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A direct map method with a Mathieu approach to tune modulation is proposed and used to simulate
nonlinear effects on particle motion that are generated by a beam-beam-like interaction of
antiprotons with ions of the residual gas in the CERN Antiproton Accumulator. Two different
Gaussian ion distributions are used, and the effects of the simulated beam-beam force on the particle
motion is studied in phase space, with a particular attention to high-order nonlinear resonances.

1. INTRODUCTION

In circular accelerators or storage rings with negative beams (antiprotons or
electrons), positive ions arising from ionization of residual gas molecules or
positive charged microparticles can be trapped by the negative potential
generated by the beam itself. In practice, the ions of the residual gas continue to
accumulate until an equilibrium neutralization of about 0.998 is reached and
pockets of ions are localized in a few regions of the ring where clearing out gets
more difficult. When the intensity of the stacked beam becomes important, the
interactions of the negative beam particles with the positive matter (ions or
microparticles) can produce a systematic increase in transverse emittances. With
the CERN Antiproton Accumulator (AA) , a stack intensity above 1011 anti­
protons and transverse emittances between Jr and 2Jr mm mrad (at 3.5 GeVIc)
are sufficient to exhibit an abnormal growth of transverse emittances that can be
related to the mechanism described above. *1 The interaction of antiprotons with
the few ion pockets (mainly protons) is very much like the beam-beam
interaction in colliding-beam machines. 2

* The average gauge pressure of the AA during normal operation is about 10-11 torr with 90% Hz
and 10% CO or Nz residual gas. With this pressure each antiproton can produce with roughly the
same probability an ion of Hi ,CO+, or N; in about 25 seconds (mean time). The neutralization
process, through multiple Coulomb scattering, favors the escape of heavy ions (CO+, Ni) and the
final ion pocket is therefore mainly populated by protons as a result of double ionization of molecular
hydrogen.
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The electromagnetic field generated by the ion distribution can be described by
a transcendental function that in principle contains all the powers of the
transverse coordinates (x and y). The presence of all powers of these transverse
coordinates in the perturbing force makes the system highly nonlinear and may
explain the excitation of high-order nonlinear resonances that have been seen in
the CERN AA. In this storage ring a scanning of the horizontal betatron tune
(maintaining the vertical one fixed) shows the emittance growth due to the
crossing of several 15th and 11th order nonlinear resonances. Some tune
modulation (from ripple in the AA magnetic current) must also be added to
describe this behavior. This tune-modulation amplitude is estimated to be ·about
Am = 3 X 10-5

, and its frequency is Vs= 300 Hz. The effect described above,
together with other effects due to the possible presence of Si02 microparticles,
appear as potential limitations to the CERN AA performance; these limitations
can become quite serious in the presence of higher intensities that will be
reachable after completion of the CERN Antiproton Collector.3 A good
understanding of nonlinear problems in the AA seems therefore necessary.

Furthermore the AA phenomenology, as described above, could be looked at
as an interesting application field for many of the general ideas of nonlinear
dynamics, such as nonlinear-map instability, phase-space structure, and chaos
from deterministic motion. If we describe the particle motion in a storage ring in
terms of the azimuthal coordinate 8, directly proportional to the time, and we
focus our attention on transverse motion, the system has only two degrees of
freedom (the Hamiltonian is supposed to be independent of 8) and the
phase-space behavior can be visualized without too much difficulty.

The aim of this note is to study in a detailed way the behavior of the phase
space and the occurrence of nonlinear resonances for a linear system (the linear
betatron motion of charged particles in storage rings) upon which a weak
nonlinear perturbation (the antiproton-ion interaction) is added, with the
possibility of making the antiproton dynamics in its phase space unstable.

2. DIRECT MAP FORMALISM

A rudimentary description of charged-particle transverse motion in circular
machines is that of the simple harmonic oscillator; in this description every local
(fine) peculiarity of the ring lattice is neglected and only the overall sinusoidal
pattern is taken into account. The two coupled equations of motion (which can be
derived from a classical Hamiltonian approach)4 are

x"(8) + v~x(1 - Acos ve8)x(8) = ;x<l>(x, y)~n<5(8 - n2Jr), (1)

y"( fJ) + v~y(1 - Acos vefJ)y( fJ) = ;y<l>(x, y )~n<5( fJ - n2Jr). (1a)

Two types of interactions contribute to the slope variation x" in Eq. (1). The
first is the restoring force of the "rudimentary" lattice (slightly modulated). The
second one represents the instantaneous kick due to the localized ion pocket,
which is here assumed to occur at just a single point in the ring (and hence at
every multiple of 2Jr in 8). We consider one interaction per turn in order to
exhibit the effect qualitatively; to be more realistic one should choose a small



ION-ANTIPROTON INSTABILITIES 153

number of such interaction points (two, three, or four) the better to simulate the
actual situation in the AA ring. The strength of the kick depends on a coupling
constant, ;, the impact parameter coordinates x, y, and the ion-pocket distribu­
tion <1>, which is nonlinear in x and y. A more detailed description of the coupling
constant ; and the <I> function in terms of electrostatic forces is given below
(Section 3).

Equation (1), in the absence of the right-hand member, is the classical Mathieu
equation, which, following classical textbooks, can be rewritten in terms of the
new variable z = ve(J12:

x"(z) + (a - 2q cos 2z)x(z) = (2/ve);x<l>(x, Y)~nc5(z - nnve), (2)

with a = 4(vx lve)2q = 2(vx lve)2).,. The physical system is determined completely
by Eqs. (1) or (2). To obtain a numerical tool useful to follow the behavior of a
particle in this system, we can derive a direct map from Eq. (2) that can give the
phase-space coordinates of the particle at the (n + 1)th turn by means of the
phase-space coordinates at the nth turn. 5

,6 We have then

xn+l(n + 1) = {D1xn(n) + D2[x~(n) + (2/ve);xn(n)<I>(n)]}ID, (3)

x~+l(n + 1) = {D3xn(n) + D4[x~(n) + (2/ve);xn(n)<I>(n)]}ID, (3a)

and similarly for y and y', where

D = M'(n)N(n) - M(n)N'(n),

D1= M'(n)N(n + 1) - M(n + l)N'(n),

D2= M(n + l)N(n) - M(n)N(n + 1), (3b)

D3 = M'(n)N'(n + 1) - M'(n + 1)N'(n),

D4= M'(n + l)N(n) - M(n)N'(n + 1),

with M(n) = M(z = nnve) and N(n) = N(z = nnve), M(z) and N(z) being two
linearly independent solutions of the homogeneous Mathieu equation7 (see
Appendix).

3. FORCES ACTING ON ANTIPROTONS

Space-charge forces acting on antiprotons due to the beam itself can be derived
from Gauss's theorem and Ampere's law;2 with a cylindrical charge distribution
we obtain

(4)

Here n is the linear antiproton density in the beam and f3 = vic; D(r) depends on
the chosen beam distribution and is equal to

(5)
with

p(r) = (ne/2na2) exp (-r2/2a2). (6)

With the antiproton y value in the CERN AA (y = 3.77), the space-charge force
drops to about 7% of the electrostatic force.
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When the antiprotons travel through an ion cloud somewhere in the AA ring,
the radial force acting on them, due to the ion cloud, can be described by (again
with cylindrical symmetry)

fions(r) = -'fJ(ne2/2JrEo)D(r2/2a2)lr, (7)

in which 'fJ is the neutralization factor in the ion cloud, nions = 'fJn (the mean value
all around the ring is of the order of 20%); the x and y components of this radial
force are

f'x = -(xlr) lfions(r) I= -'fJ(ne2/2JrEo)xD(r2/2a2)lr2,

Fy = -(ylr) lfions(r) I= -'fJ(ne2/2JrEo)yD(r2/2a2)lr2.

For the slope deviation we can write

(8)

(9)

x"(O) = (Rlmp)f'x, y"(0) = (RI mp )Fy, (10)

where m is the revolution frequency and p is the reference momentum; for the x
coordinate we have

x"(O) = -(Rlmp)'fJ(ne2/2JrEo)xD(r2Ia2)lr2,

x"(0) = - (nrp I y2a2)(Rc1m )(11(3) 'fJxD (r2Ia2)I(r212a2).
(11)

If we suppose that the change in slope is made abruptly at 0 = k2Jr, we can write

~(x') = -(Nrp I2ya2)(11(3)R'fJx<P(r212a2)(LIR)~k6(0 - k2Jr). (12)

The terms N = f n(s) ds = nL and ~0 = LIR have been introduced because of
dimensional considerations. We can define a coupling constant; and rewrite:

~(x') = ;x<P(r2/2a2)~k6(O - k2Jr), (13)

; = -(Nrp I2ya2)(11(3)'fJL. (14)

The change in slope x'(O) at each 0 = k2Jr is therefore:

~(x') = ;x<P(r2/2a2). (15)

With a == 1 mm, rp == 1.5 X 10-18 m, N == 0.2 X 1010 film, and L = 1 m, a realistic
value of the coupling constant comes out to be of the order of 10-3-10-2

; in this
range the result is strongly dependent on the Land 'fJ values.

A more realistic distribution, still with a Gaussian shape but with ax =1= ay (ax>
ay ), is

p(x, y) = (ne2/2Jraxay ) exp (-x212a; - y2Ia;). (16)

With this "elliptical" distribution the slope deviation can be written as8

with

~(x') = ;* 1m [W(z)], ~(y') = ;* Re [W(z)], (17)

;* = ;(Jr1l2/2)a2/(a; - a;), (18)

W(z) = (IIK){w[(x + iY)K] - exp [-(xI2ax )2 + (y12ay)2]w[(xr + iy Ir)K]}, (19)

K = 1/[2(a; - a;)]112 r = aylax , (20)
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(21)

where w(z) is the complex error function defined as

w(z) =e-Z2 [1 + (2i/n1
/
2

)re~2 de ]

and can be evaluated by means of a fast computer program9 that can be very
useful in particle tracking simulations.

4. NUMERICAL SIMULATIONS

Uncoupled linear motion can be represented in phase space by the product of two
independent ellipses, i.e., a torus upon which the representative point moves with
time evolution. 10 The motion of the representative point upon the torus can be
described by two coordinates, 81 and 82 ; the former coordinate is the polar
coordinate on the torus cross section while the latter is just the azimuthal
coordinate around the torus. If WI = 81 and W2 = 82 are in a rational relationship
(mwl =nW2; m and n are integers), the representative point of the motion closes
its orbit after m revolutions upon the torus; the signatures that it leaves through a
plane in phase space during the first m turns are also the crossing points of the
successive motion. The invariant torus is said to be rational. If WI and W2 are not
in a rational relationship, the orbit remains open forever, the trajectory of the
representative point covers in a dense fashion all the torus surface, and the
signature left through a plane during the motion is a continuous curve (ellipse).
The invariant torus is said to be irrational.

The ratio Wl/ W2 (winding number) depends on the amplitude of the motion
and therefore, in general, is different for distinct tori. Thus if the system is linear
and unperturbed, the Hamiltonian generates, in phase-space projections, in­
variant curves that belong to rational or irrational winding numbers.

If a small perturbation is added, the whole picture may change and become
extremely complicated; but if the perturbation is sufficiently weak, tori with
irrational winding numbers do survive, although in a distorted form. On the other
hand, tori with rational winding numbers are completely destroyed, and the
pattern of phase-space projections are small closed curves around stable fixed
points separated by diffuse regions with an unstable fixed point at each of them.
These unstable fixed points are the origin of chaotic motion in phase space, Le.,
motion that is extremely sensitive to initial condition.

4.1. Nonlinear Resonances

A numerical code (DIRMAP) has been derived from the direct map relationship
described in Eq. (3). This simple numerical tool makes it possible to investigate
some interesting aspects of charged-particle behavior in a storage ring in the
presence of nonlinear forces such as those that originate from the antiproton­
positive-ion interactions described above.
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With two coupled degrees of freedom, nonlinear resonances in the amplitudes
can be found with values of the transverse betatron tunes Vx and vy that satisfy
the well known resonant condition:

mvx + nvy = p, (22)

with m, n,and p integers;4,11,12 q = Iml + Inl is called the order of the nonlinear
resonance. In presence of a tune modulation with frequency vs , (in both planes),
the resonant condition becomes

mvx + nvy =p + kvs• (23)

If the tune modulation acts on one degree of freedom (two-dimensional phase
space), each resonance of order n acquires an infinite number of satellite
resonances that are separated by vsln and reduced in strength by the factor
Jk(nvlvs), where Jk is a Bessel function of the first kind;2,13 the resonant condition
then becomes

Vx =pIn + kvsln (k = 0, ±1, ±2, ... ).

4.2. Third-Integer Resonances Driven by a Sextupolar Field

(24)

In order to test the code confidence, many numerical simulations have been done
around a third-integer resonance (vx = 7/3) driven by a sextupolar term in the
force of the type (x2 - y2) and xy. In Fig. 1 a typical result obtained with the
DIRMAP code is shown. The horizontal betatron tune is incremented by fixed
steps. For each horizontal betatron tune value, a sequence of 5000 map iterations
is initiated. The iteration is truncated when the particle amplitude becomes
greater than a fixed one (related to the physical aperture of the storage ring) and
the particle itself can be considered lost. In Fig. 1 we have plotted the reciprocal
of the number of iterations N as a measure of the growth rate; furthermore the
strength has been normalized to be unity at the exact resonance value (vx ~ 7/3).
The first satellite resonance described above is clearly seen at the expected value
of horizontal betatron tune (vx = 2.3333 + 0.0780/3 ~ 2.3593).

4.3. High-Order Nonlinear Resonances Driven by Gaussian Charge Distributions

Nonlinear resonances of high order are in general very difficult to exhibit by
means of simulation codes because of their weakness and consequently the low
growth rate of the resonant amplitude. "fhe overall behavior of the tune­
modulated antiproton-ion potential is better understood if the betatron tune
values are chosen near a relatively strong resonance such as a third-integer one.
Furthermore, comparisons are possible with the case in which only quadratic
terms are present in the force expression (sextupole). Also, the minimum value of
the coupling constant ;, which is necessary to make active at least the
first-expansion polynomial terms of the complete Gaussian distribution, can be
better determined near a third-integer resonance.
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FIGURE 1 Satellite resonance near a third-integer one.

In order to realize the program described above, the even parity of the charge
distribution must be destroyed at least in the x direction if we want to reproduce
the odd resonances. This can be easily done by introducing a displacement Xd

along the x direction. In this way all powers of x are present in the <I>(x, y)
expansion, and quadratic terms (x2- y2, xy) appear in the kick expression as is
necessary in order to excite third-integer resonances.

The first striking difference between cylindrical and elliptical charge distribu­
tions is that the latter seems more effective in producing unstable motion than the
former. If one tries to use the elliptical distribution and ; values of the order of
unity with the same initial conditions in both planes already used for the
cylindrical charge distribution, the motion is completely unstable and no more
than 10 iterations are possible.
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The second important difference is that, when an apparent stability is present
(smaller ; values), the overall behavior of motion with elliptical charge
distribution is much more chaotic (diffuse) than the cylindrical one; the onset to
chaotic behavior has been proved with the Liapounov exponent method.6,14,15

Furthermore", with increasing ;; transition from stable to unstable motion seems
quite abrupt without steps with rational and irrational tori,6 and the phase-space
structure appears completely different, as shown in Fig. 2.

This completely different behavior between cylindrical and elliptical charge
distribution can easily be exhibited in pictures of relative resonance strength
(reciprocal of number of "turns" before the particle is lost) versus horizontal
betatron tune.
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FIGURE 2 (continued)

When the cylindrical charge distribution is used, also with values of the
coupling constant; much greater than the physical ones, the behavior of the map
remains stable over most of the range where some important nonlinear
resonances of even parity should appear. This stresses the relative weakness of
the cylindrical charge distribution to excite nonlinear resonances. Such behavior
can be seen in Fig. 3a, where the value of the coupling constant ; is equal to
2.0 (~100;phys). Because of the even parity of charge distribution, only even­
order resonances can be excited. The strongest even resonance in the chosen
range is the Vx = 9/4 resonance. With ; = 2.0 the cylindrical distribution
reproduces this peak; the same peak can be also attributed to at least two other
nonlinear resonances (2vx + 2vy = 9, Vx = 2.2435; 3vx + vy = 9, Vx =2.24783).
Three other peaks are reproduced by the cylindrical distribution, and their most
probable identification is given in Fig. 3a.



160 A. DAINELLI AND M. PUSTERLA

As suggested above, the definite parity (even) of the cylindrical distribution can
be destroyed by giving a displacement of quantity Xd to its center. In this way also
the odd resonances can be excited; the most important one in the chosen range is
Vx = 7/3. After switching on the decentralization of the charge distribution (Fig.
3b), the third-integer resonance appears and because it is stronger than the
Vx =9/4 one, it becomes the highest peak in the figure (the previous peak at
2.330 increases to 2.333); two other odd nonlinear resonances also seem to
appear. Further simulations show that different odd resonances are excited with
different displacements of the cylindrical charge distribution.

The corresponding pictures obtained with the elliptical charge distribution are
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FIGURE 3 (continued)

shown in Fig. 4. Again the coupling constant ; used here is two orders of
magnitude smaller than the one used with the cylindrical distribution in Fig. 3.
Two main resonances are reproduced by the elliptical distribution without
decentralization. With an elliptical charge distribution, the force acting on the
particle is not in the radial direction, but the same considerations on parity (even)
apply because the charge distribution still has a definite even parity. Two main
even resonances (vx = 9/4, Vx = 19/8) are reproduced in Fig. 4a, in which no
decentralization has been introduced. After switching on the decentralization the
three main odd resonances in the range also appear (vx = 11/5, Vx = 7/3,
Vx = 12/5). Other peaks appear, and their most probable identification is given in
Fig. 4b. Again, as with the cylindrical case, different odd resonances seem to be
excited by different decentralizations of the charge distribution.
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FIGURE 4 Some nonlinear resonances simulated by means of a Gaussian charge distribution
(ax> ay, elliptical shape): (a) no decentralization introduced, (b) decentralization introduced.

5. CONCLUSION

A direct map approach seems to be a powerful way to simulate systems
characterized by nonlinear dynamics such as those generated by the interaction of
antiprotons with ions of residual gas (beam-beam-like interaction) in the CERN
Antiproton Accumulator. The approach used here describes in a .very simplified
fashion the transverse betatron motion in storage rings (harmonic oscillations),
and the attention is focused on the study of more interesting aspects of nonlinear
coupling perturbation between x and y degrees of freedom. Furthermore, the
Mathieu approach on the map appears to be adequate to include the tune
modulation consistently.
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FIGURE 4 (continued)

The high number of map iterations (in short computer times) that are possible
because of the extremely simplified model of transverse betatron motion is
perhaps the major advantage of the direct map method used here. In this way one
can directly study the phase-space structure and its evolution while some
fundamental physical parameters such as betatron tunes and coupling constants of
the interaction are modified. The high number of turns also allows a precise study
of phase-space behavior near very weak high-order resonances and their
identification.

The behavior of the map (or the motion of the particle) has been studied with
different ion distributions; this study confirms that charge distributions with
Gaussian shape and different standard deviations in x and y directions ("elliptical
distributions"; ax > ay) are more effective than the cylindrical one (ax = ay) for
the excitation of high-order nonlinear resonances. Nevertheless, not all the
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expected first nonlinear resonances are reproduced by the elliptical distribution; a
more refined study with the choice of an elliptical distribution of ions truncated at
Xi == 0i could be useful; this distribution can have a more physical meaning
because of the incomplete neutralization of the beam. With this improvement the
disagreement between the physical coupling constant and the numerical one
(;phys == 10~num) might be resolved.
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APPENDIX

Mathieu Functions

If q «1, the homogeneous Mathieu equation,

x"(z) + (a - 2q cos 2z)x(z) = 0, (A-I)

has the following solutions (elliptical cosines and elliptical sines):8

M(z, q) =cos vz - (1/4)q[cos (v + 2)z/(v + 1) - cos (v - 2)z/(v -1)]

+ (1/32)q2[cos (v + 4)z/(v + 1)(v + 2) + cos (v - 4)z/(v -1)(v - 2)]

- (1/128)q3[(v2+ 4v + 7) cos (v + 2)z/(v -1)(v + 1)3(v + 2)

- (v2- 4v + 7) cos (v - 4)z/(v + 1)(v -1)3(v - 2)

+ cos (v + 6)z/3(v + 1)(v + 2)(v + 3)

- cos (v - 6)z/3(v -1)(v - 2)(v - 3)] + · · · (A-2)

N(z, q) = sin vz - (1/4)q[sin (v + 2)z/(v + 1) - sin (v - 2)z/(v -1)]

+ (1/32)q2[sin (v + 4)z/(v + 1)(v + 2) + sin (v - 4)z/(v -1)(v - 2)]

- (1/128)q3[(v2+ 4v + 7) sin (v + 2)z/(v -1)(v + 1)3(v + 2)]

- (v2- 4v + 7) sin (v - 4)z/(v + 1)(v -1)3(v - 2)

+ sin (v + 6)z/3(v + 1)(v + 2)(v + 3)

- sin (v - 6)z/3(v --1)(v - 2)(v - 3) + · · · (A-3)

with

a = v2 + q2/2(v2- 1) + q4(5v2+ 7)/32(v2- 1)3(v2- 4)· · · (A-4)

If, as with the CERN AA parameters, the value of q is not less than unity
(q =2A(Vx /vo)2==2 X 104 for AA), an approximate analytical solution can still be
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obtained by means of the Liouville transform: 16

~ = r(a - 2q cos 2Z')1/2 dz', (A-5)

x = 1] / (a - 2q cos 2z)114. (A-6)

Neglecting terms of the order of (2q /a2
), we obtain a new Mathieu equation in

terms of the 1] variable with solutions that are valid when q » 1:

ML(z) = (a - 2q cos 2z*)M(z*),

NL(z) = (a - 2qcos 2z*)N(z*),

(A-7)

(A-8)

where M(z) and N(z) are again the elliptical cosines and elliptical sines in
expressions (A-2) and (A-3) evaluated at

z*~z-(q/2a)sin2z-··· (A-9)
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