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A bstract
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1 The cross section in the soft 1Im it and in the hard lm it

T he determ ination of higher{order corrections to collider processes [1], and speci cally H iggs
production [2]in perturbative Q CD is becom ing increasingly In portant in view of forthcom ing
phenom enclogy at the LHC . T he dom inant H iggs production m echanisn in the standard m odel
is inclusive gluon{gluon fusion (gg ! H + X ) through a top loop. The next{to{leading order
corrections to this process were com puted several years ago [3,4]and tum out to be very large
(of order 100% ). T he bulk of this large correction com es from the radiation of soft and collinear
gluons [5], which give the leading contribution in the soft Iim it in which the partonic centerof-
m ass energy $ tends to the H iggsm assm fl ,and which at LHC energies tums out to dom nate
the hadronic cross section after convolution w ith the parton distrdbutions.

T his dom inant contribution does not resolve the e ective gluon-gluon-higgs (ggH ) coupling
Induced by the top loop. A s a conssquence, the NLO correction can be calculated [6,7] quite
accurately in the Imitm. ! 1 , where it simpli es consderably because the ggH coupling
becom es pointlike and the corresponding Feynm an diagram s have one less loop. R ecently, the
NNLO corrections to this process have been computed in them . ! 1 Iimit [8]. The NNLO
result appears to be perturbatively quite stable, and this stability iscon m ed upon inclusion [9]
of term s In the next few orders which are logarithm ically enhanced as 8! my , which can be
determ ined [10] using soft resum m ation m ethods. T his suggests that also at NNLO the large
m ; approxin ation should provide a good approxin ation to the yet unknown exact result.

H ow ever, this isonly true for the total inclusive cross section : for exam ple, if one looks at the
production of H iggs plus gts, if the transverse m om entum  is lJarge the In nitem . approxin ation
fails [11]. Indeed, even though them { independent contribution from soft and collinear radiation
tums out to dom inate the cross section at the hadronic level, it does not necessarily provide a
good approxin ation to the partonic cross section in a xed kinem atical region. In particular,
the In nitem : approxin ation, which becom es exact in the soft 1im it, fails In the opposite (hard)
Iim it of lJarge center{of{m ass energy. This is due to the fact that the ggH vertex is pointlike
In the n nite m . lin it, whereas for nite m . the quark loop provides a form factor (as we
shall see explicitly below ). Clearly, a point{lke interaction has a com pletely di erent high
energy behaviour than a resolved interaction which is softened by a form factor: in fact one can
show [12]that a point{like interaction at n{th perturbatie order has double energy logs while
a resolved interaction has only single logs.

Thismeansthatas8! 1 thegg! H + X partonic cross section * behaves as
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Hence, as the center-ofm ass energy grow s, eventually m. ! 1 ceases to be a good approxi-
m ation to the exact result. It is clear from eg. (1) that this high energy deviation between the
exact and approxin ate behaviour is stronger at higher orders, so one m ight expect the relative
accuracy of the In nite m . approxin ation to the k{th order perturbative contribution to the
cross section to becom e worse as the perturbative order increases. C onversely, this suggests that



it m ight be worth determm ining the high energy behaviour of the exact cross section and use the
result to in prove the in nite m  result, which ismuch less di cult to determ ine. Eventually, a
fi1ll resum m ation of these contributions m ight also becom e relevant.

The leading high energy contrilbutions to this process in the in nite m  lin it have In fact
been com puted som e tin e ago in R ef. [13]: this am ounts to a determ ination of the coe cient of
the doublk logs eg. (1), In the pointlike case. In this paper, we com pute the coe cients of the
single Iogs eg. () in the resolved (exact) case. O ur result takes the form of a double integral,
whose num erical evaluation order by order in a Taylor expansion gives the coe cient of the logs
eg. (1) (at the Iowest perturbative order the integral can be com puted in closed form ). A frer
checking our result against the known full NLO result of Ref. [3,4], we will discuss the way
know ledge of the exact high energy behaviour of the cross section at a given order can be used
to In prove the n nite m . result, using the NLO case, where everything is known, as a testing
ground. W e will show that in fact, at NLO the di erent high energy behaviour eg. () accounts
form ost of the di erence between the exact and In nitem . cross sections. W e w ill then repeat
this analysis In the NNLO case, where only the n nitem ;: result is currently known. W e w ill
show that in fact at this order the contribution of the logarithm ically enhanced temm s which
dom inate the partonic cross section at high energy is substantial even form oderate values of the
partonic centerofm ass energy, such as §  2m ﬁ .

The calculation of the leading high energy logs is presented n section 2, while In section 3
we discuss its use to nprove the NLO and NNLO results. The appendix collects the explicit
expressions of the form factors which param etrize the am plitude for the processgg ! H with
two o {shellghions, which is required for the calculation of sect. 2.

2 D eterm ination of the leading high energy logarithm s

2.1 De nitions, kinem atics and com putational procedure

W e com pute the total inclusive partonic cross section “(gg ! H + X ) In an expansion in power
of 4,asa function of the partonic centerofm ass energy $:

Mgg ! H + X )= "y si sYemi (2)

w here the din ensionless variables and y: param etrize respectively the partonic center-ofm ass
energy and the dependence on the top m ass:
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T he corresponding contrilbution to the hadronic cross section can be obtained by convolition
w ith the gluon-gluon parton lum inosity L :

Z 1
2 A h 2
gg(niYemy ) = dw "o si—iYempg L(w) 5)
N W
Z 1
dX2 W 2 2
Lw) — Gy, —iMg Gh, XMy (6)
w X2 X2

where gy, (x;;0 2) is the glion distrdbution in the i-th incom ing hadron and in eg. (3) the dim en—
sionless variables ; param etrizes the hadronic center-ofm ass energy s

2

m
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Note that 0 h 1, and that if v < % then the interm ediate tt pair produced by the
gluon-gluon fusion can go on shell.

It is convenient to de ne a din ensionless hard coe cient function C ( @ fl )5 Vi)

“og si iYemy = oye)C (s )i syve) (8)
(m 2 m2) °
C(smi);sve) = Q@ )+ —2cW(y0+ —2 c@Cw); )
where 4 (1 ) is the leading order cross section, determ ined long ago in ref. [141:
P_
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W e also de ne the M ellin transform
Z
C(mi)N;y)= d " 'C(.mg); ive)i (12)

denoted w ith the sam e sym bol by slight abuse of notation.

W e are interested in thedetermm nation of the leading high energy contributions to the partonic
cross section “(gg ! H + X ), nam ely, the leading contributions to C ( S(mﬁ ); ive)as VO
toallodersin ;(m7 ). Orderby order in ¢ (m 2 ), these correspond to the highest rightm ost
pole n N in the expansion In powers of ;Mm% ) ofC ( sm% );N ;vi). The kading singular
contributions to the partonic cross section “(gg ! H + X ) to all orders can be extracted [12]
from the com putation of the cross section for a slightly di erent process, nam ely, the cross
section , (gg ! H ) computed at leading order, but w ith incom Ing o —shell gluons, a suitable
choice of kinem atics and a suitable prescription for the sum over polarizations.

The procedure used for this detem ination is bassed on the socalled high energy (or k.)
factorization [12], and consists of the follow iIng steps.



One com putes the matrix element M _, (k; ;k;) for the leading-order processgg ! H at
leading order w ith two ncom ing o —shell gluons w ith polarization indices ; and color
indices a;b. Them om enta k;, k, of the gluons in the centerofm ass fram e of the hadronic
collision adm it the Sudakov decom position at high energy

ki= zp;+ Ki; (13)

where p; are Iightlike vectors such thatp;  p#é 0,and k; are transverse vectors, k;  p= 0
for all i;5j. T he gluons have virtualities

ki=ki= *%;7: (14)

The cross section , (gg ! H ) is com puted averaging over incom ing and summ ing over
outgoing spin and color:

11 00X X
o = T M W " k) T (e)" (0k)dP; (15)

where the ux factor
J=2k: k ki k) (1o)

is determ ined on the surface orthogonalto p;; p, 3. (13), and the phase space is

2 1 + k
-2 1 xrkd
mH Z mH
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Note that the kinem atics fora 2 ! 1 process is xed, so eg. (13) gives the total cross
section and no phase{space integration is needed.

T he sum s over gluon polarizations are given by

g ) (k)= 2 5o 152 18
( i) ( i)_ :kzj, 1= r& . ( )
Here, the virtualities w ill be param etrized through the din ensionless variables
*:F
5 > (19)
I'nH
T he reduced cross section , obtained extracting an overall factor m 51 ,
mi oo (99! H) (Ve 17 2i i2)i (20)

is then a dim ensionless function (y¢; 1; 2;’ ;z) of the param eter v, . (4) and of the
kinem atic variables 1, ;,the relative angle ' of the two transverse m om enta

k
o sl LK (21)
Ki1Jk2J
and ) )
m m
z = = = : (22)

2z1z;p0 P 2(ks kK ki k)
N ote that, In the collinear Iim it k;;k, ! 0,z eg. (223) reduces to  eg. ().



T he reduced cross section is averaged over ’ , and its dependence on z 3. [27) isM ellin—
transform ed : 7, 1 7, 5
N 172)=  dzz' ' — (yeiai2ifi2): (23)
0 0 2
T he dependence on ; is also M ellintransform ed, and the coe cient of the collinear pole
nM 1, M is extracted :
Z 1 Z 1
NN GM M o)=M M,  dy  do ' 757 NG o) (24)
0 0
N ote that the integralin eg. (24) hasa sim plepole in bothM ; = 0andM , = 0. Theresdue
of this pole is the usual hard coe cient function as determ ined In collinear factorization,
which isthusC (N )= h(N ;0;0).

T he leading singularities of the hard coe cient function egq. (12) are obtained by expanding

in powers of ¢ at xed =N the function obtained when M, and M, In eq. (24) are
denti ed with the lading singularities of the Jargest eigenvalue of the singlet anom alous
din ension m atrix, nam ely

m2 o(e)C( smZ)N;y)=h N; g N— ;s N— L+ 0 ()]t (25)

Here,  isthe leading order term in the expansion of the large eigenvalue ¥ of the singlet
anom alous din ension m atrix In powers of ¢ at xed (=N :

TOGN)= o = o+ — o+ i (26)

with [15]

s X CA s ;
s = Cn i Go= 1707072 (3);:::; (27)

where C, = 3.

So far, this procedure has been usad to determ ine the leading nontrivial singularities to the

hard coe cients fora an allnum ber of processes: heavy quark photo{ and electro{production [12],
deep {Inelastic scattering [16 ], heavy quark hadroproduction [17,18], and H iggs production in the
In nitem ¢ Im it [13].

C ross section for H iggs production from two o —shell gluons

T he leading{order am plitude for the production of a H iggs in the fuision of two o {shell gluons
w ith m om enta k; and k; and color a b is given by the single triangle diagram , and it is equalto
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where the strong coupling is ¢ = 49—5 and the top Yukawa coupling is given by hy = % n

term s of the H Iggs vacuum -expectation value v, related to the Fermm i coupling by Gy = % .
T he din ensionless form factors A1 ( 1; 2;v:) and A, ( 1; 2;Y:) have been com puted in ref. [11];
their explicit expression is given in the appendix. T hey were subsequently rederived in Ref. [19],
where an expression for the H iggs production cross section from the fusion oftwo o <hellgluons
was also determ Ined, but was not used to obtain the high energy corrections to perturbative
coe clent fuinctions.

T he spin—- and colouraveraged reduced cross section eg. (20) is then found usihg eg. (15),
w ith the phase space eg. (17). W e get

v2 o1 S| P

’ p_ 3 2 2 4
(Yes 17 257 352)=8 2 7 Gemy —A; Ay - 1 1 2 1 2 COS : (29)
12 2Z Z

Because of them om entum {conserving delta, the M ellin transform w ith respect to z is trivial,
and the reduced cross section eg. (23) is given by
Z
P 2 qr 1 1

N; 1;,)=8 22 2Gem?2v? - - 30
( r 17 2) se F Hyt . 2 (1+ L+ Z)N (1+LJ COS’)N ( )

1
Ao+ 2R = R FAL+ 1+ 2) AAy+ AA,) cos”
12

w here we have de ned the din ensionless variable

4.1

T+ 1+ P Gh

T he three form factorsA ; are Independent of / , so all the angular integrals can be perform ed
In temm s of hypergeom etric functions, w ith the result

p— 1 Al T N N+ 1
N; 1;,)=8 2° 2Gym?2y? Fo(—;———;2;
( 1112) s FmHyt(1+ L+ 2)N 2 21(21 2 /r)
P O e P s VO SR W 5 Y LSS P
4 2L 1 2 7 2 r=2r 1 2 3J2L1 2/ 2 rLr )
1 N+1N+2
N A 71+ 1+ 2) @,A,+AA,) 2F 1 ( ; 2; ) 1(32)
1+ 1+ 2 2 2

In the limit m. ! 1 , usihg the behaviour of the form factors eq. (60) the term in square
brackets in eg. (32) as well as the term proportional to A5 are seen to vanish. The ram aining
term s, proportional to A1, give the result in the pointlike 1m it. T he reduced cross section in
this lim it was already derived In ref. [13] (see eg. (9) of that reference): our result di ers from
that of ref. [13], though the disagreem ent is by tem s of relative O (N ), hence it is Inm aterial
for the subsequent determ ination of the leading singularities of the hard coe cient fuinction.



2.3 H igh energy behaviour

The leading sihgularities of the coe cient function can now be determm ined from the M ellin
transform h(N ;M ;;M ,) eg. (24) of the reduced cross section eg. (32), ettihg M ; = M, =

s( N ) according to 3. (29), and expanding in powers of  (ie. e ectively in powers of
M,,M;)and then in powers of N about N = 0. In the pointlke case (m: ! 1 ) the M ellin
integral eq. (24) diverges for allM ;M , when N = 0, and it only has a region of convergence
when N > 0. Asa consequence, the function h(N ;M ;M ,) eg. (24) has shgularities in the M
plane whose location depends on the value of N , nam ely, sin ple poles of the form Wlle : the
expansion In powers of M ; has nite radius of convergence M ; < N , leading to an expansion in
powers of 5+ and thus double poleswhen M ; = .

In the resolved case ( nitem ) we expect theM ellin Integral to convergewhen N = 0 at least
forO< M; < My, for some real positive M . W e can then sst N = 0, and obtain the leading
singularities of the coe cient function from the expansion in powersofM ofh(0;M ;M ), letting
M = 4. Thistumsout to be indeed the case: when N = 0, (N; 1; ») only dependson 1; »
through the form factors, and the com bination of form factors which appear In  &g. (32) is
regularwhen 1; , ! 0 (seeeq. (63)),while itvanisheswhen .; , ! 1 (seeeq. (64)). Hence,
wecan letN = 0in ,and get

hO;M ;M ,) = 8p§ 3 iGpmﬁzyf
+1 +1 1

MM, dlbfll dzlg“l Eﬁljz"' Lo RsT (33)

0 0
Because the term in square brackets in eg. (33) tends to a constant as .; », ! 0, the
integrals n eg. (33) have an isolated simplk pole n M ; and M ,, and thus the Taylor expansion
ofh(N ;M ;M ,)hasa nite radiusof convergence. W e can then determ ine the Taylor coe cients
by expanding the integrand ofeg. (33) and integrating term by tem . It follow s from egs. 2327)
that know Jedge of the coe cientsup to k-th order n both M ; and M , isnecessary and su cient
to determ ine the leading singularity of the coe cient function up to order ]§ .
Let us now detemm ine the leading singularities of rst three coe cients of the expansion of
the coe cient function e3. ([8). T he constant term determ ines the leading{order result , eg. (8):

my o(ye) = h(0;0;0): (34)

U sing the on-shell lin it of the form factors (see e. (63) of the appendix) In 3. (33) we reproduce
the welkknown result eq. (10).
T he next+to-Jeading order tem C “)(N ;y;) is determ ined by noting that
p_ Z +1
4 2% %GemlyM a " a0
0
zZ . .
’ dpi( ;0)F

A P-5, 2 2 24 .
h(0;0;0) 8 2 ° 2Gym2y?M dn ———=+0M%: ()
0

h@O;M ;0)



My C(l)(Yt) C(Z)(Yt)
110 | 5.0447 | 162570
120 | 46873 | 145133
130 | 43568 | 13.0155
140 | 4.0490 | 11.7196
150 | 3.7607 | 105919
160 | 34890 | 9.6058
170 | 32318 | 8.7406
180 | 29872 | 7.979%4
190 | 2.7536 | 7.3085
200 | 25296 | 6.7166
210 | 23140 | 61946
220 | 21057 | 5.7346
230 | 19037 | 53303
240 | 1.7072 | 49761
250 | 15151 | 46677
260 | 13267 | 44013
270 | 1.1409 | 41738
280 | 09568 | 39828
290 | 0.7731 | 3.8268
300 | 05884 | 3.7049

Table 1: Values of the coe cients eg. ([3d) and eq. (38) of the O ( ;=N ) and O (( =N )?) of the
leading singularities of the coe cient function C ( s (m 2 );N ;vi) eg. (I2).

Equations (2327) then inm ediately in ply that

Z
2(8 2)? w y ARl 0)F
1 20 dydsowe)? o d

(36)

T he value of the coe cient C ), determ ined from a num erical evaluation of the integral in
eq. (34), is tabulated in table 1 as a function of the H iggsm ass. Upon nverse M ellin transfor-
m ation, one nds that

J;noc‘“( ive) = CaC™(ye): (37)

The values given In table 1 are indeed found to be in perfect agreem ent with a num erical
evaluation of the snall lim it of the fuillNLO coe cient function C 4 ( ;vi) 4], for which we
have used the form given in ref. [20].

Tuming nally to the determ ination of the hitherto unknown NNLO leading singularity, we



evaluate the O (M ?) tem s in the expansion eg. (33): by using again egs. (2327) we nd

C2
CEM Gy = Cy ) [+ O ()]
Z
8 %) i d 70)7
C? (ye) = - € 5 g w SRl 03 (38)
L 30 dydsye 0 d
fe e 01 (1720
d, SRR PSR UL TR S S OIS
0 0 @ 1@ 2

Thevalie ofthe NNLO coe cientC ) (y;) obtained from num ericalevaluation of the integrals
in eg. (38) is also tabulated in table 1. T his is them ain result of the present paper.

3 Im provem ent of the NLO and NN LO cross sections

K now ledge of the leading small behaviour of the exact coe cient function C ( (mﬁ ); Vi)
eg. (8) can be used to in prove its determ ination. ndeed, as discussed in section 1, we expect
the pointlikke (m+ ! 1 ) approxin ation to be quite accurate at large , whereas we know that
it must break down as ! 0. Speci cally, the anall behaviour of the coe cient function is
dom inated by the highest rightm ost singularity n C ( s(m 2 );N ;v¢) eg. (I2), which for the exact
result is a k-th order pole but becom es a 2k-th order pole in the pointlike approxin ation. H ence
the pointlike approxin ation displays a spurious stronger grow th eg. (1) at sm all enough

H aving determ Ined theexact an all behaviourup toNNLO ,we can im prove the approxin ate
pointlike determ ination of the coe cient function by subtracting its spurious sm all grow th and
replacing it w ith the exact behaviour. W e discuss rst the NLO case, w here the full exact result
isknown, and then tum to the NNLO where only them ! 1 resul isavailable.

3.1 NLO results

At NLO the anall Dbehaviour of the coe cient function in the pointlke approxin ation is
dom inated by a double pole, whereas it is given by the sim ple pok eg. (38) in the exact case.
T his corresponds to an exact NLO contribution C %) ( ;vi) which tends to a constant at small ,
w hereas the pointlike approxin ation to it grow s as In

CP(;1) = A )+ 0 (); di()=Cc.mn + (39)
CM( v dP( v+ 0 (); d;Q( ive) = 3" (vi); (40)

where %) (v;) is tabulated in tabk 1, whil from Refs. 4,6,7]we get

o= & = (41)

TheNLO tem C Y ( ;vi) eq. (8) ispltted as a function of i g.[I, both in the pointlike
m¢! 1 ) approxination, and in its exact form com puted w ith increasing values of the H iggs
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Figure 1: The hard coe cient C ) ( ;y.) eg. (9) (parton{level coe cient function nom alized to
the Bom result) plotted asa function of . The curves from top to bottom on the left correspond
tome=1 (black),and tom.= 1709 G&V (rad),withmy = 130; 180; 230; 280 G &V .

m ass, ie. decreasing values ofy,.. It isapparent that the pointlike approxim ation isvery accurate,
up to the point where the spurious logarithm ic grow th eg. (39) sets in.
W e can construct an approxin ation to C Y ( ;y.) by com bining the pointlike approxin ation

w ith the exact anall behaviour: n .
i
c @y W1 )+ Al Cive) Al ) TO) (42)

where d& ( ;ve) and d;lo)jnt( ) are de ned as in eg. (40) and 3. (39) respectively, while T () is
an interpolating function, which wem ay introduce in order to tune the point where the an all
behaviour given by dé;l() ( ;¥t) setsin. Clearly,as ! O theapproxin ation eg. (42) reproduces the
exact an all behaviour of the exact coe cient function eg. ([40), provided only the interpolating
function Iim | (T ( )= 1. Furthem ore, asdiscussed in section 1, the behaviour of the coe cient
function C Y ( ;y¢) as ! 1 is to all orders controlled by soft gluon radiation, which leads to
contributions to C 4 ( ;y¢) which do notdepend on y: and divergeas ! 1. H ence, the pointlike
approxin ation is exactas ! 1. Because the functions d&)( ;Ve) and d;lo)jnt( ) are reqular as
! 1, this exact behaviour is also reproduced by the approxin ation eq. (42), provided only
Im , ;T ( )is nite. Hence, C M@P:( ;v,) reproduces the exact C Y ( ;y:)as ! 0 up to tem s
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Figure 2: The hard coe cient C Y ( ;yv.) eq. ) withmy = 130G eV (left)andmy = 280 G eV
(right). The solid curves correspond tom = 1 (black) and m = 1709 G&V (red), (sam e
as g.[). The three blue curves correspond to the approxin ation eg. (42[43), with k = 0
(dotdashed), k = 5 (dotted), k = 20 (dashed).

that vanish as ! Oand as ! 1 up to temm s that are nonsingularas ! 1, even when
T( )= 1.
N evertheless, wemay also choose T ( ) in such away thatT (1)= 0 (while T (0) = 1 always),
so that C Y ( ;v:) agrees w ith the pointlike approxin ation C *?( ;1 ) in som e neighborhood of
= 1. For lnstance, we can let
T()=(@Q ) (43)

with k real and positive, so that the rst k orders of the Taylor expansion about = 1 of
Cc Warpi( .y ) and the pointlike approxin ation coincide. By varying the value of k, we can
choose them atching point , such that C 1)#PP:( ;v ) only di ers signi cantly from the pointlke
approxin ation if < :a larger value of k leads to a sm aller value of .

In g.2 we com pare the approxin ate NLO tem eg. (42) to the exact and pointlke results,
fortwo di erent valuesofy,,with T ( ) given by 3. (43) and a choice ofk which Jeads to di erent
values of the m atching between approxin ate and pointlike curves. It appears that an optin al
m atching is obtained by choosing k in such a way that the approxin ation eg. (42) m atches
the pointlke result close to the point where the logarithm ic grow th of the latter intersects
the asym ptotic constant value of the exact result. Note that this optin alm atching could be
determ ined w ithout know ledge of the exact result. W ith this choice, the approxin ation eg. (42)
di ers from the exact result for the NLO contribution to the partonic cross section by less than
5% forallvalues of
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Figure 3: The hard coe cient C ¥ ( ;v;) eg. (9) (parton{level coe cient finction nom alized
to the Bom result) plotted as a function of . The curves from top to bottom on the left
correspond tom = 1 (black), and to the approxin ation eg. (47) with T ( ) eq. (43) and k = 5,
andm.= 1709 GeV (r=d),withmy = 130; 180; 230; 280 G &V .

3.2 NNLO and beyond

AtNNLO , the pointlike approxin ation to the coe cient function hasa quadruple pokatN = 0,
corresponding to a In’ rise, while the exact result only has a double pole, and thus it rises
Iinearly with In

c®(;1) = d.()+0 % dl ()=’ + 0’ + D (44)
C(ve) = d@Cv)+0 %5 d¥0iv)= 9Cc® v ; (45)

where C? (y;) is tabulated in table 1, while from Ref. [8]we get

231 17 2333 641
C24: 6,' C23: — + N¢g—; C22: + 3 2 + Neg——; (46)
4 18 8 108

where n¢ the number of avors.
At this order, the exact orm of C ¥)( ;y;) is not known. However, analogously to the NLO
case, we construct an approxim ation to it based on its determ ination [8] in the pointlike Iim it,

12
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Figure 4: The hard coe cient C @ ( ;v1) eg. (A) withmy = 130 GeV, pbtted versus on a
Jogarithm ic (left) or linear (right) scale. The solid black curve corresponds tom = 1 (black,
sam e as g.[3)),and the three blue curves are the approxin ation eg. (471) withm = 1709 G &V
and T ( ) eg. (43) with and k = 0 (dot-dashed),k = 5 (dotted, sameas g.[3),k = 20 (dashed).

com bined w ith the exact anall behaviour eg. (38):
h i
C @Ay @1+ d2 (v A () T() (47)

with d&'( jy:) and ds.( ) de ned i eg. (@9) and eg. {@4) respectively, and T ( ) an inter-
polating function as discussed In section 3.1. Note thatas ! 0 the approxin ation eg. (47)
only reproduces the exact result up to a constant, whereas at NLO the approxin ation eg. (42)
reproduces the exact result up to term s which vanish at leastasO () .

T he approxin ation to the exact result C @)@PP:( ;v ), com puted using C?’ from table 1 with
fourdi erent values of the H ggsm ass, and taking T ( ) eg. (43) withk = 5iscompared n g.3
to the pointlike approxin ation C @@PP:( ;v ) of ref. [8] (with ns = 5). In gures 4-5 we further
com pare the results obtained w ith di erent choices of the m atching function T ( ) eq. (43), and
the sam e two values of the H iggsm ass usad to produce gs.2-3 at NLO .

At this order, the contribution from the leading small Ilogs to the pointlike C 2)APP:( ;1 )
is sizable even for large . Indeed, gs. 4-5 show that the behaviour of C ¥ around its local
maximum at 065 receives a sizable contrbution from the In rise and In? drop 3. (44).
If these are rem oved by using egs. (47[43) w ith k = 0, the shape of C ) around them axinum is
a ected signi cantly, but if them atching ism oved to an aller by choosing k ~ 5 them axin um
is reproduced. H ence, whereaswe can stillobtain a rather an ooth m atching at any desired value
of the choice of the optim alvalue of is not obvious. In particular, m atching at a value of
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Figure 5: Sameas g.[4,butnow withmy = 280 G&V.

w here the contribution of the asym ptotically spurious In* becom es signi cant leads to rather
large values of the m atching point =~ 0:6. Anyway, it is clear that the pointlike approxin ation
breaksdown for < 0:.

C ontrbutions beyond NNLO in the expansion ofh (N ; 4; o) eg. (29) In powers ofN—S can be
determ Ined by pursuing the expansion ofh(0;M ;M ) eg. (33) n powers of M , and determ ining
num erically the ensuing Integrals, which have the form of egs. (3d[38), but w ith higher order
powersofIn ;;In ,. The series of contributions to the coe cient function eg. ([8) thus obtained
hasa nite radius of convergence in N {M ellin space, dictated by the location of the rightm ost
sihgularity in ¢, and thus in  gpace it converges for all 0 < 1 [22]. T herefore, its resum —
m ation can be accom plished to arbitrary accuracy by com putation of a nite num ber of tem s.
T his resum m ation, how ever, induces spurious singularities in the N {space coe cient function,
which can be ram oved by the lnclusion ofa suitable class of form ally subleading running-coupling
corrections, as recently shown in Ref. [23].

3.3 K factors

T he accuracy of the various approxin ations at the level of hadronic obsarvables clearly depends
on the individual process. For the total nclusive cross section eg. (3), as is well known, the
pointlke approxin ation is actually very good, and thus the im pact of the in provem ent eg. (42)
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‘ NLO‘ NNLO

my = 130G eV
pointlike 3669 658
exact 3658 | na.
appr., k=5 | 3764 648
appr., k= 20| 36.66 655
my = 280GevV
pointlike 38.08 716
exact 3747 na.
appr., k= 2 | 3797 670
appr., k=5 | 37.73 693

Tabl 2: The NLO and NNLO contributions to the K factor eg. (48), com puted w ith center-of-
massenaergy s= 14 TeV,andm. ! 1 ,denoted with pointlke, orm = 1709 G €V , denoted
w ith exact or approxin ate. The approxin ate result uses egs. (42147), with T ( ) . (43) and
the value of k given In the table. The M R ST 2002 [21 ]gluon distrdbution has been used.

ism oderate. To give a quantitative assesam ent, we de ne a K factor by letting:

oo nivemy ) = 2 (niveimy K (niyemg )
2
m2) m?2)
K (njyemg) = 1+ —2 "0 (hymi)+ ——= "0 vm )
3 2
+0 mg) ; (48)

where gq is the Jleading{order form of the contrdbution eg. (3) of the gluon{glion channel to
total hadronic cross section. The value of the NLO and NNLO contrdbutions to the K factors,
determ ined using the M R ST 2002 [21 ] gluon distribution in eg. (3) are given In table 2 at LHC
energies for two values of the H iggsm ass, both in the pointlke, exact and approxin ate (eg. (42)
and 5. (47)) cases.

AtNLO withmy = 130 Gev (\light"), the pointlikke approxin ation to N'° deviates by
0:3% from the exact result, and even with my = 280 G&V (\heavy") it only deviates by 16% .
It should be kept in m ind, however, that N'© itself is quite large: for .  0:, it am ounts
toa 100% contribution to the K factor eg. (48). Hence, the error m ade using the pontlike
approxin ation is between the per m ille and the per cent level, and thus not entirely negligible
in a precision analysis.

U sing the approxin ation egs. (42H43) w ith the values k = 20 for light Higgsand k = 5 for
heavy H iggs, which are seen from g. 2 to give good m atching, the deviation can be reduced to
02% and 0:7% respectively, and even m ore accurate results could be obtained by an optin ization
of them atching. H owever, a poor choice of them atching (such ask = 5 for light Higgsork = 2
forheavy H iggs) can lead to a result at the hadronic levelw hich isactually closer to the pointlke
approxin ation, or even worse than it. It is clear that at the partonic level the small behaviour
egq. (39) accounts for m ost of the discrepancy between the exact and pointlke results, and even
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the determ ination of a hadronic cbservable which depends very little on the parton—level an all
behaviour can be In proved very substantially for values of y relevant for LHC by using the
approxin ation eg. (42).
The NNLO contribution “¥© isnot known. Its values com puted in the pointlike approxi-
m ation, or w ith the approxin ation egs. (4743) and di erent choices of k are shown in table 2.
Even at the inclusive hadronic level, now the size of the NNLO contribution can change up
to about 5 10% if the m atching is perform ed at large . Furthem ore, "M is also quite
large: with 0:d, it amounts to a 50% ocorrection to the leading order, and thus to a
further 25% correction to the K factor. T herefore, the in pact of the pointlike approxin ation
at NNLO is up to several per cent of the total K factor, rather larger that the im pact of the
pointlike approxin ation at NLO , and com parable to uncertainties w hich are currently discussed
In precision studies at NNLO .

4 O utlook

Tn this paperwe have determ ined the leading high energy (ie. small = mf ) singularities of the
cross section for H iggs production in gluon{glion fusion to all orders in the strong coupling, by
providing an expression (3. (33)) w hence the coe cients of these singularities can be obtained by
Taylor expanding and com puting a double integral. W e have given explicit num erical expressions
for these coe cientsup to NNLO .

T he high energy behaviour of this cross section is di erent according to whether it is deter-
mined with nitem . orwithm:! 1 (pointlike approxination). It tumsout thatatNLO this
di erent high energy behaviour is responsible for m ost of the discrepancy between the pointlike
approxin ation and the exact result. A s a consequence, an accurate approxin ation to the exact
result can be constructed by com bining the pointlike approxin ation at large with the exact
anall behaviour. Some care must be taken in m atching, but very accurate results can be
obtained by sim ply choosing the m atching point as that where the spurious smnall behaviour
of the pointlike behaviour sets in.

At NNLO , where the exact result is not known, the in pact of the high energy behaviour
tums out to be large even form oderate values of 0:5. Hence, an approxin ation constructed
analogously to that which is successfill at NLO , nam ely m atching the pointlike Iim it to the
asym ptotic exact behaviour at the point w here the asym ptotically spurious tem sbecom e signif-
icant, leads to an approxin ate result which di ers signi cantly from the pointlike approxim ation
for m ost values of the partonic centerofm ass energy.

The e ect of these high energy termm s on the total inclusive hadronic cross section rem ains
quite am all, because the latter isdom inated by the region of low partonic center{of{m ass enerqgy,
partly due to shape of the gluon parton distrdbutions, which are peaked in the region where the
gluons carry a am all fraction of the incom ing nucleon’s energy, and partly because the partonic
cross section is peaked in the threshold 1 region. Even 0, the pointlike determ ination of
the NNLO contribution to the total hadronic cross section can be o by alm ost 5-10% due to
this spurious high energy behaviour, especially for relatively large valies ofmy ~ 200 G &V .
Because the NLO and NN LO corrections to the cross section are quite large, the overalle ect of
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these term s on the cross section is at the per cent level, and in particular their e ect at NNLO
is rather larger than at NLO .

A study of the phenom enological In plications of these results is thus relevant for a precision
determ nation of the H iggs production cross section.
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A Form factors

The form factors in eq. (28) are given by

4y 441 2
(17 250) = Col1j2iv) — @+ 1+ ) 1 : +1212(1+ 1+ 2)
3 3 3

2
Bo( 2) Bo(l)] —Z+12—2(1+ 1 )

2
Bo( 1) Bo(l)] —+ 12221 1+ ;)

3 3
2 1 )
—3(4 )2(1+ 1t 2); (49)
1 212
As( 17 25ve) = Col 17 25¥e) 2ve 5(1"' 1+ o)+t
3
+ Bol 2) BoM)) —=@Q 1+ )
3
1 1
+ Bol( 1) Bo@M)] —@@Q+ 1 2) + o (50)
3 4 )
w ith
3=1+ T4+ 2 27,4201+ )= 1+ 1+ 2P 4, (51)
It is also convenient to de ne the form factor
1 1+ 1+ 5
As( 15 25Ve) Ay Ay : (52)
12 2
T he scalar Integrals By and C, are
r r
1 4
Bo() = P e tan ' ;o if 0< < Ay,
Ay,
r_
1 4y, 1t ol
Bo() = In S ; if < Oor > 4yy; (53)
16 2 1
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1 2
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1
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+

+Li(z 5)+ Li(z 3) Li(z ,
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2¥te 2
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In the In nite top m ass lim it the scalar integrals becom e

1
Im B = 2+ — +0
yam Bol) 16 2 6V

1 1,

Im Co(17 2)

1 1 " 1y
16 27 1 v,

X
X
7)) Ly ,)
+
2
N
3

) Li(xs 2 )
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- = 14—t 2
ye! 1 32 2y 12y

so that the form factors reduce to

. 2 2 1
Im m{A;=mg ;
me! 1 48 2 me! 1

These 1im its also In ply that
m mZAs= 0:
mt! 1

In the on-shell lin it the scalar Integrals are

1

]jFﬂOBo(i) = W;

i
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so that

1 1,
A,(0;0) = 8—+ In (4ye 1)

N}
(O8]
N
N}
N
+

A,(0;0) = + —— I?

The high energy 1im it of the form factors is trivially determ ined when ;! 1 , 5! 1 with
16 2

. . . 1
Im Ai( 17 2:v0)=0; Iim Az( 17 25y0)= 0; Im Ao( 17 2ive)= 3
11101 11101 111,01 4 )
(64)
f,! 1, ,!" 1 wih ;= 5 thelin it ism ore subtle. In thiscase we get
b p *
) . Col syd)P - 1 1 Yt T 1 1
Im A I = lm —— — —h=— 1+ 4 1tan
m A (7 ive) 1 4 16 2 2 Ve 4y, 1
1
+0 = ; (65)
where we have de ned p_
Col 17 25¥e) Colas 27¥e) 3t (66)
However, it tums out that
r
) 1 Vi p 1 1 1
Im Co( ; ;vi)= —P= 2In= 4+ 4 4y, 1ltan + 0 - (67)
L1 16 2 dy, 1

hence we conclude that eg. (64) hodsalsowhen ;= .
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