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A bstract

W e derive a high energy factorization theorem for inclusive gluon pro-
duction In A+ A collisions. O ur factorized form ula resum s i) all order
leading logarithm s (g2 In(l=x1,))" of the incom ing partons m om entum
fractions, and ii) all contrbutions (g 1,2)" that are enhanced when the
color charge densities in the two nucleiare of order of the inverse coupling{

12 g 1. The resum m ed inclusive gluon spectrum can be expressed as
a convolution of gauge invariant distributions W [ 1, ] from each of the
nucleiw ith the leading order ghion num ber operator. T hese distributions
are shown to satisfy the JIM W LK equation describing the evolution of
nuclear wavefunctions w ith rapidity. As a by-oroduct, we dem onstrate
that the JIM W LK Ham iltonian can be derived entirely in term s of re-
tarded light cone G reen’s fiinctions w ithout any am biguities in their pole
prescriptions. W e comm ent on the in plications of our results for under—
standing the G laan a produced at early tin es In A + A collisions at collider
energies.
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1 Introduction

C ollinear factorization theorem s [1] that isolate long distance non-perturbative
parton distribution functions from perturbatively calculable short distance m a—
trix elem ents are centralto the predictive pow er and success ofQ CD . T hese the-
oram s can be applied to com pute inclisive cross—sections of the form A + B !

IM )+ X ,where IM ) is a set of heavy particles or gts w ith invariant m ass
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M and X corresponds to the sum over all possible states (ncluding soft and
collinear hadrons) that can accom pany the obct IM ). T his cross-section, for
center of m ass energy © s, can be expressed as [2{6]

x ° 2 2
= dxadxp faop Ra 7 “)fpp Xpi 7)

ab
M2 M 1
i—i os() 1+0
X4 XpS M2

1)

In this equation, £, p)-a 5 ) Xam); °) are the non-perturbative \leading tw ist"
parton distrbution fiinctions w hich gives the distrdbution ofa parton a (b) in the
hadron A (B ), asa function of the Iongitudinalm om entum fraction x, (,) evolved
up to the factorization scale 2, while the hard scattering m atrix elem ent “,p
can be com puted system atically in a perturbative expansion in powers of ¢ =
g°=4 ,where g is the QCD coupling constant. H igher tw ist contributions to
this form ula are suppressed by powersn of the hard scale M . T his factorization
form ula is valid in the B jrken lim it when M 2 s 2., where |
200 M €V is the Intrinsic QCD scale).

O ur interest here is Instead in a di erent regin e of high energy scatter—
Ing where, for xed invariant m ass M o cp r ONe takes s ! 1 and thus
Xap ! 0. We shall call this the Regge{G rlbov Im it c£ QCD . An im portant
insight is that In this lim it the eld strengths squared can becom e very large
0 () corresponding to the saturation of gluon densities [7,8]. T he onset of
satursai'jon is characterized by a saturation scale Q 5 (x), which opensa kinem atic
window M 2 QS2 jc , accessble at very high energies. T he physics of the
R egge{G rbov regin e is quite di erent from that of the B prken lim it discussed
previously. The typicalm om enta of partonsare Qg ocp a@nd higher tw ist
contrbutions are not suppressed. T hese considerations are especially relevant
for the scattering of Jarge nucleibecause the large transverse density of partons
in the nuclear waveflinctions (proportional to the nuclear radius  A™?) pro—
vides a naturalenhancem ent of the saturation scale, Q 2 (x;A ) / A=, Ourgoal
is to derive a formula sin ilar to eg. (1) for inclisive ghion production in the
R egge{G ribov Im it.

T he dynam ics of large parton phase space densities in the R egge{G rbov
Ilm it can be describbed In the Color G lJass Condensate (CGC) e ective eld
theory where an all x partons in hadrons and nuclei are described by a classical

eld, while the large x partons act as color sources for the classical ed [9{11].
The lack of dependence of physical observables on the (arbitrary) separation
betw een large x color sources and an allx dynam ical elds is exploited to derive
a renom alization group (RG ) equation, known as the JIM W LK equation [12{
19]. This equation is a functional RG egquation describing the change in the
statistical distribbution of color sources W , [ Jwith rapdity Y (= In(l=x)). It
can be expressed as

=HW,[]1; 2)



where H is the JIM W LK Ham iltonian'. For a physical observable de ned by
an average over all the source con gurations,
Z

1o i, D Jw,[]O0[1]; 3)

one obtains
@ro i,

@y

W e have used here eg. (2) and integrated by parts (using the hem iticity of H ).
T he structure of H is such thattH O i, isan ob fctdistinct from 10 i, , so that
one obtains In principle an in nite hierarchy of evolution equations for operators
expectation values 0 i, [20]. In the large N and large A m ean— eld lim it, this
hierarchy sin pli es greatly. W hen O is the \dipolk" operator, corresponding to
the forw ard scattering am plitude in deep inelastic scattering, the resulting closed
evolution equation is known as the Balitsky-K ovchegov (BK ) equation [21,22].
In refs. [23{25],we developed a form alisn to com pute observables related to
m ultiparticle production In eld theories w ith strong tim e dependent sources.
This form alisn is naturally applicable to the CG C description of high energy
scattering® albeit, for sin plicity, we considered only a scalar > el theory.
(The corresponding QCD fram ework was brie y considered in ref. [26].) In
these papers, the form alism for m ultiparticle production was developed for a
xed distrbution of sources, w ith the assum ption that the nalresults could be
averaged over, as in eg. (3), with unspeci ed distrdbutions of sources W o L]
and W, [ 2] (one for each of the pro gctiles). However, we did not discuss in
these papers the valdity of such a factorization form ula.
In the form alisn of refs. [23{25], one can form ally arrange the perturbative
expansion of an observable like the single inclusive gluon spectrum as
1 h i
0[1;2]:?00+0192+0294+ ; (5)

=M 014, : (4)

where each term corresponds to a di erent loop order. Each of the coe cients
Gy iIs itself an in nite series of tem s nvolving arbitrary ordersin (g 1, ). W e
call \Leading O rder" the contribution that com es from the rstcoe cientcyg :

O l1i2] —: (6)
In the case of the single gluon spectrum , the rst tem co=g° has been studied
extensively. In [24 ]we developed tools to calculate the next term ¢ . Follow ing

this term nology, we denote

Oviolii2l @ i Ouvolis2l eg”;

1T he explicit form of this H am iltonian w illbe given later in the text.
°A Ithough the color sources of each nucleus are independent of the corresponding light-cone
tin e, their sum constitutes a tin e-dependent current.



H ow ever, this strict loop expansion ignores the fact that large logarithm s of the
m om entum fractions %1 ;; can appear in the higher ordercoe cientsc;; when

s isvery Jarge. The term ¢, can have up to n pow ers of such logarithm s, and
a m ore precise representation of these coe cients is

G= it — (8)

i=0

The \Leading Log" tem s are de ned as those temm s that have as m any loga—
rithm s as their order in g2,

1% 1
Oosl1i2] = dng® " — (9)

9" o X152
In this work, we will go signi cantly further than the Leading O rder result,
and resum the com plete serdes of Leading Log tem s. W e w ill prove that, after
averaging over the sources 1, ,allthe Leading Log correctionsare autom atically
resumm ed by the JIM W LK evolution of the distrdbution of sources, and that
the event averaged Leading Log result is given by the factorized expression

Z

Wi = D 11D 2IWy, .. vy[1IWy, vy [2]0,, [1;2]: (10)

In this formula, Y is the rapidity at which the gluon is m easured, and the
subscripts Ypean Y indicate the am ount of rapidity evolutior? of the source
distributions of the two profctiles, starting in their respective fragm entation
regions.

The expressions Wy, . v [12]h e3. (10) are gauge invariant functionals
describing the source distributions In each of the nuclei. In analogy to the
parton distribution functions £, )-a 3 ) (Xa ) 7 2) we introduced previously, they
contain non-perturbative inform ation on the distrdbution of sources at rapidities
close to thebeam rapidities. Justasthe htterevolvein 2 with theDGLAP [27{
29]evolution equations, the form er, as suggested by eg. 2, obey the JIM W LK
evolution equation in rapidity which evolves them up to the rapidities Ypeam Y
and Ypean + Y from the nucleiA; and A, respectively. A s we will discuss in
detail, the leading order inclisive gluon spectrum , for given sources 1, can
be com puted by solving the classicalY ang-M ills equations w ith sin ple retarded
boundary conditions. Eq. (10) suggests that the result resum m ing allthe leading
logarithm s of the collision energy can be obtained by averaging over this leading
order result w ith the weight functionals W evolved from the beam rapidity to
the rapdity ¥ atwhich the glion is produced.

In theR egge{G rbov lin it, eg. (10) is the analog of the factorization form ula
eg. (1) proved in the B prken lin it. W hilk we will prove that eg. (10) holds
for leading logarithm ic contributions at all orders In perturbation theory, we

3In tem s of the center of m ass energy P s of the collision (for a nucleon-nucleon pair) and
the longitudinalm om entum com ponents p of the m easured glion, one has also { at leading
g { Ypeam Y = In( s=p* )and Ypeam + ¥ = In( s=p ).



have not attem pted to show that it is vald for sub-leading logarithm s. T here is
currently an intense activity in com puting sub leading logarithm ic contributions
in the high parton density lim it [30{36]so0 an extension of our results beyond
leading logs is feasble in future. There is another aspect of A+ A collisions
that we have not discussed thus far. Our power counting does not account
for the so called \secular divergences" [37{39]. These are contributions that
diverge at least as powers of the tin e elapsad after the collision. Including
these contributions w ill not alter our factorization theorem ; it does a ect how
\observables" de ned at nite tin es after the nuclear collisions are related to
quantities m easured in A+ A experin ents. W e w ill address this issue brie y. A
fuller treatm ent requires m ore work.

T he paper is organized as follow s. In section 2, we derive an in portant for—
m ula for the N ext to Leading O rder corrections to the Inclusive glion spectrum .
This form ula w illplay a crucialrole Jater, in disentangling the initialstatee ects
from the rest of the collision process. In section 3, we w illderive the expressions
stated In egs. (2){(4) or JIIM W LK evolution of a single nucleus. A Dbeit the
result is well know n, our derivation is quite di erent from those existing in the
literature [12{19,40{44]. W e w ill obtain our result entirely in term s of retarded
light-cone G reen’s functions w ithout any recourse to tin e-ordered propagators.
W ew illshow that there areno am biguities in specifying the pole prescriptions in
this approach. M ore In portantly, our derivation allow s us to straightforwardly
extend our treatm ent of the JIM W LK equation to the case of the collision of
two nuclei. This is discussed separately in section 4 where we show explicitly
that non-factorizable term s are suppressed and our key result, stated in eg. (10),
is obtained. In the follow ing section, we w ill relate our work to previous work
in this direction and brie y explore som e of the connections between the dif-
ferent approaches. In section 6, we w ill discuss how one can relate our result
for the G lasm a produced at early tim es In heavy ion collisions [45,25] and its
subsequent evolution into the Quark G uon Plasna. W e conclude w ith a brief
sum m ary and discussion of open issues. T here are three appendices dealing w ith
properties of G reen’s functions in light cone gauge relevant to the discussion in
the m ain text of the paper.

2 N LO corrections to inclusive observables

Before studying the logarithm ic divergences that arise In loop corrections to
observables, let us derive a form ula that expresses the 1-loop corrections to
inclusive observables in term s of the action of a certain operator acting on the
sam e observable at leading order. A s we shall see, this formula { abeit quite
form al{ can be used to separate the physics of the initial state from the collision
itself.

W e have in m Ind an operatorm ade of elem entary color elds,which probes
m ultiglion correlations. To be speci ¢, for a given source distribution, we shall
consider the quantum expectation value

0 (x;y) A*xnAly) ; (11)



in the lim it where the tin e argum ents of the two eldsgo to +1 . W e chose
this particular operator because w e w ish to study the single gluon spectrum {the
rst m om ent of the m ultiplicity distribution{ in the collision of two nuclei; it is
obtained by Fourier transform ing this bilinear com bination of elds. Note that
the two elds are not tin eordered. T he expectation value of such a product
can be calculated In the Schw ingerX eldysh form alism [46{48], by considering
that Ai(x) lies on the branch of the contour and AJ (y) on the + branch (A
representation of the Schw inger{K eldysh contour is shown In g.1.)

C +

Figure 1: The closed tin e path used in the Schw ingerK eldysh form alism .

T his section is organized as follow s. W e rst recall the expression ofeq. (11)
at leading order In tem s of retarded solutions of the classical Yang{M ills equa—
tions. This result is wellknown and has been derived in a num ber of di erent
ways. W e w ill then discuss the next+to-leading order com putation of this quan—
tity in the CGC fram ework. T here are two sorts of NLO corrections; these are
the virtual corrections arising from one-loop corrections to the classical elds
and the real corrections which are obtained by com puting the G , propaga—
tor of a small uctuation in light-cone gauge. W e will show that O, ,, can
be expressed as a linear operator w ith real and virtual pieces acting on O ,
plus an unin portant (as far as the resum m ation of logs of 1=x; ;; is concemed)
additional temm .

2.1 Leading order result

W e showed In [23] that, at leading order, O is the product of two classical
solutions of the Yang-M ills equations, w ith null retarded boundary conditions?,

0,, x;y)=2'xn(y); (12)
w ith
D ;F = J ;
Im A (x) = O0: (13)
x0! 1

Here,A denotes the classical eld,and J is the color current corresponding to
a xed con guration of the color sources. T he current is com prised of one or

4T he retarded nature of the boundary conditions is intim ately related to the inclusiveness
of the observable under consideration. For instance, if instead of the single inclusive ghion
spectrum ,onewanted to calculate at leading order the probability of producinga xed num ber
ofgluons, one would have to solve the classicalY ang-M ills equations w ith boundary conditions
bothatx’= 1 andatx®= +1 (see 49)).



tw o sources depending on w hether we consider only one nucleus or the collision
of two nuclei { this distinction is not in portant in this section. Tt is in portant
to note that this current, which has support only on the light-cone, must be
covariantly conserved,

D ;J =0: (14)

T hism eans that in general, there is a feed-back of the gauge eld on the current
itself, unless one chooses a gauge condition such that the gauge eld does not
couple to the non—zero com ponents of the current on the light-cone.

A Ythough one can solve analytically the Yang-M ills equations w ith these
boundary conditions in the case of a single nucleus [12,50], this is not possible
in the case of two nuclei, and one m ust resort to num ericalm ethods to obtain
results in this case. Fortunately, as we shall see, the discussion of factorization
in the case of two nucleidoes not require that we know this solution analytically.

Because the solution of the YangM ills equations we need is de ned w ith
retarded boundary conditions, its value at the points x and y (where the ob—
servable is m easured) is fully determ ined if we know its value® on an hitial
surface  {which is locally spacelike®{ located below the points x and y, as
llustrated n  g. 2.

Figure 2: A locally spacelike surface used to de ne the initial value of the
color eld.

T herefore, we w ill w rite

0,, ®iy) O, RI; (15)

w hich m eans that the observable is considered as a functionalof the value of the
color eld on the initial surface . Note that we use the sam e sym bol for the
color eld and for its initial value on , although m athem atically these ob fcts
depend on a di erent num ber of variables and are therefore di erent fiinctions.

SSince the Yang-M ills equations contain second derivatives w ith respect to tim e, one m ust
also know the value of the rst tim e derivative of the eld on this initial surface.

®Thism eansthatatevery pointu 2 ,thevectorn nom alto atthepointu (n dx = 0
forany displacem entdx on  around the pointu)m ust be tim e-like. T his condition prevents
a signalem itted at thepointu 2 , propagating at the speed of light, from encountering again
the surface



2.2 N ext to leading order corrections

A detailed discussion of the power counting for m om ents of the inclisive m ul-
tiplicity distrdbution can be found in Ref. [23]. T he leading order contributions
to O (x;y) Involves only tree diagram s, which explains why it can be obtained
from classical solutions of the Yang-M ills equations. A s m entioned previously,
this Jeading order contribution is of order O ( 1) but includes allorders in g .
In the rest of this section, we shall study the 1-loop corrections to this quantity,
that are of order O (1) in the coupling and to allordersin g .

T he fram ew ork to com pute these 1-loop corrections (hereafter called \NLO ")
to quantities such as eg. (11) has been developed for a scalar theory in ref. [24].
M uch of this analysis can be carried over to Q CD . To avoid com plications such
as ghost Ioops, we shallwork in a gauge such as the light cone gaugeA* = 0.
Follow ing the discussion for the scalar case,we obtain at NLO ,

0, &iv)=2a'x) T+ ‘x)aIy)+ cY, x;y): (16)

In this equa‘cjon,(}ij+ (x;v) isthe + com ponentofthesnall uctuation Schw in—
gerK edysh propagator in the presence of the classicalbackground eld A * and

the ed * is the one Ioop correction to the classical ed. It is obtained by

soling the an all uctuation equation ofm otion

" @X@ ﬂl (X)* E @3U (A) G (X'X)'
*9 *ORA (X)eA (x) 20A (x)eA (x)eA (x) 1T
17)

w ith null retarded boundary conditions :
Iim (x)=0: (18)

x0r 1

Here U (A ) is the potential term 1in the YangM ills Lagrangean’, obtaied by
w riting
L=TLgua U®); (19)

where Lgyag isde ned In eg. (136) of appendix A . W e refer the reader to ap-—
pendix A for m ore details. The source term in this small uctuation equation
includes the closed loop form ed by the Schw ingerK eldysh propagatorG, ; (x;x)
to be de ned shortly, the third derivative corresponds to the 3-gluon vertex in
the presence of a background el and 1=2 is a symm etry factor.

Follow ing [24],w e can w rite the propagatorG™, (x;y) in eg. (16) asa bilinear
com bination of am all uctuations of the gauge eld whose initial conditions are
plane waves,

x 2 3
G (x;y) = ﬁ a® L xal W) (20)

a

7U nless one chooses a non-linear gauge condition, U (A ) ism ade of the usual 3-gluon and
4-gluion couplings.



w here

8 @x@ ﬂia (X)* O o (21)
<9 * @A x)@A (x) ’
Iim a, _(x)= k)T?e * *:

x01 1

The sum over isover the two physical polarizations for the initial plane wave
and the index a represents the initial color carried by the anall uctuation
ed. In eg. (20), our notation is such that the lower color index (a) represents
the initial color of the uctuation, while the upper color index (b or c) refer
to its color after it has evolved on top of the classical background ed®. Tt is
im portant to stress that this decom position of G, isvald only ifone uses am all
uctuations that are plane waves in the ram ote past. U sing other solutions of
the an all uctuation equation of m otion (21) would lead to a propagator that
obeys incorrect boundary conditions.
The + + propagator at equalpoints can be w ritten i a sin ilar fashion as’

Z
oc ( X d’k ib

Gij X;X): m a k a (X)ai‘ck a (X) : (23)

+ o+

a

W e note that in a generic gauge, covariant current conservation m ay require
the ncom ng eld uctuation to induce a color precession of the classicalcurrent
J . Thism odi cation of the current w ill in tum induce an additional contribu-
tion to the eld uctuation. O ur strategy [51{53]to avoid this com plication w ill
be to perform all interm ediate calculations in a gauge where this phenom enon
doesnot happen. For instance, on the linex = 0 where the color chargesm ov—
ing in the + z direction live, on should use a gauge in which A = 0. Indeed,
because the color current only has a + com ponent, covariant conservation is
trivial In this gauge. A gauge rotation of the nalresult is then perform ed to
retum to the light-cone gauge of interest. A lle ectsdue to current conservation
are then taken care of by this nalgauge transform ation.

2.3 Rearrangem ent of the N LO corrections — 1

In this subsection, we w illexpress the sm all uctuation propagator G ij+ (x;v) as
the action ofa di erential operator on the classical edsA (x)and A J(y). This
operator contains functional derivatives w ith respect to the nitial valie of the
color ed on . In the follow ing subsection, we w ill repeat the exercise for the
one loop correction to the classical ed (x) and write it In term s of a sin ilar

8 For future reference, note that quantities w ith only the low er color index are m atrices in
the ad jpint representation of SU (N ) de ned by

a L) af  x)T": (22)

°W hen the two end-points are separated by a tim e-like interval, there can be an additional
term contributing to this propagator { see [24] for m ore general form ulas.



operator acting on the classical ed A (x). T hese dentities, besides providing
a transparent derivation of the JIM W LK equation for a single nucleus, w ill be
especially powerful In our treatm ent of nucleusnucleus collisions.

Let usbegin from the G reen’s form ula for the classical ed A ,

z
A x)= d%vD, (x; )w+B R Ix); (24)
Y Do, X7y A (v) 0 7

+

whereD ;. (x;y) is the free retarded propagator (discussed in appendix A in the
case of the light-cone gauge) and B, A ](x) is the boundary temm that contains
the nitialvalue of the classical eld on . (Boundary tem s for the classicaland
an all uctuation elds in light-cone gauge are discussed In detail In appendix
B. ' denotes the region of space—tin e above the surface . Now ,consider an
operator T (to be de ned explicitly later) that acts on the initial value of the
elds on the surface , and assum e that this operator is linear, which in plies

QU (A Q°U A&
) _ ®) TA (y): (25)
QA (y) @A (y)QA (v)

Now apply this operator T to both sides ofeg. (24),we get

Z
TA (x)= d'yD (x-y)MTA ¥)+ TByRIx):  (26)
Gr T en (v)eA (y) ° '
By com paring this equation w ith the G reen’s form ula fora sm all uctuation a
(see appendix B),
Z

s U @)
a (x)= d'yD,, x;v)

- B ; 27
A (y)eA (y)a (y)+ By alx) (27)

+

we see thatwe can dentify a (x)= T A (x) provided that we have
Bylx)=T B, A Ix) : (28)

Because By is a linear functional of the initial value of the color elds on the
surface , it is easy to see that the operator T that ful Is this goalis
Z

T dFu a T ; (29)

where T, is the generator of transktions of the nitial elds'® at the point
u 2 . W edenote by d3u the m easure on the surface (for nstance, if is

a surface de ned by x = const, this m easure reads d®s = du*d’u, . The
detailed expression of this operator can be obtained by writing explicitly the

10For now , it is su clent to think of this operator as an operator which is linear in  rst
derivatives w ith respect to the color eld on

10



G reen’s form ula for the retarded propagation of color elds above the surface
,and it usually depends both on the choice of the surface and on the choice of
the gauge condition. A n explicit expression of this operator w illbe given in the

next section when the initial surface isparallelto the light-cone (u = const)

and when the elds are in the light-cone gauge A* = 0. Therefore, we have
established the follow Ing dentity,
Z

a x)= d’sn a TA (x): (30)

Eg. (30) provides a form al expression of a uctuation at point x in tem s of
its value on som e initial surface (in the right hand side of eq. (30), only the
value of the uctuation a on appears). This form ula is especially useful in
situationsw here we can calculate analytically the initialvalue of the uctuation
on ,but were we do not know analytically the classical background eld A
above this surface.

T he single nucleus case is a bit academ ic in this regpect because one can
analytically com pute the background gauge eld and the uctuation at any
point In space-tin e. R ather, eg. (30) w ill prove especially pow erfiil for nuclear
collisions because in that case one does not have an analytic expression for the
classicalbackground eld after the collision.

A m ed w ith eg. (30), it is straightforw ard to w rite the third term of the right
hand side of eg. (16) as

Z

Glike (x;y) = P p— du v
R I
h ~ ih i
axa TAP®) axa TA y) : (31)

In this equation, the brackets lim it the scope of the operators T, , .

24 Rearrangem ent of the N LO corrections — II

T he term s involving the 1-loop correction can also be w ritten in termm s of the
operator T, , but this is not as straightforward as for Gij+ . The rststep isto
w rite down the form alG reen’s fiinction solition of eg. (17). It is convenient to
w rite it as

(X):Z d'y D (X;y)} ) Gy viy)+ B [ Ix);
& 2@A (Y)RA (Y)RA (y)
i { bool—{z—}
l(X) 2(X)

(32)

where B [A ](x) is denticalto B, [A 1(x) except that all occurrences of the bare
propagatorD in the lJatter are replaced in the form er by the dressed propaga—
tor in the background ed A . Thisdressed propagator,denoted D, satis es

11



the equation

h
Xg @x@x

i

e°U (&
&) Dp, Kiy)=9g x y); (33)

QA (x)AA (x)

plus a retarded boundary condition such that it vanishes ifx° < v°.

T he second term on the right hand side of eg. (32) isthevalue would have
ifone tums o the source term (proportionalto G, , ) n thedomain * above
the initial surface. Tt is therefore given by a form ula dentical to eq. (30),

Z

, )= d’u T A (x): (34)

Tocalculate ; (x),letus rstm akeexplicit the interactionsw ith the background
eld by writing it as

2 h @2y @)
x) = d'yD,, X;y) ——————— (V)
! O @A (y)RA (y) *
1 @3U (& i
+ = &) G,, yry) : (35)

2@A (y)RA (y)RA (vy)

T his expression is obtained by substituting the expression for the dressed re—
tarded propagator In term s of the free retarded propagator in the de nition of

.
Consider now the quantity

Z

Z
1X 3k
= FPudv arwva T arva TA x): (36)

)3 2 P2E.
a

W e shallprove that ; and are dentical. U sing eq. (30), we can w rite

w Z s Z
)= 2 L N Ta .  (x): (37)
2 2 P2E, ke tkafle

a

Replcea, , , (x) In thisequation by therh sofeq. (27). Because the boundary
term B, [as x a ](x) does not depend on the initial value of the classical ed A,
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the action of a ¢ 4 T on this term gives zero. W e thus obtain

Z Z Z
(x) = EX 6137]( a3 a‘v D (x;v)
T3 2 F2E, ° Y P o ¥
a N
n 2
@°U @A)
A )R ) axa Ta,, .
h i o
QU @)
+ a a A )a+ a( )
A WA weA @) 2 F TR Wan.u
? h ey
= d'yD,, (x;y) —————  (y)
YPo0x W) a s ) Y
U @) +
+ G,, (yiy) i (38)
@A (y)eA (y)GA (y) v
which is dentical to eg. (35). W e therefore ocbtain ;| (x) = (x). Combining
the two contribbutions ; and ,,we nally arrive at the com pact expression
" Z
(x)= du T

#
VA
1X d’k

3. 43 .
+E;a m d'ud’'v a x a T aix a T A (x)39)

W e can now use egs. (31) and (39) to obtain a com pact expression for NLO

corrections to O as
n

Z
0,,., (x;y)= dPu T

7 #
+1X &’k dPu d’ T T o R]
— —_— o ¥ oa a
2 (2 )32Ek k a +k a Lo
a
+ 0 ., Xiy); (40)

wherewe recallthat O, [A ]is the sam e observable at Jeading order, considered
as a functional of the value of the gauge elds on the initial surface . The
corrective term O (x;v) isde ned by

NLO

z
1X d’k

. 3 3
O yio (x;y) 5 i m d'ud’'v
nh . ih . i
a k a EAm(X) Ark a :erjc(Y)
h . ih . io
aixa TA®x) ayx. Tary) - (41)

13



Aswe shall see Iater, this term O ,,, does not contain any large logarithm .
Only the term s in the rstand second lines ofeg. (40) w illbe in portant for our
Jater discussion of factorization.

3 JIM W LK evolution for a single nucleus

Eqg. (40) is central to our study of NLO corrections and of factorization. In the
rest of this section, we w ill show how this form ula isused to derive the JIM W LK
evolution equation. In section 4, we w ill show that it can be generalized to the
collision of two nuclki. A very convenient choice of initial surface in the

derivation of the JIM W LK equation is the surface de ned by x = . One
should choose so that all the color sources of the nucleus are located In the
strip O X . An ilustration of the ob fcts Involved In eg. (40) and their

localization In spacetin e is provided in gure 3.

Figure 3: NLO corrections in the single nucleus case, seen as an initial valie
problem on the surface x = . The shaded area represents the dom ain where
the nuclear color sources live (0 X ). The eld uctuations represented
in red continue to evolve In the region x > until they hit the operator we
want to evaluate. H owever, this evolution is entirely hidden in the dependence
of the classical eld upon its initial valile at x = , and we do not need to
consider it explicitly.

3.1 G auge choice

W eneed 1rst to choose the gauge in which to perform this calculation. Because
the observable we w ish to calculate and everything else In eg. (40) is expressed
In term s of light cone gauge (A% = 0) quantities, we need to obtain a ¢ 5 and
in this gauge as well. However, as previously m entioned, covariant current
conservation is m ost easily preserved in a gauge where the eld uctuations
have no com ponent. This is because they do not induce a precession of

14



the color current J* while crossing the light cone. W e are therefore going to
adopt the strategy advocated in refs. [51,52,17,19], that consists in perform ing
interm ediate calculations in a gaugewhereA = 0 and then gauge transform ing
the nalresultto A* = 0 gauge.

A s discussed in detail in appendix B, if one uses the LC gauge and the
surfaceu =  asthe nitial surface, the linear di erential operatora  J[that
appears in the dentity (30) should be de ned as'?

- e i : + T A oy
a T B T Y- )

+@ ((wa ) ; (42)

where is the adpint color m atrix ' that will be de ned i eq. (46) . Note
that this operator In eg. (42) contains a term for each of the eld com ponents
that m ust be speci ed on the nitial surface to know com pletely the eld above
this surface. This operator T, can therefore be interpreted as the generator
of translations of the initial condition for a classical solution of the Yang-M ills
equations. It is also In portant to note that the uctuation ed a (u) that
m ultiplies this operator is evaluated jist above the initial surface (atu = ).
T herefore, because one does not require its entire history beyond this surface,
it can in generalbe calculated analytically.

3.2 Classical eld

Let us recall the structure of the classical background eld itself. As is well

known, the eld in the Lorenz gauge (@ A = 0) hasno A com ponent, and
therefore ful 1lls the A = 0 condition. Tts explicit expression in tem s of the
color source'® e in given by
1 )
B (x)= e(® ;X,) ; £ =K'=0: (43)

a2
T he gauge transform ation that relates the classical background elds in the
A" = 0 gauge and the corresponding elds in Lorenz gauge is'*

i

A = Y® + = Ve (44)
g
111 e have om itted the color indices in this equation. should be understood as a m atrix
in the SU (N ) group, and A as a colum n vector. A is therefore a colum n vector whose
com ponents are ( A ) LA p-

At st sight, doesnotplay any role in thede nition of T { the necessity to introduce
this m atrix in thede nition of T} is also explained in the appendix B .

3The density ofcolor sources is a gauge dependent quantity. W hen de ned in the Lorenz
gauge, we denote it w ith a tilde. _

1410 this expression, isam atrix in the group SU (N ), whileA isa m atrix in the ad pint
representation of the algebra SU (N ). T he product VA isamatrix in the SU (N ) algebra.
N ote that depending on the context we use the sam e sym bol for an elem ent A of the algebra
(ie. a matrix), and for the vector colum n m ade of its com ponents A . on the basis of the
algebra. T he relation between the two isof course A = AT°C.
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w here the tide denotes elds In the Lorenz gauge; those w ithout a tilde are in
light cone gauge. U sing the light cone gauge condition A* = 0,we get

Q" =g’ ; (45)
which adm its the W ilson line
h 2« i
(x ;x,) T expig dz 2 (z ;x,)T? (46)
1

as a solution. Note that because the color sources do not depend on x* , 2&*
and depend only on x and x, . The solution of the classical equations of
m otion in light cone gauge is then

f i f
A (x)=§ Y(x %, )@Y (X %X-); (47)

W e should comm ent here on the residual gauge freedom of the classical
solution. The m ost general solution of eq. (45) is

x x2) x"ixq); (48)

where isan arbitrary x -Independent gauge transform ation. W ith thism ore
general choice, one obtains

AT =0;
i
A == ;
9
h i .
e (49)
g g

T he arbitrariness In the solution is because the condition A* = 0 does not x
com pletely the gauge and x -independent ’s span the residualgauge freedom .
R equiring that the classicalgauge el be of the form given in eg. (47) am ounts
to the choice 1. This choice is assum ed In the rest of this paper.

3.3 Field uctuations on the light cone

To readers fam iliar w ith the structure of the JIM W LK H am iltonian, the struc—
ture of eg. (40) is already suggestive. In the rest of this section, we w ill show
that the leading logarithm ic contributions in this form ula { tem s that are Iin-
ear in the rapidity di erences between the pro fctile and target relative to the
observed gluon { can be absorbed into a rede nition of the distrdbution of color
sources of the nucleus. Our wst task towards this conclusion is to com pute
the value of the eld uctuationsa x ; and jast above the light cone on the
nitial surfaceu =
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Let us consider a an all uctuation a on top of the classical ed A . The
relation between the two gaugesm ust bem odi ed,

A ta= Y€ +a)+ Ve ; (50)
g

w ith
(1+ ig!) ; (51)

where ! has com ponents of order unity. Using this ansatz in eg. (50), and
keeping in m ind thatA ;& 0O (g !)whikaja 0 (1), we obtain the relation

y

a a git®c ] e! : (52)

To determ ine ! , as previously, apply the gauge condition a* = 0. T his gives
QY + ig[! ;€ 1= a* ; (53)

the solution of which can be w ritten as
Z

Px)= (x jx2)EX jxo )+ dz (x jz jx.)& (z ;X ;x;): (54)
1

In this equation f is an arbitrary function that does not depend on x , and
(x ;z ;x- ) isan \incom plete" W ilson line de ned by

n Z X o
(x ;z2 ;x2) T exp ig dz P@; (z ;%x,)T% (55)

z

T he arbitrariness in the choice of the function f,, again m eans that there is a
residual gauge freedom after we have im posed a* = 0.

A crucialpoint n our derivation is how the residualgauge freedom is xed.
W e need anall eld uctuations in order to represent the propagators as in
egs. (20) and (23) as bidinear form s In these uctuations. T hese equations are
vald only if the initialvalue of the uctuationsa ., are plane wavesw ith on—
shellm om enta; one can check easily that this is true for the free propagators.
Thus . (54) m ust give plane wave solutions for the eld uctuations in light
cone gauge when x < 0. This is sin ply achieved by taking plane waves for
the uctuation a i the original gauge and setting the finction £ to zero'>.
T herefore, the requirem ent that egs. (20) and (23) be valid leaves no residual
gauge freedom .

W e only need to know ! on our initialsurface {atx = . Because the
com ponents of and of a are all of order unity, it is legitin ate to neglect the
valuesofz thatarebetween 0 and in the Integration In eg. (54). Forx =

15% e note that it is also possible to choose a ’s that are not plane waves and a non-zero
f to achieve our requirem ent that a be a plane wave. T his however m akes the interm ediate
calculations m ore tedious.

17



and z < 0, the incom plete W ilson line is equal to the com plete W ilson line
(which has the owerbound at 1 ). W e therefore obtain

Z g
'x = )= (x2) dz &' (z ;x" ;x;): (56)

1
Note also thatwhen x ,theW ilson line becom es Independentofx because
all the color sources are In the strip 0 X . This explains why we only

indicate x, in its list of argum ents.
Once ! hasbeen detemm ined, the and i com ponents of the uctuation in
light cone gauge are determ ined from those n the A = 0 gauge to be

a = ¥ @ ! ;

at Yoat @l : (57)

A swe shall see shortly when we discuss the leading logarithm ic d ivergences, the
only quantity we need is'®

@ a Y = @ a @'! gl! 26 1]
= ¢e ! @a @ ; (58)
where we have used eg. (53) and the fact thata = 0 In order to elin inate a
few term s. Using the equation for @ ! , as well as the fact that 22" is zero at
X = ,weget

@ a Y =@2! e@a @a: (59)
Letusnow consider speci cally the uctuationsa i 5 . In thegaugea = 0,

their expression below the light cone reads'’

&, ,(x)=~ (k)T * %; (60)
w ith
~ (k)=10;
X ,
SR k)= g
=1;2
ko> ~o2 (k)
k) —— 61
k) " (61)
T he form ulas that govem the light cone crossing in this gauge have been w orked
out In [53]. Usihg these results, one nds the follow ing expressions for the

uctuation elds just above the light cone:

ib i ik
a7y L (X)= pa(xe )Y (k)e %
h 1 i
& ®) = x: ) k) @ b (x2) 3 —~ (k) e ko (62)
YNotethat ( A Y) = A, from the de nition of the ad jpint representation. W ith the
notation where A is a colum n vector, this quantity would also be denoted by ( A k.

UTherefore,a 5, _ (x)= ~ (k) *Pe & %
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N ote that for these eld uctuations, one has
@ a,  =@a, (63)
Thuswe have

e a ., Y = @e'' 28,, : (64)

a

Substituting eq. (60) In eg. (56) gives the follow ing expression for ! jist above
the Iight cone,

. kI K x
!b: Zlba —2"’ (k)e . (65)
ks
T herefore, h i
@ a ,, Y,= 20e®*H i) ; (66)

w here we have Introduced the shorthand notation

kK™
k) o— P (k) ;
ks
) ) kikl 1 )
oo = 2 T (67)

3.4 Logarithm ic divergences

Letusrecallthat our ob Ective is to isolate the leading logarithm ic contributions
to eg. (40). From the structure of this equation, isolating these contributions
requires that we exam Ine eg. (42) tem by term . As we shall see later, the
contribution in T (\virtualcorrection") can be derived from the term bilinear
in T (\realcorrection"). T herefore, let us concentrate on the bilinear tem for
now .

To detemm ine the leading logarithm ic contributions in the real correction,
we nead to consider the integration over the on-shellm om entum k aswell. Tt
involves an integral
zZ +1 dk+
0 k*

w hich potentially leads to logarithm ic singularitiesboth atk® ! 0and atk® !
+1 .Note thatwhereverk appears in the integrand, it should be replaced by
the on-shellvaluiek = kg =2k* . Ingpecting the integrand of eg. (40), one sees
that the k* dependence contains exponential factors

; (68)

k2

g vou) (69)

T here isno factordepending on v u ,because the pointsu and v areboth on
the nitial surface ,and thushaveequal co-ordinates. It is clear the Integral
converges at k¥ | 0" thanks to the oscillatory behavior of this exponential.
On the other hand, when k* ! +1 , the exponential goes to unity and one
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m ay have a logarithm ic singularity there. H owever, to truly have a divergence,
the other factors In the integrand should not have any pow er of 1=k* .

Let us now exam ine these. The coe cients in the operatora I, are the
initialvallesof a ;@ (al)and @ (a ). Weneed only to keep the coe -
cients that have no power of 1=k* . O ne sees readily that this is not the case for

a or@ ( ai) : these tw o quantities (com pare eg. (57) to egs. (58) and (59))
contain a factor k 1=K .

T hus, as previously anticipated, the only divergence arises when one picks
uptheterm @ (a )bothina Tanda T.

In order to regularize the integral over k™ , we must Introduce an upper
bound * . Physically,thiscuto isrelated to the division ofdegrees of freedom
one operates w ith in the CG C : the color sources describe the fast partons and
thus correspond tomodes k¥ > ¥ ,while the elds represent the slow degrees
of freedom that have a Jongitudinalm om entum k* < ¥ . T herefore, when one
perform s a calculation in this e ective description, the longitudinalm om entum
of all the elds and eld uctuations should not exceed ¥, In order not to
overcount m odes that are already represented as part of the color sources
The lower scale In this logarithm is of the order of the longitudinalm om entum
p"~ of the produced gluon. Therefore, the logarithm resulting from the k*
Integration is a logarithm of *=p'.

To pick up the logarithm , one should approxin ate the exponentialby unity.
T his in plies that the coe cient of the logarithm is independentofu * and v* or,
in other words, it is invariant under boosts in the + z direction. A swe shall see,
such perturbationsof@ ( a ) can bem apped to a change in the color source ~,
and these logarithm s can be absorbed in a rede nition of the distrbbution W [~].

3.5 R ealcorrections

Keeping only the tetm In @ ( a ) In eg. (42), and Iim iting ourselves to the
divergent part of the real correction for now , we see that we m ust evaluate the
operator

1 kT L
In d u- d Vo
2 p+ 2 2
X ilb ik i I ik
@* ra (2 )’ RCE ika(V? e ¥
7’ 5
du’ dv* : (70)
@ WwhAyU jur) €@ (V)cehe (V' jve)

Here, to avold any confision, we have w ritten explicitly all the color indices.
Note also that we have perform ed the sum over the two polarization states of

the eld uctuation in this expression®®.

- y
il 2klk 13 Zk k- _ i3 .
K2 K:

18 usefil dentity is




T he ob ct on w hich this operator acts is the observable calculated at leading
order, considered as a functionalof the initialvalie ofthe edsA ' in light cone
gauge. In this gauge, the nitial values of A" and A are zero (provided the
residualgauge freedom is xed as explained in section 3.2). M oreover, from the
set-up of the problem , it tums out that these initial edsdo notdepend on x* ,

At yx, )= Atx, ) ; (71)

and , ,
@ WA iU jus, )= @ (U2 )aBjus): (72)

W hen we restrict ourselves to functionals that depend only on x* “independent
initial eds,we can sin ply write!’
Z

du® = , ‘ : (73)
@ (UWwhAg@ ur) @ (U2 A )

Ourgoalnow isto relate the leading logarithm ic contribution we have den—
tied to the JIMW LK evolution of the distrlbbution of color sources. Aswe
have seen in the previous sections, the initial valie of the eld in light cone
gauge has a sin ple expression w hen expressed In term s of the sources ~ or elds
" In Lorenz gauge. T herefore, we will try to m ake the connection w ith the
JMW LK equation in this gauge. To do this, we m ust relate the functional
derivative = @ (u; A (u; ) to the functionalderivative =2 . W e begin
by considering the light cone gauge expression for the classical transverse gauge

elds given by egs. (47) and (46). Rewriting A *(x, ) m ore explicitly as
Z

Atx g%, )= dz  Y(z ;x;) @€ (z ;x;) (2 ix7); (74)
1

one observes that a variation?® 2 ( ;x, ) ofthe el in covariant gauge in the
lastx Dbin (ofwidth dx ) leads to a change Al(x, ) of the initialvalue of the
gauge eld in light cone gauge, given by

AT, )= Y(xp) @ ' ( jx)dx  (x2): (75)
From this form ula, we get the variation of @+ (u > )bdA(ij(u? ),

h ‘ ‘ i
@' . Ai,) = @ B ( ;x)dx (76)

19 It is usefulto recall that the din ension of a functionalderivative operator isM ass d@) b

whered(A ) is them assdin ension of the eld w ith respect to which one isdi erentiating, and
D them assdim ension of the space in which this eld lives. For instance

M ass2 ; _— M ass1 :

Af(u' juq ) Alo)

2071t is natural that the size of the bin in which the e]d]—\~+ is changed plays a role here.
Indeed, because A ' is integrated over x in the expression of A*, a change in a bin of zero
w idth produces no change in A*. Note also that the factor dx  In eg. (75) is necessary on
din ensional grounds.
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Inverting this relation, one obtains
Z

. . = Px, Gu, x)——m ¢ (77)
@ (U: A ) (%)

Here G (u- X, ) is a two-dim ensional propagator whose m ain properties are
discussed in appendix C .

It is in portant to observe that the functional derivatives on the left and
right hand side of this equation do not have the sam e din ensions. This is
because they are de ned w ith regpect to elds that live in spaces w ith di erent
din ensions. O n the left hand side, the nitial transverse eld in light cone gauge
does not depend on x as soon as we are outside the nucleus and is therefore
a function of u, only. On the right hand side, the eld " depends crucially
on x . The , argument in the right hand side of eg. (77) is not Integrated
over, and should be chosen as the value of x where the last layer of quantum
evolution has produced its partons. This is the sam e as the location  of the
surface used for the initial conditions, but the subscript Y indicates that it
m ay shift as the rapidity Y increases.

W e can now rew rite the operator in eg. (70) as follow s

. 2 2
d*x, &y, F(xs5v.) ; (78)

ot (L %) L (, 5y,)

In

NI

where we have de ned?!

Z
17 ke o
4 3 (2 )2

x5 5y, )

79
(u- % )2 (Vo Y2 )? 72

From eg. (67), ﬂf(a can naturally be broken in two term s. Iffwe keep only the
rst term in each of the ’'sin eg. (79),we obtain correspondingly

12, ®b d) ! V)
(l)(X? ;Y’> ) = 8 4 d U- d Vo (X? W )2 (yo V.? )2
3 h ) i
Y, w) @ Y 1 :  (80)
bc

Here the fuinction % isde ned in eg. (167) of appendix C . W hen we keep the
rst term in the rst and the second term in the second  (or vice versa),we
get zero because the two term s iIn - are m utually orthogonal. If we keep the

21| e perform ed along the way an integration by parts and used the identity in eq. (164).
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second term In each ofthe ’'s,we obtain

Z 2 i i
1 du, x; wily; )

bc . — -
(2 Y2 ) 2 P (2 WPy, W) .
h i
%) Y(y) x) Y@) ) Yy)+1 .
Z i ; 3
L gy, E W) v )
8 4 Xo U, )2 (YO WA )2
1
Sa, w) @ Yw) 1 (81)
bc

W hen we add the two contributions, the term s nvolving 3 cancel,and we
are nally left with

Z i 1 3 .
P (xy iy, ) = 1 d*u,  (x} w )yt u )
2 1Y2 2 P (x- w )2 (v, o ) |
h i
G) Ty) ) ) W) T+l s (82)

T his fiinction is precisely the finction ™ (x5 7Y, ) thatappearsin theJIM W LK
equation [17,19].

At this point, a word must be said of the term O |, in eg. (40). It is
given by the di erence of two temn s that can be obtained from each other by
exchanginga, x » anda g » .G oingback to the calculation of * (x, iV, ), itis
easy to check that for the calculation of the leading log term these tw o term sgive
the sam e result and cancel. Physically this is due charge conjigation symm etry
{ because the classical eld isrealwe obtain the sam e result by exchanging the
negative and positive energy asym ptotic solutions for the quantum uctuation,

O .., iIsthedi erence between these two and thus cancels out.

3.6 Virtual corrections

In the previous subsection, we focused on the real contribution to eq. (40). W e

now turm our attention to the termm in T in eq. (40). Recall that is
the one-loop correction to the classical eld in the LC gauge and is evaluated
in eg. (40) atu = , just above the region occupied by the nuclear sources.
M in icking the evaluation of the real contribution, we can w rite directly??
Z
du* d?u- T =
R/ z
= dxy; Fur Gy w)RY W g W) o :(83)
| { p B (%)
+
In p* b(X? )
220ne can con mm that ( g q and @ ( g é are zero and therefore cannot appear in
the operator [ NN
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W eanticipate thata Jarge logarithm in thek® integralw illshow up in thisquan—
tity, and we have de ned P(x, ) as its coe cient. Note that in this de nition
of the function P(x, ), the value?® ofu isu =

W e begin with the G reen’s formula for the 1-point function (u), where

the initial surface is taken atv = 0 (instead ofv = ),
Z h 2
@U @A)
= d*vD,, ; -
) VP ) G oes @
v >0 .
1 U@ *
+ — ¢ @) G v;v) e (84)

2Q@A (V)RA (V)RA (V) v

By this choice of the initial surface, we do not have a boundary tem , because
is zero at u 0. The propagator G, , (v;v) can be expressed in tem s of
the eld uctuationsa i ; by using eg. (23). Considernow the G reen’s form ula
for the uctuation a, x 5 we introduced in 7. (27),but w ritten this tim e for an
initial surfaceatu = 0,
Z
G°U (&)

a, , ®)= d4yDo;R (XiY)maH{a(YH' Bplaix al: (85)

y >0
In this formula, both the uctuation a,y 5 and the derivative of the gauge
potential depend on the background classical ed In LC gauge. Let us apply
to this equation the operator’® a . T that substitites one power of the
background eld by a powerofa y 5 .By de ning
1X % gy g
2 (2 P2Ey

= v >0

W) d'v axa JTa,, ,W; (86)

we obtain for this ob fct the G reen’s form ula

W) = Zd4D(.)h Q%U (Aa) (
s VP WY e wea )

1 U @) .
+ = G,, WV;v) ; (87)
2Q@A (V)RA (V)RA (v)

where we used eg. (23) for the propagator that appears in the source term . W e
see that and are dentical. T herefore, we have proved that

X Z 3 Z
@ = dx a* T af ., w) (88)
u — P — vV oa g a u) :
d 2 (2 )3 2k K a +k a
a v >0
23The value of u* is irrelevant because the l-point function (u) propagating over an

x* “independent background eld (and w ith a vanishing initial condition in the past) is inde-
pendent of u* .

24T his operator is sin ilar to the operator a T previously de ned, but it perform s the
replacem ent of elds inside the region of the sources, instead of just on the surface of this
region.
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Inserting this expression into the de nition of ®(x, ), we cbtahn

z
0 * b ) 1% d’k 4 T
Xo )= — v a
o 2 (2 P2E, Ka
7 v >0
dPu; G(x: W )@Y (u)pa , W) (89)

To obtain a divergence at large k™ , we need to tam e the oscillations in this

variable which exist becausewe havenow u = whilev can be anywhere in
the range [0; ]. These oscillations are dam ped only if v is in the Inm ediate
vicinity ofu = . As a corollary, note that the left diagram in gure 3 is

therefore a bit m isleading because the tadpole contribution depicted vanishes
when the upper vertex of the tadpole is below the light cone. In fact, to have a
leading logarithm ic contribution, this vertex of the tadpole m ust be very close
to the surfaceu = ,asilustrated In gure 4.

Figure 4: Leading logarithm ic contribution of the tadpole diagram .

For su cilently snalldx ,we can use

Z
djj[rllo dv ad kx a <4 =3 xa T; (90)
dx

nam ely, we recover the operator that substitiutes the background eld by the

uctuation in the last layeratv = . Again,using the egs. (73) and (77) from
the previous subsection, we obtain the operator
Z Z Z
avtd®v, a . T = d*y, d*v, G (v, % )
LLog
@ (V)eat ,(v) —— ¢ 91
(V)cea § 4 (V) v (91)
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W hen inserted in eg. (89), this gives

Z Z
R 1, X &’k
In (x.)= - dy, P S—
1< 2 ’ (2 P2Ey
Z
dve Gly, w)@ (V)ea 5 . (V)
Z
——  d’u: G (x; w)eY  W)ma, , @)
B, 5v,) v
(92)
N ote that the product of the underlined tem s, by them selves are just
+
I (%o 5y, ) (93)

er

The nalstep in ourderivation is to note that when 2 sharesa color index w ith
, we have the dentity [17,19,54]

— @7 (V)eea G av) =07 (94)
B, iy, ) :
because of the antisym m etry of the ad pint generatorsof SU (N ). W e can there—
fore m ove the operator =& (, ;v, ) inm ediately after the m easure dZy? to
obtain 1 7
b 2 b
(X2 )= dy, —/—— (X2 72 ) (95)
2 B0, 5y,)

which is denticalto the relation between ™ and ® in the IM W LK equation.

3.7 JIM W LK equation

W e shall now com bine the real and virtual corrections to w rite the JIM W LK
equation. Usihg the real correction in eg. (78) and the virtual one given by
egs. (83) and (95) we can w rite the total NLO correction, eg. (40), in the form

.
0 = In
YO p0g o'

HO, 6 ] (96)

w here we have introduced the JIM W LK Ham iltonian,
1 Z
H = dx,dly, —————— Pz gy, ) ——————— (97)
2 B, 5v,) B, x2)

Y

A Ithough the coupling does not appear explicitly in the Ham iltonian, it is of
order ¢ because of the presence of two fiinctional derivatives w ith respect to
classical elds that are oforderg *.
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W e noted that the observable O at leading order can be expressed as a
functional of the classical gauge eld " in covariant gauge. T he average of
this observable over all the con gurations of the ed 2, up to NLO , can be
expressed as

Z h i
., +0,,,1 DE" W £ 0, +0,., (98)
At the leading logarithm ic level, this can be rew ritten as
z nh i o
I, +0,,,1= D 7£* 1+ Yo w & o, E 1; (99)
LLog

where we denote Y In( *=p").Note that Y is also the rapdity interval

betw een the slowest incom ing sources (that have k* *) and the m easured

glion. To obtain this equation, one uses the Hem iticity of H w ith respect to

the functional integration over &% . In w riting this equation, w e have absorbed

all the leading logarithm s of k¥ into a rede nition of the distrbbution W 2 ,
h i

woE ! 1+ YH W £ (100)

T his suggests that the distribbution W 2" should depend on the scale * that
separates the m odes described as static sources from the m odes described as
dynam ical elds in the CG C description. O f course, this is not surprising in an
e ective theory based on such a separation of the degrees of freedom . For this
reason, it should be denoted asW |, [#" 1. Therefore eg. (99) can be w ritten as

z nh + i o

W, +0,.,1i= D 2" 1+ In Hw 2 o0, [ ]1:(101)
LLog <

Because ' is a an unphysical separation scale, the expectation value of ob-

servables should not depend on this param eter. D i erentiating the previous
equation w ith respect to  * and requiring that the rh s be zero, we get®®

@
—W , E']= HW K [ ]: (102)
@In( *)

Equivalently, if Y n(P*= *) denotes the rapidity separation between the
fragm entation region of the nucleus (located at k* P* ) and the rapidity
down to which partons are described as static color sources, we have

g o9 o+ 7.
@—wa[ﬁ]—HWY[ﬁl, (103)

which istheJIM W LK equation thatdrivestheY dependence of the distribution
w, .

25To avoid confusion, recall that H , and hence @W =@ * , are of order . T herefore, for
consistency, one should not keep the term proportionalto H (QW =@ * ) because it is of order
g and therefore beyond the accuracy of the present calculation.
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T he above considerations also indicate that the distrdoution W, " Imust
be evolved to a scale ¥ com parable to the typical ongitudinalm om entum in
the observable to avoid large residual logs contributing to the latter. T herefore,
at leading logarithm ic accuracy, the expectation value of the observable is given
by 7

Wi,,= DE W, # 0, ]; (104)
withY = In(P* =p" ) the rapidity separation between the beam and the observ—
ableand W, &' given by the solution ofeg. (103).

3.8 A llorder resum m ation of leading logs

Thus far, we only considered 1-loop corrections that generate one pow er of the
large Iogarithm of P* . On this basis, we deduced an evolution equation for
W €' ]using renomm alization group argum ents. How ever, the solution of the
RG equation is equivalent to a resum m ation of all n-loop diagram s that have n
pow ers of Jarge logarithm s of p° . W e shall here analyze the structure of higher
loop contridbutions to con m whether the all loop resum m ation perform ed by
the RG eguation is justi ed.

W e willnot perform here a detailed analysis of these leading n-loop graphs
to show that we indeed recover the solution of eg. (103). M ore m odestly, we
w ill work a posteriori by exam Ining the solution of the JIM W LK equation to
see what the n—-loop graphs that it resum s are. Before proceeding, it is useful
to recall a crucial property of the JIM W LK Ham iltonian de ned in eg. (97).
The operator H contains derivatives w ith respect to the ed %' (, ;x» ) and
its coe cients depend on allthe elds X (x ;x, ) for0 X . For this

Y
reason,we w illdenote it H (Y ), where the endpoint |, at which the derivatives
act srelhted to Y by Y In(, ). It is In portant to note that in a product
H (v1)H (y2), the derivatives In H (y1 ) do not act on the coe cients of H (y ,) if
Y1 > ¥2.

The JIM W LK equation should now be written as

@
—W " 1= H (Y)W " ; 1
ay %] Y)w, ] (105)
and its solution reads
W, BE 1=U0U)W B 1; (106)
w ith " - #
U(Y) T exp dy H (y) : (107)

0

In this equation, T, denotes a \rapidity ordering" such that products of H s
in the Taylor expansion of the exponential are ordered from Ileft to right in
order of decreasing y. W o 2" ] is a non-perturbative initial condition. U (Y )
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is the evolution operator for the Ham iltonian H (Y ). Inserting eg. (106) into
eg. (104),we get

i = DX W, % Uu¥(y)o,, ' I: (108)
Because H (y) is Hem itian, the H emm itian conjugate of the evolution operator
U (Y ) is the sam e operator w ith the rapidity ordering reversed :
- #
U¥(Y) T, exp dy H (y) ; (109)
0

w here TY denotes the antirapidity ordering. T he expansion of UY to order one
In H gives the leading logarithm ic one-loop contributions that we have evalnated
earlier in this section. (See eg. (99) for instance.)

If one expands it to second order, we see that the leading logarithm ic con—
tributions In the observable at two loops should be given by

Z Z

dy1 dy; H (y2)H (y1)O,, € 1: (110)

0 =
LLog 0

NNLO

Because y, < yi1, the derivatives in H (y,) can act on the coe cients and

of H (y1). Let us st consider the term s where this does not happen, nam ely
where thederivativesin H (y, ) actdirectly on O, [#" ]. T hese tem s correspond
to the graphs depicted In gure 5. Ifwe look only at what happens below the
linex = ,these contributions are jist disconnected products of term s we had
already at 1-loop. The analysis we perform ed of the logarithm ic contributions

@, @,

Figure 5: 2-loop contributionsm ade of products of pieces already encountered at
1-Joop. A lthough wedo notm ake thisdistinction in the gure, one of the factors
is attached at a slightly am aller value of x , because the two Ham iltonians in
eg. (110) are at di erent rapidities.

at one loop extends trivially to these term s and it is easy to see that they have
tw o pow ers of the logarithm s.
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Tn addition, eq. (110) also contains term s in which at least one of the deriva—
tives In H (y,) acts on the coe cients of H (v 1). T his corresponds to topologies
of the type digplayed In gure 6. Such temn s, that have a gluon vertex inside

Figure 6: Exam ple of term obtained when the deriatives n H (y») can act
on the coe cients of H (v 1). Here, one of the derivatives in H (y,) acts of the
function ofH (y1) and the second derivative in H (y;) actson O .

the region where the sources live, have a large logarithm for the sam e reason
that the tadpole has a logarithm in the 1-loop temm s. T hus one can see that it
is crucial to properly order the pow ers of the H am iltonian H in rapidity not to
lose these temm °° .

Finally, there also exist at two loops som e topologies that never appear in
eg. (110), such as those of gure 7. The contributions in this gure are 1-loop

@,

Figure 7: Som e of the 2-loop corrections to the observable O that do not appear
at leading log.

corrections to the coe clents of the operators T 5 In eq. (40). In other words,
these term s generate corrections of order ¢ to the coe cients in the JIM W LK

26For instance, if the ordering of the two H am iltonians in eg. (110) is reversed, we get only
the tetm s of  gure 5.
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+

equation, and do not have double logs of . This explains why they are not
generated by the leading log formula In eg. (110).

4 N ucleusnucleus collisions

In the previous section, we obtained an expression for resumm ed leading loga-
rithm ic inclisive glion observables in a single nucleus in term s of the equivalent
leading order observable. A long the way, we presented a novelderivation of the
JIM W LK evolution equation. In this section, we w illextend our analysis to the
case of nuclear collisions. W e w ill show that the leading logarithm s of k  that
arise in the calculation of loop corrections to the single inclusive gluon spectrum
can be factored out In the distrbutions W €] Jand W [, ] that describe the
tw o Incom Ing nuclei. Thisresult w illcom plete a proof of factorization of leading
Jogarithm s of 1=x; ;; for inclusive observables in nucleus-nucleus collisions.

4.1 Inclusive observables at leading order

A s In the single nucleus case, our discussion is valid for an inclusive m ultiglion
operatorO (corresponding to am om entof them ultiplicity orenergy distribution
produced In nucleusnucleus collisions) but for sin plicity, we w ill focus on the
rstm om ent of the m ultiplicity distribution { the inclusive gluon spectrum . A's
wediscussed In [24,26 ], the inclusive single particle spectrum in nucleusnucleus
collisions can be expressed as
dnN 1 ?

E. — _ - Tim d3 d3 ip (x y)/n0 iE 0 iE
. ., e @0 iE,)(@0+ iEy)

P) P) A A (y) : (111)

Unsurprisingly, the operator A (x)A (y) is dentical to what we considered
previously in the single nucleus case. In particular, at leading order, the single
glion spectrum is evaluated by replacing the two gauge operators in the right
hand side of the previous equation by classical solutions of the Yang-M ills equa—
tions. These classical solutions are obtained by in posing retarded boundary
conditions that vanish in the rem ote past. The only di erence w ith the previ-
ous section and w ith egs. (13) is that the currentJ that drives the solutions of
the Yang-M ills equations is now com prised of two contributions corresponding
to each of the nuclei. This isa signi cant com plication in that, unlke the single
nucleus case, analytical solutions do not exist. H ow ever, the classical elds and
the inclusive spectrum have been com puted num erically [55{63].

Fom ally, the single inclusive gluon spectrum at leading order isa functional
of the LC gauge eHdsA ;,, ofthe two nuclkion the surfacex = and X =
respectively, or of the covariant gauge els & o In the strips 0 X < and
0 ¥ < (see gure8),

dN

EpdTp O, Ri1;A2] O, ;% 1: (112)

LO
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T his quantity does not depend on the rapidity y In(@ =p ) because of the
boost Invariance of the classical equations ofm otion [64{66].

4.2 One loop corrections

At 1-doop, . (16) can be used again to com pute the inclisive spectrum . T he

m anipulations In sections 2.3 and 2.4 were not speci ¢ to the case of a single

nucleus. Indeed, we did not specify the detailed content of the current J in

section 2. T he only requirem ent for the validity of the nal form ula is that one

chooses an Initial surface which is locally space-like (or light-lke at worst).
W e can now exploit this freedom in the choice of 1n order to take a surface

that treats the two nucleion the sam e footing. A convenient choice is a surface

w ith the two branches

xt= ; x < ; (113)

as illustrated by the thick solid line In gure 8. W e shall denote the m easure

O

0

Figure 8: NLO corrections in the collision of two nuclei. T he thick solid line is
the initial surface w here the filnctions and a y 5 areevaliated. T he precise
shape of the am all portion of this surface located above the forward light cone
is not In portant because its contribution is pow er suppressed.

on this initial surface asd . It is sinply du* d°u, on the st branch and
du d?u, on the second branch. Sin ilarly, the de nition of the operator [a T
depends on the branch on which it is evaluated, because the G reen’s form ula
for the classical elds depends on a di erent set of initial eld com ponents on
the two branches’’ . It is also in portant to note that the finctional derivatives
w ith respect to the hitial gauge elds are derivatives w ith respect to the eld

27T his result is evident from the derivation of the G reen’s form ula in LC gauge discussed
at length in appendix B .
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A, ofthe rstnucleuson the rstbranch and likew ise the eld A , of the second
nucleus on the second branch.

W e need also to say a few words about the gauge In which the initial elds
on areexpressed. On the left branch of (ie.on thebranchu = ),weuse
the A" = 0 gauge,whileweuse theA = 0 gauge on the other branch. U sing
di erent gauge conditions on these two branches is possible because they are
not causally connected. Sin ilarly, for the propagation of the am all uctuations
a . and ,weusetheA®™ = 0 gauge if their endpoint is on the left branch of

,and the A = 0 gauge if it is on the other side.

M odulo these obvious changes, eg. (40) isvalid in the case of two nucleiand

we can now express it as

Z
ONLO = d u EF
#
Z
. L T T 0, BiA;]
= — v a a . ;
2 ) (2 )32Ek u k a +k a o 1 2
+ 0 4.0 ¢ (114)

The rst two term s in this form ula are illustrated in gure 8. A s in the case
of a single nucleus, the leading logsw illcancelin O
conjagation symm etry discussed previously.

T he leading log piece of the tetm involving [ ‘T'lcan bem apped into the
corresponding term ofthe JIM W LK eguation in the sam e way as in the case of
a single nucleus. D epending on whether we are on the rst or second branch of
the initial surface ,we get two term s which can be expressed together as

because of the charge

o}

Z
d’xy Plxy ) —————
=¥ ' .0, ix2)
1oy
7 #

— dxy S(xo)———— O, [ i€, 1; (115)
p P@2;b(‘{ ;X°)

+

n

+ In

w here ?;2 (x, ) are respectively the one point functions from the JIMM W LK

Ham iltonian for the two nucleiand likew jse,P@I ;I¢, areclassicalgauge eldsin
Lorenz gauge of the st and second nucleus respectively. W e have also intro-
duced a cuto , that separates the color sources of the second nucleus from
the dynam ical elds.

T here isa subtlety in generalizing the single nucleus derivation to obtain this
result. In eg. (73), the Integration over u™ runs from 1 to+1 .Now,bbecause
of the choice of the surface , this integration runs only from 1 to0,andwe
must justify that this di erence is rrelevant. To sin plify the notations In this
argum ent, let us use the shorthand (u* ;u-, ) @ ( WA (u';u,)). Inour
problem , the functional derivative w ith regpect to  (u* ;u- ) is only applied to
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functionals that depend solely on the u* -independentm ode of (u* ;u, ),

z
1
(u-) T du” (' uq); (116)

where L, is the length of the u* ntervaP® . W hen this is the case, we have

— F[ (U; )]= — —F [ (u;)l: 117
@ 1s) [ (uz)] I @) [ (uz)] ( )
M oreover, the result of this di erentiation does not depend on the valie of u*
n the lhs. Therefore, the subsequent Integration over u* m erely generates a
factor L equalto the length of the integration range. W e have therefore proven
that 7

du" ————F[ (u;)l= ———F[ (u:)]; (118)
(u" ju- ) (uz )
regardless of the integration range for the variable u” .

A nother possible concern is w hether there is a contribution to [ T'] from
the sm all portion of the initial surface that lies above the forward light cone
in the region where oth u  are positive. Tt is easy to convince oneself that
the contribution from this region does not lead to stronger singularities than
the rest of the initial surface. Furthem ore, contributions from this region are
phase space suppressed due to its sm all size of order

The leading log contribution of the term s of eg. (114) that are bilinear in
@ Tlisequally sin ple when the two pointsu and v belong to the sam e branch
of the initial surface . If this is so, it is straightforw ard to reproduce whatwe
did for a single nucleus, and we nd the two separate contributions

. 2 2
n d’x, &y, T2 5v.)
p ASL}Q( ¢ iX2) Ae{;c( ¢ iYo )
7 #
2
+ In — d2X? d2y7 SC(X? ivo ) (ORI [ﬁlﬁlz
P 20, %) B, (,5y,) '

(119)

Summ Ing egs. (115) and (119), and expressing in term s of ,we obtain the
leading log 1-loop expression for the single inclusive gluon spectrum to be
" #
N
0 = h — Hi+h p— H, O, IS i€, 1; (120)

NLO LLog

where H 1, are the JIM W LK Ham iltonians of the rst and second nucleus re-
gpoectively. T hisequation { assum ing we can prove that there are no other temm s
at leading log { is the generalization of eg. (96) to the case of the collision of
two nuclei. In the next subsection, we w ill dem onstrate that indeed there are
no other contributions.

285ince here this interval is sem i-n nite, it is best to consider ¥ 2 [ L ;0] in all the
interm ediate steps, and to take L. ! 1 only at the end.
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4.3 Absence of pre—collision m ixings

O

Figure 9: Contrbution that m ixes the two nuclei and m ay lead to a violation
of factorization.

T hus far, we did not discuss the contribution to the bilinear [a T ] term
w here the coordinatesu and v belong to di erent branches of the initial surface.
T his contrbution is illistrated n  gure 9. If it contains lkeading log contribu-
tions, such a tetm would spoileg. (120), because it would generate a term that
m ixesderivativesw ith respect to 28] and 7€, , thereby precluding any possibility
of factorization.

Fortunately, this possibility is not realized because term swhere u and v are
on di erent branches contain the phases

= = vt 121)

in the integraloverd®k . For generic pointsu and v in this con guration,neither
u v noru’ v arevanishing and these exponentials oscillate rapidly when
either k* ! +1 ork ! +1 . Therefore, the ntegral over k* (ork ) is
com pletely nite, and we do not get a lJarge logarithm from this con guration
ofu’sand v's.

T he only potentialdanger m ight com e from the con guration where u or v
(orboth) lie in the am allportion of above the tip ofthe Iight cone. A gain, such
a con guration can atm ost produce a logarithm ic singularity, but is suppressed
by a an all phase space prefactor of order due to the am all size of this region.
T herefore, eg. (120) contains all the leading log term s that show up in the 1-loop
corrections to the single inclisive ghion spectrum .

4.4 Factorization

Finally, ntegrating over all the con gurations of the nuckar elds 7, with
weightsW [] Jand W [, ], and using the fact that the JM W LK Ham iltonian
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is Hem itean, we can write the sum of the LO and NLO (leading logs only) of
the single inclusive gluon spectrum as
z nh i o
o, +0,,,1 = DI DI, 1+ Y H; W

LO NLO LLOg

nh i o
1+ Y H, W 2, 0, [ ;%,1: (122)

In thisequation,wedenote Y; In(i=p")and Y, In(,=p ),where *
isthecuto in theCG C description ofthe wstnucleus, ofthe second nucleus,
and p the longitudinalm om entum com ponents of the produced glion. W e can
now choose the (arbitrary) cuto s as = p and express, as anticipated in
eg. (10), the lrading log part of the NLO result in term s of the LO operator
convoluted w ith the appropriately evolved weight functions as

Z

. + +
Wi, = DF DFE, W, K W

, %, 0, [F] 28, 1;(123)

Y

whereeach oftheW [ JsobeystheJIM W LK equation (possbly with di erent
initial conditions if the two nuclki are not dentical) and Y; = (P, =p' ) and
Y, = ]I'I(PZ =p ).

5 H igh energy factorization result in context

It is useful to consider our result in eg. (123) in the context of related work
in the high energy lin it. Factorization, in the speci ¢ sense of our work, was
proven previously for proton-nucleus collisions in the large N . lim it of dipole
scattering o a large nucleus [67{70]. In the case of nucleusnucleus collisions,
there has been recent work by Braun, com puting single and double inclisive
glion production in a reggeon eld theory approach [71]. At present, it is
unclar how to relate these results to the JIM W LK evolution. A rst attem pt
at establishing such a dictionary between cut disconnected diagram s in the
CGC e ective theory and cut Pom erons was discussed in Ref. [23]; see also
Refs. [712,73].

It is In portant to note that the factorization theorem proven here is vald
only for nclisive quantities such asm om ents of the m ultiplicity or energy dis—
tributions. In fact, it seem sunlikely that these results w ill extend to discussions
of total crosssections and exclusive nal states [74{76]. Indeed, it is known
[24 A9] that the retarded nature of the boundary conditions for the elds and

eld uctuationshas a close connection w ith the inclusiveness of an observable,
and w e have seen in the present paper that the retarded nature of these ob fcts
plays an essential role in our proof of factorization. W hether the Pom eron loops
thatm ay play a role In those com putations are suppressed for the observableswe
consider is also unclear. O ur results certainly suggest that these contributions
are not In portant for inclisive m om ents in nucleusnucleus collisions, provided
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the densities ;; of color sources are large?’ .

A nother in portant trend in the literature is com puting next-to-lead ing order
contrbutions to high energy evolution. In thereggeon eld theory approach [77],
w e note the very signi cant work on m ultiR egge factorization at NLO by Fadin
and collaborators [78]which builds on the extension of the BFK L equation to
NLO [79{81]. In the CGC e ective theory, there have been signi cant recent
work to include running coupling corrections [30,32{36 Jculm inating in the recent
NLO extension [31]of the Balitsky-K ovchegov equation. A s our result is valid
for JIM W LK factorization at leading log, these NLO results w ill be usefiil in
attem pts to extend our proof of high energy factorization to next-to-Jleading
logarithm ic accuracy.

Finally, we should em phasize that JIM W LK factorization proven here is
far m ore general and robust In com parison to the k, -factorization often dis-
cussed In the literature. T he latter is concemed w ith high energy factorization
at the level of unintegrated k; dependent parton distributions [82{84]and can
be obtained in the low density lim it of JIM W LK factorization [23,85,86]. k; —
factorization also holds for single inclusive gluon production at leading order
in proton-nucleus collisions [67,87{91 ,85]. k, -factorization was how ever shown
to be broken explicitly for quark pair production even at leading order [86]al-
beit it is restored [23] for large m om enta k, Q5. Likew ise, this breaking of
factorization is also seen for gluon pair production [68,92]. Though JIM W LK
factorization rem ains to be proven for inclusive production of pairs, we antici-
pate it is far m ore robust than k, -factorization.

To a large extent, factorization in hadronic collisions ism erely a consequence
of causality : two fast profctiles cannot interact before they collide. T hus the
ob Ects that describe their content m ust be universal { independent of the other
pro gctile, and of the observable that one is going to m easure after the collision.
How ever, this general argum ent does not tell us what Inform ation should be
included in the ob fcts describing the pro gctiles; indeed, this depends on the
observable under consideration, and on whetherwe are in the saturation regin e
or not. In the saturated regin e, a given observable w ill generally be produced
via the coherent interaction ofm any partonsof the pro gctiles, w hich m eans that
one w ill need to know the probability of these m ultiparton con guration in the
wavefiinction of the profctiles. In contrast, in the dilute regin e, since only
one parton of each pro gctile interact, one needs only to know the probabilities
for 1-parton con gurations. Thisiswhy JIM W LK factorization ism ore general
than k, -Actorization: the distrbution W [ ] contain enough inform ation®° to
calculate the non-integrated gluon distrdbution, but the converse is certainly
not true’® . Sin ilar considerations suggest that JIM W LK factorization m ay not
work iIn the case of exclusive observables. Indeed, iInclisive observable usually

291F 1;2 are not of order g 1 , then the power counting on which our considerations are
based m ay bem odi ed. Since it has been argued that Pom eron loops play a role in the dilute
regin e, this leaves open the possibility that these e ects m ay alter our conclisions close to
the fragm entation region of the pro jctiles.

301 provides inform ation about m ultiparton correlations such as < (x1) (x2) n 0>>¢.

31N on integrated gluon distributions depend only on 2-parton corre]atjons< (x1) (%2 )> .
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require less detailed inform ation about the pro fctiles than exclusive ones™ .

T he factorization theorem that we have proved here is a necessary rst step
before a full NLO com putation of ghion production in the G hana. Eq. (123)
nclides only the NLO temn s that are enhanced by a large logarithm of 1=x;,,
w hile the com plete NLO calculation would also include the non enhanced tem s.
Thiswould be ofthe sam eorderin g asthe production of quark-antiquark pairs
93,94 1from the classical eld. Note that to be really usefiil, this com plete NLO
calculation would probably have to be prom oted to a N ext+to-Lieading Log result
by resumm ing allthe term s In  5( s In(1=x;, )" . Now that evolution equations
in the dense regin e are becom Ing available at NLO , work in this direction is a
prom ising progpect.

6 Factorization, the G lasm a and T herm alization

The G laan a is the non-equilbrium hot and dense m atter form ed Inm ediately
in the afterm ath of a high energy heavy ion collision [45,95,25]. How thism at-
ter themm alizes is of great in portance for a quantitative understanding of the
phenom enology of heavy ion collisions’®®. W e w ill discuss here the relevance of
our factorization theoram , present qualitative deas about its generalization and
discuss their in portance in quantifying the properties of the G lasn a.

At leading order, the G Jasm a is described by the solution of the Yang-M ills
equations in the forward light cone w ith retarded boundary conditions (given
by the classical elds of the two nucleibefore the collision). T he produced elds
have Jarge occupation num bersoforder . ! and areboost invariant [64,65]. This
boost invariance of elds in plies that the classical dynam ics can be described
by the proper tin e evolution ofgauge eldsthat live In the transverse plane. An
Interesting consequence of the classical eld dynam ics is that the chrom o-electric
and m agnetic elds are purely longitudinal after the collision [64,45] leading to
the generation of C hem-Sin ons charge density in the collision [95]. The G laan a

elds at this order generate only transverse pressure at proper tines & Qg !
S0 it seem s In possible that a treatm ent of the G lasm a at this order leads to
therm alization.

T his is where the sam allquantum uctuations of the color eld (of order 1,
com pared to the classical ed of orderg ') becom e relevant. In an observable
such as the inclusive ghion spectrum , these quantum uctuations lead to cor-
rections that are g an aller than the leading order classical contrbution. Aswe
have discussed at length in the previous sections, som e contributions of these
anall uctuations | those that are enhanced by leading powersofIn(1=x1,) |

32For instance, in order to study single di ractive processes, one would need \conditional"
probabilities of m ultijparton con gurations, where one in poses the condition that no parton
has been radiated between the rapidity of the projctile to the rapidity where the gap ends.
This inform ation is not provided by the distributions W [ ] that are the basis of JIM W LK
factorization.

33A nother in portant aspect is how Jts propagate inside this m atter, in order to assess
issues such as leading parton quenching in Jjets.
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can be resum m ed and absorbed Into universaldistributionsW [ ]that describe
the high energy evolution of the nuclear w avefunctions.

Butwhatabout the ram aining part of these sm all uctuation temm s, thatare
purely of order ¢ relative to the classical elds? Our resumm ation of leading
logs corresponds to a well controlled approxin ation provided the coe cients
dpi In the expansion of egs. (5) and (8) are truly num bers of order unity. In—
deed, we have disregarded thus far the term s d,; for i < n, on the basis that
they do not have asm any logs as powers of 5. However, num erical sin ula—
tions of the classical Yang-M ills equations w ith initial conditions that break
boost Invariance show the existence of an instability of the rapidity dependent

uctuations [96{98]. In these sim ulations, it is observed that the sm all rapid-
ity dependent perturbations superin posed to the boost Invariant classical eld
grow exponentially w ith the square root of tin e as >*

P
a e ; (124)

where isa quantity of the order ofQ ¢ (its precise value depends on the wave-
length of the uctuation In the rapidity direction). T his grow th has variously
been Interpreted as eithera W eibel type [99,97]or N ielsen-O lesen type [100,101]
instability. T he form er m echanism in particular has been discussed extensively
as a possble m echanian for them alization in heavy ion collisions [102{108].
T he existence of these unstable m odes suggests that our assum ption that the
coe clentsd ,; for i< n are of order unity is incorrect.
O ur present understanding is that there are three classes am ong the am all
eld uctuations, that can be organized according to the mom entum p they
have in the direction :

Zero m odes (p = 0) that generate a leading log. That the leading logs
com e sokely from zero m odes is obvious from the fact that the coe cients
of the leading logsdo notdepend on x . T hese term s are already included
in the resum m ation we have discussed at length in this paper.

Zero m odes that do not contribute at leading log because they have an
extra power of k that prevents the divergence when k™ ! 1 (see the
discussion In section 3.4). These term s have not been resumm ed In our
schem e, and they do not seem to trigger the instability either. T hey would
only becom e relevant in a lull NLO calculation, and in resumm ation of
N ext+toLeading Log tem s [311].

Non zerom odes (pé 0). T hese term s do not contribute large logarithm s
of 1=x; ;5 , but they are unstable and grow exponentially as exp (p ).

It is the Jatter boost non-invariant tem s that are potentially dangerous. W hile
also suppressed by a power of g, they can be enhanced by exponentials of
the proper tin e after the collision. Temm s that diverge w ith tim e are called

34T he fact that the square root of the proper tim e, rather than the proper tim e itself,
controls the grow th of the instability is due to the longitudinal expansion of the system . T his
has also been observed analytically in the study of the W eibel instability [99].
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\secular divergences" and som e technigues for resum m Ing these divergences are
wellknown®® in the literature [37].
Based on the above considerations, let us re ne the expansion we wrote in

egs (5) and (8), In order to keep track also ofpowersofexp(p_ ). W e should
now w rite h 1
0[1;2]:?%+c1g2+@g4+ ; (125)
w ith
X0 XP p__ ) 1
Cn fope® P mt — (126)
X172

p=1i=0
In other words, the coe cients d ,; that we have introduced in eg. (8), and
assum ed to be of order unity, are in fact

dni = fnpi e(p = 7 (127)

and can thusgrow exponentially in tim e after the collision. In eg. (126), the sum
of the num ber of logs and of factors exp (- =~ ) (this sum is the index p) cannot
exceed n atn loops. This isbecause a uctuation m ode cannot be at the sam e
tin e a zero m ode (required to generate a log) and a non zero m ode (required to
generate an nstability). In this new language, the Leading Log resum m ation
that we have perform ed so far am ounts to keep only the term f,,, In every ¢, .

At rst sight, one m ay expect a com plete breakdown of the Leading Log
description when the tin e

R (128)
S
is reached. This is the tine at which 1-loop corrections becom e as large as
the LO contribution. This conclusion can be avoided if one can resum these
divergent contributions leading to a resum m ed result that is better behaved for
! +1 . Indeed, it ispossible to in prove upon the Leading Log approxin ation,
by keeping at every loop order all the term s where p = n: this corresponds to
all the term s where every power of ¢ is accom panied by either a log or an
P
exp ( ). Thus, let usde ne
1 % X P, 1

2n

= g fonie™ ¥ Mt — (129)

2
X1
9 n=0 i=0 12

Lioge nmmer L 17 2]

T he subscript \L Inst" ism eant for \Leading Instability".

In the form alisn we have developed in this paper, the grow th of am all uc—
tuationsw ith tin e can be traced to the action of the linear operator in eq. (114)
on the classical eld. T he quantity

T,A (x) e ; (130)

33Indeed, one can think of the Boltzm ann equation as an equation that e ectively resum s
a certain class of secular divergences.
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is a m easure of how sensitive the classical eld A (x) is to Initial condition at
the point u on the initial surface. If there is an instability, an all perturbations
of the initial conditions lead to exponentially large deviations in the classical
solutions. W e will assum e for now that the In proved resumm ation de ned in
eg. (129) can be perform ed and leads to

O nogivmee = 2 My 10, BT (131)

where 7 [T, ] is a certain functional of the operator T, . In the rh.s. we have
an phasized the dependence of the observable on the initial value of the gauge
eld. This form ula can be expressed m ore Intuitively by perform ing a Laplace
transform of Z [T, Jwhich reads
Z

7 [T, ] Dam) & ¥ = T erpw)]: (132)

G wen the structure ofa T in eg. (42), the functional Integration D a(wu)]is
an iIntegration over the initial uctuation a (u) itself and over som e of its rst
derivatives. Because T, is the generator of translations of the initial conditions
on the light cone, the exponential in the previous form ula is the translation
operator itself. W hen this exponentialactson a functionalofthe initialclassical

ed A, it gives the sam e functional evaluated w ith a shifted initial condition
A + a. Therefore, we can w rite

Z

O\ bogs nimee = Da() #l®)0, B +al: (133)
The e ect of the resumm ation is sin ply to add uctuations to the initial condi-
tions of the classical eld, with a distribution that depends on the outcom e of
the resum m ation®® . T he resum m ation lifts the lin ited applicability of the CG C
approach I plied by eg. (128). Indeed, after the resum m ation, the uctuation
a(u) entersonly In the initial condition for the full Yang-M ills equations whose
non-linearities prevent the solution from blow ing up. C om bining our factoriza—
tion formula in eg. (123) with the confctured result of the resum m ation of the
leading Instabilities, one obtains a generalization of eq. (123) which reads
Z
3ol DF] DE, W, ¥ W

LLog+ LInst
Z

%,

Da(m) £a®)0,, B + a;2, + al:  (134)

T his form ula resum s them ost singular term sat each orderin 5. In com parison
to the physics of the initial and nal state respectively in the collinear factor—
ization fram ew ork, the distrbbutionsW [ ]are analogous to parton distributions
while £[a]plays a role sin ilar to that of a fragm entation finction®’ . To prove

3% In a recent w ork, using a com pletely di erent approach, the spectrum ofinitial uctuations
was found to be G aussian[109].

3TN aturally, this functional has nothing to do with a glion fragm enting into a hadron.
Instead, it describes how classical elds becom e gluons.
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eg. (134),and to extract the spectrum of uctuations, one needs to com pute the
behavior of uctuations on the forward light conewedgeatx = ;x ! +1 .

Even after the resum m ations are perform ed in the initial and nal states,
eg. (134) still su ers from the usualproblem of collinear glion splitting in the

nal state [35]. This however is not a serious concerm in heavy ion collisions

because collinear singularities occur only when one takes the ' +1 linit.
In practice, we expect to have sw itched to a m ore e cient description like ki-
netic theory or hydrodynam ics long before this becom es a problem . Indeed, the
initial condition for hydrodynam ics, which is speci ed in temm s of the energy-
momentum tensor T , is an Infrared and collinear safe quantity because it
m easures only the density and ow of energy and m om entum . It is straightfor-
ward to re-express our results for m ultiplicity m om ents In term s of T

A far m ore challenging problem , that has still not received a satisfactory
answ er, is to understand how the initial particle spectrum { or the localenergy
m om entum —tensor { becom e isotropic and perhaps even therm al. Indeed, a very
In portant question is whether this I proved resum m ation, that Includes the
leading unstable tem s, hastens the local them alization of the system form ed
in heavy ion collisions.

7 Summ ary and outlook

In this paper, we have presented a novelderivation of the JIM W LK equation.
W e showed that in this approach the JIMM W LK Ham iltonian can be deter—
m Ined entirely in term s of retarded propagators w ith no am biguities related
to light cone pole prescriptions. O ur approach generalizes easily to the case of
nucleusnucleus collisions and we were able to derive the factorization form ula
in eg. (123). This form ula is valid to all orders for leading logs in x and to all
orders in the color charge densities of the nuclei. For this factorization to work,
it appears crucial to consider an observable that can be expressed In tem s of
retarded elds. Since we had previously linked retarded boundary conditions
to the Inclusiveness of an observable, this em phasizes the In portance of incli—
siveness for factorization, and the di culties one m ay expect when considering
exclusive observables.

In view of this, it seem s interesting to study w hether the factorization theo—
rem proved here can be extended to less inclisive quantities. O ne such exam ple
is the production of two Fts that are separated In rapidity by Y 1= 5.
In particular, can the evolution between the pts be factorized from JIM W LK
evolution of the wavefunctions as in the case of Inclusive gluon production? A n—
swers to these questions w ill be of great in portance in assessing w hether the
early tin e dynam ics in heavy ion collisions leaves an in print in the long range
rapidity correlations at later stages.

W e further con ctured the existence of the generalized factorization form ula
in eg. (134). T hisexpression also resum s the leading exponentials in tin e arising
from the instability of the classical elds to quantum uctuations on the nitial
light cone surface. The resulting spectrum of uctuations is very in portant
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for determ Ining the subsequent therm alization of the G lasma. W ork in this
direction is In progress.
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A G luon propagator in LC gauge

ConsidertheQ CD Lagrangian to which weadd a gauge xing termm proportional
to (n B
L lpop 4+ 2 r ) (135)
- —(n :
4 @ 2
W e arem ostly interested In the casewheren A = A, but in factm ost of the
discussion is valid for any vectorn . In order to determ ine the free propagator
in this gauge, we need rst to isolate the quadratic part of the Lagrangian,
1 b 1t
I—'quad = EA g @@ + —nan A°: (136)

T he free propagator we are looking for is a G reen’s function of the operator
in the square brackets. Its calculation is best perform ed In m om entum space,
where we need to Invert

5 1
g k“+kk + —nn : (137)

Because thistensorissymm etricin ( ; ), its lnversem ust be a linear com bina—
tionofg ,k k ,n n andk n +k n .W riting them ostgeneralgeneral linear
com bination of these elem entary tensors, and m ultiplying it w ith eg. (137),we

nally obtain the follow Ing expression for the propagator in m om entum space :

g k k n? kn +kn

2 m R 2 ke x (138)

N ote that this expression is still incom plete, because we need to add i ’s to the
denom nators in order to m ake the propagator reqular on the real energy axis.
D oing so am ounts to choosing certain boundary conditions for the elds that
evolve according to this propagator. In this paper, the central ob Ect is the
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retarded propagator, which has all its poles below the real energy axis. This
am ounts to w riting:

g k k n? kn +kn .
K2+ k0 m k+ 2) K2+ k0 (k24 K0 ) k+ i)
(139)
(O ur choice for the 1 prescription of then  k denom inators is indeed retarded
ifn®> 0.W ewillassum e that this is the case.)
In the case of the light-conegauge A = 0, thisam ounts to choosing a vector
n thathasn = 1 and all its other com ponents zero. M oreover, we work in
the \strict" light cone gauge, that corresponds to the limit ! 0 for the gauge
xing param eter. T he propagator sin pli es som ew hat in this particular case :

Dy, k)=

k) = 1 kn +kn . (140)
ox T jay k0 7 n o k+i

N ote that this propagator is zero if any of its Lorentz indices is equalto + .

B Green’s formula in LC gauge

An essential ingredient in our discussion is the G reen’s form ula that expresses
a eld wuctuation In tem s of its value on som e initial surface. In this ap—
pendix, this initial surface w il be the lightlke plane de ned by x = 0, but
our derivation ism ore generalthan that and applies to any initial surface.

B.1l Green’sformula fora an all uctuation in the vacuum

Consider rsta small ed wuctuation a propagating in the vacuum . In the
strict Iight cone gauge, it obeys

y9 €6, a(y)=20: (141)

Recallalso that the free propagator D . (x;y) obeys

D o, &X¥y) yvg ¢Ge =g & vy (142)

w here the arrow s indicate that the derivatives act on the left. Now , m ultiply
eq. (141) by D, (x;y) on the left, eq. (142) by a (y) on the right, ntegrate y
over all the dom ain de ned by y > 0, and subtract the two eguations. O ne
obtains
Z s .
a (x)= d*yD o, xiy) €@ y9 a(y); (143)
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s
wherepa A A .Usinhg the relations

$
A B =

$
A@QR B =

S
A @ B ;

N ®

$ 1 $
@A@B+5@A@B; (144)

we see that the integrand in eg. (143) is a total derivative. T herefore, we can
rew rite this integral as an Integral on the boundary of the integration dom ain.
If the derivative we integrate by parts is a @* or @ , then the corresponding
boundary is located at in nity in the direction y* or y* respectively. W e will
assum e that the eld uctuation under consideration hasa com pact enough sup-—
port so that these contributions vanish. W e are thus left w ith the term s com ing
from the dervative @* . The contribution from the boundary aty = +1 is
zero, because of our our choice of the retarded prescription for the propagator.
T herefore, the only contribution is from the boundary aty = 0,

Z h i
i 0 $ 1 $ $
a (x)= dy dy, D o; (xiy) g (n @y) S ey+n g, a ()i
y =0
(145)
wheren isa vector such thatn A = A (it is the unit vector nom alto the
surfacey = 0). This formula indicates how the value of the uctuation at

the point x is related to its value on an initial surface located aty = 0 (Note
that this dependence is linear since sm all uctuations obey a linear equation of
m otion). A priori, it Involves the values of all the com ponents of the uctuation
on this surface, as well as that of its rst derivatives. H owever, som e of this
Inform ation is not necessary because the propagator vanisheswhen = + and
because of the gauge condition a* (y) = 0. If one elin lnates from the previous
fom ula allthe tem s thatare cbviously zero and integrate som e term sby parts®®

,wegeta (x) B, [al(x), where B, [al(x) is an integral that depends only on
the value of the eld and of som e of its derivatives on the initial surface,
z nh i
Byllx) = dy" d’y, @D, x;y)a (v)
vooo h i , o
Dy, xiy) G a (v) Do; (x;y) 2@, al(y) :(146)

T herefore, it appears that in the light-cone gauge A" = 0, and for an nital
surfacex = 0,wenead to know the mitihlvalueofa ;@ a'and @ a in order
to fully determm ne the value of the uctuation at the point x. This fact is the
reason why there are only three term s in the de nition of the operator T, in
eg. (42) (but we postpone until the end of this section the explanation of why
one needs to Include the W ilson line iIn thisde nition).

S .
38T he antisym m etric derivatives @ y and @ 31, can be elim inated by integration by parts.

$
T his isnot possible for @ ; since the boundary temm does not contain an integralw ith respect
toy .Thisiswhy we have a term involving the derivative @; D Oi
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M oreover, the rstterm in the right hand side ofeq. (146) can be sin pli ed
considerably by using the explicit expression of the free propagators in light
cone gauge :

@D,

R

(x;y)= (x y) & V) % oy (147)

B.2 Green'’s formula for classical solutions

There is also a sin ilar G reen’s form ula for retarded classical solutions of the
YangM ills equations. Contrary to the case of small uctuations, we do not
assum e that the gauge eld is small, and we keep all the self-nteractions as
well as the interactions w ith som e extemal source. Fom ally, we can w rite the
Lagrangian as

L = Lguad Uu@); (148)

where U (A ) is a localpolynom ial of the gauge eld. It contains the 3—and 4-
gluon couplings and the coupling to the external source. In the A* = 0 gauge,
the corresponding classical equation ofm otion is

CEEE L AT

Then one can follow the sam e procedure as in the case of small uctuations,
and we obtain
Z
U @A)

A (X): d4yDO;R (X;y)m+BO|A](X)Z (150)

y >0

O f course, the dependence of the classical eld on its initial conditions is no
Ionger linear because of the rst tem in the right hand side; the self interactions
of the gauge elds lead to an involved dependence on the initial conditions.

B.3 Green'’s formula fora in a background eld

Finally, the G reen’s form ula of eq. (146) can be extended to the situation where
the uctuation a (x) propagateson top ofa classicalbackground eld A rather
than the vacuum . T he only change is that the free propagatorm ust be replaced
by the propagator in a background eld. The property that its = + Lorentz
com ponent vanishes ram ains true, because it is a consequence of the choice of
the gauge. For such a uctuation, there isalso a G reen’s form ula that usesonly
the free gauge propagator, and w here the interactions w ith the background eld
appear explicitly as the additional term

Z

Q%U (A&
a (x)= d4yDOh2 (x;y) &)

U — B : 151
A (y)ea (y)a (y)+ Bylalx) (151)

y >0
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T he derivation of this form ula is very sim ilar to that for the classical eld A
W e can also rewrite it in a form very sim ilar to eg. (146), ie. a (x) = Blalx)
w ith
z nh i
B klx) = dy"d’y, @'D_ (xjy)a (v)

h i , e
D, (x;vy)@a (y) D (x;y)2@ a'(y) :(152)
The boundary term Bla]ldi ers from Bgla] in the fact that it contains the re—
tarded propagator D dressed by the background ed Instead of the bare
retarded propagator D, . A crucial di erence between the dressed and bare
propagators is that the sim pli cation ofeq. (147) doesnotoccurw ith the dressed
propagator.

In the derivation of the JIM W LK equation, the uctuationsa (x) one con—
siders are uctuations whose initial condition at x° ! 1 are plane waves of
momentum k. One can calculate explicitly their value on the initial surface,
which m eans that we know analytically the quantitiesa , @ a*and @ a 1
the rhs. ofeq. (152). A crucial property is that the initial values of a and
@ a' are suppressed by an extra factor 1=k* , and thus any term containing
them cannot have a logarithm ic divergence when k¥ ! +1 . This argum ent
is correct provided the prefactors of these quantities in eg. (152) do not bring
factors of k* . T here is no problem w ith the second and third tem s, since their
prefactors is just a propagator.

However, as we shall see now , the coe cient of the rst term can be large
because it involves the derivative of the propagator. T he only case of practical
interest to us is when the background eld above the initial surface is a pure
gauge eld such as the one given In eg. (47). In this particular case, there isa
sin ple relationship between the dressed and bare propagators :

D, (xjy)= Y(x)Dy,

R )

(x5y) (v): (153)

T his can be seen by applying a gauge transform ation Y to the problem , which
has the e ect of rem oving the pure gauge background. U sing this equation, as
wellaseg. (147),we now obtain
h i
@D, (x;y)= Y(x) @Dy, (xjy) (¥)+D

R

(x;y) Y@ (y)  (154)

R

The problem is that we take the derivative of the W ilson line (y) In a region
w here it is changing very quickly. O nly the term w ith the @; dertvative exhibits
this issue (since the large derivatives are those in they direction),

D, (xy) Y&, (y): (155)

R

From its structure, it is obvious that this term m ixes w ith the second termm in
the rhs. ofeg. (152) (which, as explained in section 34, leads to a logarithm ic
divergence); it would thus be incorrect to keep the latter while not considering
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the form er. T here are two ways to dealw ith this issue: keep track separately of
these two tem s, or try to com bine them into a single term . T he second option
is the sin plest, and from the above considerations, we know how to achieve it:

by rotating the uctuationa ,a ! a ,wecan rewrite the boundary term as
z nh i
B blx)= Y(x) dy* d?y, @Y Dy, xiy) (a (v)
g i . e
Dy, (X;¥) €, (v)a (y) Dy, (x;y)20, (y)a‘ly) ; (156)

where we have now only bare propagators. This is why the m ost convenient
de nition of T, in eg. (42) involves functional derivatives w ith respect to a
rather than a itself’. Note that for this discussion to hold, it is only neces-
sary that the background eld is a pure gauge in the vicinity above the initial
surface, since the derivative is w ith respect to a coordinate on this initial sur-
face. W hether the background el is a pure gauge everyw here above the initial
surface is not Im portant.

C Two-din ensional free propagator

In the derivation of the JIM W LK equation, one m akes use of several form ulas
Involring the bare two-din ensional propagators. T hese form ulas are not new :
all of them have already been used In one form or another in previous papers
discussing the JIM W LK equation. W e com pile them in this appendix, with
their derivation, as a convenient reference for the reader.

Letusdenote G (x- ¥, ) a G reen’s function of the 2-dim ensionalLaplacian
operator,

@56, w)= K  y): (157)
It adm its a sin ple Fourder representation,
Z
d’k, 4 1
G (X ) = ogke v ) 158
= ) 2 7 W2 (158)

Note that this obfct su ers from an infrared problem , which is obvious for
din ensional reasons: this propagator is a dim ensionless ob fct in coordinate
Space, invariant under translations and rotations, and therefore it m ust be a
function of x- Yy, where issomem assscale that was not present in the
previous equation.

D erivatives of this propagator do not su er from this nfrared am biguity.

C onsider for instance®
Z

‘ A%k, Kt
@;G(Xr’ y?): 1 (2 )2 elk? & Y?)k_z :

(159)

390 fcourse, the two ways ofde ning T, {with and without the { are exactly equivalent.
But fwedid not include the in thede nition, the logarithm ic divergences would com e from
a com bination of the second and third temm s of eq. (42), instead of being lim ited to the third
term if we include the in the de nition of T .

40T,et us recall that @1 = & = g

@xy @xt”
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From its symm etries and din ension, it is obvious that this derivative can be
w ritten as , ‘
X;

@i‘G (x- , )= C ———
¥ (x- Y2 )?

; (160)
w here the prefactorC isdin ensionless. B ecause the derivative of the propagator
is not infrared singular, the cuto cannot appear In its expression and C m ust
be a pure num ber (otherw ise it would have to be a function of x, y, ™
have the correct din ension). In order to detem ine the constant, take another
derivative @}( and integrate over x, the resulting equation over som e dom ain

of the plane that contains the point y , . On the left hand side, we get the

integral of a delta function since G is a G reen’s fiinction of@g . W e then get
Z . .

i XJ’; ird
1=C  Px, @i B

: 161
(- G )2 ( )

T he right hand side can be transform ed by using the 2-dim ensional Stokes the—
oram , leading to an Integralon the boundary of (oriented counter-clockw ise)
Yo yha
1=2¢C : : ; (162)
e (X2 v )

where Y is com pletely antisymm etric ( 1?2 = 1). The contour integral in this
equation is a topologicalquantity, that depends only on the w inding num ber of
the contour @ around the pointy , . Thus, it is best calculated by deform ing
@ into the unit circle around the pointy , . W e get easily

1=2C: (163)

Thus we have ) )
‘ 1 xI Y
@G (x- L, )= — ———— 164
% G (X- ¥ ) 2 =, v P ( )
T he second derivative of the propagator is also usefiill in the derivation of
the JIM W LK eguation. By applying @3 to the previous equation, one obtains

- 1 . oxb ¢
€. G (x2 V) = — & = y%2
2 (x- Y?") "
— - ij q(X? y'l> )(X° yg ) (1:65)
2 (x:  w )P (X2 ¥ )

T his form ula, although perfectly correct for x, € y, , is lncorrect at the point

X, = Y, . In order to see this, take the trace over the indices iand j. In the left

hand side, we have the Laplacian of the propagator, ie. (x» ¥, ), while the

right hand side would give zero. T hus the full form ula for the second derivative
. 1 1 ..

CeJG (2, v, )= — e vt - Txe )i (166)
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w ith

e w) o P2 167

(x> ¥ )

This function 3 obeys an Interesting ddentity. By integration by parts, one
can check that

Pu, v, xE o oul)yl V)

2 PE P & wily, w)@ =7
_ 1 dPu, &b od)yi o oo
2 y 2 P (x; W )2 ( )?

d?u, d?v, (xi uw )y 3 Vg ) 4
B ) - . . . y ' 2 ) (1
2 P2 PR x: w3y, w) (v ) «168)

U sing now eg. (166),we obtain the follow Ing dentity,

dZU? d2V? (Xi Ui )(y3 VE) hj ( ) i ij( )i_ 0.
CPQ P & wPy, wp 2 = 7l Hromimu

(169)
Let us also provide an altemate representation of the 2-din ensional propa—
gator that is som etin es helpfuul. Let us start w ith the integral
Z h ih i

d’u, ul : ul : . )
: . % . Y d*u, QIGm, %) @G, )

2 P (U, )P, vy )P

(170)
T he integral In the right hand side can be perform ed by parts, since it leads to
the Laplacian of a propagator, which is a delta function. T hus, we obtain the
dentity 7 . . . .
dPu, ui  x  us ¥
G (X ¥. )= 2 i By ] 2

@) U, %)Pu. v)

N ote that the integraloveru, su ers from the sam e infrared problem s thatwe
have already m entioned at the beginning of this appendix.

(171)
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