IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 5, OCTOBER 2007

1753

ASAP Distributed Analysis

Craig Munro, Julia Andreeva, and Akram Khan

Abstract—The Grid offers physicists far more resources than
have previously been available by combining elements in com-
puting centers around the world into a globally accessible resource.
However, in order to harness this computing power many steps
need to be performed for job creation and management and data
discovery. ASAP (ARDA Support for CMS Analysis Process) was
developed to make this step as simple and straightforward as
possible for physicists working on the Compact Muon Solenoid
(CMS) experiment at CERN. ASAP transfers a local application
to the Grid by packaging the application, discovering the location
of input data then creating, submitting and monitoring jobs. One
of the main components of the system is that users can delegate
responsibility for their tasks to the ASAP server which can take
actions on behalf of the user to ensure that tasks are completed
successfully. The system can operate in the traditional push model
but can also be used by agents executing on the Grid to pull jobs
to the worker node for execution.

Index Terms—Distributed analysis, grid computing, high energy
physics, software.

I. INTRODUCTION

HEN the Large Hadron Collider [1] begins operation in

2007 each of the four major experiments at the LHC
will use a Grid architecture to fulfil their demands for CPU
and storage. While this approach is scalable the complexity in-
creases the learning curve for new users trying to access these
resources. An analysis that is executed on the Grid as opposed
to a local computer is much more complex due to the number of
interactions that are required with other systems and, as a con-
sequence, the number of things that can go wrong.

The ARDA [2] project began in 2004 to address these issues
by prototyping distributed analysis systems for each of the LHC
experiments. The CMS component of ARDA developed ASAP
(ARDA Support for CMS Analysis Process) an analysis frame-
work which provides a layer of abstraction on top of the Grid
middleware. Steps such as packaging code, locating data, appli-
cation execution, monitoring and output retrieval are automated
so that users can quickly move from a working local applica-
tion to the Grid. Instead of managing individual jobs users can
work at a higher level with a collection of jobs or a task. ASAP
also provides a server side component to which users can del-
egate responsibility for their tasks. The ASAP server will per-
form job submission, monitor job status and retrieve job output
on the users behalf. If a job fails or an error is detected in the
jobs output the job will be automatically resubmitted. One of

Manuscript received February 18, 2007; revised May 29, 2007. This work
was supported in part by the PPARC.

C. Munro is with Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.
and also with CERN, 1211 Geneva 23, Switzerland.

J. Andreeva is with CERN, 1211 Geneva 23, Switzerland.

A. Khan is with Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.
(e-mail: Akram.Khan@brunel.ac.uk).

Digital Object Identifier 10.1109/TNS.2007.905162

the most interesting features of this server side component is its
ability to act as a server to agents operating on the Grid. Oper-
ating in this manner the turnaround time of the users tasks can
be greatly reduced.

This paper discusses the ASAP design and presents the results
of performance measurements.

II. BACKGROUND

ASAP began to be developed in late 2004 as a prototype used
to evaluate the emerging glite middleware [3]. From the start,
development was user driven with physicists invited to test the
prototype in order to assemble requirements and identify weak-
nesses with the new middleware. It quickly became evident that
users needed to be insulated from the many steps that were re-
quired to prepare and execute jobs on the Grid and from the
many changes and errors that could occur. Starting with an anal-
ysis application and a configuration file users generate a task
which can be submitted using the LCG [4] or gLite [3] middle-
ware. Each task consists of a single analysis application pack-
aged with its libraries, a wrapper script and potentially some
input data. The wrapper script establishes the correct environ-
ment on the Worker Node (WN), downloads input data if re-
quired, unpackages and executes the application and uploads
the jobs output to a user defined Storage Element (SE). The
script is also responsible for reporting job progress and errors
to the CMS Dashboard so that a global view of resource usage
and problems can be formed. Jobs are split across the selected
dataset and sent to sites that contain the data required for anal-
ysis. Upon completion of the job the results are stored on a
user-defined SE for later retrieval and analysis. A server side
component was also introduced which would resubmit aborted
jobs automatically. The ASAP system has evolved to support a
variety of modes including public, private and simulated data.
The experience gained in the past eighteen months has been used
to redevelop ASAP to provide a cleaner, more flexible and ro-
bust design with a new higher performance server.

ASAP is not the only job creation tool used by the CMS com-
munity. CRAB [5] has many of the same features as ASAP but
does not currently have a server side component which means
users are responsible for monitoring and resubmitting their own
tasks. The Atlas and LHCb experiments use Ganga [6] with
LHCb also using DIRAC [7] which has agents which work in
a similar manner. DIRAC and Panda [8] are also used for pro-
duction activities and as such they support more complex work-
flows and data management operations. They also pre-submit
pilot jobs which can execute production or analysis tasks.

III. ASAP DESIGN

A multi-tiered architecture is used and the client and server
components interact with a wide range of other Grid services in
order to operate, see Figs. 1 and 2. Both the client and server

0018-9499/$25.00 © 2007 IEEE

1754

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 5, OCTOBER 2007

User interface

Store Proxy

penes

MyProxy

?(o‘ﬁ“

L.
y o

¥
sany

Worker Nodes

R-GMA MonAlisa

o
ASAP Server ‘0«‘\3‘3
P — o \‘\
‘ Y, S g‘)\‘\g
ashboa \o

Web Interface

Fig. 1. The interaction of ASAP with other components in the CMS Distributed System.

Server Server
MyProxy VOMS
R PR DR
! 1
]
1
1
. 1
_________________ decmcccnnaaan,
1
1
Server Client Server :
1
DLS Server WebBrowser 1
R TR I . L
1 o
1 1 % ASAP Delegation Server gLite Proxy Renewal Server
1 -———=-= p===-
1
1 1
1 ! !
------------------------ | |
]] 1
N ‘ .
T 1)
Server Client ' | | Apache Server ASAP Server
] |__"__
DBS Server ClUInterface |- { | = = = = = ! 1
1-=F-= I
. TR [4] ! 1
1
.] 1 . 1
1 T ! T | T
) 1 ' 1 . 1
l e e e e e e - - - o e e e e e e == e e e e e e - = e e e e e e e e e e - - a 1
1
1

ResourceBroker

r
]
) |
AN 1
Feedback when '
using Agent mode : 1 Database
1 '
1]

MySQL

ComputingElement

Fig. 2. Deployment model showing the major interactions for the ASAP client and server.

MUNRO et al.: ASAP DISTRIBUTED ANALY SIS

have been written with maintainability and flexibility in mind.
The services that ASAP interacts with are frequently changed
or updated and it needs to be possible to easily replace com-
ponents without rewriting large parts of the code. As a conse-
quence of this although the components are currently CMS spe-
cific it would be simple to add components to support different
experiments.

The client is responsible for task creation and management in-
cluding job submission and for interacting with the server. Jobs
may be registered or unregistered from the server at any point
so that the user can always have full control and flexibility. For
example, the user can submit the jobs and then register the jobs
with the server to take advantage of the monitoring and resub-
mission capabilities. The following sections discuss the client
and server in more detail.

A. Client

In order to use ASAP to create tasks users must create a
configuration file which specifies, among other things, which
dataset they wish to use and how they wish to split this dataset
across jobs. ASAP uses environment variables specific to the
CMS analysis framework to discover the users application and
packages any user specific code and libraries that need to be
sent with the task. A wrapper script is created for the worker
node which unpacks any files that need to be sent with the
job, recreate the users environment, executes the application
and copies input and output data as required. Data discovery is
performed by querying the Dataset Bookeeping System (DBS)
[9] for the dataset specified by the user. The DBS resolves the
dataset into multiple blocks which are in turn composed of mul-
tiple files containing a certain number of events in each. The
Dataset Location Service (DLS) [10] then provides the location
for each block. The user specifies the total number of events they
wish to analyse and how many events they wish to analyse with
each job. ASAP uses all of this information to create jobs which
are sent to sites which contain the input files that are required to
satisfy the requests. In addition to using this official, published
data users may also specify their own private data (or no data in
the case of simulation) and specify their own job splitting. Pri-
vate data can be on the local filesystem in which case it will be
sent with the job or ASAP can download it from a SE once the
job starts.

Once the task has been created the user can perform certain
actions depending on each job depending on the status of each
job. Actions such as match, submit, update, cancel, fetch, reg-
ister and unregister can be performed on the entire task or any
subset of that task. After the job has been submitted and be-
gins running on a WN the wrapper script will control each stage
of execution and report progress or errors to a MonAlisa [11]
server from where it will be retrieved by Dashboard. The user
can monitor the progress of each job in a specific task on the
command line. When the application is finished the wrapper
analyses the output to obtain the number of events that were
processed and the exit code of the application. These values are
compared with the expected values when the client fetches the
output and a warning given if the results are unexpected. Output
is stored on a SE and recorded in a file catalogue if the output

1755

is too large for the output sandbox or if the user explicitly re-
quested the output be stored at a certain SE. The client can then
be used to retrieve the output and/or logs from the SE.

While this method automates many of the steps for users they
are still required to submit and monitor their tasks and make
their own resubmission decisions. A more efficient method is to
delegate the task to the remote ASAP TaskManager.

B. Server

The server consists of an Apache server which is used as a
frontend for all client-server interactions, the ASAP server itself
which processes the jobs, the ASAP Delegation server which ac-
cepts delegated proxies and registers them with the gLite Proxy
Renewal service.

All communication between the client and the server is per-
formed over HTTPS using GET, POST and PUT operations
with Apache. This solution was chosen as Apache has a proven
record of being secure, scalable and performant and when used
in combination with gridsite, php and SSL is a very flexible solu-
tion. The ASAP client communicates with the MySQL database
via Apache using secure XML-RPC requests. Clients can be re-
stricted by Virtual Organisation or by the Distinguished Name
of their grid certificate and non-admin users are only able to
view tasks they have registered.

Once a task has been created by the client it can be registered
and subsequently unregistered at will at any point in the tasks
lifecyle. If desired users can use the server for job submission,
monitor the jobs manually and then use the server to fetch and
analyse the jobs output. The input and output files for each job
are transferred using Gridsite’s htcp command which authen-
ticates using HTTPS then transfers the files using HTTP GET
and PUT. Performance is not a real issue here since only com-
paratively small input and output files can be transferred due to
the size of the input and output sandboxes. Larger files that are
stored on a SE will not pass through the service, instead they are
fetched from the SE when the job begins to run or are retrieved
directly by the command line client once the task is unregistered.
Users can monitor information such as the current status, exit
code and stdout from the website where they can also choose to
cancel or resubmit jobs.

The main component of the server is an asynchronous server
which selects jobs from the database based on their status. In-
teracting with the Grid is a major bottleneck with each com-
mand taking several seconds to complete due to the security
overheads. A task with thousands of jobs can therefore take an
excessive amount of time to submit, query or fetch. The original
version of the server simply looped over each task belonging to
each user which did not scale well. As the problem is completely
I/O bound a design which allows some level of concurrency
is very desirable. A traditional threaded server and an asyn-
chronous, event based design using the Twisted [12] framework
were both prototyped. They offered similar maximum perfor-
mance but the asynchronous design offered a simpler program-
ming model than co-ordinating multiple threads.

The asynchronous design performs all operations in a single
thread of control but makes those operations non-blocking. For
our purposes this means that we can perform many operations
without waiting for the outcome. As each operation (match,

1756

submit, update, cancel and fetch) is executed a callback is at-
tached which will be executed when the operation is finished.
Before jobs are submitted a job-match is performed to ensure
that there are available resources in the selected grid. If re-
sources are available the job is submitted, if not the server tries
again periodically until resources become available. When sub-
mission is completed the Grid JobID that is returned will be in-
serted into the database by a callback. The main difficulty is
ensuring that only a certain number of operations are pending
at any one time. If there are too many the machine will become
overloaded and timeouts will begin to occur. Too few and per-
formance will suffer. The server is aware of how many jobs are
outstanding and is capable of adjusting the rate to avoid prob-
lems. If the status is checked or the output is retrieved and the
job has not successfully completed the job will be resubmitted
a set number of times. If there is a choice between sites to re-
submit to ASAP will avoid resubmitting to sites where any job
in the task has previously failed.

In order to interact with the Grid on the users behalf ASAP
must have access to a copy of their Grid Proxy. To facilitate
this before registering a task with the service users must store
a long lived copy of their proxy in the MyProxy [13] reposi-
tory and delegate a copy to the ASAP server. The user executes
a command line client which stores the proxy in MyProxy and
delegates the users proxy to a server running on the same ma-
chine as the ASAP server. The ASAP Delegation server receives
this proxy and registers it with the gLite Proxy Renewal service
which is responsible for renewing the proxy. This method is se-
cure and ensures that the delegated proxy can then be renewed
from the MyProxy service. The whole procedure is compatible
with Virtual Organisation Membership Service (VOMS) [14]
proxies. When the Delegation Server registers the users proxy
it also creates a directory for storing the input and output from
a users task. This directory can be accessed via Apache and is
proctected by a Grid Access Control List [15] which limits ac-
cess to the user with a Grid Certificate with a matching Distin-
guished Name (DN).

C. Agent Model

Jobs within a task differ only by the arguments that are passed
to the job wrapper (eg. number of events, input files) and per-
haps the site the data is located at. It is therefore very simple for
one job within a task to run another given the new arguments.
A script is executed on the worker node which controls the exe-
cution of the jobs and communicates with the ASAP server via
secure XML-RPC calls. The script requests the arguments for a
job which has not yet successfully finished. Once the agent starts
executing a call is made to change the status of the job so that the
another agent or the server no longer selects it. Two threads are
created; one where the job executes and another which sends
a periodic ‘heartbeat’ back to the server so that we know that
the job is still alive. If the executable finished successfully the
output logs are compressed and sent back back to the server for
analysis. If the job is not considered a success the status of the
job is changed so that another agent can execute it. If a certain
time limit is passed the job will be resubmitted in the normal
manner. Output from each job is stored on a SE as before. The
agent then requests another job from the server for the same task

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 5, OCTOBER 2007

100

80 E
7]
S 60 _
=
ks
@
Qo
E st 1
z

20 k

Asynchronous +
0)) Sequ?ntial O
0 200 400 600 800 1000

Time (s)

Fig. 3. Comparison of sequential and asynchronous submission.

at the same site (in the case where input data is required) and the
process is repeated. If no more jobs are available the agent peri-
odically polls the server until it receives a job or a certain time
limit is reached. This process is completely transparent to the
users who still interact with their jobs in the same manner as
before via either the command line client or the monitoring web

page.

IV. PERFORMANCE

As previously mentioned the design of the original ASAP
server was a limiting factor on its performance. Jobs were pro-
cessed serially which introduced a serious bottleneck into the
system and limited the overall throughput. As the new server
has been designed to overcome these issues it is important to
perform some performance tests to establish if these goals have
been met.

Fig. 3 compares the maximum rate of submission for inserting
100 jobs in a normal loop and 100 jobs using the new asyn-
chronous server. The jobs are very simple hello world jobs that
require no input and have no requirements. Jobs were submitted
using the CMS production Resource Broker. The rate of sequen-
tial insertion illustrates the problem we are trying to solve. To
submit 100 simple jobs takes nearly 944 seconds or 9.4 seconds
a job. The ability to submit multiple jobs in parallel is clearly
imperative. The asynchronous server is able to insert 100 jobs
to the same Resource Broker in 141 seconds.

The main advantage of the agent model is that it reduces
the turnaround time for the users task. Tasks are frequently de-
layed by several jobs which do not begin to run for a dispropor-
tionally long time. The agents are able to complete these jobs
without waiting for the original jobs to start. Additional savings
are made by marking jobs as complete as soon as the output
is available. Fig. 4 compares the time from job registration for
100 jobs simlulating 5 events using (a) the original method of
job submission and (b) the agent method. In each case jobs are
matched then submitted with any failing jobs resubmitted. The
average run time is 5913 and 2895 seconds for the original and
agent model, respectively. Fig. 4(a) illustrates the problem when
a small proportion of the jobs delay the completion of the entire
task. That behaviour is eliminated when using the agents.

MUNRO et al.: ASAP DISTRIBUTED ANALY SIS

100

90

80

70

60

50 = 1

Jobs

40

30 =— J

15000 20000 25000

Time (s)

(@)

10000 30000

Jobs

100

1757

90

80

70

60

50

40

30

20

10

0
0 1000

2000 3000 4000 5000 6000

Time (s)

(b)

7000

Fig. 4. Time from job registration to completion for (a) Original Model and (b) Agent Model.

V. CONCLUSION

In order to make distributed analysis a realistic prospect
for most users an intermediate layer is required to perform
common tasks and insulate users from the complexities and
failures that are common when dealing with the Grid. ASAP
takes care of job generation and manipulation on the Grid either
with or without the users involvement. Ultimately this reduces
the effort required from the user to obtain successful output.

The combination of client and server tools has received pos-
itive support from users as they are spared the time consuming,
error prone steps of creating jobs for the Grid. The ability to
delegate tasks to the server decreases the effort the user has to
expend and increases the success. The performance tests illus-
trate that the server is capable of a much higher throughput than
the previous model and will be able to sustain higher rates of
job submission.

With the infrastructure in place, extending the server to sup-
port agents was straightforward. The results of the performance
tests illustrate that this method of executing jobs can signifi-
cantly reduce the turnaround time for users.

ACKNOWLEDGMENT

The authors would like to thank the LCG and EGEE projects
for their support and useful discussion, in particular the CERN
IT/GD group and the gLite team. In addition, a special thank you
is due to the entire IT/PSS/ED section for fruitful collaboration
and stimulating discussion. Additionally, the authors would like
to thank the users of ASAP for their patience, feedback, and
suggestions.

[1]
[2]

[3]
[4]
[5]

[6

—

[7

—

[8]
[9

—

[10]

(11]

[12]
[13]

[14]

[15]

REFERENCES

LHC [Online]. Available: http://cern.ch/lhc

M. Lamana, “ARDA experience in collaborating with the LHC experi-
ments,” in Proc. Computing in High Energy and Nuclear Physics Conf.,
Mumbai, India, Feb. 2006.

gLite Middleware [Online]. Available: http://cern.ch/glite

LHC Computing Grid [Online]. Available: http://cern.ch/lcg

F. Fanzago, S. Lacaprara, D. Spiga, M. Corvo, A. Fanfani, N. Defil-
ippis, S. Argiro, G. Ciraolo, and N. Smirnov, “CRAB: A tool to enable
cms distributed analysis,” in Proc. Computing in High Energy and Nu-
clear Physics Conf., Mumbai, India, Feb. 2006.

K. Harrison, C. L. Tan, D. Liko, A. Maier, J. Moscicki, U. Egede, R.
W. L. Jones, A. Soroko, and G. N. Patrick, “Ganga: A grid user inter-
face,” in Proc. Computing in High Energy and Nuclear Physics Conf.,
Mumbai, India, Feb. 2006.

S. Paterson, “DIRAC infrastructure for distributed analysis,” in Proc.
Computing in High Energy and Nuclear Physics Conf., Mumbai, India,
Feb. 2006.

K. Harrison, R. W. L. Jones, D. Liko, and C. L. Tan, “Distributed anal-
ysis in the ATLAS experiment,” in Proc. AHM Conf., 2006.

A. Afaq, G. Graham, L. Lueking, S. Veseli, and V. Sekhri, “Schema
independent application server development paradigm,” in Proc. Com-
puting in High Energy and Nuclear Physics Conf., Mumbai, India, Feb.
2006.

A. Fanfani, “Distributed data management in CMS,” in Proc. Com-
puting in High Energy and Nuclear Physics Conf., Mumbai, India, Feb.
2006.

I. C. Legrand, H. B. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, M.
Toarta, and C. Dobre, “Monalisa: An agent based, dynamic service
system to monitor, control and optimize grid based applications,” in
Proc. Computing in High Energy and Nuclear Physics Conf., 2004.
Twisted [Online]. Available: http://www.twistedmatrix.com

D. Kouril and J. Basney, “A credential renewal service for long-running
jobs,” in Proc. 6th IEEE/ACM Int. Workshop Grid Computing, 2005.
Virtual Organization Membership Service [Online]. Available: http://
infnforge.cnaf.infn.it/voms

A. McNab, “Web servers for bulk file transfer and storage,” in Proc.
Computing in High Energy and Nuclear Physics Conf., Mumbai, India,
Feb. 2006.

