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Abstract

This note describes the organization of the mechanical assembly of the nearly 4000 silicon microstrip
modules that were constructed in Italy for the Inner Tracker of the CMS experiment. The customiza-
tion and the calibration of the robotic system adopted by the CMS Tracker community, starting from
a general pilot project realized at CERN, is described. The step-by-step assembly procedure is illus-
trated in detail. Finally, the results for the mechanical precision of all assembled modules are reported.



1 Introduction
This note describes the assembly of the 3922 silicon microstrip modules for the inner part of the CMS Tracker,
which has been performed in Italy at two assembly centres located in Bari and Perugia.
The Tracker consists [1] of silicon pixel and silicon microstrip devices. Figure 1 shows a cross-section of one
quarter of the silicon strip Tracker .The central region is covered by the Tracker Inner Barrel (TIB) which consists
of four cylindrical layers with strings of three thin modules mounted inside and outside the layer half-shells.
The Tracker Outer Barrel (TOB) is constructed of six cylindrical layers. The basic substructure of the TOB is a
rod: a carbon fibre (CF) support frame that carries either three double-sided or three single-sided thick modules on
each side.
The TIB and TOB are complemented in the forward and backward regions by the Tracker Inner Disks (TID), com-
posed out of three disks per side with three rings of modules per disk and the Tracker End-Caps (TEC), composed
of nine CF disks.
The basic substructure of the TEC is a petal, a wedge shaped CFsupport plate which carries up to 28 modules
arranged in up to seven radial rings. On each disk eight frontand eight back petals (which are of slightly different
geometry and carry different numbers of modules) are mounted.
The entire Tracker contains approximately 16000 modules. The modules that are closer to the beam line (TIB,
TID and first four rings of TEC) are made with 320µm thick sensors, while the outermost rings of the end-caps
and the TOB are equipped with thicker sensors (500µm).
The construction of such a large system (about 200 m2) based on silicon technology has never been attempted be-

Figure 1: Tracker Layout

fore. Since the silicon modules have been assembled and tested in different laboratories, much effort has been put
to guarantee good quality, uniformity and stability in timefor the module production. At the same time, extensive
use of heavily automatized systems has been made for sensor characterization, module assembly and testing.
In Figure 2 the components of a single sided silicon module are shown. The hybrid electronics circuit and the
PA are assembled together on a ceramic substrate and the APV channels are wire bonded to the PA tracks before
delivery to the module production centres.
Sensors and front end hybrids are glued to the frames by high precision gantry robots. The components are aligned
using digital cameras that measure the position of optical fiducial marks.
All silicon strip sensors are of the single sided type. Double-sided detectors are built by gluing two independent
single sided modules (r-φ and stereo) back-to-back with a dedicated jiig. To obtain a coarser but adequate resolu-
tion on the longitudinal coordinate the stereo module has the sensor tilted 5.7 deg with respect to the r-φ sensor.
The sensor and electronics of the stereo modules are identical to those of the r-φ modules, the only difference being
in the support mechanics and pitch adapters.
Seven institutes located in Bari, Brussels, Fermilab, Lyon, Perugia and Santa Barbara (UCSB), shared the respon-
sibility for the automated module assembly for the whole CMSTracker. The assembly rate was about 20 modules
per day per gantry robot with a positioning precision of approximately 10µm (RMS) achieved. In addition, in
Vienna a small number of modules were manually assembled achieving better precision but with a build rate of
1-2 modules per day.
The robotic assembly approach was adopted by CMS in the process of building a very large number of modules
across multiple sites.
The construction of a silicon module can be subdivided into different steps, that have been performed in different
laboratories: sensor quality assurance, robotic module assembly, bonding and testing. In the following sections,
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the robotic assembly is described.
Some characteristics of the modules are summarized in Section 2. An overview of the hardware of the assem-
bly centre is given in Section 3. The assembly centre qualification procedures are described in Section 4 and the
general assembly procedures in Section 5. The module assembly quality control is treated in Section 6 and the
timeline of the module assembly is described in Section 7. Some remarks and conclusions are given in Section 8.

2 Inner Tracker modules

Table 1: Relevant parameters of TIB/ TID modules.

Module type Pitch(µm) Sensor tilt Active area(cm2) Modules assembled Modules assembled
angle(deg) at Bari at Perugia

TIB Layer 1-2 r-φ 80 0 35 426 413
TIB Layer 1-2 stereo- left 80 5.7 35 212 208
TIB Layer 1-2 stereo- right 80 - 5.7 35 202 218
TIB Layer 3-4 r-φ 120 0 35 671 633
TID Ring 1 r-φ 81–119 0 85 40 120
TID Ring 1 stereo- left 81–119 5.7 85 52 28
TID Ring 1 stereo- right 81–119 - 5.7 85 57 25
TID Ring 2 r-φ 113–143 0 88 42 123
TID Ring 2 stereo- left 113–143 5.7 88 55 31
TID Ring 2 stereo- right 113–143 - 5.7 88 58 29
TID Ring 3 r-φ 123–158 0 79 130 150

Due to the geometry of the Inner Tracker and the need to have double-sided detectors in the innermost layers, the
assembly had to deal with ten different module geometries. Three geometries, namely r-φ, stereo left and stereo
right, are used in the Inner Barrel, whereas seven differentgeometries are needed for the Inner Disks. In Table 1
a set of relevant parameters about the type of TIB/ TID modules is reported.

Figure 3 shows one example of the modules of layers 1 and 2 of the Inner Barrel. Here the modules are placed

Figure 2: TIB/TID single sided module components:
(a) silicon sensor, (b) carbon fiber support frame, (c)
the HV bias circuit on a Kapton insulator layer, pitch
adapter (PA) and (d) front-end hybrid

Figure 3: TIB modules in their module carrier. On the
right side, a r-φ module and on the left side, a stereo
right module are shown.

in carriers, which are used for shipping them to the bonding and testing centres.
The Inner Disks are composed of three rings, each one mounting three module types, except Ring 3 which has
only one type of module, namely r-φ. In Figure 4 a picture is shown of all the Inner Disks’ module types after
assembly.
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Figure 4: TID modules on the Gantry assembly plate: a) Ring 1 stereo-left, b) Ring 2 stereo-right , c) Ring 2
stereo-left, d) Ring 1 stereo-right, e) Ring 1 r-φ, f) Ring 2 r-φ and g) Ring 3.

3 Assembly robot hardware setup
3.1 Overview of the Aerotech AGS1000 system “Gantry”

The Gantry system was originally conceived and developed bythe CMS Tracker group at CERN [3][4]. The
system has been documented by a UCSB group [5] that worked on the assembly of both TOB and TEC modules.
The phases of the assembly task are essentially five: 1) procurement of module components, 2) preparation of
the robot for assembly, 3) module assembly, 4) module surveyafter assembly and 5) shipping of modules to the
bonding centres.
The basic element of the assembly setup is an Aerotech AGS 10000 gantry positioning system [6], which provides
a 50 cm x 50 cm static working area, four separate coordinate (X, Y, Z, andφ rotation) positioning motors, and
control hardware and software. Figure 5 shows the bare configuration. The Aerotech system is PC controlled

Figure 5: out-of-the-box Aerotech AGS 10000 system

and uses a software interface program (MMI), which allows users to run user-defined programs on a standard PC.
The component sensor supply platform, assembly platform and pick-up tools were designed at CERN and use a
vacuum to hold the pieces that will be assembled. A glue dispensing system was designed which uses air pressure
to provide automatic application of glue. The vacuum and airpressure valves are interfaced through a custom
designed logic circuit which is under the control of the robotic positioning machine. In Figure 6, the final version
of the setup of the gantry style positioning machine, commonly referred to as a “gantry”, with all the tools needed
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to assemble the Inner Tracker modules, is shown.
The robot, located in a class 1000 clean room, was placed on ananti-vibration table and, for safety reasons,
enclosed in a transparent plastic structure with a window onthe front. On the rack, a commercial PC and the control
electronics were placed. The X axis linear motors were located on the left and right sides of the platform. The Y

Figure 6: Assembly robot “Gantry” (Bari center on the left side, Perugia center on the right side)

axis drive was a single linear motor located on the cross-beam near the back. The Z axis drive was equipped with a
φ motor and a CCD camera to locate fiducial marks on the individual detector components. A UPS (uninterruptible
power supply) unit was used for both the PC and Aerotech equipment so that power glitches could not affect the
operation of the machine and the power cuts were managed in the best way possible. The PC, monitor, drive
chassis (DR500), I/O electronics, vacuum pump, glue dispenser, and optical equipment were also plugged into the
UPS.
During the commissioning of the setup, two noteworthy modifications were studied in order to increase the rotation
φ axis accuracy. The first was a custom gear box inserted as shown on the right side of Figure 7. The gear box
(a picture is shown on the left side of the same Figure) was designed to be located between the axis of theφ
motor and the head support tool in order to give a rotation reduction with a ratio 50:1, thus increasing the precision
of the original motor. After the first prototype was realizedand successfully commissioned in Perugia, a set of
commercial gearing components (Harmonic Drive, CSD series), shown in the top right side of the same figure,
was used to realize the final gear boxes in the Bari mechanicalworkshop, which were then mounted on the two
Italian Gantries. A schematic drawing of the gear box is shown in the same figure on the right bottom side.
Another modification consisted of custom made contact switches which were mounted inside the head support tool
and enabled the robot to pick up the tools used to move the sensors and hybrids, as well as the syringes used to
dispense glue onto the frames. The “ touch” feature of the gantry was implemented using two commercial micro-
switches with sensitivities of 1 and 2 Newton, respectively, in order to give two different signals the first related to
a normal touch-down and the second in response to a fault situation that immediately caused the robot to stop. The
two micro-switches were assembled as shown in Figure 8.
With this particular setup, up to four silicon modules couldbe assembled during a run. The placement accuracy

of the sensors on the target carbon fibre frame was better than10µm. The automated module assembly procedure
took approximately 30 minutes per set of four modules.
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Figure 7: Support head with harmonic drive and their components

Figure 8: Micro contact micro-switches

3.2 Assembly plates for the different modules

The gantry setup used in all the CMS module assembly centres was slightly different from the CERN pilot project,
which was originally designed for TOB module assembly. The differences concern in particular those parts related
to the specific geometries of the modules needed to populate each sub-detector.
The main difference was in the assembly platforms, which were custom built for each module geometry or group of
similar geometries. In addition, the locations of the vacuum chucks mounted in the base plate were modified with
respect to the original pilot project, so that one single base plate would accommodate different module geometries.
In Figure 9 a picture of this base platform, fabricated in theBari mechanical workshop for all the assembly centres
of the CMS Tracker collaboration, is shown. The base platform was designed to house all the different assembly
platforms needed to assemble modules of ten different geometries. It should be noted that it was possible to use
a single base plate, with its vacuum chucks in fixed positions, regardless of the particular type of module to be
assembled, because the position of each chuck in the modifieddesign was carefully chosen so as to be compatible
with all the needed assembly platforms. Each assembly platform, shown in Figures 10 and 11, featured a common
bottom side made out of a 25 mm thick aluminium slab and an upper part composed of a 15 mm thick Teflon plate.
The entrance vacuum valves were located on the bottom side and perfectly overlapped with the vacuum chucks
of the base plate. From these valves, a network of narrow channels drilled through the aluminium bottom side of
each assembly platform conveyed the vacuum to grids of holesin the Teflon layer. Each grid occupied an area
corresponding to the different modules of a specific geometry (or group of similar geometries). Further example
of assembly platform with TIB modules after assembly is shown in Figure 14.

A dedicated platform (“supply plate”) was designed to use the vacuum to hold the sensors steady before their
placement into the module being assembled (see Figure 12). On this platform, in addition to the vacuum holes,
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Figure 9: Base Platform with vacuum chucks Figure 10: Upper side of an assembly plate

Figure 11: Inner structure of an assembly plate Figure 12: Supply plate

there was a set of larger holes in which positioning pins wereinserted as part of a process to correct the rotation
angle of the sensors as much as possible prior to their transfer to the assembly plate. Figure 13 shows the sensors
fixed under the vacuum on the supply platform, the frames placed on the assembly platform and the hybrids under
their pickup tool (described below), ready for the assemblyof four TIB modules.
The entire set of supply and assembly platforms used to buildall the TIB/TID module types were designed and
produced in Perugia for both Italian gantry centres.

3.3 Vacuum system

In order to supply a vacuum to the vacuum chucks mounted on theassembly and supply platforms, a set of air
pressure-driven Festo electro-valves [7] were fixed on a dedicated aluminium plate (see Figure 15). This was done
in Catania and was common to all the Tracker gantry centres.
Together with the valves, a closed cylinder acted as a vacuumbackup in case of vacuum failure near the valves. In
addition, a bigger vacuum backup steel cylinder was connected at the input of the gantry vacuum line to prevent
general long-term vacuum losses. The air-pressure valves were also mounted on the same platform in order to
supply air-pressure to the pistons for the movement of the tool rack and the assembly plates’ blocking bars (see
also Figure 9).

3.4 Pickup tools

Two different tools were designed and realized in order to pick up sensors of the two different basic shapes: a
rectangular tool for the TIB modules and a circular tool to fitthe wedge-shaped TID sensors (see Figures 17 and
18). The two tools were modified with respect to the original design, especially for the larger dimensions of the
pickup surface fabricated with a more elastic material (Teflon).
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Figure 13: Parts of modules on the platforms before
assembly

Figure 14: Modules on the platforms after assembly

Figure 15: Vacuum distribution plate Figure 16: Perpendicularity control of the syringe

A more involved tool (hybrid “bridge”) was designed and produced in the Perugia mechanical workshop in
order to more safely manipulate the electronic hybrid designed for the TIB sensor readout. Because of the overall
dimensions of TIB modules which are smaller than TOB and TEC modules, the available free area was very small
while the layout of the hybrid is quite dense, as can be seen inFigure 19, so the only way to touch the hybrid was
by using little vacuum cups mounted on the bridge to act on thepitch adapter surface.

During the preparation of the gantry assembly platform, each hybrid was first fixed with a vacuum under its own
bridge using a dedicated fixing plate connected to a special vacuum line (see Figure 20 on top side).
The operator then moved the bridge from the fixing plate by hand, placing it with the hybrid attached to it in the
desired location on the assembly platform. The vacuum “stored” in the bridge body was sufficient to hold the
hybrid for several seconds during its movement. After that,each bridge remained fixed with the vacuum supplied
by the vacuum chucks connected to the assembly platform (seeagain Figure 13) and waiting for the assembly
operations. Then, the entire body of the bridge acted as a vacuum reservoir able to temporarily supply a vacuum
to the vacuum cups in order to hold the hybrid securely while the bridge was in turn held with a vacuum by a
hybrid-bridge pickup tool, shown in Figure 21, during the robot movements of the assembly run.
A specific tool was designed and produced to pick up the syringe used to dispense glue (Figure 22). Similar to
the other pickup tools, it was stored on the tool rack before the assembly, picked up by the robot with a dedicated
vacuum line and instrumented with an air pressure line coming from the glue box (Figure. 23). This box contained
a programmable valve to gate the air pressure with a programmable value of pressure depending on the type of
glue to be used and also provided a vacuum from a Venturi effect, here used to avoid the loss of glue droplets after
dispensing. The setting of the value of the air-pressure wasdone with three channels of the gantry I/O box directly
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Figure 17: Pickup tool for rectangular sensors Figure 18: Pickup tool for wedge shaped sensors

Figure 19: Hybrid for TIB r-φ module Figure 20: Hybrid tools and the positioning plate

programmed from the PC.
In order to control the perpendicularity of the needle axis with respect to the gantry working plane, a custom tool
was designed and realized in Bari, using two optical switches (see Figure 16) that gave a signal when the syringe
needle passed through. In such a way it was easy to identify the coordinates of the needle tip and then verify the
position of the syringe axis computed in the Gantry space coordinates.
With this control the precision of the glue dispensing path was better than 0.5 mm on X and Y gantry coordinates.

3.5 Glue curing station

After a full assembly run, the assembly platform, using two-way valves, was connected to a dedicated vacuum
line, removed from the gantry and placed on a curing station for the overnight glue curing.
The curing station is shown in Figure 24, ready to support 4 assembly platforms and equipped with 4 vacuostats
for visual control of the vacuum status of each assembly platform during the glue curing.
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Figure 21: Hybrid bridge pickup tool Figure 22: Syringe pickup tool

Figure 23: Inside the glue box Figure 24: Glue curing station

3.6 Pattern recognition system

In order to both speed up the assembly job and maintain a consistently high placement precision, the identification
and placement of the components and carbon fibre frames was done by using video images from the CCD camera
(Figure 25).
The digitized images were sent to a pattern recognition code, done by the IMAQ Vision system for Labview [10],
running on the PC and interacting with the Aerotech interface program. For this reason all the operations involved
in the pickup and placement of the module components used thepattern recognition to evaluate the coordinate of
the centre of the fiducial marks (see Figure 26). Fiducial marks were located on each module component to be
assembled and used in the proper way by the assembly MMI code.

3.7 Gantry absolute calibration

To achieve the required module quality assurance accuracy goal of 10µm, it was important to have the X and Y
gantry axes well calibrated. This absolute accuracy could only be achieved by means of a software correction of
the positioning machine by a 2D calibration of the X and Y axes.
A direct measurement of the absolute accuracy for a limited number of locations in X and Y using a laser interfer-
ometer was done by Aerotech at the factory and was provided with the machine, but in this context a full working
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Figure 25: CCD camera with light system Figure 26: (top) Visualization of the Pattern Recog-
nition code, (bottom) Three different types of fidu-
cial marks are shown: in the centre the sensor fiducial
mark, at left and right, two different fiducial marks of
the hybrid pitch adapter.

area of the robot was used and very large 2D corrections were discovered, especially at the ends of the Y axis
travel. Furthermore the calibration could deteriorate dueto several factors such as differences in the support of the
base plate, temperature and changes in the machine cabling and loading with tools. For this reason adjustment of
the calibration was performed periodically and also whenever an important modification of the setup occurred.
This was done using a dedicated “Mitutoyo” measuring machine (CMM) with the precision of 1 or 2µm, available
in both Italian assembly centres, using the following procedure.
The measurement was done using a borosilicate low thermal expansion coefficient square plate, 50 cm by 50 cm,
with a thickness of 5 mm, realized by the Catania collaborators. On the plate, a photo mask film composed of 25 x
25 fiducial crosses spaced 20 mm each (see top of Figure 26) wasglued with Araldite NY103/ 991. The thermal
conductive properties of the borosilicate glass (CTE = 32.5x 10−7 cm / cm /oC) were compatible with the needed
precision, considering the linear dimensions of the plate (50 cm) and a variation of the temperature in the clean
room which did not exceed 2oC.
As a first step, the coordinates of the fiducial crosses on the glass calibration plate were measured with the CMM

Figure 27: Calibration plate under Mitutoyo CMM
machine

Figure 28: Calibration plate on a Gantry
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(see Figure 27) after a mechanical alignment of the plate andrecorded on a file. The same crosses were measured
with the gantry (see Figure 28) with no calibration file aftera mechanical alignment of the plate. Following the
Aerotech instructions, a 2D calibration file was made, combining the information from the two groups of coordi-
nates. This calibration file was then downloaded by the gantry MMI software and the plate was measured once
more.
In Figure 29, the differences (XCMM − XGantry) and (YCMM − YGantry) vsXGantry andYGantry are shown,
before and after the calibration correction. These resultsshow that the gantry was rather imprecise without the

Figure 29: Bari gantry calibration map: a) before correction, b) after correction.

calibration correction, especially along the Y axis, wheredifferences of 50µm were found. After the corrections,
differences smaller than 5-6µm have been measured on both gantry axes at both production sites.

4 Gantry centre qualification procedures
A set of procedures was devised to perform an initial qualification of the gantry setup in each assembly centre,
which consisted of some assembly rules to follow in order to produce modules with the same quality.
In the following sections, all the basic tests which were used to certify the gantry precision in the measurement of
the fiducial mark coordinates are described and summarized in Table 2.

12



4.1 Manual positioning repeatability

This is a very simple first test that certified the error on the repeatability of a manual measurement of the coordinates
of the same sensor fiducial marks with the joystick, repeatedseveral times. The test started by holding a silicon
sensor with the vacuum, then moving the camera away randomlyfrom the silicon marker (e.g. 50-100µm away)
and measuring the position of the silicon marker with the joystick. After collecting the distribution of X and Y of
the silicon marker, the width of the distribution was recorded.

4.2 Pattern recognition (PR) precision

In the production phase, in order to increase the precision and speed up the assembly job, the use of a pattern
recognition system (PR) was needed to measure the fiducial mark coordinates.
When all the PR setup and calibration steps were completed, some very simple tests were devoted to certify the
PR performance.
A first test certified the repeatability error of the measurement of the coordinates of the sensor fiducial marks with
the PR. During this test the camera was placed 100 times in a fixed position with respect to the silicon marker (e.g.
50-100µm away), and the PR routine was called to find the center of the fiducial mark. The distributions of the
coordinates of X and Y (Gantry Coordinate System) were plotted, evaluating their widths. A second test certified
the repeatability of the PR measurement, changing the starting point around the position of the target. This was
done by placing the camera at the corners of a grid centred on asilicon fiducial mark 100 times (e.g. 100µm x
100µm in steps of 10µm) and finding the centre of the model with PR. Then the distributions of X and Y of the
found image (MMI coordinates) were plotted and their widthsevaluated.

4.3 Pick-and-Place precision

During this test, a sensor was picked up and placed down 100 times and the distribution of the differences in the
fiducial marks coordinates from one step to the next one were plotted, evaluating their mean values and widths.

Table 2: Precisions for Center qualification.

Bari Gantry Perugia Gantry
TEST σX (µm) σY (µm) σX (µm) σY (µm)

MANUAL POSITION REPEATABILITY 0.9 1.1 0.5 0.9
PR INTRINSIC REPEATABILITY 0.05 0.06 0.5 0.5
PR GLOBAL REPEATABILITY 1.2 1.6 0.5 0.5
PICK AND PLACE 1.04 1.28 1.2 1.4
CORRECTION FOR ROTATIONS SINUSOIDAL BEHAVIOUR SINUSOIDAL BEHAVIOUR

SMALL CORRECTIONS SMALL CORRECTIONS

4.4 Corrections on the rotations

During this test, a sensor was picked up, rotated and placed several times in order to certify the whole gantry
rotation operation errors. To perform this test, the suggestions of the Lyon group that strongly contributed to the
uncovering of theθ motor anomaly were followed.
A sensor was fixed with a vacuum on the gantry assembly plate, and the coordinates of two fiducial marks, A and
B, were measured to define the initial angleθinit with respect to the Y axis. Then the pick-up tool was moved
to the center of the sensor and lifted and a (small)θrot rotation was performed before replacing it on the plate.
Finally, the new coordinates of A and B were measured to obtain theθfinal final. The corresponding error on the
rotation was:

δθrot = θfinal - (θinit + θrot)

This procedure was repeated several times, starting from the actual position of the sensor, with differentθrot

ranging from -5 to 5 mdeg and at the end a correlation plotδθrot vs θrot was collected. After the measurements
the following correlation was found :
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Figure 30: Correction on rotation Figure 31: Hybrid fast test

f (θrot) = a + bθrot + c cos (θrot) (See Figure 30).

Thus the effectiveθeff
rot rotation required for the desiredθrot rotation, was:

θeff
rot = θrot - f (θrot)

The observed sinusoidal behaviour was strongly suppressedafter the insertion of the custom gear box mentioned in
section 3.1; measurements performed following the method here described gaveδθrot values which did not exceed
3 mdeg.

5 Gantry centre assembly procedures
In the present section, the complete set of procedures followed during the module assembly in the TIB/TID Gantry
centres, to ensure uniform procedures and assembly quality, is described.

5.1 Reception and registration

The first operation consisted of receiving the boxes containing the components (frames, hybrids, sensors) and
scanning their barcodes to register the reception of the components in the construction database.

5.2 Handling rules for components

Carbon fibre frames were, if possible, picked up only by the edges using gloves for handling. The hybrids were
touched only on cable or ceramic edges if possible, using gloves for handling and anti electrostatic discharge (ESD)
wrist straps and exercising extreme care in order to avoid damaging components or wire bonds and touching the
pitch adapter edges and corners. The sensors were almost always manipulated at their edges by ESD vacuum tools
with soft suction cups. In rare cases they were handled wearing gloves. The storing occurred in sealed containers
except when inspecting or preparing sensors for assembly.

5.3 Storage rules

All components (frames, hybrids and sensors) were stored inthe clean room (class 1000) in a dry (RH less than
50%) environment with a constant temperature of about 23oC; furthermore, hybrids and sensors were kept inside
ESD safe dedicated boxes.
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5.4 Visual inspection of components

During this inspection, a check for damage of frame structure, inserts, components, cable and connectors was
done, together with a check of the cleanliness of surfaces tobe glued (cleaned with isopropanol only if surface
contamination was suspected) and a check for proper flatnessand correct glue contact on the kapton.
The hybrids were inspected for cable, connector, ceramic and pitch adapter damage. If any damage was found, a
further inspection under a stereo microscope was done. The surfaces to be glued and the pitch adapter, if a lack of
cleanliness was apparent and surface contamination was suspected, were cleaned with isopropanol alcohol.
The sensors were inspected under a microscope and cleaned with isopropanol alcohol if necessary. The sensors
with observed damage were set aside and not used for assemblyand a note was put into the database to that effect.

5.5 Pre-assembly hybrid fast test

After reception and an optical inspection, an automated fast test using the ARC system [12] (see Figure 31), which
checked the basic functionality of all the ICs on the hybrid (APV, DCU, MUX, and PLL), was done and the results
were stored in a local file.
After the fast test, a series of more detailed tests were performed to study the behaviour of the pedestals, noise,
common mode and pulse shape of the APVs composing the hybrid,operating in deconvolution mode or peak
mode, both with the inverter on and off. After assembly, the same tests were performed for each of the first 100
assembled modules.
As the results indicated that assembly by the gantry did not cause large modifications of the hybrid performance,
after the first 100 modules, the tests were done on a sample basis that is on one assembled module out of nine,
which was the contents of one transport box.
The incoming hybrids were classified in this way:

Grade A if the hybrid had less than 1% bad channels
Grade B if the hybrid had between 1% and 2% bad channels
Faulty if the hybrid had more than 2% bad channels

If the results differed from the similar test performed prior to shipping the hybrid to the assembly center, thus
indicating possible damage, the hybrid was visually inspected. Bad hybrids were set aside for return to the hybrid
bonding and testing centre for repair.

5.6 Operator actions during assembly

5.6.1 Preparation of the assembly plates

The first operation consisted of mounting an empty assembly plate and supply plate on the gantry base plate and
inspecting them, cleaning as necessary the critical surfaces on those plates (vacuum chuck surfaces) with iso-
propanol. Then the sensors were fixed on the supply plate by the operator, who manually manoeuvred a dedicated
tool (see Figure 32) until the sensor butted against the positioning pins mentioned at the end of section 3.2. The
operator then verified the association of the sensor ID and module position.
The frames were fixed on the assembly platform, taking care not to damage the positioning pins. The operator
verified the association of the frame ID with the module position. The hybrid pickup bridges were placed above
each hybrid using the positioning plate and the hybrids wereinstalled on the assembly platform as described in
section 3.4, taking extreme care in handling the hybrid because there were already wire bonds between the hybrid
and the PA and also because the PA was very fragile.
A piece of tape was placed on the assembly plate to be used during the glue test before the glue dispensing.

5.6.2 Glue mixing and syringe filling

During the module assembly, the Dow Corning 3140 silicone glue [8] was used to fix the sensor on the kapton
already glued to the carbon fibre frame whereas the General Electric RTV12 two-component epoxy glue was used
to fix the hybrid. The choice of the two glues was made with respect to radiation hardness and elasticity, in order
to prevent damage of the sensor due to mechanical stress of the module during its operation. The RTV12 glue was
a two-component silicon glue, made of a RTV12A base compoundand a RTV12C curing agent [9]. The glue was
mixed on a flat glass vessel and put on a precision scale (1 mg) to measure the weight of the two components.
Two pipettes, 0.2 cc and 2 cc, respectively, were used to get the required quantity of the components from their
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Figure 32: Sensor tool Figure 33: MMI user interface panel

larger containers. Approximately 3 grams of RTV12 glue was needed to glue four hybrids (one full assembly
plate job). The RTV12A base compound was mixed with the RTV12C curing agent in a 20:1 ratio. The two
components were mixed very slowly with a small flat tool, in order to avoid air bubbles in the mixture. Due to
the low viscosity, the RTV glue line tended to be too thin (fewtens of microns); this could be corrected by the
addition of a filler, as a mechanical spacer between the surfaces. Suitable filler was a very low percentage (1%)
of non-abrasive glass bubbles 3M Scotchlite type K37 [11] which was graded to have a maximum of 85 microns
of particle size. The glass bubbles were then added and mixedtogether with the RTV12 glue, using a mask to
avoid inhalation. A vessel containing the mixture was then put in a dryer for 5 minutes under a vacuum where the
air bubbles introduced during the mixing flushed out rapidly. A syringe was filled with the mixture to about half
of its capacity. To remove the air again after filling, the syringe was put in the dryer for an additional 5 minutes.
After removing the air, the mixture remained usable for about one hour, which was long enough to cover the full
assembly time for one assembly plate. After all these mixingoperations, the syringe was put into the syringe tool
and placed on the tool rack, ready to be used. A quantity of DC 3140 glue was drawn directly from the tube to fill
a syringe to about 4 cc, then put in the syringe tool and placedon the tool rack.

5.6.3 Equipment initialization

First of all the PC was switched on together with the DR500 drive chassis of the gantry machine and the I/O
box. Then the emergency stop micro-switches were tested manually, and the camera light and the line generator
were switched on. Afterwards the gantry module assembly program was started using the MMI user interface (see
Figure 33) . The vacuum valves were reset and the number of modules was entered by the operator. The program
opened the vacuum valves for sensors, frames and hybrids of the modules to be assembled.

5.6.4 Assembly platform position check

Using the joystick to move the camera, the operator found themarker position on the assembly platform. If the
coordinates of the fiducial marks were as expected (within 5µm), then the nominal position of frame pins with
respect to the assembly platform, previously measured, were used. Otherwise, the pin positions were measured
and the centre was computed by using 3 points of a circle.

5.6.5 Sensors and hybrids position check

Using the pattern recognition code, the marker positions onsensors were found and the rotation angle with respect
to the carbon fibre frame was computed. Then the coordinates of the center of the sensors were computed by the
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MMI code. The marker positions on the hybrids were found in the same way as the sensors and their rotation angle
with respect to the carbon fiber frame was then computed. Withthese acquired data, the pickup position of the
hybrids was then evaluated. At this time, the sensor syringetool with the glue was put on the tool rack.

5.6.6 Glue dispensing on Kapton of the frame

The robot picked up the silicon syringe tool from the tool rack and tested the perpendicularity of the syringe needle
with the dedicated tool already described in section 3.4. Before dispensing the glue, a test was performed by the
robot, consisting of going to a coloured adhesive tape attached to the assembly platform and dispensing glue in
a line with the appropriate speed according to the glue type.This operation repeated automatically until operator
acknowledgement. Then the glue was dispensed on the carbon fibre frame and on the thermistor pad following the
pattern shown in Figures 34 and 35.

5.6.7 Sensors pick up and placement

After dispensing the glue, the robot picked up the sensor tool and moved to the evaluated sensor centre. Then it
stepped down with a step of 100 microns until the contact switch gave a signal. Next the vacuum line was opened
on the tool head to pick up the sensor and closed on the supply platform where the sensor was fixed. After that,
the robot raised the sensor at a certain height, rotated it according to the previously computed angle and moved it
to the sensor center position on the assembly plate where theframe was fixed. Finally the sensor was lowered in
small steps until the micro-switch activated.
An alternative way, used primarily in the Bari centre beforethe installation of the harmonic drive that enhanced the
precision of the rotations, mentioned in section 3.1 , was the pre-alignment of the sensor on the supply platform,
before moving it to the assembly platform. To do that, the sensor was picked up, rotated and placed many times
automatically, until the angle computed after the measure of the coordinates of the fiducial marks with respect the
Y axis in the module reference frame was less than 3 mdeg. Experience showed that multiple rotations of very
small angles were affected by an error smaller than that associated with a single rotation by a larger angle.
The results obtained with this method were comparable with those obtained using the custom gear box (mentioned
above), but the assembly time was longer.
In the case of the stereo modules, to avoid the initial large rotation of 100 mrad, the sensors were initially fixed on
the supply plate with an angle as close as possible to the desired value, with respect to the Y axis in the module
reference frame.

5.6.8 Glue dispensing and hybrid movement

Figure 34: Glue pattern for TIB modules Figure 35: Glue pattern for TID modules

Before moving the hybrids, the coordinates of the two sensorfiducial marks nearest to the electronic side of the
module where the placement of the hybrid was planned were measured with the pattern recognition routine and
the parameters of the line were computed. The same procedurewas used for the coordinates of the fiducial marks
of the hybrid pitch adapter placed on the assembly plate. Then the angle between the two lines was computed by
the program, in order to align the edge of the hybrid pitch adapter to the edge of the sensor. This ensured that the
bonding pads of the sensor and the hybrid pitch adapter wouldbe well aligned, thus facilitating the future bonding
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operation.
After that, the RTV12 hybrid syringe glue was put on the tool rack and a glue test was performed as in the previous
steps, but using a different coloured tape. Then the robot picked up the hybrid syringe tool and dispensed the glue
on the frames. Finally the hybrids under their bridges (see section 3.3) were picked up and placed on the correct
position following the same steps as used for the sensors.

5.7 Post-assembly procedures

5.7.1 Glue curing

At the end of all the assembly steps, the completed assembly platform had its vacuum switched to the external
source and was put in the curing station as mentioned in section 3.5. After an overnight curing, the glue samples
on the coloured tape were examined to test for proper curing.The glue joints on the module were examined both
prior to removal of the modules from the platform (checking the top side) and after removal (checking the bottom
side) and the correct thickness of sensor gluing was checkedvisually.

5.7.2 After curing module survey

After the end of the glue curing operations, the assembly plate was again placed under the assembly robot and
held with a vacuum while the after-curing MMI program was runby the operator. During this run, the barcodes
of the modules were scanned and the frame pin positions of allmodules were measured by the pattern recognition
system, thus allowing the survey of the sensor and hybrid marker positions after curing. These were written in the
database and in text files on a local disk. On a sample basis, a plate was surveyed on a CMM machine to check the
consistency of the acquired position data.

5.7.3 Final operations and transportation

Figure 36: Module carrier Figure 37: Transportation box

The assembled, cured and surveyed modules were removed fromthe assembly plate. A delicate operation was the
placement of each single assembled module in a dedicated module carrier as shown in Figure 36.
Modules were mounted on NEMA G10 carrier plates for ease and safety of handling. Furthermore, this carrier, on
which the module was secured by holding bars and screws, was sandwiched between an aluminium cradle on the
bottom and a Plexiglas lid on the top, for transport and storing. The frames and the hybrids cables were fixed in
the carrier using special screws and a Plexiglas cover lid was used to prevent any damage to the module during its
manipulation.
Spacers (blue screw sheaths) ensured proper clearance between the lid and module parts. Similarly safe clearance
was insured by pillars between the carrier and the aluminiumcradle. Sufficient free space between both the
aluminium cradle or Plexiglas cover lid and the module carrier and upward-folded sides of the aluminium cradle
ensured that the modules were physically isolated during transport and ordinary handling.
A fast test of the hybrids similar to that already mentioned during pre-assembly operations was performed on a
sample basis. After this last test, the shipment of the modules from the assembly to the bonding centres occurred
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via commercial courier, using sturdy plastic boxes with internal Styrofoam cushioning on all sides (Figure 37).
Each box could accommodate up to nine modules. These, sitting on their aluminium cradles with cover lids on,
were kept from moving during transport by snugly inserting the cradle ends into slots carved in the Styrofoam
cushioning of the box interior. For added safety during transport, the plastic box was sealed in a polyethylene sack
to keep moisture out and was in turn enclosed in a larger box with additional soft padding on all sides.

5.8 Database operations

In the module assembly organization of the CMS Tracker, recording the characteristics of each produced module
into an overall general Tracker Construction Database was required in order to have the information available dur-
ing further operations such as quality control, assembly into the structure, Tracker alignment and so on. A gantry
DB library was implemented to produce an output file for each assembled module containing all the information
regarding the assembly phase in the format required by the Tracker DB. The comparison of the assembly parame-
ters such as alignment angles or sensor and hybrid positionswith certain input thresholds, was used to set a quality
flag for each module after each action. The DB library allowedthe assembly MMI program to communicate the
information about the produced modules to the Tracker DB automatically via its output file (see Figure 38).

Figure 38: Gantry DB library

5.8.1 Database actions before the assembly job: DB library

Using the DB interface included in the assembly MMI code, theinput database file with input parameters i.e. the
maximum accepted value for the alignment angle, etc. was read. Some starting parameters (gantry ID, module type,
etc.) were read from a local text file, whereas others (i.e. the barcode numbers of the modules to be assembled)
were inserted by the operator. Temperature and humidity were automatically written by a digital thermometer in
the output file together with the date and time taken from the PC clock.

5.8.2 Database actions after the assembly job

After sensor assembly, a validation flag for the assembling operation was automatically set. The flag was set to
: 0 : if everything was okay otherwise the flag was: 1 : flag2 : flag3 : if something broke or the assembly failed.
The flag codes were dependent on the module type.
For the sensors’ assembling case, a flag for the hybrid assembling phase was set. The sensors’ and hybrids’ fiducial
marks were then compared with the nominal marks read from an input database file. The alignment angles were
computed from the actual fiducial marks and compared with thenominal angles. More details will be given in
the section 6.1. A flag was automatically set after sensors’ position check. If the measured values were within
specifications, this flag was: 0 : . If outside specifications but the module could be accepted,this flag was
: 0 : flag2 : , flag2 being a positive number. If the module could not be accepted,this flag was: −3 : .
A flag was automatically set after the hybrid position check similar to the sensors’ position check case.
All the data and flags thus generated were recorded into an output file, in XML format, which was then inserted
into the construction database.
For each module cured, the program read the information fromthe temporary file, calculated the curing time,
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asked for a comment on the visual inspection of the glue and recorded this information into an output file, in XML
format, inserted into the general database.

6 Module assembly quality control
The implementation of all the controls made on the results ofthe glue curing, as described in the procedure section,
assured the good quality of the modules, taking into accountboth the mechanical and geometric aspects directly
connected to the precision of the placement of the sensor with respect to the precision pins located in the carbon
fibre frame.

6.1 Module survey directly under the robot after assembly

Figure 39: TIB module Figure 40: TIB module schematic

Immediately after the assembly phase and before the glue curing, while still on the gantry, the position of the
fiducial marks of the sensors in the frame coordinate system as shown in Figures 39 and 40, were measured with
the help of the pattern recognition routine. Thus, for each module assembled, the coordinates of the four fiducial
marks were written in the database together with their differences from the nominal values:

∆xi = xmeasured
i − xnominal

i (i = 1,4)
∆yi = ymeasured

i − ynominal
i (i = 1,4)

and along with the computed tilt angleθ for the r-φ modules and∆θ = θcomputed − θnominal for the stereo
modules, in order to certify the position of the sensor with respect to the carbon fibre frame.
The same was done for the hybrids where the two fiducial marks were measured on the pitch adapter:

∆xi = xmeasured
i − xnominal

i (i = 1,2)
∆yi = ymeasured

i − ynominal
i (i = 1,2)

The module validation after assembly was done considering the alignment of the sensor with respect to the frame
reference system, assigning a flag in the following way:
A flag (0) was assigned to those modules where the following condition was verified:

|∆xi| < 30µm, and|∆yi| < 50µm and|∆θ| <10 mdeg (Class A)
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A flag (1) was assigned to those modules where the following condition was verified:

|∆xi| < 39µm, or |∆yi| < 65µm or |∆θ| <13 mdeg (Class B)

A negative flag (-3) was assigned to those modules where it wasverified the condition:

|∆xi| > 39µm, or |∆yi| > 65µm or |∆θ| >13 mdeg (Faulty)

Concerning the module validation, only the sensor positions were considered, while the quality of the placement
of the hybrid on the module was assessed only to provide inputinformation to the centre which would perform
the next step of the module production that is bonding between the pitch adapter and the sensor bonding pads. A
warning flag was written in the Tracker DB if the hybrid misalignment exceeded 200µm or its tilt angle exceeded
200 mdeg.
At the end of the assembly period, the final distribution of module grade was 97% Class A , 2.6% Class B and
0.4% faulty modules. Both class A and B modules were considered suitable for mounting in the Tracker, with a
preference for the class A modules in the innermost regions,where the highest precision is needed.

6.2 CMM sample survey of modules

Both Bari and Perugia assembly centres possessed a MitutoyoCMM machine with the precision of about 3µm.
One out of each 100 modules was surveyed in the CMM machine in order to monitor the calibration of the robot.
The differences in the measurements of the coordinates of fiducial marks of the modules did not exceed 10µm.

6.3 Precision results on assembled modules

As mentioned in section 6.1, the mechanical precision of themodules was checked before and after glue curing by
measuring the position of fiducial marks on sensors with respect to precision pins on the support frame.

Figure 41: Precisions in Bari vs. module number Figure 42: Precisions in Perugia vs. module number

In Figures 41 and 42, the quantities∆x, ∆y and∆θ of one of the fiducial marks vs. the assembled module
number are shown for both Italian assembly centres.
In this representation it is possible to see the similar quality of the two assembly systems with respect to the preci-
sion and its time dependence, since the module number corresponds to its position in the fabrication sequence.
In Figures 43 and 44, the∆x and∆y distributions for the TIB and TID modules for all the statistics (3922
modules assembled) are shown. The blue arrows mark the ClassA module acceptance limits while the black ones
are related to the Class B limits.
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Figure 43: Precisions on X coordinate Figure 44: Precisionson Y coordinate

Figure 45: Precisions on angle

These distributions are well fitted by a Gaussian distribution function where:

< ∆x > = - 2.0µm, andσ∆x = 9.6µm
< ∆y > = - 0.2µm, andσ∆y = 8.8µm

Concerning the distribution of the tilting angles∆θ, shown in Figure 45, the sum of two Gaussian distribu-
tions is needed to fit the data, where:

< ∆θ >1 = 1.6 mdeg, andσ∆θ
1 = 3.7 mdeg

< ∆θ >2 = - 6.4 mdeg, andσ∆θ
2 = 2.4 mdeg

In the same figure the arrows have the same meaning as the previous ones.
The distribution with the mean value around - 6 mdeg is due to the fact that sometimes there was a set of condi-
tions related to a geometrical modification (a change of planarity of the assembly platforms or modifications in the
support tools) that caused a shift in rotation. After a shortdelay to determine this issue, a correction was applied
by the assembly code with an opposite shift. These modules, which were 8.5 % of the total number, were accepted
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as they did not exceed the Class B module limits and thus were sent on to the bonding centres.

7 Timeline of the TIB/TID module assembly task
As observed in Figure 46, the production, which started in February 2004, suffered two long periods of interrup-
tion, essentially due to problems during hybrid construction.
A more continuous flow of hybrid (violet diamonds in figure) was established from January 2005 to February 2006.
Nevertheless, as demonstrated in the previous section, this fact did not cause a dramatic change in the quality of
the assembly job in terms of the precision achieved.
During the whole production period, a combined peak assembly rate of 21 modules/day and a mean assembly rate
of 9 modules/day was achieved by the two Italian assembly centres.

Figure 46: Module assembly timeline

8 Conclusions
In this note several aspects related to the robotic assemblyof about 4000 TIB and TID modules have been described
in detail.
Our experience demonstrates that it is possible to assemblea very large number of silicon strip detectors in a
reasonable amount of time without compromising the required mechanical precision (10µm). The robot was
reliable. In fact neither system required servicing throughout the entire assembly process or mishandled module
components. On the other hand, it took a significant effort todevelop the robotic system. A set of well-defined
procedures assured uniform quality of the assembly betweenthe two Italian production sites and allowed for the
completion of the project within schedule once the major problems related to the hybrids were solved.
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