
Available on CMS information server CMS CR-2007/060

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
8 October 2007

High Level Trigger Configuration and Handling of
Trigger Tables in the CMS Filter Farm

E. Meschi

Abstract

The CMS experiment at the CERN Large Hadron Collider is currently being commissioned and is
scheduled to collect the first pp collision data in 2008. CMS features a two-level trigger system.
The Level-1 trigger, based on custom hardware, is designed to reduce the collision rate of 40 MHz to
approximately 100 kHz. Data for events accepted by the Level-1 trigger are read out and assembled by
an Event Builder. The High Level Trigger (HLT) employs a set of sophisticated software algorithms,
to analyze the complete event information, and further reduce the accepted event rate for permanent
storage and analysis. This paper describes the design and implementation of the HLT Configuration
Management system. First experiences with commissioning of the HLT system are also reported.

Presented atInternational Conference on Computing in High Energy and Nuclear Physics,September 2-7, 2007
,Victoria BC,Canada

High Level Trigger Configuration and Handling of Trigger
Tables in the CMS Filter Farm

Gerry Bauer11, Ulf Behrens2, Vincent Boyer6, James Branson7, Angela Brett6,
Eric Cano6, Andrea Carboni6, Marek Ciganek6, Sergio Cittolin6, Vivian O’dell9,
Samim Erhan6,8, Dominique Gigi6, Frank Glege6, Robert Gomez-Reino6, Michele
Gulmini6, Johannes Gutleber6, Jonathan Hollar10, David Lange10, Jin Cheol Kim5,
Markus Klute11, Elliot Lipeles7, Juan Antonio Lopez Perez6, Gaetano Maron3,
Frans Meijers6, Emilio Meschi 6,12, Roland Moser 1,6, Esteban Gutierrez Mlot6,
Steven Murray9, Alexander Oh6, Luciano Orsini6, Christoph Paus11, Andrea
Petrucci3, Marco Pieri7, Lucien Pollet6, Attila Racz6, Hannes Sakulin6, Matteo
Sani7, Philipp Schieferdecker6, Christoph Schwick6, Konstanty Sumorok11, Ichiro
Suzuki9, Dimitrios Tsirigkas6, Joao Varela4,6

1. Vienna University of Technology, Vienna, Austria
2. DESY, Hamburg, Germany
3. INFN - Laboratori Nazionali di Legnaro, Legnaro, Italy
4. LIP, Lisbon, Portugal
5. Kyungpook National University, Daegu, Kyungpook, South Korea
6. CERN, Geneva, Switzerland
7. University of California, San Diego, La Jolla, California, USA
8. University of California, Los Angeles, Los Angeles, California, USA
9. FNAL, Batavia, Illinois, USA
10. LLNL, Livermore, California, USA
11. Massachusetts Institute of Technology, Cambridge, Massachussetts, USA

Abstract. The CMS experiment at the CERN Large Hadron Collider is currently being
commissioned and is scheduled to collect the first pp collision data in 2008. CMS features a
two-level trigger system. The Level-1 trigger, based on custom hardware, is designed to reduce
the collision rate of 40 MHz to approximately 100 kHz. Data for events accepted by the Level-
1 trigger are read out and assembled by an Event Builder. The High Level Trigger (HLT)
employs a set of sophisticated software algorithms, to analyze the complete event information,
and further reduce the accepted event rate for permanent storage and analysis. This paper
describes the design and implementation of the HLT Configuration Management system. First
experiences with commissioning of the HLT system are also reported.

1. Introduction
The CMS [1] High Level Trigger (HLT) [2] is designed to reduce the Level-1 accept rate of 100 kHz
by about a factor 1000 by analyzing full-granularity detector data using software reconstruction and

12 Corresponding author: Emilio Meschi, CERN, CH1211, Geneva 23, Switzerland, E-mail:
emilio.meschi@cern.ch

filtering algorithms developed within the same reconstruction framework employed for offline
reconstruction and analysis [3]. The HLT runs on a computing farm consisting of standard CPU (Filter
Farm). The Filter Farm is part of the Event Filter complex. The Event Filter architecture and data flow
are schematically depicted in figure 1.

Figure 1. Architecture and data flow of the CMS Event Filter

The Event Filter complex

• Collects events accepted by the Level-1 Trigger system from the Event Builder and distributes
them to worker nodes in the Filter Farm for further processing

• Performs basic consistency checks on the event data
• Runs the HLT to process and select events for storage
• Generates, collects, and distributes Data Quality Monitoring (DQM) information resulting

from online event processing in the HLT
• Serves a subset of the events to local and remote online consumers (EventServer, ES) for

calibration and DQM
• Routes selected events to local storage in several online streams according to their trigger

configuration (Storage Manager, SM)
• Transfers data from local storage at the CMS site to mass storage in the CERN data centre at

the Meyrin site via the Central Data Recording (CDR)
The Event Filter hardware consists of a large farm of about 2500 worker nodes, hosting the HLT
execution (Filter Farm), and a data logging system connected to a storage area network (SAN). The
worker nodes form the receiving end of the second of two stages of event building. A logically
separate switch fabric provides the connectivity to a set of 8 data logging nodes. These data logging
nodes are connected to a Fibre-Channel SAN, which is capable of a peak bandwidth of 1 GB/s and has
a capacity of several 100 TB.
The farm is logically subdivided into groups of processing nodes (Builder/Filter Unit, BUFU). Each
BUFU hosts an identical set of software modules in a distributed environment based on the CMS
online framework, XDAQ [4].
Two separate applications, the Filter Unit “Resource Broker” (RB) and the Event Processor (EP),
provide the HLT functionality. The RB is responsible for managing memory resources for input and
output to/from the HLT processes, and the communication with the Event Builder and the data logger.
A full event is handed by the RB, upon request, to the Event Processor (EP). The EP uses the CMS
reconstruction framework to steer the execution of reconstruction and selection code forming the HLT
selection. Multiple EP processes can coexist in a single worker node to provide concurrent execution
and thus saturate the worker node CPU resources.
The HLT algorithms are configured at the start of each data taking run, under supervision of the Run
Control system [5]. The HLT configurations (trigger tables) are created and managed within the HLT
configuration management system. The creation of HLT configurations, consisting of many software

modules organized in O(100) trigger paths, and their deployment into the distributed online
environment, are centered around a carefully designed database schema abstracting the features of the
algorithms and their organization in a trigger table. The HLT configuration management system is the
subject of the following sections.

2. Design considerations
The use of a unique reconstruction framework for both offline and online execution of reconstruction
and filtering algorithms provides a high degree of flexibility and sophistication, while enabling a wide
community of developers and physicists to efficiently contribute to the development, testing, and
validation of the HLT algorithms. It also guarantees fast migration of offline reconstruction and
selection algorithms as more effective strategies are developed, when new physics requirements,
machine or detector conditions, and available resources warrant.
For online execution in a distributed environment, the reconstruction framework must be encapsulated
in the online framework. The latter is responsible, among other, of delivering configuration
information and guaranteeing its consistency across the entire distributed system.

2.1. HLT in the CMS Reconstruction Framework
The CMS reconstruction framework uses a modular architecture, enforcing component interfaces for
the implementation of the different functionalities: input, reconstruction, filtering, access to non-event
data, other services (such as logging, monitoring, etc.), and output. Algorithms communicate
exclusively via a single event data bus where reconstruction products and other event-based
information is placed. The event data model enables persistent storage of any algorithm by-product,
which can later be uniquely identified and traced.
Modules are loaded, instantiated, and configured using a plug-in mechanism at initialization time,
according to an object representation of the configuration, constructed by parsing a configuration
document. The configuration objects map to unique instances of the modules and completely define
their behaviour by setting all relevant parameters. The configuration also specifies a sequence of
execution of the modules.
Different configuration grammars have been developed to map the object model and provide flexible
and powerful file-based configuration for offline jobs.
In the HLT, module instances providing the event selection must be arranged in “trigger paths”. An
HLT path consists of a sequence of reconstruction and filter modules of increasing complexity and
sophistication, designed to identify a certain category of events. The same algorithm instance can be
used in multiple paths. The framework guarantees that the same algorithm is only run once for a given
event. At different stages in the path, filter modules examine the event content for specific features.
The path execution is interrupted in case of a negative filter decision. This way, time-consuming
algorithms at the end of a path are only seldom executed. Only events surviving at least one complete
path are accepted for permanent storage13.
To guarantee reproducibility of the results, and the complete traceability of events accepted by the
HLT, strict scheduling of the execution of HLT is imposed. Every HLT path is executed in a
predetermined sequence and all paths are executed till the first reject decision or to the end.
A typical offline workflow for development and study of HLT algorithms and table is illustrated in
figure 2. An algorithm is known to the framework by its assigned plug-in module name and its
parameterization (left), which are completely defined in the source code. When the algorithm is used
in a particular sequence, defined in a dedicated subdocument, a module instance is defined with a list
of non-default parameter values. A single instance of a module can be used in different sequences and
multiple instances of the same algorithm can be defined with different parameters.

13 Special provisions are made to accept a small unbiased subset of otherwise rejected events for diagnostic
purposes

The various subdocuments must finally be merged into a single menu to be fed to an offline job for
execution.

Figure 2. Schematic view of the HLT offline workflow using file-based configuration

2.2. HLT in the Online systems
The XDAQ framework provides a single ‘executive’ program to load online application components,
and provides services to dispatch configuration and control messages, and give access to
communication and data transport in the distributed system. Applications consist of loadable modules
using the XDAQ services. The offline framework encapsulation is achieved in the EP by enabling the
online application to load offline framework modules, and defining special interfaces for event data
input/output, control, and monitoring.
The Run Control system is responsible for the deployment of the various applications in the
distributed environment, their configuration, and the control of the distributed system using the
aforementioned interfaces. The latter is realized by a tree of state machines (Function Managers, FM),
which keep track of the overall state of the experiment. The HLT Supervisor (HLTS) is the Function
Manager that controls the configuration and execution of the HLT inside the EP. In particular, the
HLTS receives from Run Control, at configuration time, the instruction to load a particular HLT table
in the form of a symbolic key. This symbolic key can be interpreted by the HLTS in different ways
depending on the source of the configuration information, but the corresponding configuration must
finally be delivered to all EP processes in the form of a document that can be parsed by the
reconstruction framework to produce a valid HLT executable.
A file-based configuration system can be cumbersome to maintain. Concurrent versioning of multiple
tables quickly becomes a technical challenge. The evolution of grammars and tools for configuration

manipulation, and of the underlying algorithms to be configured, presents obvious problems for long-
term maintenance of configuration data. The evolution of the algorithms across different versions of
the code, in particular, requires constant maintenance even of functionally identical tables. In an online
environment, where concurrent access to file systems by many processes must be supported,
guaranteeing data consistency can also pose problems. Using a database to store and catalogue
CLOBs only partially solves the problem.

2.3. Requirements
Based on the above considerations, the following requirements where identified for a db-oriented HLT
Configuration Management System:

• The configuration database schema should provide an abstract model of the framework
components and their assembly into a trigger table, with little or no dependence on the
configuration grammar

• The management system should provide the ability to populate a configuration based on a
particular version of the underlying code, and the possibility of subsequently migrating a
configuration to a different version

• A graphical tool should be provided to populate HLT tables. This tool should enforce basic
rules imposed by the reconstruction framework, and basic consistency of the configuration
information

• The configuration system should support the basic online workflow to deploy a particular
table for data-taking. Tables should be identified by a single symbolic key. The system should
take care of reformatting the table into a valid configuration document which can be parsed by
the reconstruction framework

• The configuration system should support offline development and validation of HLT
algorithms. Convenient offline access to existing tables, and the possibility of extracting
configuration documents for offline use, as well as intuitive traversal of large tables, should
also be provided. The migration of offline-validated HLT tables to the online environment
should be as transparent as possible.

• Referential integrity and data consistency are expected to be guaranteed by this system across
the entire lifetime of the experiment.

3. Configuration System Design and Implementation
The HLT database-driven configuration system, HLTConfDB, schematically drawn in figure 3,
consists of four main components. A relational database schema, a code parser, a graphical user
interface, and a converter to generate configuration documents for use in the reconstruction
framework.

3.1. Database
A relational database schema is defined to describe the relations between paths, services, modules, and
their parameters. The schema is maintained for both Oracle and MySQL. Each HLT configuration in
the database is related to one specific release of the CMS software. The algorithms and modules
provided in that release are the building blocks of each configuration. These building blocks are stored
as templates in the database. A module template contains the name by which it is identified to the
framework, and a relation to a particular software version. It also contains references to a set of
parameters that represent its default parameter set as defined in the code itself. A configuration is
stored as a set of paths, services, and global parameters. A path is a sequence of module instances
(algorithms) where a given instance can be used multiple times inside different paths. A module
instance consists of an instance name (label), a reference to its module template, and a set of
parameters that differ from their default. The module label uniquely identifies the products of the
algorithm execution in the event data.

Figure 3. Schematic view of the configuration system and its interactions

3.2. Parser
The parser consists of a set of python scripts that traverse the complete source tree of a given
reconstruction software release, and discover all available modules, their type (reconstruction or filter
algorithm, service, etc.) and, if feasible, all configuration parameters and their default values (see left
of figure 2 for an example). The discovered software components are stored in the database as
templates; when one of these is used in a configuration, an instance of a template is created and related
to its parent template.
The current implementation of the parser is capable of traversing the entire source tree of the CMS
software, consisting of over 1M SLOCs, in about 1min, discovering almost 1000 components, with
their over 5000 parameters, and storing the corresponding templates. It produces a report listing
modules with problems, which is usually indication of bad or obscure coding practices.

3.3. Graphical User Interface
The HLTConfDB graphical user interface provides tools to generate an HLT configuration based on
templates stored in the database for a given software release. When a configuration is created, the
corresponding template information is loaded from the database. The java-based GUI displays the
configuration in a tree like structure. Context menus, filled from the template information, enable the
addition of paths to a configuration tree, of modules to paths, and the modification of parameters of a
module instance. The creation of a valid configuration according to basic rules of the software
framework is enforced. For example, a configuration containing a module instance with a mandatory
parameter without a default, or containing two different instances of the same module with identical
parameter values, cannot be saved. Whenever a configuration is saved to the database, all previous
versions are kept and a new unique key is assigned to the new version. The GUI has tools to support
drag-and-drop of fragments across two different configurations, migration of entire tables across
databases, and update of a table to a different software version. It integrates the Converter tool (see

next section) for quick export of a configuration to a specific grammar or format. A locking
mechanism is provided in the database to prevent concurrent editing of the same configuration.
A snapshot of the HLTConfDB GUI is illustrated in figure 4.

Figure 4. Screenshot of the ConfDB GUI

3.4. Converter
Once configurations are stored in relational database tables, the Converter accesses the database using
the same database API as the GUI, to retrieve a given configuration and transform the information into
other formats: a valid job configuration document, a webpage, etc. The Converter java API provides
implementations for each useful representation of a configuration. Currently these include the initial
text-based configuration grammar implemented for the offline reconstruction [3], the new Python-
based configuration, and an HTML representation, which can be useful for quick access to key
information about currently running HLT tables. Run Control uses the Converter API, in the HLTS, to
retrieve the HLT configuration to be deployed in the Filter Farm, based on a key provided by the
operator, which can be selected among the valid configurations according to the need. Web access to
the HLTConfDB information is provided via a servlet using the Converter API from within an Apache
tomcat servlet engine. This can be used by developers wishing to test an existing configuration,
physicists interested in a detail of the HLT configuration, etc.

4. Operation

4.1. Offline and Online Workflows
The HLT configuration management system is designed to support not only online operation, but also
offline development and validation of trigger selections, and the integration of the trigger table. Figure
5 (left) illustrates the offline workflow leading to the integration of a trigger table and its deployment
in the online validation system. A new configuration is developed in an offline development db where
tight development cycles can be carried out. An offline-validated configuration is then migrated to the
production database (Online Master Data Storage, OMDS).

Figure 5. HLT Configuration System workflows

The online workflow starts with the validation of the new configuration in a playback environment
(centre), to verify the stability and robustness of new code, and validate trigger algorithms against
reference samples. If online validation is successful, the configuration key is stored in the global key
database to be used by central Run Control for data taking (right).
The combination of the parser, the GUI, and a private database can also be used to build a convenient
development environment for single algorithm developers to test the integration of their newly
developed algorithms in a partial or global trigger table.

4.2. Commissioning
The HLT configuration system is currently being commissioned as part of the HLT online validation,
using simulated input data and HLT tables produced by the CMS collaboration for offline analysis of
the HLT performance [6]. These are realistic tables containing more than one hundred selection paths
and making use of a large fraction of the features and algorithms of the CMS reconstruction code.
The system is also in use for data taking from the commissioning of the CMS detector. Although not
heavily used to configure complex selection paths, the online workflow is tested under realistic
conditions, and the system is proving robust and stable.

5. Summary
The CMS High Level Trigger Configuration Management System is designed to support development,
validation, and online operation of the HLT configuration, and is built around the careful design of a
database schema to model the features of the underlying reconstruction code. The system is currently
in use for commissioning of the CMS detector.

6. Acknowledgments
This work was supported in part by the DOE and NSF (USA), KRF (Korea) and the Marie Curie
Program.

7. References
[1] The CMS Collaboration 1994 CMS Technical Proposal (CERN/LHCC 94-38)
[2] The CMS Collaboration 2002 The TriDAS Project, Technical Design Report, Volume 2: Data

Acquisition and High Level Trigger (CERN/LHCC 2002-36)

[3] Jones C D et al. 2007 The New CMS Data Model and Framework Computing in High
Energy Physics (Mumbai, India, 13-17 February 2006)

[4] Gutleber J and Orsini L 2002 Software Architecture for Processing Clusters Based on i2o
Cluster Computing 5(1) 55-64

[5] Bauer G, et al. 2007 The Run Control System of the CMS Experiment These Proceedings
[6] The CMS Collaboration 2007 CMS High Level Trigger (CERN LHCC/2007-021)
 Apanasevich L, et al. 2007 The CMS High Level Trigger These Proceedings

