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The theory is presented of the longitudinal instability of relativistic electron rings (RER) in the thin ring model, allowing
for any (not only small) deviation of the rotational frequency of the perturbing particles from the average initial frequency,
and taking into account both imaginary and real parts of the impedance. The influence of nonlinear effects on the develop­
ment of the longitudinal instability of the RER is studied both analytically and numerically. It is shown that in free space
this phenomenon may retard the instability development, but not sufficiently for its stabilization. For a beam enclosed
in a chamber nonlinear stabilization appears possible. Comparison with experimental results is presented for this case.

INTRODUCTION

Different kinds of instabilities of the relativistic
electron rings (RER)1,2 are the main obstacles
on the way to the effective realization of the idea of
using these rings for collective acceleration of ions.
The longitudinal (azimuthal) instability (LI) seems
to be the most dangerous one. It has a hydro­
dynamic nature and manifests itself in the grouping
of the ring particles in clusters (" bunches ")
[" negative mass" instability (NMI)]. 3 This in­
stability also manifests itself in induced coherent
synchrotron radiation (" radiational instability").4

This instability has a threshold 5 corresponding
to the range of energies ~E~ the rms energy spread
(and the range of radius which results from the
the relativistic relation between energy E and
rotational frequency co: w ==ecB/E, (where B is the
magnetic field). The efficiency of acceleration in the
regime below the threshold of the instability
(~E > ~Ecr) does not exceed the efficiency which
has been achieved with ordinary accelerators"
(at least for light ions). On the other hand, equations
which describe the dynamics of the instability of
RER's are nonlinear, and one may expect that
nonlinear interactions can limit the level of the
perturbing fields, slow down the process and even
prevent the instability, or that they can lead to its
nonlinear stabilization." ,8 The longitudinal in­
stability has been observed experimentally both
in the creation of the E-Iayer9 and in experiments
with RER's.10,11 Damping of the coherent radia-
tion after the characteristic splash at the initial
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stage of instability development supports the
supposition of the importance of nonlinear effects
which limit the amplitudes of the perturbing fields
and the fluctuations of the beam density.

It is important to choose a good model for
theoretical analysis of the longitudinal instability
in RER's. Most commonly used is the thin ring
model," in which the interaction between longi­
tudinal and transverse perturbations is neglected,
and the problem reduces to a one-dimensional one.
Even in this simple model, analytical study of the
longitudinal instability with nonlinear interactions
meets with considerable difficulties, in particular
because of the absence of a small parameter in
the problem.'? A simplified "quasi-kinetic" de­
scription of the instability is given in Ref. 13 within
the frame of this model. The authors predict an
asymptotic behavior of the ring at the instability
saturation stage and, according to their predictions,
the parameters of the ring, ~E in particular, are
in any case not better at this stage than for the
stable ring, i.e., ~E > ~Ecr. However, in these
papers the real part of the impedance which is
responsible for the radiation of the ring was
neglected, as well as an important physical effect
of energy mixing for different harmonics. The latter
effect can lead to considerable retardation of the
instability development process, if not to stabiliza­
tion.":" From our point of view, only numerical
methods provide the possibility of complete
analysis of the dynamics of the instability. The
radiational instability dynamics of the ring in
free space were studied numerically in Ref. 11.
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However, no clear answer was obtained to the
question of what is the role of nonlinear inter­
actions and whether or not nonlinear stabilization
of the longitudinal instability is possible.

In this paper we study the longitudinal instability
in RER's using the thin ring model and numerical
and analytical methods. Much attention is given to
analysis of the influence of nonlinear interactions.
Some new results of the longitudinal instability
theory are presented in Section 2, the qualitative
character of the longitudinal instability develop­
ment is discussed in Section 3, formulation of the
numerical simulation problems will be found in
Section 4, and Sections 5 and 6 contain the results
of this numerical simulation for the ring in free
space and in an enclosing chamber.

Here by field B we mean the sum of external
magnetic field Bext and the beam's own average
magnetic field Bb , which we can assume to be
uniform along qJ and constant in time.

The constant Eo we shall put equal to the energy
of the particle with the average initial rotational
frequency (Vo. Henceforth we shall attach index
"0" to the quantities corresponding to the particle
on the orbit with frequency o)o(Eo, Ro, Yo). In
particular, Wo = O. Therefore, we have

W = ! (mc
2)2(y2

- y~) = ! mcRo(y2 - y~) (2.5)
2 eeB 2 "10/30 .

(/3 = vic, R is the orbit's radius). When

L1y = Iy - Yo I ~ 1, f3 ~ 1,
Yo Yo

2 ANALYTICAL THEORY we have

(2.4)

(2.1)

(2.3)

and for its Hamiltonian:

(2.8)

(2.6)

E= JE6 + 2Eow,oW =

+ 2nRoe f$(<p, t)d<p,

where tff(cp, .r) is the azimuthal perturbing electric
field, averaged over the cross section of the ring.

Using (2.5) it is easy to show that ~ as defined
by the formula (2.4), coincides with the usual
generalized momentum

W = RP - ~ RA(O) = M - ~ RA(O) (2.9)
qJ e qJ e qJ

Introducing the reciprocal mass rio = Mo1 and
using (2.4) we derive the following expression for
the energy of the particle in a ring:

(V6 )1 2rio W-- ---,
rio W o

w = meRo~y,

which differs from the definition used in Refs. 13
and 14 by a factor of 2n.

By definition, the effective mass of the particle is

dW dW dE 1 E
M=-=--==---

dciJ dE dco <p t»

E myR 2

(V 2 -po

w~ ) 2il(oWH = T + V(cp) = - - 1 - --
rio (V o

(2.7)

H is the particle energy, expressed as a function of
momentum, so we have from (2.2) and (2.3):

_ IE dE _ ~ E
2
~ E6

W(E) - . - 2 B'
Eo qJ ,ec

is the rotational frequency of, the particle with
canonical momentum W in the constant uniform
magnetic field B, E = mer».

W can be determined from Hamilton's equation

aH
<P = awe

at/! . at/! . at/! _ 0
at + <p o<p + W oW -

for the electron distribution function in (cp, W)
phase space of the azimuth angle and corre­
sponding generalized momentum. In (2.1)

eB eBe
tb = w(W) = mcy(W) E(W) (2.2)

One usually assumes that the deviations of the
particles' rotational frequency from the average
initial frequency wo = eBlmeyo are small in order
to obtain Vlasov's equation for the one-dimen­
sional energy distribution function in the "negative
mass" instability theory." This assumption is not
bad for the study of the negative mass instability
in regimes which are not too much above the critical
one. However, it turns out to be unsatisfactory in
the theory of the longitudinal instability which
takes radiation into account.

In the thin ring theory we start from the equation
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Introducing the coupling impedance Zm by the
formula

t We shall often consider Eq. (2.17) with W o = 0, i.e., for
the function lj/n = t/J n einwot (distribution centered at wo).

t A similar expression, although not exactly correct, was
obtained in Ref. 14. It was erroneously stated that the quantity
E(t) is constant in time. Actually, E(t) is conserved only if
Z~ = 0 (see below).

(2.19)

(2.18)ftP dW dq> = N.

Then for zero harmonic we have

f tPo(W, t)dW = ~.

To analyze the ring's energy balance, we average
the quantity T + 1-V over the variables Wand cp
with weight t/J(cp, w: t). The factor 1- in front of V
appears as a result of the two-particle nature of
the interaction :13 t

2n(u~ f!Y2 1 + 21(Xol W dW-- t/Jo(W)- I(xo I W
tni n

(Uo

_ e
2c

L Z~ lA-
nI

2 • (2.20)
2Ro n

Here and later in the paper we shall denote
the real part of a complex number by one prime,

If I(xo W I(uo I ~ 1 it follows from (2.16) that

Ott/Jn + in((uo + (Xo W)t/Jn

e2c

+ - L ZmAmOWt/Jn-m = O.t (2.17)
2nR o m

We now normalize the distribution function to
the total number of electrons in the ring

H = cJm2c2 + ;2 (w + ~RAq?Y
in the "adiabatic" approximation (dRldt)(l/woR)
~ 1. Formula (2.2) for the nonequilibrium particle
in a ring is valid in the same approximation.

From Eq. (2.8) it is easy to show that

oB. W o- - cp - (2.10)
oW - - J 2(Xo W'

1---
W o

oB .
- oq> = W = 2n Re C. (2.11)

Expanding (2.8) and (2.10) in powers of (xo W 10)0,

we have

w~ (Xo W 2

T ~ - - + W oW +--
(xo 2

3 (U6 1 2 2- - - + - (wo + (xo W) ~ me Yo (2.12)
2 (XO 2(Xo w-+o

ep ~ (Uo + (xo W + .... (2.13)

The second term in (2.12) coincides with the kinetic
part of the Hamiltonian from Ref. 13 and leads
to the right equation of motion (2.13) in the
approximation

of the particle in the constant uniform magnetic
field B. Here P lfJ = mef3y is the azimuthal mo­
mentum, A has only the component A qJ = 1-BR
and Eo = me", i.e., Yo = 1. The transition to
W(E, Eo) with Yo =1= 1 corresponds to the gradient
transformation of the vector potential.

The "kinetic" part of the Hamiltonian (2.8)
coincides with the kinetic part of the traditional
Hamiltonian of the charged particle in the magnetic
field

I
(xo WI% ~1.

But it gives the wrong expression for the total
energy of the particle in the ring. Nevertheless, in
the negative mass instability theory this term allows
us to obtain the conservation of energy,":' because
it gives the right description of the "heat" motion
of the particles.

The Fourier transform of (2.1) is

ot/Jn .. III ~ ot/Jn-m
~ + lncpo/n + 2neR o c: ~m(t)-a-- = o.
ot m=-oo W

(2.14)
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and the complex part by two primes; ~in =
- mcRoPo Yo· Note that by virtue of the Fourier­
transform properties Z _n = Z:, or Z/_n = Z~,

Z/~n = -Z~. Expression (2.20) does not contain
the term

which is equal to zero.
At the initial moment of time, if An ~ 0, the ring's

energy is

dE e2ceoo

dt 2R o

x {~iZ~[An f (1 + 21~~Wrl/2l/J_ndW

+ L n f (1 + 21~~~Wr
1/2l/Jn

dW]

f( 21a IW)-1 /
2 }

+2~Z~An 1+ ~o l/J-n dW.

(2.23)

where

<W5) = f W 2l/JdWdq>!fl/JdWdq>

2n f 2= N t/JO W dlt:

(2.21)

(2.22)

In the case of the negative mass instability,
Z~ = 0, Z~ < °and, substituting n ~ - n in the
second term of (2.23), we will derive the energy
conservation law ':' dE/dt = 0.

When Z~ =1= °we have

dE = e
2cw

o LZ~An f(1 + 2IaoIW)-1/2l/J_ndW
dt Ro n (00

(2.24)

and <W> = <W6> 1/2 is the initial semi-dispersion
of the beam (we assume that t/Jo(W) is symmetric
with respect to w: so that SWt/Jo dW = 01,=0)·

In the limit of an infinitely thin ring <Wo>~ 0,
its energy E(O) ~ Nmc2 yo according to (2.12).

To find the power of the ring radiation, we
calculate the quantity

Using Eq. (2.16) we obtain

and

d . f( 2 IaoIW)-1
/
2

dt An = - tnco., 1 + Wo l/Jn d W

Substituting these relations in the expression for
dE/dt and integrating by parts we conclude,
finally:

Since both in free space and in enclosing chambers
Z~ < 0, Eq. (2.24) describes the energy losses of the
ring due to radiation. When

we have two independent equations for the
moments of the distribution function, instead of the
one formula (2.24):

~ fw.', dW = ~"ZIIA 1
2 (2.25)dt 0/ 0 2nRo ~ n n

[see (2.17)J, and

~ [f letol W
2

l/Jo dW +~ L (Z~)IAnI2
dt 2 4nRo n n

=~ IetoI L Z~AnfWt/J -n dwJ. (2.26)
2nRo n

The first of these relations determines a change
in the ring's average momentum due to radiation,
the second indicates the change of the sum of
"kinetic" (thermal) and potential energies of the
ring. Equation (2.25) has an obvious physical
meaning: radiation power is proportional to the
product of the square of the "current" IAnl

2 and
resistance Z~. The quantity JWt/Jo dW is pro-
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(3.3)

Here

C2 = 2(Ar + Br) = 2(0"~2 + 0"~2)(A~2 + A~2)

= 210"l121Al1
2.

In the general case where n > 1

C2 = L 210"n/ 2IA
nI

2.

We differentiate the first equation of (3.1) again
and substitute in it expressions for att/J'b att/J'{ from
the second and third equations:

a;t/Jo(W) = c2afvt/Jo - 2(atA la Wt/J'l + atBlaWt/J'{)

- 2ao[A 1aW(Wt/J'{) - BlaW(Wt/J'l)]·

(3.2)

We need Eq. (3.2) to understand qualitatively
the behaviour of the function t/J0(»': t) at the initial
stage of instability development, when the fields
are small and we can neglect nonlinear terms in the
system (2.17)(if n = 1 they fall out automatically).

The second term on the right-hand side of (3.2)
can be presented in a form analogous to that of the
first term if t/Jn*O(W) is expressed through the
t/Jo(W) from (2.17), assuming that the dispersion
relation of the linear theory is valid and neglecting
nonlinear terms:

(2.27)

(2.28)

(2.29)

IZ~I - z~

2nZo(~E) = 0
E cr Vfu

portional to the decrease of the average ring's
radius (since Z~ < 0), therefore a symmetrical
(J Wt/Jo d W = 0) initial distribution in the case of a
negative mass instability (Z~ = 0) will later remain
the same.

In what follows we will be interested in the
behaviour of the ring in the resonator where the
relation between Z~ and Z~ (in particular, its
sign) may change with radius. It seems to be
appropriate to present here exact formulas for the
increments and thresholds of a longitudinal in­
stability. In the hydrodynamic limit l 5

.: IZnl-Z~
Yn = nw o ---2' 2 Z

Yo n 0

where v = (e2/mc2)(N/2nR
o) is the Budker param­

eter: (v/yo) ~ 1, and

In conclusion, we present the estimate for the
amplitude of the induced fields at the saturation
stage from Ref. 12:

lff < mc
2v l/3( I Zn I= - 2/3)

n"'" R n Z n .eon 0

We shall use it for comparison.

3 QUALITATIVE ANALYSIS OF THE
SOLUTIONS OF THE SYSTEM (2.14)

It is appropriate to trace first some qualitative
features of the solutions of the system (2.14) to
simplify interpretation of the results of numerical
calculations, and for their better understanding.

a) Let us consider the truncated system (2.17)
for n = 0, 1(it is easy to generalize all the arguments
for the case of arbitrary n). We rewrite it in the
real form:

att/Jo = -2(AlaWt/J~ + BlaWt/J'{)

att/J'l = ao Wt/J'{ - AlaWt/Jo (3.1)

atl/J'{ = -an Wt/J~ - BlaWt/Jo·

This relation is valid for t = 0, and it is valid with
good accuracy in the linear stage of the instability
development. When t»; ~ InWaol, t/Jn "'" awt/Jo,
then the second term on the right-hand side of (3.2)
can be written as C 1a~ t/Jo It can be shown that
the third term on the right-hand side of (3.2) is
smaller than. the first two, and we will neglect it.
Then (3.2) takes the form:

a;t/Jo(W) = C6 a~t/Jo(W), (3.4)

where C6 = C 2 + Cl.
The formal solution of (3.4) is [if t· dCo/dt

~ Co(t)]:

III ( ) _ cp(W + Cot) + cp(W - Cot)
0/0 Jt: t - 2

Here

Here

t fw
+

c o t

+ 2C 1](()d(.
OW-Cot

(3.5)



54 B. S. GETMANOV AND V. G. MAKHANKOV

The second term of (3.5) is always small in compari­
son with the first one (C5 = 2 L IAn 1210"111 2 grows
fast with the instability development). It follows
from (3.5) that the initial distribution t/Io(W) sym­
metrically "crawls away" with increasing speed
into two similar distributions, i.e.~ the ring splits
into two rings.

The above considerations are, of course, very
crude and qualitative in nature; they .might be
justified by the fact that the described phenomena
were observed in a more or less well-expressed
form in practically all of the numerical experiments
(see below). This effect is best seen when the initial
dispersion is small (in the strongly above-critical
regimes, corresponding to the approximation
(On ~ nrxoW)~ and it is maximum in the case Z~ = O~

when there is no radiation. Then the distribution
function rapidly becomes "two-humped," re­
maining symmetrical with respect to the centerof
the distribution. Such a behaviour of t/lo(W) is
preserved for a considerable time even in the
nonlinear stage of the instability development,
which is rather surprising.

Actually, of course, the ring as a whole does not
split into two rings. As a result of the negative
mass instability it breaks into separate bunches,
which have small electron concentration at the
average radius. When we take the average along
the azimuth, we find the picture described above.

b) Equation (2.1) is Vlasov's kinetic equation
without collisions; numerical study of it leads to
the specific difficulties, 8 which we will now consider.
Let us formally integrate (2.17) in the linear
approximation:

t/Jn(X, t) = i3xt/Jo(JnLexp[inaox(t - t')]An(t')dt'

+ <Pn exp[ - inrxoxt]. (3.6)

Here x is the dimensionless generalized moment,
which is introduced for the purpose of numerical
studY,.<Pn(x) = t/ln(x)lt=o, From Eq. (3.6) it follows
that the solution has an oscillating part with a
wavelength decreasing in time, [Jc = (nrxot)-l].
Therefore, the computer time is limited in principle,
because X cannot be smaller than the step in x.
Nonlinear effects lead to an increase of oscillation
amplitude and to appearance of the captured
particles, which, in turn, leads to oscillations of the
oscillations of the distribution function t/Io This
phenomenon was observed in Ref. 14 and in all
of our numerical experiments. In the cases when

the time is large, it leads to important distortion
of the distribution function. The oscillations appear
only on the microscopic level and they are con­
nected with the tendency of the distribution
function to produce in the course of time sharp
gradients in the phase space when there is no
viscosity. They should not contribute to the
macroscopic, measurable quantities, which are
given by the moments of the distribution function.
Note that the term of the type may describe the
real phenomenon of "plasma echo," which has
been observed experimentally.!"

Different dissipative terms were introduced into
the right-hand side of Eq. (2.17) and tested in
order to suppress oscillations on the boundaries of
the domain of variation of the distribution function.
We chose the damping in the form vt/ln(x~ t) =
-lfff(n~ x)t/ln(x~ r), where lff changes from 10- 4

to 10- 1 ~ and [in, x) is chosen most often to be
linear in nand x. Then the second term from (3.6)
is replaced by

<p(x)exp[- 2vt - iJv2 + n2x2rx
ot].

In many cases the introduction of damping leads to
deceleration of the instability development process,
leaving it qualitatively the same in character.

4 FORMULATION OF THE
LONGITUDINAL INSTABILITY
MATHEMATICAL SIMULATION
PROBLEM

In the domain of applicability of the model, the
system of Eq. (2.17) is finite and consists of 2nm + 1
equations, where nm < Ro/r~ r is the minor radius
of a ring. We shall assume that harmonics are not
coherent and weakly excited when n > nm and,
correspondingly, we shall put t/ln:>nm= O.

Let us set the following -i-nitial conditions for t/In

(i.e., conditions when t = 0): we will choose the
beam distribution function in the form of a
Gaussian distribution with the semi-width <Wo>
(initial beam dispersion); it is normalized according
to (2.29):

t/Jo(W)lt=o = (27C?/~<WO> eXP[2~~;2J (4.1)

We assume that at the initial stage the linear theory
is valid, so that the initial value t/In;/= 0 can be
expressed through t/I0 using (3.3). We assume, also,
that the initial level of the disturbing fields is
sufficiently small.
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(4.2)

(4.9)

change N~ the number of electrons in the ring;
naturally, it will change [when (4.5) is fixed] the
real values of the initial and critical dispersions,
increments, and maximal evolution time tmax =
TmaJ'Yn' Another advantage of the normalization
(4.4) is that it is easy to find an exact instability
threshold by studying the system numerically in
the linear approximation, when some of the
harmonics increase and some of them damp. The
last statement is true if impedance is a regular
function of n (for example, for the case of free space).
In this case the quantity <xcr) is given by the
formula

<xcr) = <xO)(ni)1/3, (4.6)

where n, is the number of increasing harmonics
(for free space). Numerical experiments have
proven the validity of the formulas (2.27) to (2.28).
For example, for m = <xcr)/<xo) = 2, n, is exactly
equal to 8. The main reason we worked mostly
with Eq. (2.17) is that the exact Eq. (2.16) does not
allow the "invariant" normalization. Finally, Eq.
(4.3)~ which is the starting equation for the nu­
merical calculations, takes the form

Ott/Jn(X) = i ~ xt/Jn - 2n L ~ ~m AmOxt/Jn-m' (4.7)
n m n Un

where dimensionless variables [(4.2) (4.4)] were
used.

Still another possibility would be to normalize
to the total initial ring energy Eo : <W) = Eo/wo =
mcR o'Yo ~ and arbitrarily in time, for example
t = T/evo.

In most of the cases we used "invariant"
normalization, because we were mainly interested
in the study of the nonlinear interactions' influence
on the ring's evolution and on the perturbing
fields for different Z; th and in different regimes
(from strongly above-critical or hydrodynamical:
<Wo) ~ <~r) to "near-threshold" ones: <Wo) ;$
<~r); corresponding, or to m = 10 ~ m = 1.5
[Eq. (4.5)]. We were also interested in the study of
the possibility of the appearance of nonlinear
stabilization.

In the dimensionless variables (4.2), (4.4)~ con­
servation of the number of particles takes the form

II = 2n ft/Jo(x, L)dx = 1 (4.8)

and "differential conservation laws" [(2.25) to
(2.26)] take the forms

d f 1/' '" m 1J~ 2-d x%dx = 2n!...J~ ~_IAml
T m m os,

(4.5)

(4.4)

T. = yt;

~
v

y =nevo -A
'Yo

then, in the case of free space, n = 1, and the
instability threshold of the first harmonic is the
only one to consider). The generalized moment
is normalized to the critical dispersion for the
nth harmonic, which is given here by (2.28).
The convenience of this normalization is in
the invariance of the system (4.3) with respect

to the parameter filYo. Let the initial dispersion
be m times smaller than the critical one:

<xo> = <xc r>.
m

For the numerical study it is important to choose
a convenient set of dimensionless variables. Let us
define

We can set the parameter m as initial counting
parameter and get the evolution picture for any
value of the parameters entering the quantity

filYo: N~ u; (or B-the retaining magnetic field),
'Yo-if v/'Yo ~ 1 is valid. For example, one can

Then system (2.17) takes the form

- . - <tv)
Ott/Jn(X) + lnrxoXt/Jn -_-

'Y

1 2e2N '" _ _
+ ";;; R <- >L. mYfmAmOxt/Jn-m = O. (4.3)

'Y 0 W m

We have omitted here the constant evo~ i.e.~ we
assumed the distribution centered in W o' Hence­
forth we shall omit dashes above the dimensionless
variables.

Quantities <tv) and ycan be chosen in a number
of ways. It is convenient to make the following
choice:

-. Eo ~v IS:<W) = <~rn) = - - v' 6n,
evo 'Yo

i.e., the time is normalized to the linear increment
of the nth harmonic (for example, with maximal
value of
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The last three expressions are not invariant with
respect to the ring's parameters.

In the numerical experiments, relations [(4.8)
to (4.13)] were fulfilled with an accuracy better
than 10- 5 during the calculations, before the
distribution left the domain of numerical consider­
ation due to divergence of the solution.

The differential approximating method (4.7) was
chosen to be the same as in Ref. 14 (where the
approximation was justified and stability proven).
We used 10 harmonics for the calculations,
assuming that, according to the initial assump­
tions, for n > 10 fields are incoherent. The limita­
tion of n to lOis related to the computer capacity (in
particular, calculations for one variant take from
4 to 7 hours of the CDC..:6200 computer time,
depending on the parameters chosen).

:r [f X
2VJO

dx - 2n ~ ~: IAn l2J
n 1J~ f= 4n L -:: ~_ An xt/J -n dx. (4.10)

n n v«

Expressions [(4.8) to (4.10)] are invariant with
respect to the ring's parameters N, Ro, Yo, and their
validity was checked at every step in time during the
numerical calculations. In the same variables and
in the same approximation ICloW / (vol ~ 1 the
expressions for the energy and radiation power are

E(r) = 2nNEo[fVJo dx + J~: l5n f xVJo dx

v f 2 Vv ,,« 2J--b ii xt/Jo dx- 2n - i...J 1JnIAnl ,
Yo Yo

(4.11)

d 2 [~v ~ n 1J~ " 2d E = 4n N Eo -i...J-: ~IAnl
r Yo n V bii

2v n f J- - L ~ 1J~An xt/J -n dx ,
Yo n

and the exact relation (2.25) is

(4.12)

5 RING IN FREE SPACE

We consider the longitudinal instability of RER
for the easiest case of free space. In this case the
impedance is a regular function of n:

In~o I= n-
2f3

.

More specifically'?

z, = nn1
/
3Zo' O.26(-1 - f i). (5.1)

Formula (5.1) is valid with good accuracy for n ~ 5;
for n = 1, ... ,4 more accurate values of Z; are
obtained by numerical calculation.!" Note that in
Ref. 14 the wrong sign of Z~ was used, which leads,
according to (2.27), to a rather strong decrease of
the increment. When the initial dispersion is

<xo> < <xcr>.10- 1
/
3 ~ 0.47<xcr> (5.2)

we find from (4.6) that all 10 harmonics, which we
consider, are unstable. This was also confirmed
in the numerical experiment.

We shall describe two most significant experi­
ments: the strongly above-critical regine «xo> =
0.2<xcr» and the "near-threshold" one «xo>=
0.58 <xcr».

a) <xo> = 0.2 <xcr>. The growth of the quan­
tities IAn 11'-1 Ig n1/1 ZnI (2.15) was in excellent agree­
ment with Eq. (2.27) at the initial linear stage of the
instability development. For n = 3, 4, when r was
increased by 1, the amplitude ratio IAn I gave the
number n2

/
3e with three figure accuracy. For n = 1

the increment was slightly bigger than the value
given by the theory, and for n = 8 to 10 it was
slightly smaller. The difference was increasing in
time. This phenomenon will be explained later.
Figure l a presents graphs of IAn(t) I for n =
1, 3, 5, 7, 10. Linear exponential growth transforms
in time into oscillations with an average amplitude,
which is more than an order of magnitude smaller
than that obtained from the estimating formula
(2.29). The speed of the evolution process is
maximal for the IOth harmonic, which has the
maximal increment. We note also that the maxi­
mum of the amplitude for n = 1 is higher than the
corresponding maxima for n = 2 to 9, and com­
parable with the maximum for n = 10.

Figures 1band ld show the behaviour in time
of the field's energy in the ring Ei(r) [term E, in
(2.20)J, radiation power dE/dT (4.12), energy dis­
persion in the ring <W), and derivative d(W>/dr



LONGITUDINAL INSTABILITY IN ELECTRON RINGS 57

b
;~ <'Wo) =Q2 <Wez>
-~

10
~. <Wa> -= Q2(Wcz> (0)

N=5.10 1'2.

0

~~

~
n=1

C,,)IC'I

~8'
z n-=-fO
t!:l
E:
a::
~
4d
"t!:l

>- n=7
C!l
0:

~ n=5lLJd

0
0
Cf

0.04- 3;0& 3,59 li,fO

(b)

( c)

4,100,65 1,66 2.,47 3,26

T(.se..:.) (x fO-i)

§-r------.------,-----=::...--,----------.-----r
Q04

7... ad

,..., IC"l
.C'/
0 ....·

FIGURE 1 Evolution of a) harmonics IAn(t)I of the electron
distribution function ; b) field energy ; c) radiation power;
d) energy dispersion <W) and derivative d< W)/dt; e) distribu­
tion function t/J o(W, t) for the ring in free space in the strongly
above-critical regime [time t (sec) of the process duration
corresponds to the parameters N = 5 . 101 2

, 'Yo = 7.2, Ro =
17 em].

2,50

(e)

Q67 1,68

'[=0

1'(=25

-t56 -0.75 Q06
X =W/L..'vIet)

-2~7

<.w>:= Q2<.WCz..>

7:=1,08,iO+&t(sec)

o
g+---~--~-____,_~~~-___r_-~r_"""""'=---__,___-_____r

-4,00 -3,f6

(d)

~261.56 240
T(SEC) (;qd- a)

0,

for JY7Yo == 0.043 (Yo == 7.2; R o == 17 cm ; N ==
5.101 2 ) .

During the initial period, the behaviour of E;(r) is
analogous to the behaviour of IAn(r) I for large n:
when r == 3 a new "bend" appears, then Ei(r)
oscillates with increasing amplitude. In the experi­
ment described, calculations were stopped at
r == 4.4, because the ring was broadened so much
that the graph of t/Jo(x) fell outside the limits of the
numerical domain considered. An interesting fact
is that the curve for the radiation power dE/d r is
very close in its form to the energy curve Ei(r)
(exceeding it by more than 4 orders of magnitude).
Also d<x)/dr has similar time behaviour. By the
end of the calculation, the amount of energy
radiated by the ring (at the above-given values of
parameters) was 20 % of the total ring's energy.
Correspondingly, the field energy in the ring is
E, Ir=4.4 == 0.003 %, evolution time t == 4 . 10- 8 sec.

Figure Ie represents graphs oft/Jo(x)at the moments
r == 0, 2.5, 3, 3.5, 4, 4.4. The behaviour of t/Jo(x, r)
agrees very satisfactorily with the qualitative
consideration from Section 3. By the time r == 4.4
the ring fell apart completely, and calculation
was stopped. The final value of the dispersion was
<x) == 0.15 <xo) == 1.23 <xc r ) .

The conclusion, which follows from the above, is
that in the given model, when the initial dispersion
is much smaller than the critical one, the ring falls
apart in free space in a very short time, t < 10- 7 sec.

What can be done to overcome this situation
and to get a relatively stable ring for a relatively
long time? A rather radical possibility will be
considered in the next section. For the present,
let us analyze the approximations used in our
model. From the above results it is clear that
nonlinear interactions become very effective, and
even determining, when harmonic amplitudes
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reach a certain level. Then they limit the level of
the perturbing fields. (Note that in the linear
approximation harmonics rise without limit.) We
completely neglect harmonics with n > 10, as­
suming that they are incoherent. Incoherency leads
to a strong decrease of the instability increment.
One may consider the case when incoherent
harmonics are in a stable regime: then nonlinear
interactions could effectively pump the energy
from the unstable modes, which would lead to the
nonlinear stabilization of the instability. More
precisely, by nonlinear stabilization we understand
strong reduction of speed of instability development
due to the nonlinear interactions. It is clear that
one cannot get an absolutely stable ring, one which
would not "crawl away" in the above-critical
regime, because, as the final result, turbulent energy
gets dissipated, leading to the heating of the ring
and increasing its dispersion. This is true if at least
one harmonic is unstable. However, nonlinear

interactions could very considerably slow down
this process, when parameters are optimally chosen.
For this it would be necessary to have primary
direction of pumping towards high harmonics.

b) Let us consider now the "near-threshold"
regime <xo> = 0.58 <xcr>.In this case for n > 5 the
harmonics damp, and for n ~ 5 the increment
decreases. Figure 2 is analogous to Figure 1 in the
previous case, if the values of the parameters are
the same. The speed of the process as a whole is
considerably smaller (about 4 times). Before r =
12-13, lower harmonics grow approximately
according to the linear theory, then they start to
cut off, and from this moment higher harmonics,
which were fluctuating irregularly near the average
value >- 10 - 5, start impetuous, "explosive" growths.

Approximately from the same moment starts a
fast broadening and "shifting" of the distribution
function l/Jo(x), accompanied by a sharp increase
in the radiation. After t = 20 the calculation was

(Wo) =Q58<WCl.)

N= 5·10'i2.

FIGURE 2 The same as Figure 1, but for the ring in the
"near-threshold " regime.
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stopped, because the ring fell apart, its effective
dispersion exceeded the critical one, and clearly
the further course of the process must be completely
analogous to the one considered in the previous
case.

High efficiency of the nonlinear interactions was
shown in the example considered with respect to
the pumping of the energy from some modes to
others. Clearly, if we would take into account
incoherent harmonics, this would lead to even
stronger retardation of the process. However, the
instability development time, obtained here
(t = 1.9· 10- 7 sec) is too small to satisfy the
requirements of the experimentalists. The time
gets still smaller when the number of particles in the
ring N increases.

From the results presented above it follows that
there exists pumping of the energy towards high
harmonics if the amplitude difference is large
enough. However, in both cases considered, the
speed of growth of the first harmonic is accelerated.
The following numerical experiment was set up in
order to determine accurately the preferential
direction of pumping: the evolution of the solutions
of the system (4.7) in the purely nonlinear regime
(with linear terms thrown out) was considered for
n = 1, 2, 9, 10 and initial conditions I).n I = 10- 2
for n = 1, 2, IAnl = 10- 4 for n = 9, 10, and vice
versa. In both cases increase of IA1 I, IA2 1and
damping of IAgl, IA10 I took place. From this it
follows that there exists the preferential direction
of nonlinear pumping towards smaller n's, mostly
into the first harmonic, which explains the above­
mentioned increase in growth of the lower har­
monics. Consequently, it is advantageous to create
a negative gradient in the direction of smaller n's.
Such a case will be considered in the next section.

The main conclusion from the results of this
section is the following: in the frame of the given
model, in free space, even with initial dispersion
not much smaller than the critical one, the ring
spreads apart and reaches a dispersion which is
equal or larger than the critical one in a time less
than t < 5 . 10- 7 sec, and the efficiency of nonlinear
stabilization is insufficient to hold the instability
to a reasonable level.

6 THE RING IN THE RESONATOR

In the real experimental settings the relativistic
beam is injected into a chamber referred to as a
resonator, or adhesator, or compressor, in which
it forms a ring; then the ring is compressed by the

external fields to the required radius R before its
introduction into the accelerating system. When
the initial dispersion is small enough, the insta­
bility may start to develop even during the injection.
Therefore, the first step in studying the ring's
behaviour under real experimental conditions is to
consider the ring's instability in the resonator.
The only experiments with which we are
acquainted, in which concrete parameters of the
ring's instability in the resonator were measured,
are described in Refs. 10 and 11. Measured param­
eters were: radiation power, time of the instability
development, final energy dispersion as a function
of the number of particles in the ring, initial
dispersion, and harmonic numbers.

We will now consider the specific values of the
parameters of the experiment :11 Yo = 7.2, R o = 17
em (injection radius), figures of merit of the chamber
Q = 10, N = 1011 - 7.1012. The parameter
fi!Yowas changing correspondingly between the
limits 6.3.10- 3 to 5.10- 2, i.e., the results of the
experiment can be compared with the calculations
in the frame of the given model. The impedance
dependence of the harmonic number n is different
from the case of free space and is much more
complicated, which is of principal importance here.
Figure 3 shows a qualitative graph of the IZn/n I
dependence on n along with the graphs of IZn/n I
for the ring in a free space and in the space between
two infinite conducting walls, taken from Ref. 11.
(In the experiment described in Ref. 11, the chamber
had the shape of a cylinder with a height h = 5 em
and radius R = 22 cm.) It is seen that the main
effect of the chamber is to damp the impedance
modulus strongly when n's are small (n < 10),
compared to the free space, and to raise IZn/n I
for n > 10 when the frequencies of the ring's
perturbing fields start to coincide with the fre­
quencies of the normal modes of the chamber,
i.e., when the resonance conditions are satisfied.
For us not only the n-dependence of the impedance
modulus is important, but also the n-dependence
of the real and imaginary parts of Zn, which is not
given in Ref. 11. The beam impedance in chambers
was studied in Ref. 5 (for the case of an infinitely
long conducting tube) and in Ref. 17 (for the ring
in a resonator). Expressions for Z; were obtained
in the form of infinite series. The characteristic
feature of these expressions is that the modulus of
the real part of the impedance increases strongly
at resonance (roughly speaking, proportionally
to the chamber's figure of merit), and that Z~

changes its sign in the resonance. If the figure of
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FIGURE 3 Approximate behaviour of the impedance of the
ring's coupling Izn/n I in a) free space; b) between infinite
conducting walls; c) in the chamber (resonator).

merit is high, resonances are very narrow and
relatively well separated; when Q is small, they
overlap and for IZn/n Iwe have a picture similar to
that given in Figure 3.

In Figure 4, graphs of the functions Z'/nZo,
Z"/nZo, IZn/nZol are presented. They were
calculated using the program for the impedance
calculations] with R o = 17 em, h = 5 em, R b = 22
em and with figure of merit values taken to be
Q = 10,20. It is seen that for n > 10 the result
differs considerably from the corresponding graph
in Figure 3-the number of resonances is small, and
they are strongly separated. The difference could
be due to the fact that the chamber in the experi­
ment11 had more complicated geometry-special
"holes" were made in it in order to artificially lower
the figure of merit. Nevertheless, important infor­
mation can be extracted from Figure 4-namely,
the behavior of Z~ and Z~ in the neighbourhood

t The authors are grateful to N. Yu. Kazarinov for per­
mission to use his program for the impedance in the resonator
calculations. In the above-mentioned program a procedure of
partial series summation is used for the series from th~ ~nalytical

expression of the impedance, neglecting the conductivity of the
cylindrical wall.
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FIGURE 4 Modula Zn/nZo for the ring in the chamber (h = 5
ern, R b = 22 em, Ro = 17 cm, Q = 10, 20), calculated on the
computer.

of the resonances; in particular the characteristic
change of the sign of Z~. . .

The important results of the experiments, which
the authors of Ref. 11 could not explain theo­
retically, were:

a) The small deviation of the final energy
dispersion ~E from the initial energy dispersion
~Eo, when the number of particles in the beam was
varied within the wide limits (1011 to 7· 1012)

[when (~E/E)o = 1 %, 2 %].
b) The complete stopping of radiation of energy

by the ring after the splash of radiation when the
dispersion was still smaller than the critical one.
For large N the quantities ~Eo 1 were considerably
larger 'than ~Ec~ 1.

In the frame of our model and our understanding
of the process of the instability development,
supported by the results of the previous section, we
may try to explain the above results by strong
damping of the instability due to the nonlinear
pumping of energy of the excited harmonics
(n > 15) into lower harmonics, which are below
the instability threshold when (~E/E)o = 1 %, 2 %,
and keeping in mind the preferential direction of
pumping towards smaller n. [In the case of
(~E/E)o = 0.1% the beam in the experiment l l

evolved to the dispersion ~ 6 %when N = 7 .1012,

in agreement with theoretical predictions.] We
consider the model in which, again, 10 harmonics
are taken into account, and Zn/nZo is shown on
Figure 5. This model impedance was constructed
by combining the results of the described numerical
calculations of Z; and the general notion of the
IZn/n I behaviour in the experiment. The regime



LONGITUDINAL INSTABILITY IN ELECTRON RINGS 61

2,060'54

was supported by the result of a numerical experi­
men t. The first harmonics are damped in the linear
approximation.

Let us note that this model can be realized in the
experiment if one chooses parameters so that the
first resonance corresponds to n =:= 8, and har­
monics with n > 10 are incoherent.

The results of the corresponding numerical
experiment are presented in Figure 6.

Figure 6a shows changes of IAn I in time for
n = 1, 2, 7, 8, 9, 10. The picture is similar to the one
in the previous section, if we interchange lower and
higher harmonics. The most unstable harmonics
are stabilized when a certain energy level is reached.
But due to the nonlinear processes, intensive
energy pumping into stable harmonics takes place,
which leads to their sharp growth. Note, again,
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with initial dispersion for the 8th harmonic
exceeding the critical one by a factor of two was
considered. Formulas (2.27) to (2.28)for increments
and thresholds were used. Then the 9th harmonic,
for example, must grow with a considerably smaller
increment than that of the 7th (due to the Z~ > 0),
although they have very close values of IZ; I. This
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FIGURE 7 a) Module; b) real and imaginary parts; c)
imaginary part Zn/nZo for the ring in the chamber with R = 17
em, 16.6 em.

that the most intensive pumping goes into the first
harmonic; the beginning of the sharp growth of
lower harmonics shifts in time with growth. When
T = 14 (fi = 8), rapid growth of the field amplitude
E, and of the 'radiation power starts, as well as
broadening of the ring. After a few oscillations, the
field E, [with amplitude maximum 20 times smaller
than is given by (2.29)] is decreased by an order of
magnitude when T = 21. The radiation power
decreases correspondingly, i.e., the ring, which
lost part of its energy, produces much less radiation.
The final dispersion is more than two times larger
than the initial, and 1.22 times larger than the
critical one. It is interesting to compare the
results obtained with the results of the experiment.
The radiation power behaves in time very similarly
--one has almost complete stopping of the
radiation after the splash. The best fit is obtained
when N = 1011. Then the time of the process
duration is t = 2.4 . 10- 7 sec, which is close enough
to the experimentally determined maximal time
t < 10- 6 sec. The final dispersion of 1.1%, with
initial dispersion of 0.5 % does not correspond
very well to the experimentally determined dis­
persion of 0.75 %. Nevertheless, the agreement is
satisfactory for the rough assumptions made (model
form of the impedance and neglect of the incoherent
harmonics'{nfluencc).

It is clear that if we now pass to "nonvariant"
normalization (see Section 4), fix the dispersion
(for example, at 1%) and increase the number of
particles in the ring, then <xcr) and the ratio
<xcr)/<xo) will both increase correspondingly.
The process will go as was described above: the
dispersion will come at least to its critical value,
which is in contradiction with the weak dependence
of the final dispersion on the critical one when
(~E/E)o > 0.5 %, as was observed in the experi­
ment. 11 We suggest the following qualitative
explanation of this phenomenon. Let us recall that
the imaginary part of the impedance is changing
sign when passing through the resonance. Accord­
ing to the formulas (2.27) to (2.28), in the region
Z~ > 0 the increment is strongly decreasing, and
the instability threshold correspondingly.

The ring is losing energy by radiation, and its
average radius is decreasing correspondingly. But
the form of the curve Z(n) and location of the
resonances are very sensitive to the differences of
the average ring radius. The graphs of IZn/nZo I.,
Z~/nZo, and Z~/nZo were calculated using the
above-described program, and they are presented
in Figure 7 for Ro = 1.7 em and R = 16.6 em.



LONGITUDINAL INSTABILITY IN ELECTRON RINGS 63

Thus the 38th harmonic was moved to the stable
region with a moderate excess of its dispersion
over the critical one. On the other hand, the incre­
ments for n > 38 were correspondingly increased.
The resonance at n == 38 was shifted more strongly
than the one at n == 21. When resonances are
moving thus, control of the instability of the excited
harmonics takes place and effective instability
stabilization may appear, which would lead to the
significant increase of its development time. The
effect described is reminiscent of the phenomenon
of quasi-linear relaxation.

Therefore, there remains the self-consistent
problem of unstable beam behaviour in the
chamber and impedance, which awaits solution.

The main conclusions of our study are the
following: the numerical study of the instability of
the RER in the resonator in the thin ring model in
many cases leads to results which are in reasonable
agreement with experiment. Better agreement can
be obtained if one takes into account more
harmonics (in particular, incoherent ones), and
the effect of resonance shifting.
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