied if

E () = 0 aHznp(a) = 0
znp a 'ar . (53)

(55)

(54)

The four conditions of Eqs. (25) and (53) serve to determine the four coefficients
A np , Bnp , Cnp , Dnp in the general solutions [Eqs. (19) and (20)] of the radial
wave equations. The function Yn('Ypr) is now allowed, because its singularity at
r =0 is outside the chamber.

Through Eqs. (21) and (22) we have constructed the particular solutions so that
eznp(a) = 0, h~np(a) = O. This simplifies solution of the equations for the
coefficients, and we find

[
A np ] _ eznp(b) [Yn(ypa) ]
Bnp Pn(Ypa, Ypb) -In(Ypa) ,

[
Cnp ]_ h~np(b) [Y~(ypa)]
Dnp - ypsn(Ypa, Ypb) -J~(Ypa)'

where the Bessel function cross products, Pn and Sn, are as defined in Eqs. (42)
and (45). Hence the solution for general sources, analogous to Eqs. (26) and (27),



is

BEAM-EXCITED FIELDS 123

(56)

(57)

E () Pn(Ypr, ypa) (b) ( )
znp r =. ( b) eznp + eznp r i

Pn ypa, YP

H () qn('ypr, ypa) h' (b) h ()
znp r = ( b)· znp + znp r .

ypsn ypa, Yp

These fields tend properly to the values of Eqs. (26) and (27) in the limit a~ 0,
as is seen by applying the asymptotes

x~O, n>O. (58)

and corresponding asymptotes of J~(x), Y~(x).

Now comparing Eqs. (56) and (57) with Eqs. (26) and (27), we see that to
write the longitudinal field Een we only have to replace factors in Eq. (49) as

follows: J'() ( )- n ypr ~ Sn ypr, ypa , (59)
J~(Ypb) sn(Ypa, ypb)

-In(Ypr)~Pn(Ypr, ypa) . (60)
In(Ypb) Pn(Ypa, ypb)

Thus, for the vertical ribbon beam with r-distribution as in Eq. (37), the
longitudinal coupling impedance of the toroidal chamber is given by

Zen, m) == -2i;r2 z/i ~ A
p

n h p(odd)~l

x [mRsn(ypR, ypa)sn(Ypb, YpR) +1:. (CXp )2 Pn(YpR, Ypa)Pn(Ypb, ypR)J. (61)
en sn(Ypa, Ypb) f3 YP Pn(Ypa, Ypb)

Not only does Eq. (61) reduce to Eq. (50) in the limit a~ 0, but also it has
similar characteristics even when (b - a)/b« 1, as we shall see in the following
section.

4. EVALUATION OF IMPEDANCE AT LOW FREQUENCY

We are interested in the coupling impedance Z(n, w) primarily for w = nwo,
since beam stability is affected mostly by waves with phase velocity close to the
particle velocity. Therefore we first study Z(n, nwo) as a function of n. Later we
shall look at Z(n, w) in the (n, w) plane, in a band about the line w = nwo. That
will clarify the properties of the function and will perhaps be important in a
careful study of stability based on the Vlasov equation.

Let us first evaluate Z(n, nwo)/n at low frequency, which is to say in the limit
n~ O. In this limit, r; of Eq. (18) is positive for all P, which means that it is best
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(62)

In(iz) = inJn(z),

Jt
Kn(iz) ="2 (_i)n+l[Jn(Z) - iYn(z)],

to rewrite the impedance in terms of modified Bessel functions before proceed
ing. Since

we have, in view of y; = - f;, that

Jt
In (fpa )Kn(fpb) - Kn(fpa )In(fpb) = - "2 Pn( ypa, Ypb) = Pn(fpa, fpb),

I~(rpa)K~(rpb)- K~(rpa)I~(rpb) =~Sn(Ypa, Ypb) = Sn(rpa, rpb).

(63)

Extending the notation of Eqs. (42)-(45), we use capital letters for cross products
of modified Bessel functions. The pillbox impedance of Eq. (50) becomes

Z(n, nwo) = 4i.nZo~ ~ Ap[r/:(rpR) Sn(rpb, rpR)
n h p(odd)~l In(fpb)

.!- ((Xp)2 In (rpR) P (f b f R)] (64)
+ f3 r p In (rpb ) n p 'p ,

whereas the torus impedance of Eq. (61) is

Z(n, nwo) . R ~ [f3Sn(fpR, fpa)Sn(fpb, fpR)
----= - 4lJtZo- L.J Apn h p(odd)~l Sn(fna, fpb)

+.!- ((Xp)2 Pn(fpR, fpa)Pn(fpb, fpR)], (65)
(3 f p Pn(fpa, fpb)

where

(66)

(67)

To evaluate these expressions at n = 0, we need only the elementary
asymptotic expansions of In and Kn for large argument. We assume, of course,
that R, a, and b are all of the same order of magnitude and much bigger than w
and h, as in a typical accelerator vacuum chamber; w is similar to h in magnitude.
Then fpR = JtpR/h.is large compared to one, even at P = 1, which means that all
of the Bessel functions can be evaluated by means of the asymptotic series
(A.-S., 9.7.1-9.74),

1/2 x [ 4n
2

- 1 ]In(x) ---- (2Jtx)- e 1- 8x + ... ,

(68)

(69)

(70)
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The two terms in the square bracket of Eq. (64) are as follows at n = 0, rp = ll'p:

fiI'(ll' R)K'(ll' R) [1 _K~( ll'pb )I~( ll'pR)]
o pOp I~( ll'pb )K~( ll'pR)

= - 2~R[1-8(a:R)2 + O((ap~)4)]{1- e-2<r
p
(b-R> [ 1+ O((ap~?)]}' (71)

.!. Io(apR)Ko(apR)[1 _Ko( ll'pb )Io( ll'pR)]
f3 Io( ll'pb )Ko( ll'pR)

=~2~R[ 1 + 8(a~R)2 + O((ap~)4)]{1- e-2<r
p
(b-R) [ 1 + O((ap~)2)]} (72)

The terms indicated by the 0 symbol are negligible, since 1/(ll'pR)2 =
(hI:rcpR)2« 1. Also, the terms with the exponential factor exp [-2ll'p(b - R)] are
usually small, certainly if 2(b - R)lh ~ 1, as is the case in our later examples.
Dropping the exponential terms, we find

Z(n, nwo) I = 2iZo 2: A p • [ \ + 3{32 + 1(~)2]. (73)
n n=O fi p(odd)~l P Y 8 :rcpR

The corresponding result for the torus impedance [Eq. (65)] is exactly the same as
Eq. (73). The exponential terms that we have deleted are different in the two
cases; for high accuracy they should be reinstated, at least for p = 1.

The first term in Eq. (73), which vanishes in the relativistic limit as l/ y2,

corresponds to the familiar coupling impedance of a smooth straight tube without
wall resistance. It is sometimes called the "space-charge" contribution to the
impedance. Notice that the l/ y2 was produced by a close cancellation between
the two terms in Eo, one of which arises from Hznp , the other from Eznp . The
second term in Eq. (73) is due to curvature of the particle trajectory, which
spoils the perfect cancellation of electric and magnetic effects at large y.

The total low-frequency impedance [Eq. (73)] is positive imaginary (capacitive
in a common convention) and, except for nonrelativistic particles, quite small by
usual standards. For instance, for bhlh = 0·05, the sums occurring in Eq. (43)
have the approximate values

1 1
-2 2: 3 Ap = 0·05305,
2:rc p(odd)~l P

(74)

where Ap is given by Eq. (52).
Then, in this example with fi ~ 1, we have

Z(n, nwo) I _. [4.044 (h)2]- zZo -2- + 0.1061 - ,
n n=O y R

which is typically a very small fraction of an ohm.

(75)
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(78)

An analysis of the intermediate region up to the resonances, in which the order
of magnitude of the impedance is much the same as at zero frequency, requires
more powerful asymptotic expansions than Eqs. (67)-(70). The somewhat
complicated analysis is given in Ref. 25. Here we shall be content with the claim
that direct numerical evaluation of the Olver asymptotic expansions (Section 5)
leads to values of the impedance that are negligible until the high-frequency
resonant values are reached. Of course, in this statement we suppose that y2 is
large compared to one, so that the space-charge term is negligible. Also, we
neglect the resistive-wall effect, which can be treated easily only at frequencies
near resonances. Presumably, it has the same order of magnitude as in the case of
a straight beam tube.

5. RESONANCE POLES OF THE IMPEDANCE AT HIGH
FREQUENCY

Let us now turn to the more interesting topic of high-frequency resonances, first
in connection with Eq. (50) for the pillbox chamber. The resonances correspond to
zeros of the denominators, J~(Ypb) and In(Ypb), and poles of the impedance. As
can be seen from the discussion of Section 2, the resonances correspond to
solutions of the homogeneous Maxwell equations that satisfy the boundary
conditions. There are two classes of such solutions:

(i) TE modes: Ez == 0, Hz =1= 0, J~(Ypb) = 0, (76)

(ii) TM modes: Hz == 0, Ez =1= 0, In(Ypb) = 0. (77)

The designation TE (TM) refers to a mode with electric (magnetic) field
transverse to the z-axis, not transverse to the beam, which moves in the fJ
direction. This nomenclature is natural in our peculiar coordinate system but
contrary to the convention of wave-guide theory if the torus is viewed as a wave
guide. As is seen from Eqs. (11)-(14), in a pure TE (TM) mode, all fields except
Ez(Hz) are nonzero.

Although the TE and TM modes are independent solutions of the homoge
neous Maxwell equations, our circulating beam is simultaneously a source for
both Ez and Hz (through p and Je, respectively), so that the fields driven by the
beam always have both TE and TM components. Nevertheless, at a resonance
frequency, one component or the other dominates, in fact becomes infinite, for a
chamber of perfect conductivity.

As we shall see presently, near a resonance frequency ror the impedance for the
perfectly conducting chamber has the form

i'Z(n, co) -----,
ro - COr

where the factor , is real and positive, and COr is real. When resistivity of the
chamber walls is introduced, the pole moves off the real co axis into the lower
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(79)

The quantity Q may be identified with the usual quality factor. With resistivity,
the factor Calso picks up a small imaginary part but stays predominantly real. To
a good approximation, Eq. (78) takes the form

with real part of Lorentzian form

r
ICI

2
fYl=ReZ(n,w)--- r 2 '

(00 - oor?+ (2)

(80)

(81)

having a half-width at half-maximum of r/2 = wr /2Q. The value of 9Jl/Q at the
resonance is

fYl ReZ(n, wr )=2ICI
Q Q W r

=~~ la=oo·
(82)

(83)

Thus 9Jl/Q may be computed from the two parameters ~ and W r that characterize
the chamber with infinite conductivity. Also, the area under the curve of
Re Z(n, w), in the limit Q~ 00, is

. f JrWr fYlhm dwReZ(n, w)=Jr~=--,
Q~oo 2 Q

where the integral covers a small neighborhood ofwr •

Our task for the rest of this section is to find the resonance frequencies W r and
residues ~ (equivalently W r and fYl/Q) for the perfectly conducting chamber. The
values of Q are discussed in Section 6.

The above discussion of TE and TM resonances holds as well for the torus
problem, except that the resonance conditions are replaced by

Sn(Ypa, ypb) =0,

Pn( ypa, ypb) = 0,

(TE) ,

(TM).

(84)

(85)

Again, these equations just guarantee the boundary conditions on solutions of the
homogeneous Maxwell equations.

The impedance Z(n, w) has a dense forest of poles in the (n, w) plane, but we
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(86)

are interested only in the subset of poles sufficiently close to points of the form
(n,flwo) to have some effect on beam stability. Except for isolated values of Wo,
such points (n, nwo) do not fall exactly on poles. To locate relevant poles, we let
Wo be arbitrary and treat n as a continuous variable, not restricted to integer
values. This is permissible as a trick to find poles, since the impedance is analytic
in n. Having found a pole for noninteger n = nr , which will be very large
compared to one, we can then look at Z(n, nwo) for neighboring integer values of
n and as a function of Wo.

The first zero of the Bessel function In(x) [or of J~(x)] occurs at x slightly
bigger than the order n. The reason for this is almost apparent in the Bessel
equation itself:

!~ (x at) + (1 _n2)! = o.
x ax ax x2

By analogy to the harmonic oscillator, it seems reasonable that the solutions
should have oscillatory character only if 1- n2/x 2 is positive. In a region with
1- n2/x2 negative, there should be one increasing solution and one decreasing
solution.

With this observation we can immediately set the scale of interesting values of
n. At w = won,

Putting "(pb = n we find

[(
f3n )2 (:rrP)2] 1/2

'V b= - - - b
IP R h . (87)

(88)

Since b/R is close to one, this means first of all that f3 must be close to one, in
order that n2 be positive; compare Eq. (3). Nonrelativisic particles cannot excite
the resonances of interest. If we then put f3 = 1, and suppose that b = R + x/2,
with x «R, we can expand the denominator in Eq. (88) as

( f3b )2 -1 =~+ x
2
=~ (89)

R R 4R2 R'

Then by Eq. (88),

:rrpb(R) 1/2n>-- -
h x '

x
b-R=

2' (90)

is a lower bound for resonant values of n for each p. The value goes up without
bound as the beam approaches the outer wall, x~o. We shall find that this same
lower bound applies to the torus resonances.

To illustrate, we take chamber dimensions that are nominal values for two
electron storage rings, the SLAC damping ring and the forthcoming Lawrence
Berkeley Laboratory Advanced Light Source (ALS). Henceforth, these examples
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are called (1) and (2):

(1) w=h=2cm,

(2) w=5cm, h=2.5cm,

R=5.7m

R=30m

(SLAC),

(ALS).
(91)

(92)

If the beam is centered in the chamber, then x = w in Eq. (90), and

(1) n > 15141 x p,

(2) n > 92420 x p.

The values of n are so large that well-known asymptotic expansions of Bessel
functions for large order give precise results when only the initial terms of the
asymptotic series are used. We write

(93)

(94)

and use expansions of In(nz) et ale that hold at large n. The biggest value of z
that occurs is obtained from Eq. (87):

. Ypb f3b
Zmax= 11m -=-.

n~oo n R

In the resonance region, z in Eq. (93) is never less than one, but we have to deal
also with In(Ypa), In(YpR) et al., a<R<b. To cover all cases in the resonance
region we therefore need In(nz), Yn(nz), J~(nz), Y~(nz), where z may be
restricted to the interval

a b
-<z<
h R· (95)

The behavior of the high-order Bessel functions varies drastically within this
seemingly narrow interval of z, a circumstance that leads us to employ expansions
that are uniformly accurate throughout the interval.

We use the remarkable asymptotic expansions of Olver, which are uniform in a
much bigger domain, the whole complex z-plane minus a narrow wedge about the
negative real axis; i.e., largzl $; Jr - E, for any E > O. The Olver expansions are
given in A.-S. (9.3.35, 9.3.36, 9.3.43, 9.3.44) and, in a more sophisticated form
with error bounds, in Refs. 22 and 23. The expansion of I n , accurate uniformly in
z at large n, is

(96)

where Ai(x) is the Airy function [Ref. 21, (10.4)], and ~ is defined by

~ C312 = In 1 + (1 - Z2)1/2 _ (1 _ Z2)1I2

3 Z

(97)
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We have ao( ,) = 1, and the higher coefficients ak and bk are given in Ref. 21,
but in a form difficult to evaluate numerically owing to cancellations among terms
that are singular at z = 1. Actually, these coefficients are analytic near z = 1 and
can be computed easily from their Taylor series about z = 1. Conveniently,
Decker19 has provided numerical values for the coefficients of the Taylor series.

The Airy functions Ai, Ai' in Eq. (96) can be expressed in terms of Bessel
functions of small fractional orders (±1/3, ±2/3, respectively). Consequently,
they can be evaluated by using asymptotic series at large arguments and power
series at small arguments. Since n2

/
3

' is large and positive for z in the lower end
of the interval [Eq. (95)], large and negative in the upper end, and zero in
between at z = 1, we must use three means of calculating the Airy functions;
namely Ref. 21 (10.4.59) and (10.4.60) for large positive and negative
arguments, respectively, and the power series Ref. 21 (10.4.2) near z = 1.

We have written a computer program that makes these evaluations of Airy
functions and uses Decker's form of the coefficients to evaluate the Olver
formulas for In, Yn, I~, and Y~. It allows z to be complex, since complex z arises
later in the study of wall resistance. To validate the program, we have checked
the Airy functions against published tables and have verified that the Bessel
functions satisfy recursion relations and the Wronskian identity. Also, the Bessel
functions agree with simpler, but less comprehensive, asymptotic formulas at
large n. In Figs 2-5 we show the Bessel functions near z = 1 for n = 23051, the
value of n corresponding to the lowest resonance with w = won in example (1) of
Eq. (91).

Although the program was used for all numerical work, it is possible to see
how the resonant frequencies are determined by looking just at the leading terms.
In fact, most of the program was hardly necessary for our main results, since
leading terms dominate strongly. For Bessel functions of Ypb we have z > 1 and
n 2

/
3

' large and negative. The leading terms for this case are, with Ypb = nz,

where

2 3/2 2 3/2 [ 1 1 2 1 2 2 ]x=-(-,) =(z -1) -+-(I-z )+-(I-z) +- --.
3 3 5 7

(98)

(99)

For Bessel functions of Ypa we have z < 1 and n2
/
3

' large and positive. The
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FIGURES 2-5 Bessel functions and their derivatives at large order, with argument close to the
order. The order n = 23051 corresponds to the lowest TE mode [example (1) from Eq. (91)].
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leading terms for this case are, with ypa = nz,

(
1 )112

In(nz) - 2Jrn (1- Z2)-114 e-n!; + O(n-3/2),

(
2 )112

Yn(nz) - - Jrn (1- z2)-1I4en!; + O(n-3/2),

(
1 ) 112 (1 2)114

J~(nz) ~ - - z e-n !; + O(n-3/2),
2nn z

(
2 )112 (1 Z2)+1I4

Y~(nz) ~ - en!; + O(n-3/2),
nn z

where

(100)

(101)

Equations (100) are in agreement with the claim made above, that the Bessel
functions do not have zeros for argument less than n. The oscillatory functions of
Eq. (98) do have zeros, which we shall now try to locate.

By Eq. (98) and Eqs. (76) and (77), the resonances for the pillbox should be
close to the values of n for which

q=g
s = 0,1,2, ... ,

for TE modes,
for TM modes,

(102)

where X = x(n, p) is given by Eq. (99) with

The condition w = won = f3cn/R has been imposed in Eq. (103).

(103)
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(104)

We first find an approximate solution of Eq. (102) by analytic means. We then
take that approximation as the starting point for a precise solution of the
resonance conditions [Eqs. (76) and (77)] by Newton's method, using the full
Bessel function program. The derivative required in Newton's method is
adequately approximated by a simple divided difference. The resulting precise
resonant frequencies agree with those obtained from the analytic approximation
to about 3% in the examples [Eq. (91)].

To find the approximate solution of Eq. (102), we put u = Z2 - 1 and retain just
the first term in the series [Eq. (99)] for x:

1
X=3"u 3

/
Z

•

By Eq. (94) the .largest possible value of u is (b/R)2 -1, which is usually small
compared to one; hence, the higher terms in X have little effect. Solving Eq. (103)
for n as a function of u, we find

npb

h

n = [( 13b)2 ]112.
- -l-u
R

Putting Eqs. (104) and (105) into Eq. (102), we obtain a cubic equation,

v + AV3 = 1,
where

A=
ph [ ( ';fr-1] Z

3h(~ + s)

(105)

(106)

(107)

This equation clearly has one, and only one, positive solution that is less than
one. The solution determines the resonant value of n by Eq. (105). Applying the
Cardan formulas for roots of a cubic, we find

[
( 4)1/2 ] 113 [ ( 4)1/2 ] 1131+-- +1 1+---1

27A 27A
v = 2A - 2A . (108)

(109)

To find the resonances of the torus, we first observe that they are very close to
the resonances of the pillbox, hence very close to the frequencies determined by
Eq. (106). Thus, we can use the latter as a starting point for a Newtonian solution
of the torus resonance conditions [Eqs. (84) and (85)], just as in the pillbox
problem. To see why the torus resonances are close to those of the pillbox, note
that the torus resonance condition (TM modes) is

~(Ypa)

J( )
In(ypb)-Yn(Ypb)=O.

n ypa
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n = 42282
ya

Za = -l!- = 0.99802,
n

By Eqs. (98) and (100), this is nearly equivalent to

~ e2n
l; sin (nx + n/4) - cos (nx + n/4) = O. (110)

The factor e2n
l; = Yn(Ypa)/Jn(Ypa) is large compared to one at the value of n

corresponding to the pillbox resonance. In example (1) of Eq. (91), in the lowest
pillbox TM mode, we have

Zt= Ypb = 1.001526,
..' n

(113)

(112)

1
;=3(I-z;)3/2, e2ni;=1l24. (111)

Since e2n
l; is so large, the solution of Eq. (110) is very close to the pillbox

resonance, where sin (nx + n/4) = 0, cos (nx + n/4) = ±1. The Bessel functions
evaluated at ypa are in their region of exponential behavior, where IYn(Ypa) I»
IJn(Ypa)l. This is illustrated in Figs. 6 and 7, where we plot In(nz) and Yn(nz) for
a/b < z < b / R for the first TM mode of the pillbox.

Having located the poles, we next must calculate the pole residues to find gjl/ Q.
We find analytic formulas for the residues in terms of Bessel functions and then
evaluate them numerically. Near each pole we write the impedance as Zen, w) =
iN(ro)/D(ro), D(w) = D'(ror)(ro - ror) and then simplify N(wr)/D'(wr) by using
the identities of Eqs. (23), (76), (77), (84), and (85). From Eq. (82) we obtain the
following:

(A) Cylindrical Pillbox

PAl = 2;r3ZoApC(YpR)2 [Y~(Ypb)J~~~pRW,
Q TE roh 1-zb

PAl Cp2 ( R)2Q TM = 2;r5ZoAp whf3h [y"(Ypb)Jn(YpRW,

1.0021.0000.998

Q< z < 12.
b R
n for TM Mode,

p=1,5=0

o

0.02

- 0.0 I L--_....L.-_----L-_~_---'-_---''---------'

0.996

N 0.01
c

z
FIGURE 6

FIGURES 6-7 In(nz) and Yn(nz) over the full range of z relevant for resonances: alb <z <blR
[example (1)].
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(114)

(115)

where m = ror, Ap is defined in Eq. (51), and

ya yb
Za =~<-1, Zb = -.l!-> 1.

n n
(116)

In Table I, we show results for the first few resonances in the two examples of
Eq. (91), with Ap as in Eq. (52). The beam is centered in the toroidal chamber:
R = (a + b)/2. We give the integer closest to the resonant value of n, the
corresponding frequency f in GHz (f = mon/2n), and the value of u = Z2 -1,
where Z2 is defined in Eq. (103). The frequencies for the torus and pillbox are
the same to better than 6 significant figures; consequently, the integer values of n
are the same. Table I also gives ~/Q for the torus and pillbox. The near
agreement of the ~/Q values for torus and pillbox is not surprising, in view of
Eqs. (112)-(115) and the near equality of frequencies. For instance, the equality
of frequencies means that the term involving J~( 'Ypb) in the numerator of Eq.
(114) is small. Also, the term in the denominator involving y~ is small (see Fig.
7). Thus, (114) and (112) are approximately equal.

The physical similarily of the torus and pillbox problems is apparent in plots of
the radial wave functions corresponding to solutions of the homogeneous
Maxwell equations at resonance. At resonance, the latter are close to solutions of
the inhomogeneous equations; the initial terms in Eqs. (26), (27), (56), and (57)
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TABLE I

Example (1): SLAC damping ring

R/Q(Q) R/Q(Q)
pS n j(GHz) u = Z2 = 1 Torus Pillbox Q

TE 1 0 23025 193 1.99 . 10-3 14.167 14.515 5.91 . 104

TE 11 61841 518 3.33 . 10-3 4.8540 4.8554 1.62.105

TE 12 105157 881 3.44.10-3 2.4296 2.4296 2.18 .105

TE 30 55002 461 1.12· 10-3 0.29234 0.29366 5.12. 104

TE 31 88788 744 2.59.10-3 1.0319 1.0320 1.51 . 105

TM 1 0 42286 354 3.06.10-3 3.1982 3.1990 7.04.104

TM 11 83665 701 3.34.10-3 0.70394 0.70276 9.90.104

TM 12 127595 1069 3.46.10-3 0.24870 0.24828 1.22 . 105

TM30 72536 607 2.14.10-3 0.57762 0.57700 9.21 . 104

TM31 107102 897 2.88 .10-3 0.81308 0.81192 1.12.105

Example (2): LBL advanced light source

TE 10 119317 190 6.67.10-4 2.9212 2.9236 1.03 .105

TE 11 226279 360 1.39.10-3 3.7536 3.7536 2.96.105

TE 12 347361 553 1.55 .10-3 2.6816 2.6816 4.09 .105

TE30 312047 497 3.52.10-4 6.1348 . 10-4 9.9134 . 10-4 8.79.104

TE 31 415723 662 9.26.10-4 2.4424.10-2 2.4492.10-2 2.67 .105

TM 1 0 173425 276 1.19.10-3 2.6824 2.6810 7.76.104

TM 11 286529 456 1.49.10-3 1.6449 1.6437 9.98 .104

TM 12 412078 656 1.58.10-3 0.84784 0.84718 1.20.105

TM30 368261 586 7.23 .10-4 6·8362 .10-3 6.8278 . 10-3 1.13 .105

TM31 466669 743 1.08 . 10-3 5.0546 . 10-2 5.0510.10-2 1.27 .105

0.0006

z Torus in TE Mode,0
~ p=l, s=O
05 0.0004
1.L

w
>«
S
~ 0.0002
«
0
«
0:::

0
0.996 0.997 0.998 0.999 1.000

rib

FIGURE 8 Radial wave function sn(ypr, ypa) in the lowest TE mode of the torus [example (1)].
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FIGURE 9 Radial wave function J~(Ypr) in the lowest TE mode of the pillbox [example (1)].

dominate. In Fig. 8 we plot the torus wave function sn(ypr, ypa) =
J~(ypr)y~(ypa) - y~(ypr)J~(ypa) versus r at the lowest TE resonance; it vanishes
at r = a, b, as required. Figure 9 shows the pillbox wave function J~( ypr) at the
same frequency. It is remarkably similar to the torus wave function. The
similarity is even greater in higher radial modes. In Fig. 10 we show the torus
wave function for the p = 1, S = 2 TE mode, which is indistinguishable by eye
from the corresponding pillbox wave function. The pillbox wave function almost
automatically satisfies the boundary condition J~(ypa) = 0 because of the ex
ponential decrease of J~(nz) with decreasing z < 1.

The similarity of the torus and pillbox resonant modes naturally disappears if
the trajectory radius R is very close to the inner torus radius a.

~ 0.0005
I
u
Z
~

LL

~ 0
<I:
5
.-J
<I:
o
~-0.0005

Torus in TE Mode,

p=l, s=2

0.996 0.997 0.998 0.999 1.000
rib

FIGURE 10 Radial wave function for torus or pillbox, in TE mode with p = 1, S = 2 [example (1)].
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6. RESISTIVE-WALL BOUNDARY CONDITIONS AND
COMPUTATION OF Q

To account for electrical resistance of the vacuum-chamber walls, we adopt the
conventional resistive-wall boundary condition:

• [ --iWIl ] 1/2
EII(w)== . nxHII(w),

o --IWE
(117)

(118)W>o.

where quantities written in boldface type are vectors. The fields Ell and H II are
the components of E and H parallel to the wall, and n is the unit vector normal to
the wall, pointing away from the wall (into the vacuum). Within the wall material
J == oE, D == EE, B == IlH. For the derivation of Eq. (117) it is assumed that the
surface of the wall is planar and that the fields within the wall have negligible
variation in directions parallel to the surface. The assumption of planarity is
justified in our case because of the large radius of curvature of our cylindrical
walls. The second assumption is not well justified near the corners, where planar
and cylindrical walls of the vacuum chamber meet. We are forced to ignore that
difficulty, since a correct treatment of fields near the corners would be terribly
complicated.

We put Il == Ilo, E == Eo, as is approximately true for usual metal walls. The
displacement current term, --iWEo, is negligible compared to 0, even at the
relatively high frequencies of our resonances. When the time variation of fields is
given by a factor e-iwt as we have assumed, the correct branch of the square root
in Eq. (117) is specified as follows:

I(
WIl )1/21EII(w) = (1- i) 2a

o
n X "II(W),

This choice guarantees that the fields decay exponentially as the point of
observation moves from the surface to a point within the material.

It is convenient to introduce a dimensionless complex parameter 1/,
proportional to the square root of the resistivity; namely,

i . (Wllo)1/2 1 + i wD1/==-(1--1) - ==---
Zo 20 2 c'

(120)

(121)

(
2 )1/2 [ f(GHz) ]1/2 W

(j = aWllo ; IIlI = 18a(Q-1m-1) , f =2Jr· (119)

The parameter D is the skin depth. Although 1/ increases with frequency as W1/2,
it is typically small compared to 1 even at the high frequencies of our resonances
(a few hundred GHz). For aluminum, 0=3.5~107Q-lm-l, whereas for
stainless steel, 0 = 106

g-1 m-1. Thus for aluminum at 200 GHz, 11/ 1== 5.6 x 10-4
;

for stainless steel at 600 GHz, ITJ I == 5.8 X 10-3
•

On the cylindrical surfaces of our toroidal chamber, the boundary conditions
are
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where the upper (lower) sign is for the surface 'at r = b(a), respectively. On the
planar surfaces,

Er = ±iTJZoHo,

Eo = ~iTJZoHr,

(122)

(123)

where the upper (lower) sign is for the surface at z =g(-g), respectively.
Recalling the form of our Fourier developments [Eqs. (5), (6), and (8)], we see

that Eqs. (120) and (121) might be satisfied term by term in the Fourier series.
That is, Eo and Hz are both expanded in sin a'p(z +g), whereas Ez and Ho are
both expanded in cos a'p(z + g). On the other hand, Eqs. (122) and (123) cannot
be satisfied term by term, since fields on the left sides of the equations are
expanded in sines, whereas those on the right are expanded in cosines. To
accommodate the boundary conditions on planar walls, we must modify the
Fourier developments.

The problem can be understood in the simplest terms by considering first the
solutions of the homogeneous Maxwell equations subject to resistive-wall
boundary conditions. Further, it is best to look first at solutions in which either
the cylindrical walls or the planar walls are resistive, but not both at once. We
thereby find that resistance of the cylindrical walls mainly effects the TE modes,
whereas resistance of the planar walls mainly effects the TM modes.

We now discuss solutions of the homogeneous Maxwell equations, restricting
attention to the pillbox chamber. As usual, the results are almost the same for
the torus. We first treat cylindrical resistive walls, retaining infinite conductivity
on the planar walls. In view of Eqs. (12), (14), (19) and (20), the conditions [Eqs.
(120) and (121)] at r = b imply the following equations for Fourier components:

(124)

These homogeneous equations for A np , ZoCnp have a solution only at frequencies
such that their determinant D (OJ) is zero. The determinant is

When TJ is zero, D(OJ) has zeros where In ( Ypb) = 0 (TM modes) and where
J~(Ypb ) = 0 (TE modes). These zeros move into the complex plane when TJ is
turned on.
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To find the complex zero for TM modes, write

(126)

where W r is the frequency of the unperturbed TM mode. Then Eq. (125) has the
form

( [
, 2 ( 1 W)2 bD w) = - Jn(r b)] - - -

p Yp c c

x { W - W r + 17 ~+ o[ 17 ~ (w - W r )2] + o[ 172
( W - W r )]}. (127)

With neglect of terms 0("1 2
), the perturbed zero is at wr = W r - 1Jc/b or

wr = W r ( 1- 1 ; i£). (128)

The corresponding Q is
Rewr b

Q =211m wrl ="b ' (129)

(effect of cylindrical wall, TM mode).

The calculation to find the complex zero for the TE modes is much the same, if
we use the Bessel equation [Eq. (86)] to eliminate the second derivative I"( Ypb ).
That is, the formula analogous to Eq. (126) is

where, as usual, Z = Ypb/n. This yields a perturbed zero at

W =W(1_1+i_1_~)
r r 2 Z2 - 1 b '

and

(130)

(131)

(132)
b

Q=(z2- 1)"b'

(effect of cylindrical wall, TE mode).

The quantity Z2 - 1 = u is given in terms of n by Eq. (103), and is somewhat
smaller than x/R = 2(b - R)/R. Typical values of u are given in Table I.
Comparing Eqs. (129) and (132), we see that the Q due to cylindrical walls is
much smaller in TE modes than in TM.

To handle resistive planar walls, we extend a method of Bart. 15 Since we need
more flexibility in meeting boundary conditions, we replace the z-dependent
wave functions of Eqs. (5) and (6) with

al sin a'p(z + g) + az cos a'p(z + g) for Hz,

b l cos (3p(z + g) + b2sin (3p(z + g) for E z •

(133)

(134)



BEAM-EXCITED FIELDS 141

Here fXp and {3p are new wave numbers, to be determined by the boundary
conditions. Since it results that fXp is very nearly equal to our old fXp of Eq. (7),
we take the liberty of denoting it by the same letter. The forms Eqs. (133) and
(134) are equivalent to

H~ cos fXpZ + H; sin fXpZ, (135)

E~ sin {3pz + E; cos {3pz. (136)

In the limit of infinite conductivity, only the E~, H~ terms survive, and only for
odd p with fXp = {3p = Jrp /2g (the restriction to odd p comes from our assumption
that the charge distribution is symmetric about Z = 0). Note that the role of
superscripts 1 and 2 is reversed with respect to Ref. 15, since our charge
distribution excites odd p rather than the even p emphasized there.

Let us now look for a pure TM mode, a solution of the homogeneous Maxwell
equations with Hz == 0, with resistive planar walls but cylindrical walls of infinite
conductivity. The wave function of E z is

In(Ypr)(E~ sin {3pz + E; cos {3pz), (137)

where YP is defined by

.-..2 = (W)2 _{32Yp p'c
(138)

(140)

The other fields are constructed from Eq. (138) and Eqs. (11)-(14) with Hz = O.
It is easy to check that the full set of Maxwell's equations is satisfied separately
for terms involving sin {3pz and cos {3pz.

To determine {3p, substitute the above fields in the planar-wall boundary
conditions [Eqs. (122) and (123)]. The boundary conditions are satisfied if

(x cos x -1JV sinx)E~ - (x sin x + 1JV cosx)E; = 0,

(x cos x -1Jv sinx)E~+ (x sin x + 1Jv cosx)E; = 0, (139)

wg
V=-.

c

This homogeneous system has solutions if, and only if, its determinant D is zero:

D = 2(x cos x -1Jv sinx)(x sin x + 1Jv cos x) = O.

It follows that the solutions of Eq. (139) are

E~ arbitrary, E;=O for XCOSX-1Jvsinx=O, (141)

E~ = 0, E; arbitrary for x sin x + 1JV cos x = 0. (142)

The nonlinear equations (141) and (142) determine the wave number {3p. Since
l1J v l is small compared to one, if the frequency is not too high, Eq. (141) has a
solution x close to Jrp/2 for p odd, and Eq. (142) has a solution close to Jrp/2 for
p even. By expanding the solutions in powers of 1JV, we find that one and the
same function of p and 1Jv satisfies Eq. (141) for odd p ~ 1 and Eq. (142) for
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even p ;::: 2; namely, the complex function

np TJV (TJV)2
x=x=----·- + ...

p 2 np /2 (np /2)3

There is also a special solution of (Eq. 142) near zero; namely,

(143)

(144)

The negative of each solution is also a solution, but it leads to the same wave
function [Eq. (137)] and is therefore redundant.

Since Hz = 0, the boundary conditions on the perfectly conducting cylindrical
wall are satisfied if

(145)

This equation is satisfied at complex w because (3p and YP are complex. To find
the complex root, expand Eq. (145) about ins' the root of In:

In(Ypb) ~I~(ins)(Ypb - ins) = O.

Let W r be the frequency of the unperturbed mode, so that

(W;br=j~ + (1r~br
Then Eqs. (146) and (147) give the perturbed frequency wr as

(W;br = j~ + ({3pb f,

= (W;br - (1r~br +b2(7 - :;~ + ...r,
or, to lowest order in TJ,

Wr = Wr [ 1 - 411V ( W:h) 2]

= W r [ 1- (1 + i) ~J.

(146)

(147)

(148)

(149)

We have evaluated 1JV at Wr since the correct evaluation at wr gives the same
answer to lowest order in 1J. Thus, the quality factor is

(150)

(Effect of planar walls, TM mode).

The ratio of Eq. (150) to Eq. (129) is h/2b, which is typically small compared to
one.

The calculation for TE modes follows the same lines. In place of Eqs. (141) and
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(142) we find

H~ arbitrary,

H~=O,

H; = 0 for

H; arbitrary for

v cos x - 'YJX sin x = 0,

v sin x + 'YJX cos x = 0,

(151)

(152)

oog
v=-.

c

One and the same function of p and 'YJV solves Eq. (151) for odd p and Eq. (152)
for even p; namely

(153)

With

(154)

the solution of the resonance condition

(155)

(157)

(156)ror = (Or [ 1- (:~r(1+ i) ~J

(
00 h)2 h

Q = n;c 2.5·

(Effect of planar walls, TE Modes)

The ratio of (157) to (150) is typically very large. One can ignore the effect of
planar w.alls in lowering the Q of TE modes.

To find the combined effects of cylindrical and planar surfaces, one can, to a
first approximation, add the corresponding values of 1m Wr , then take reciprocals
to find Q. The result is that resistive effects of cylindrical (planar) walls are
negligible in TM(TE) modes, respectively, provided that h «b. To summarize, a
good approximation is

gives the following

Q = (Z2 -1)% (TE) ,

h
Q = 2<5 (TM) ,

(158)

(159)

where z2-1 is given by Eq. (103) in terms of n = wR/f3c.
In Table I, we list the values of Q obtained from Eqs. (158) and (159) for the

examples of Eq. (91), assuming that the chamber is made of aluminum, with
conductivity a = 3.54 x 107 g-l m-1

.

It is a relatively difficult problem to find solutions of the inhomogeneous
Maxwell equations with full resistive-wall boundary conditions. If only the
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cylindrical walls are resistive, the inhomogeneous problems can be solved by the
method of Section 2. In the case of the torus, this leads to four simultaneous
equations to determine the four coefficients of Eqs. (19) and (20); for the pillbox,
two simultaneous equations suffice. If the planar walls are resistive, there is an
impediment to solving the inhomogeneous equations, regardless of whether the
cylindrical walls are resistive. The problem is that the TE and TM fields are both
excited by the sources, which means that expansions in (cos lXpZ, sin lXpZ) get
mixed with expansions in (cos f3p z, sin f3p z). Since lXp =1= f3p, the Maxwell equa
tions with sources do not separate; i.e., they are not solved term by term in the
Fourier developments. They do separate to a certain approximation, however,
since lXp and f3p are both very close to Jrp /h.

For the numerical calculations of the following section, we take lXp = f3p = Jrp /h
in deriving expressions for the impedance but finally replace Jrp /h by f3p, as given
by Eq. (143), in the TM terms only. [Since lXp as given by Eq. (153) is so close to
Jrp/h, there is no reason to alter the TE terms]. The full cylindrical resistive-wall
boundary conditions for the torus are imposed by solving numerically the 4 x 4
system to determine the coefficients of Eqs. (19) and (20). We are fairly confident
that this approximate treatment is accurate, at least near the resonances and for
good conductors such as copper and aluminum, because, near resonance, the
solutions of the inhomogeneous equations closely resemble the eigenmodes that
we have analyzed above and should have nearly the same Q. Indeed, we find
that the products of PA/Q by Q in Table I, obtained entirely from eigenmodes,
agree rather well with the peak values of PA from the full numerical calculation.
The latter are shown in Figs 11. and 13. Far from resonances, where the
impedance is negligible anyway, our calculation is clearly wrong since it
sometimes gives small negative values of Re Z. This can be traced to a violation
of charge conservation that arises from treating the nonseparable equations as
though they were separable.

o
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FIGURE 11 Re Z(n, nOJo)/n versus n for SLAC damping ring.
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FIGURE 121m Z(n, nwo)/n versus n for SLAC damping ring.

A more accurate treatment could be devised by expanding the functions of Eq.
(135) in the functions of Eq. (136), which is possible due to the completeness and
orthogonality of the functions proved in Ref. 15. One would then get equations in
which different values of p would be weakly coupled. A truncation of the
equations to allow only a few neighboring values of p would probably lead to a
satisfactory solution.

7. GRAPHS OF COUPLING IMPEDANCE AND DISCUSSION

In this section we discuss the longitudinal coupling impedance Zen, nwo) as a
function of n. This function is needed for stability studies based on the Vlasov

c:; 4
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FIGURE 13 Re Z(n, nwo)/n versus n for Berkeley light source (ALS).
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FIGURE 141m Z(n, nwo)/n versus n for Berkeley light source (ALS)

equation for bunched beams. The so-called "wake potential" V (Wo t) is con
structed from the same function, as a Fourier sum:

f3cq ~ .
V( WoT) = - 2JrR'if;(WoT) =R n~oo elnWOTZ(n, nwo)A.no

Here the wake field ~(WoT) is the longitudinal field at an angular distance WoT

ahead of a rigid bunch, averaged in time over one revolution period 2n/ Wo, and
An is the Fourier transform of the bunch form A( (J), as in Eq. (34).

In Figs. 11 to 16, we show graphs of the real and imaginary parts of
Z(n, nwo)/n versus n. The abscissa is labeled by the frequency f equivalent to n,

f = nwo. (161)
2n
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FIGURE 15 Re Z(n, nwo)/n versus n near lowest resonance, SLAC damping ring.
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The results are for resistive toroidal chambers wih the conductivity of aluminum,
a = 3.54 x 107

g-1 m-1
, with dimensions as specified in Eq. (91). The beam is as

specified in Eqs. (29) and (37), where the vertical profile H(z)=H(~z) is
constant over a width Dh and zero elsewhere. The value of Dh/h, not a critical
parameter, is 0.05, and f3 = 1.

At frequencies lower than those shown in the graphs, the impedance is so small
that it does not show up on graphs of the same scale; see Section 4. The peak of
lowest frequency is a TE mode, and henceforth peaks due to TM and TE modes
alternate. (Here, as throughout the paper, the designation as TE or TM refers to
the axis of symmetry of the torus, not the beam direction.) The graphs were
plotted from the p = 1 contribution alone, i.e., from the impedance due to fields
excited by the lowest axial mode of the source. The contributions of higher pare
negligible in the domain of frequencies plotted. At a fixed instant of time, the
fields corresponding to the resonance peaks shown have tens or hundreds of
thousands of oscillations in the 8 direction and no, or few, oscillations in the
transverse directions, z and r.

The peak values of Z(n, nwo)/n, up to 36 Q, are large by the standards that are
usual for storage rings at lower frequencies. For instance, IZI/n for the SLAC
damping ring is estimated to have a broad-band value of around 2.5 Q up to a few
GHz and is bigger than one would like. At first sight, it would seem that large
impedances at frequencies of a few hundred GHz would be harmless to beam
stability, since even bunches that are quite short by present standards are thought
to have negligible Fourier components at such high frequencies. Thus,
Z(n, nWo)An in the wake potential [Eq. (160)] would be small for all n, even if Z
achieves high values. This argument is not totally convincing, however, since
small-scale oscillations in charge density within the bunch could give high
frequency components An much bigger than those for a smooth bunch. One needs
a careful examination of the bunched-beam Vlasov equation to see whether such
small wiggles might build up in an unstable manner. Another point of interest is
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(162)

that extremely short bunches, down to 50 /lm, are being considered for future
linear colliders. The short bunches would occur after the damping rings, but their
coherent synchrotron radiation while going through bends could be analyzed by
present methods.

There are two novel features of our impedance that may be important in
stability questions. First, the peaks in Re Z(n, nwo) as a function of n are quite
broad, with width much greater than the natural width of a single resonance.
Second, the location of the peaks is a very sensitive function of the revolution
frequency Wo (equivalently, of the trajectory radius R). These features can be
understood in terms of an analytic formula for the resonant frequency as a
function of n.

We return to Eq. (102), which determines the resonant frequencies. Previously,
this equation was used to find poles of Z(n, w) such that w = nwo exactly. We
now apply it to find poles such that w is merely close to nwo. Putting

[(WIC)2 - £}'2]b2
Z2= p

n2 ,

and applying the approximation of Eq. (104), we can solve Eq. (102) to obtain (J)

as a function of n in the form

(163)

(164)

In its region of validity (large n, small Z2 - 1), this equation is the dispersion
relation of the system. From Eq. (163) we compute the derivative

~: =H1+ ~ [3Jr(~ + s)r3

n-213 + O(n-4
/
3
)},

__ f3c _
--R- wo°

Since dwldn is close to Wo, the function Z(n, nwo) will not change very much
when n changes by a few units. This is illustrated in Fig. 17, in which we plot
Re Z(n, nwo) at increments of 15 in n, around the lowest peak in example (1). In
this example, ~nln ~ 7.5 x 10-3

, where ~n is the full-width at half-maximum. By
contr3;st, if we plotted Re Z(n, w) versus w at fixed n, we would see a much
narrower peak with ~w I w = IIQ ~ 1.7 x 10-5

; here ~w is the "natural line
width" of the resonance.

The order of magnitude of the width ~n can be explained in terms of the linear
part of w(n) and the difference between dwldn and W00 The impedance near the
resonance pole may be represented approximately as

(165)

where' is real. Define nr so that nrwo= w(nr). If we expand w(n) about nr and
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(166)

treat the numerator and Q as constant, we see that for n = nr+ ~n/2,

()
i'(nn nrOJo)

Z n, nOJo ~ ( ~) [ '( )~]( . )'
nr + 2

n
Wo- w(nr ) + w ~ n 1-2~

i'(nn nrOJo)

[ '()] ~n iOJ(nr)·
OJ -OJ n -+--o r 2 2Q

We throwaway the small term of order ~n/Q. Now Re Z(n, nOJo) will reach
one-half its maximum value where

I[
- '( )] ~n I= OJ(nr)

OJo OJ nr 2 2Q·

Using Eq. (164) for OJ' and retaining only the dominant first term, we find

, f3e e we
OJo-OJ (nr)=R-b~2R2'

(167)

(168)

where b = R + w /2; w is the width of the chamber if the beam is centered. Thus,
Eq. (166) gives the following for the full-width ~n at half-maximum:

~n 2R 1
-;; =-;- Q . (169)

For the lowest peak in example (1), we take Q from Table I, and R/w from Eq.
(91) to get ~n/n = 9.6 x 10-3

• This agrees well enough with the value from the
exact calculation, 7.5 x 10-3

, to convince us that the linear part of OJ(n) is mainly
responsible for the width, ~n. The discrepancy is probably due to treating the
numerator in Eq. (165) as constant.
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FIGURE 18 The shift in the peak of Fig. 15 when R is changed by 0.1 mm out of 5.7 m.

Although the peaks of Re Z(n, nwo) are broad compared to I/Q, they are
fairly narrow compared to a typical bunch spectrum An, and they are widely
separated. These features should simplify the Vlasov analysis of stability.

In Fig. 18 we illustrate the sensitivity of the resonant frequencies to the value of
Wo. Changing the trajectory radius R by 0.1 mm out of 5.7 m shifts the resonance
peaks by almost 2 GHz. This behavior is due to the feature noted above, that the
slope of the resonance curve w(n) at large n is just slightly smaller than the slope
of the line w = won. The angle of intersection of the curve and the line is small,
so that a small change in the slope Wo will produce a big change in the point of
intersection, which is to say a big change in the resonant frequency that satisfies
w = won. To find the change in frequency due to a small change in R, put
w = won in Eq. (163) and differentiate with respect to R. The result is

dn
n

(170)

The factor multiplying dR /R lies in the range 350-1600 for the first few
resonances of our examples.
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