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A bstract

The fullmoduli space M of a class of N = 1 supersymm etric gauge theories is
studied. For gauge theories living on a stack of D 3-branes at C alabi¥Y au sihgularities
X ,M isa combination of the m esonic and baryonic branches. In consonance w ith
the m athem atical literature, the single brane m oduli space is called the m aster space
F l. Hustratihg w ith a host of explicit exam ples, we exhibit m any algebro-geom etric
properties of the m aster space such as when F ! is toric CalabiY au, behaviour of its
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H ibert serdes, its irreducible com ponents and its sym m etries. In conjinction w ith the
plethystic program m e, we investigate the counting of BP S gauge invariants, baryonic
and m esonic, using the geom etry of F ! and show how its re ned H ibert series not only

arxXiv

engenders the generating functions for the counting but also beautifully encode \hid—
den" global sym m etries of the gauge theory which m anifest them selves as sym m etries
of the com plete m odulispaceM for N num ber of branes.
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1 Introduction

T he vacuum m oduli space, M , of supersym m etric gauge theories is one of the m ost fun—
dam ental quantities in m odem physics. It is given by the vanishing of the scalar potential
as a function of the scalar com ponents of the super elds of the eld theory. This, in tum,
is the set of zeros, dubbed atness, of socalled D -term s and F —term s, constituting a pa—
ram eter, or m oduli, space of solutions describing the vacuum . T he structure of this space
is usually com plicated, and should be best cast in the Janguage of algebraic varieties. T ypi-
calk,M consists of a union of various branches, such as them esonic branch or the baryonic
branch, the Coulom b branch or the H iggs branch; the nam es are chosen according to som e

characteristic property of the speci ¢ branch.

Tt isa standard fact now thatM can be phrased in a succinct m athem atical language:
it is the sym plectic quotient of the space of F — atness, by the gauge sym m etries provided by
the D — atness. W e w ill denote the space of F— atness by F | and symm etries prescribed by

D - atnessasG ;, then we have

M 7 Fl=G, : 11

U sing this Janguage, we see that F [ is a parent space whose quotient is a m oduli space. In
the m athem atical literature, this parent is referred to as the m aster space [1l]and to this
cognom en we shall adh .

In the context of certain string theory backgrounds, M has an elegant geom etrical
realisation. W hen D -branes are transverse to an a ne (non-com pact) CalabiYau space X ,
a supersymm etric gauge theory exists on the world-=volum e of the branes. O f particular
Interest is, of course, when the gauge theory, prescribbed by D 3dranes, is in fourdim ensions.
Ourmain interest is the IR physics of this system , where all Abelian sym m etry decouples
and the gauge sym m etry is fully non-A belian, typically given by products of SU (N ) groups.
T he A belian factors are not gauged but rather appear as globalbaryonic sym m etries of the
gauge theory.

U nder these circum stances, the m oduli space M is a com bined m esonic branch and
baryonic branch. These branches are not necessarily separate (irreducibble) com ponents of
M but are instead in m ost cases intrinsically m erged into one or m ore com ponents in M

Even when m esonic and baryonic directions arem ixed, it stillm akes sense to tak about the

W e thank A lastair K ing to pointing this out to us.
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m ore fam iliarm esonicm odulispace™ *M ,asthe sub-variety ofM param eterized by m esonic
operators only. Since m esonic operators have zero baryonic charge, and thus invariant under
the U (1) A belian factors, the m esonic m oduli space can be obtained as a further quotient of
M by the Abelian sym m etries:

™Mo M =U (1), : (12)

W e are Interested in the theory of physicalN branes probing the sinqularity ; the gauge

theory on the worldvolum e is then superconform al.

Tt is of particular interest to consider the case of a single D 3-brane transverse to the
Calbi¥Yau three-old X , which will enlighten the geom etrical interpretation of the m oduli
Space. Since them otion of the D “brane is param eterized by this transverse space, part of the
vacuum m odulispaceM is, per constructionem , precissly the space which the brane probes.
T he question of which part of them oduli space is going to be clari ed in detail in this paper.
For now it is enough to specify that for a single D ‘brane it is the m esonic branch:

M T¥M 7 X ' non-com pact CalabiYau threefold transverse to D 3-brane. (1.3)

In this paper we are Interested in studying the fiilllm oduli space M . In general, M

w ill be an algebraic variety ofdin ension greater than three. In the case ofa single D 3-orane,
N = 1,the IR theory hasno gauge group and the fullm oduli space M isgiven by the space
of F— atness F |. Geometrically, F [ isa CHF' 3 bration over the m esonic m oduli space
X given by relaxing the U (1) D term constraints in (I.2). Physically, F ! is obtained by
adding laryonic directions to the m esonic m oduli space. O £ course, we can not tak about
baryons for N = 1 but we can altematively interpret these directions as FayetTliopoulos
(FI) param eters in the stringy realization of the N = 1 gauge theory. ITndeed on the world—
volum e of a single D brane there is a collection of U (1) gauge groups, each giving risstoa F I
param eter, which relax the D ‘term constraint in (I.J). W hen these F I param eters acquire
vacuum expectation values they induce non-zero valies for the collection of elds in the
problem and this is going to be taken to be the full m oduli space M F l. If one further
restricts the m oduli space to zero baryonic num ber we get the m esonic branch which isX ,
the CalabiYau itself.

ForN > 1 num berofphysicalbranes, the situation ism ore subtle. Them esonicm oduli
Space, probed by a collection of N physical branes, is given by the sym m etrized product of
5



N copies of X H The fullm oduli space M is a bigger algebraic variety of m ore di cult

characterization. O ne of the purposes of this paper is to elucidate this situation and to show

how the properties of M for arbitrary num ber of branes are encoded in them aster space F |

for a sihgle brane. In view of the in portance of the m aster space F | for one brane even for
larger N , we w ill adopt the in portant convention that, in the rest of the paper, the word
m aster space and the symbolF ! will refer to theN = 1 case, unless explicitly stated.

T he sym plectic quotient structure of (1.1l) should inm ediately suggest toric varieties
In theN = 1 case. Indeed, the case 0f X being a toric C alabiY au space hasbeen studied
extensively over the last decade. T he transhtion between the physics data of the D brane
world volum e gauge theory and the m athem atical data of the geom etry of the toric X was
nitiated in [3,14,5]. In the com putational language of [5], the process of arriving at the
toric diagram from the quiver diagram plus superpotentialwas called the forward algorithm ,
w hereas the geom etrical com putation of the gauge theory data given the toric diagram was
called the inverse algorithm . T he com putational intensity of these algorithm s, bottlenecked
by nding dual nteger cones, has been a technical hurdle.

Only lately it is realized that the correct way to think about toric geom etry in the
context of gauge theories is through the language ofdim er m odels and brane tilings [d,/7].
T hough the e ciency of thisnew perspective has far superseded the traditional approach of
the partial resolutions of the inverse algorithm , the canonical toric Janguage of the Jatter is
still conducive to us, particularly in studying obfcts beyond X , and in particular, Fl. W e

w ill thus m ake extensive use of this language as well as the m odem one of dim ers.

R ecently, a socalled plethystic program m e [9,[10,[11,112,/13] has been advocated
In counting the gauge invariant operators of supersym m etric gauge theories, especially in
the abovem entioned D brane quiver theories. Form esonic BP S operators, the fiilndam ental
generating function tums out to be the H ibert series of X [9]. T he beautiful fact is that the
filll counting [111], including baryons as well, is achieved w ith the H ibert serdes of F ! for one
brane! Tndeaed, m esons have gauge-index contractions corresponding to closed paths in the
quiver diagram and the quotienting by G achieves this. Baryons, on the other hand, have
m ore general Index-contractions and correspond to all paths in the quiver; whence their
counting should not invole the quotienting and the m aster space should determ ine their
counting.

°Cf. [J]®ora consistency analysis of this identi cation.
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In light of the discussions thus far presented, it is clear that the m aster space F [ of
gauge theordies, especially those arising from toric C alabiY au threefolds, is of unquestionable
In portance. Tt is therefore the purpose of this paper to investigate their properties in detail.
W eexhibitm any algebro-geom etric properties of them aster space F ! for one brane, including
its decom position into irreducible com ponents, its sym m etry and the ram arkable property of
the biggest com ponent of being always toric C alabi¥Y au ifX is. W e point out that even
though wem ainly concentrate on the m aster space F ! for one brane, we are able, using the
operator counting technique, to extract im portant inform ation about the com plete m oduli
goace M , inform ation such as its sym m etrdes for arbitrary num ber of branes.

T he organisation of the paper isas ollow s. Tn ¥ we Introduce the concept of them aster
Space In detail, starting w ith various com putational approaches, em phasizing on the H ibert
series and toric presentation, and then launching into a wealth of illustrative exam ples. W e
recapitulate at the end of the section on the key abstract properties of the m aster space
w hile review Ing the plethystic program m e which counts gauge invariants given the H ilbert
serdes. W e then, In 3, discuss how the m aster space, and indesd, the m oduli space of
supersym m etric theories, are generically reducible and have various branches which we will
obtain by prin ary decom position. W e shall see how certain lower din ensional com ponents
of one theory causes it to ow to another. A nother ram arkable feature of gauge theories
arising from underlying geom etry such as those living on world-volum es of D Jorane probes at
Calabi¥Y au singularities is that the sym m etrdes of the m aster space can m anifest them selves
as hidden global sym m etries of the gauge theory. In ¥4 we exam ine how such symm etries
beautifully exhibit them selves in the plethystics of the H ilbert series of the m aster space by
explicitly arranging them selves into representations of the associated Lie algebra. Finally,
we part w ith concluding rem arks and outlooks in %3.

D ue to the length of thispaper,we nd it expedient to supplem ent it w ith a com panion
essay [14]. The reader who w ishes for a quick tour of the high—lights is referred thereto.

2 TheM aster Space

Tt was realized In [4] that for a single D 3-brane probing a toric CalbiYau threefold X ,

the space of solutions to the F—-tem s (or, In the notation of Section 1.2 in Cit. Tbid., the

com m uting variety Z ) is also a toric variety, albeit of higher din ension. In particular, for
7



a quiver theory with g nodes, it is of din ension g + 2. Thus we have the st In portant
property for the m aster space F ! for a toric U (1)? quiver theory:

din F =g+ 2: (2.1)

This can be seen as llows. The F+em equations are invariant under a (C )" 2 action,
given by the threem esonic sym m etries of the toric quiver, oneR and two avor sym m etries,
aswellas theg 1 baryonic symm etries, including the anom alous ones. This induces an
action of (C )" 2 on the m aster space. M oreover, the din ension of F [ is exactly g+ 2 as
the ollow ing eld theory argum ent shows. W e know that the m esonic m oduli space has
din ension three, being isom orphic to the transverse CalbiYau m anifold X . A s described
n the introduction, the m esonic m oduli space is obtained as the solution of both F-tem
and D -term constraints for the U (1)¢ quiver theory. The full m aster space is cbtained by
relaxing the U (1) D term constraints. Since an overall U (1) factor is decoupled, we have
g 1 Independent baryonic param eters corresponding to the values of the U (1) D +tem s,
which, by abuse of language, we can refer to as F I tem s. A s a result, the dim ension of the
m aster space isg+ 2,given by three m esonic param eters plusg 1 FItem s.

A second property of theM aster Space is its reducibility. W ew illsee In severalexam ples
below that it decom poses into several rreducible com ponents, the lJargest of which tums out
to be ofthe sam edin ension as them aster space, and m ore in portantly the lJargest com ponent
isa toric CalabiYau m anifold in g+ 2 com plex din ensions which is fiirtherm ore a cone over
a Sasaki Einstein m anifold of real dim ension 2g + 3. Exam ples follow below , aswell as a
proof that it is CalabiYau in section 2.3.

Having leamed the dim ension of the m aster space, ket us now see a few wam —up
exam ples of what the space looks lke. Let us begin w ith an illustrative exam ple of perhaps
them ost comm on a ne toric variety, viz., the A belian orbifod.

21 W am up:An Etude in F !

The orbifold C3=Z, Z, iswellstudied. It is an a ne toric singularity whose toric dia—
gram s are lattice points enclosed In a rightitriangle of lengths k m (cf. eg., [19]). The
m atter content and superpotential for these theories can be readily obtained from branebox
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constructions [16]. W e sum m arize as follow s:

G auge G roup Factors: mn;

Fieds: bifundam entalsfX ;;5; Yi;5;7 24,49 from node i to node
(i;9) de ned modulo (k;m ) ; total = 3mn; (22)
plrp 1
Superpotential: W = Xig¥iu 1520 15+1  Yi5X 501240 155+ 1 ¢

=0 4=0

W e point out here the Im portant fact that in the notation above, when either of the factors
(k;m ) Isequalto 1, the resulting theory isreally an N = 2 gauge theory since the action of
Zx Zn on theC? ischosen so that it degenerates to have a line of singularities when either
k orm equals 1. In otherwords, fm = 1 in (ZJ), we would have a (C?=Z,) C orbibd
rather than a proper C *=Z, one (in the language of [19], this proper action would be called
\transitive" ). W e shall henceforth be carefiil to distinguish these two types of orbifolds w ith
this notation.

2.1.1 D irect Com putation

G ven the m atter content and superpotential of an N = 1 gauge theory, a convenient and
algorithm ic m ethod of com putation, em phasising (1.1]), is that of 20]. W e can inm ediately
com pute F ! asan a ne algebraic variety: it isan idealin C ™ given by the 3m n equations
prescribed by @W = 0. Thede ning equation is also readily obtained: it is sin ply the In age
oftheringmap QW from C3™7 | C3"" ie,, the syzygies of the 3m n polynom ials given by
QW . To specify F [ explicitly as an a ne algebraic variety, Jt us use the notation that

(d; J) = a nevariety of dim ension d and degree  embedded in CP : (2.3)

Subsequently, we present what F ! actually is as an algebraic variety for som e low valies
of (m ;k) in Table[ll. W e rem ind the reader that, of course, quotienting these above spaces
by D!, which in the algorithm of 20] is also achieved by a ring m ap, should all give our
starting point of X = C3=Z  Zp, .

A s pointed out above, the Iim it of either k orm going to 1 in the theory prescribed in
(22) is really jast (C%=Zy) C with the X — elds, say, acting as adpints. The rst row and
colm n of (1) should thus be interpreted carefully since they are secretly N = 2 theordes
w ith adpints. W e shall study proper C =%, theories later.
9



m nk 1 2 3 4 5
1 (3;18)| 4;2%) (5;4P) (6;8712) (7;16715)
2 (4;2Ph)| (6;14]2) (8;927].8) (10;58474) (12;3632330)
3 (5;4P) | (8;92118) | (11;1620R7)| (14;26762R6) | (17;437038#5)

Tablel: ThemasterspaceF ! orC3=2, 7, asexplcitalyebraic varktis, for som e Iow valies

ofk andm .

2.1.2 H ilbert Series

O ne of the m ost in portant quantities w hich characterize an algebraic variety is the H ibert
semeg . In 9], itwaspointed out that it isalso key to the problem of counting gauge invariant
operators in the quiver gauge theory. Let us thus calculate this quantity orF L.

W e recall that for a variety M in C [X;;::5;% |, the H ibert series is the generating
function for the din ension of the graded pieces:

®
H (M )=
i= 1

dine Mt ; (2.4)

whereM ;, the i-th graded piece of M can be thought of as the num ber of independent degree
i (Laurent) polynom ials on the variety M . The m ost useful property of H (t) isthat £ isa

rational function in t and can be written in 2 ways:
(

% ; H ibert series of First K ind ;
H(GM )= P (t) . . , (2.5)
T Em g i H ilbert series of Second K ind :

Im portantly, both P (t) and Q (t) are polynom ialsw ith integer coe cients. T he powers of the
denom nators are such that the leading pole captures the din ension of them anifold and the
em bedding space, respectively. In particular, P (1) always equals the degree of the variety.
W e can also relate the H ibert serdes to the R eeb vector, which elucidate in A ppendix [A].

For now , let us present in Tablk[Z the H ibert series, in Second form , of som e of the
exam ples above in Table[ll. W e see that indesd the leading pole is the din ension of F [ and
that the num erator evaluated at 1 (ie., the coe cient of the leading pole) is equal to the
degree of F . Furthem ore, we point out that the H ibert series thus far de ned depends on
a single variable t, we shall shortly discuss in $2.1.5 and also from A ppendix[A]lhow to re ne
this to m ultivariate and how these variables should be thought of as chem ical potentials.

3N ote, how ever, that the H ibert series is not a topological nvariant and does depend on em bedding.
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(kjm ) F! H ibert SeriesH (F 1)

(2;2) (6;144L2) 1+ 6t+ 9(1t2 t)56t3+ 3t

(2;3) (8;9218) 1+10 37t2+zit3t)815t4+ 72+5¢

(2;4) (10;58494) 1+14t+81t2+233t3+26?1t4tﬁ§t‘5+4t6+71t7 7E+ 8¢
(3;3) | (11;1620R7) 1+16t+109t2+394€+715t4(+12if1115 104t%+ 253t 778+ 278

Table 2: The Hibert series, h second formm , of them aster space F ! forCc3=z, 2z, ,forsome

ow valuesofk andm .

2.1.3 TIrreducible Com ponents and P rim ary D ecom position

The variety F ! may not be a sihgle irreducible piece, but rather, be com posed of various
com ponents. This is a well recognized feature In supersym m etric gauge theordies. T he dif-
ferent com ponents are typically called branches of the m oduli space, such as Coulomb
or H iggs branches, m esonic or baryonic branches. Possbly the m ost fam ous case is the
SelbergW itten solution to N = 2 supersym m etric gauge theories which dealsm ainly with
the Coulom b branch but gives som e attention to the other com ponents on the m oduli space
which are generically called the H iggs branch.

Tt is thus an Interesting question to dentify the di erent com ponents since som etim es
the m assless gpectrum on each com ponent has its own unique features. W e are naturally
lead to a process to extract the various com ponents which in the m ath literature is called
prim ary decom position of the ideal corresponding to F [. This is an extensively studied
algorithm in com putational algebraic geom etry (cf. eg. 21l]) and a convenient programm e
which calls these routines extemally but based on the m ore fam iliar M athem atica interface
is 22].

Exam ple of C?=Z5: Letus rst exem plify with the case of (C%=Z;) C (ie., (k;m )=
(1;3)). Thiscase, having N = 2 supersymm etry, is known to have a Coulom b branch and a
H iggs branch which is a com bined m esonic and baryonic branch. T he superpotential is

W c2=25) ¢ = Xop YonZoa YopXoaloatXoaYonZoz YoaXoploptXozYozZop YopXoo0Zo0 7
(2.6)

com posed of a totalof 9 elds, where the X elds are ad pint elds in the N = 2 vector

m ultiplet of the corresponding gauge group . H ere, since we are dealing w ith a single D Jorane,

11



() () ()
Wesg, = X1 X3 X5

9 edsand 27GI0's
() () ()
X X iXs 7 7 7 = 15253

3 2

Figure 1: The quiverdiagram and superpotential fordPy .

these eldshave charge 0. Hence, F ! isde ned,asan dealin C 9,by 9 quadrics:

£ YopZoo+ YonZon ;s YopZoat YoanZop i YopZop Yoalop i
Koo Xoa)Zog i Xog Xog)Zoz i ( Xopt+ Xog) Zop 7 (2.7)
( Xop+ Xop)Yop 7 Xop Xoa) Yoo 7+ Xog  Xop) Y0a9 ¢

[
(C2=Z3) C

Imm ediately one can see that on one branch, the socalled H iggs branch, which we shall
denote as F |, the adpint elds X do not participate. Thus it is de ned by the rst 3

equations in (2.7): 3 quadrics in 6 variables. Furthem ore, one can see that one of the
quadrics is not independent. T herefore F | is a com plete intersection of 2 quadratics in C°,
of din ension 4. To thiswemust form a direct product w ith the Coulom b branch which is
param etrized by the X -directions, which tumsout to beonedin ensionalX g = X1 = X

(in order to satisfy the rem aining 6 equations from (2.7) such that the Y ’sand Z s are non—
zero). Hence, F [ is 5-din ensional (as we expect from (2.1) since there are g = 3 nodes), of

degree 4, and com posed of 2 quadrics in C° crossed with C .

Now , this exam ple may essentially be observed w ith ease, m ore involved exam ples
requires an algorithm ic approach, aswe shall see In m any cases w hich ensue. T he decoupling
of the X ’s is ndicative of the fact that we have an non-transitive action and this is Indeed
jist an orbifold of C 2.

Exam ple of dPy = C>=Z;: Let usnext study a proper orbifold C>=7; w ith a non-trivial
action, say (1;1;1), on the C3. This is also referred to in the literature as dP,, the cone
over the zeroth del Pezzo surface. ITn other words, this is the total space of the line bundle

Op2( 3)over P?. Here, there are 9 elds and the theory is summ arized in Figure[d. Now,

12



_ 3 2 2 3 3 w1 1 v 3 2 o1 1 v 2
Foag, £ X03X 350+ X73X30 iX55X3; X3X35 7 X33X35+ X,3X545
3 042 2 3 3 01 1 43 2 1 12
XipX35q XipX3p 7 XipX3g+tXi,X35, iX1,X35; XipX3547
3 42 2 3 3 01 143 2 1 1
12X23 12X 1 X1pX05 XipXjsi 12Xt X1pX 559
(2.8)

and a direct prim ary decom position show s that F ! is itself irreducible and it is given, using
the notation n (2.3), as
Flig, ' (5:69); (29)

a non-com plete-intersection of 9 quadrics as given in (2.8), enbedded in C’. W e see that
the dim ension is 5 since there are 3 nodes. The H ibert series (cf. [12] and a rederivation
below ) is

: 1+ 4t+ £
H (t;FC3:Z3)= W: (2.10)
E xam ple of C3=Z, Z,: Finally, take the case of (k;m )= (2;2), or the A belian orbifold

C3=Z, Z,,studied in detailby [4,[5]. T he reader is referred to Figure[d which we present
in the next section. H ere, there are 2° = 4 nodes and we expect the din ension of the m aster
space to be 6. Again, we can obtain F ! from (2.2) and perform prim ary decom position on
. W e see, using [21l], that there are 4 irreducible com ponents, three of which are m erely
coordinate planes and trivial. A long these directions the gauge theory adm its an accidental
supersymm etry enhancement to N = 2 and each direction can be viewed as a Coulomb
branch of the corresponding N = 2 supersym m etric theory.

T he non—xrivialpiece of F é3=Z2 », 1sa Higgsbranch and is an irreducible variety which
we shall call ™F !

C3=Z, Z,'

prescribed by the intersection of 15 quadrics in 12 variables. T he H ibert serdes for 7F |

C3=7, 7,

it is also of dinension 6. M oreover, it is of degree 14, and is

is given by
1+ 6t+ 62+ €
. [ _ .
H(G "Fooy, 5,)= R (211)
Summ ary: W e have therefore leamed, from our few wamm -up exercises, that one can

com pute F [ directly, its H ilbert series, din ension, degree, etc., using the m ethods of com pu—
tational algebraic geom etry, using, in particular, com puter packages such as [21/]. Tn general,
the m aster space F ! need not be irreducible. W e will see this in detail in the ensuing sec-
tions. The an aller com ponents are typically referred to as C oulom b B ranches of the
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m oduli space.

T he largest irreducible com ponent of the m aster space F [ will play a special rok in
our analysis and deserves a special notation. W e will denote it ¥F [, In the toric case, it
is also known as the coherent com ponent of the m aster space. In all our exam ples, this
com ponent actually has the sam e din ension as the fullm aster space and, aswe will see In
detail in 2.3, is In fact CalabiYau. Let us redo Tablk[d, now for the coherent com ponent;
we present the result in Tablk[3.

(kjm ) ol H ibert Series H (t;™%F [)
(2;2) (6;14412) %
=4 = 4,15
(2;3) (8;92118) 1+10t+ 35 (1+ 3t5)8 T 10E s
£ £ 4 * 6, 17

(2;4) (10,;58474) 1+ 14t 78+ 199 (1+ 1)9190t+78 +14t°9+ ¢

£ £ 4 = 6 7, 18
(3;3) | (11;1620R7) 1+ 16 tr 109 2+ 382 +?f4;1+1382 +109t5+ 167+ ¢

Table 3: The Hibert series, in second form , of the coherent com ponent of the m aster space F |
frc3=z, Z,,Prsome bw valiesofk andm . The reader is referred to Tabk[d for contrast.

W e note that the degree and din ension of ™F ! is the sam e as that of F [, again sug—
gesting that the am aller dim ensional com ponents are m erely linear pieces. N evertheless the
Iinear pieces play a crucial r®k in the analysis of the physics of these theordes since there is
a rich structure ofm ixed H iggs and C oulom b branches; we w ill see this in 3. M oreover, we
observe that the num erator now becom es symm etric (palindrom ic), a ram arkable fact that
w i1l persist throughout our rem aining exam ples; we w ill show why in X2.3.

2.1.4 Toric Presentation: B inom ial Ideals and Toric Ideals

W e have so far seen the application of com putational algebraic geom etry in studying the
m aster space as an explicit algebraic variety. T his analysis has not fully exploited the fact
that F ! is in fact a toric variety; that is, we have been sin plifying and prin ary decom posing
the deal corresponding to F ! without utilising its inherent com binatorial, toric nature.
Now ,given an ideal I of a polynom ial ring, when each generator of I, ie., each polynom ial
equation, is written in the form \m onom jal= m onom 21" then I isknown asa toric ideal
and the variety thus de ned will be toric [23]. The F-tem s arising from the partials of the
superpotential in (2.2) clearly obey this condition and this is true for all toric C alabiYau
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Spaces X .

A singlem atrix can in fact encode all the inform ation about the dealof F [, called the
K -m atrix in [4,[59]. For orbiods of the orm C°3=7Z, with action (a;b; 1) the K -m atrix
were constructed in Eqgs 4.1-3 of 3]and that of C3=Z5 Z5,in [4,[5] (see also [17,18]). In
general, the procedure is straight-forward : solve the F-temm s explicitly so thateach eld can
be w ritten as a fraction ofm onom ials in term s of a an aller independent set. T hen, transhte

these m onom ials as a m atrix of exponents; this is the K -m atrix.

W e have seen from above that the m aster space F ! and its coherent com ponent % |
of a toric U (1)¢ quiver gauge theory is a variety of din ension g+ 2. The F-temm s provide E
equations forthe E  elds in the quiver. Not allof them are algebraically Independent, since
the F-tem s are nvariant under the (C )°*? toric action. It follow s that the E  elds can be
param eterized in term s of g+ 2 Indegpendent elds. K is therefore a m atrix of din ensions
g+ 2by E.

C3=Z5 Revisited: For the C>=Z; exam ple above let us illustrate the procedure. Solving
(2.8), we have that

(2.12)

W e see that there are 5 elds £X ;X 74X 17X 5, ;X 5,9 which param eterize all 9 elds,
signifying that F ! is 5-din ensional, as stated above. W hence we can pbt the 9 elds in
term s of the 5 iIndependent ones as:

Xll;z X12;2 X13;2 X21;3 X22;3 X23;3 X?%;l X?%;1 X;;l
X7, 1 1 1 0 0 0 0 0 0
X301 0 0 0 1 1 1 0 0 0 213)
X3, ] 1 0 0 1 0 0 1 0 0
X3, 0 1 0 0 1 0 0 1 0
X3, 1 1 0 1 1 0 0 o0 1

where we read each colum n as the exponent of the 5 solution elds. This is the K m atrix,
and captures the toric inform ation entirely. Tn particular, the num ber of rows g + 2 of the
K -m atrix is the dim ension of F ! and the colum ns of K are the charge vectors of the toric
action of (C ¥ ? onF [.
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The K -m atrix gives a nice toric presentation for the coherent com ponent ™ ! of the
m aster space. It de nes an integer cone ¢ in 79" ? prescribed by the non-negative integer
span of the colum ns of K . Then, in the lJanguage of [159], ©F ! as an alyebraic (toric) variety

of dim ension g + 2, is given by

L7 Spec. [z \ 29727 : (214)

Now , the toric diagram of the variety is not, custom arily, given by -, but, rather, by
thedualcone . Letusdenote thegeneratorsof asthem atrix T, then,using the algorithm
In [19], we can readily nd that

0 1
00 1 1 0 0
BO 0 1 0 1 08
T = %1 0 0 0 0 1% (2.15)
01 0 0 0 1
00 1 0 0 1

T is a matrix of dim ensions g + 2 by ¢, where the num ber of its colum ns, ¢, is a gpecial
com binatorial num ber which is speci ¢ to the particular toric phase [5]. W e recall that the
dual cone consists of all lattice points w hich have non-negative inner product w ith all lattice
points in the origihalcone. In term s of our dualm atrices,

P=K" T O0: (216)

The colum nsof T , plotted in 7°,isthen the toric diagram , and the num ber of vectors needed
to characterize the toric diagram in Z° is c which for our particular case is equalto 6. The
P m atrix takes the fomn

(2.17)

(> ov/vvivysviov @)
O o r O O r O O R
O B O o+ o o r o
O O O O r o o
O 0o 0o o o ok &
© O o r B BB O o o
H B P O O O o o o
OO -
.o

In fact, one can say much m ore about the product m atrix P , of dim ensions E by c:
it consists of only zeros and ones. In [@], it was shown that this m atrix, which translates
between the linear sigm a m odel elds and spacetim es elds, also encodes perfect m atchings
of the dim er m odel description of the toric gauge theory. This provides a m ore e cient
construction of the m aster space. W e will retum to a description of this in s2.1.7.
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C3=z, 7,Revisited: Next,letusconstructtheK m atrix orourC>=z, Z, exam ple.
W e recall that the m aster space and its coherent com ponent are of din ension 6. U sing the

superpotential (2.7) to cbtain the 12 F-tem s, we can again readily solve the system and

obtain 0 1
1 1 1 1 0 0 0 0 0 0 0 O
B o 1 1 0 0 1 1 0 0 0 0 0C(C
% 0 1 1.0 1 0 0 1 0 0 O 08
K = o (2.18)
% 1 1 0 0 0 0 0 0o 1 100k
0 0o 0 1 0 1 0 1 0 1 0
1 1 0 0 1 0 1 0 1 0 0 1
giving us the toric diagram w ith 9 vectors in 6-din ensions as
0 1
000 1 0 0 1 0 0 1
B O 1 01 0001 0C
B C
01 0 1 0 0 0 0 1
T =8 & (2.19)
% 1 oo 10010 0k
10 0 0 1 1 0 0 0
10 0 1 0 1 0 0 0

215 Computing the Re ned H ibert Series

Letusnow study the H ibert serdes in the Janguage of the K -m atrix. W em entioned in ¥2.1.2
that the H ibbert series should be re ned. This is easily done and is central to the counting
of gauge invariants in the plethystic programm e. Recall that the m aster space F [ and its
coherent com ponent “F [ are given by a set of algebraic equations in C [X 1;::5X 5 |, where E

is the num ber of elds in the quiver. Since we are dealing w ith a toric variety of dim ension
g+ 2wehave an action of (C )2 on Fl and ™F [ and we can give g+ 2 di erent weights
to the variables X ;.

W hat should these weightsbe? Now ,all inform ation about the toric action is encoded
In them atrix K . T herefore, a natural weight is to sim ply use the colum ns of K ! T here are
E colum ns, each being a vector of charges of length g+ 2, asneaded, and we can assign the

we need a g+ 2-uple for the counting which we can denote by t= ;5% ». Because the
dummy variable t keeps track of the charge, we can think of the com ponents as chem ical
potentials 9,112]. W ith this multizindex variable (chem ical potential) we can de ne the
R e ned H ilbert Series of F | as the generating function for the din ension of the graded
pieces: 5

HEGF)=  dincF t; (2.20)
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where F' i ,the -thmultigraded piece of F !, can be thought of as the num ber of independent
multidegree  Laurentm onom ials on the variety F !. A sin ilar expression applies to F [.

The re ned H ibert serdes orF ! and ™F ! can be com puted from thede ning equations
of the variety, using com puter algebra program and prin ary decom position, as em phasized
in 20]. In addition, for the coherent com ponent ™F [, there exists an e cient algorithm
24 ] for extracting the re ned H ibert series from them atrix K that can be n plam ented in
M acaulay? 21]. W e give the actual code in A ppendix [BI.

A crucial step In the above analysis seam s to rely upon our ability to explicitly solve
the F+term s In term sofa an aller independent set of variables. T hism ay be com putationally
Intense. For A belian orbifolds the solutionsm ay be w ritten directly using the sym m etries of
the group, aswasdone In [3,/4]; in general, however, the K -m atrix m ay not be inm ediately

obtained. W e nead, therefore, to resort to a m ore e cient m ethod.

2.1.6 The Sym plectic Q uotient D escription

T here isan altemative and usefiilldescription of the toric variety ©F ! asa sym plectic quotient
15]. In them ath lJanguage this is also known as the C ox representation ofa toric variety
25]and In physics language, as a linear sigm a m odel. In this representation, we have a
nice way of com puting the re ned H ilbert series using the M olien invariant.

N ow , the ¢ generators of the dualcone T are not independent in 29" 2. The kemel of

thematrix T
T Q=0 (2.21)

or, equivalently, the kemelof thematrix P = K* T
P Q=0 (222)

de nes a set of charges for the sym plectic action. Thec g 2 rowsofQ " de ne vectors of
charges oor the ¢ elds in the linear sigm a m odel description of ¥F [ [3,[4,[151:

e lo ce=Qt: (223)

A crucial cbservation is that if the rows of Q © sum to zero, then ¥F [ isCalabiYau. In
the ollow Ing we w ill see that this is the case for all the exam ples we w ill encounter. Indeed,

18



it is possible to show this is general; for clarity and em phasis we w ill leave the proof of the
fact to the summ ary section of £2.3 and rstm arvel at this fact for the detailed exam ples.

T he re ned H ibert serdes for ™F ! can be com puted using the M olien form ula [12,[26)],
by profcting the trivial H ilbert serdes of CC onto (C )° ¢ 2 fnvariants. W e willneed in the
follow ing the re ned H ibert series depending on som e or allof the g+ 2 cheam ical potentials
t and, therefore, we keep our discussion as general as possible. T he dependence on the full
set of param eters t; is given by using the C ox hom ogeneous coordinates for the toric variety
25]. W e Introduce c hom ogenecus variablesp with chem icalpotentialsy ; = 1;::;cacted
on by (C ) 9 ? with charges given by the rows of Q ©. The H ibert series for C° is freely
generated and is sim ply:

Yoo

H (y;C%)= H (fy g;C°) = ; (224)

L :11 v

where we have w ritten y as a vector, in the notation of (220), to indicate re nem ent, ie.,
H dependson allthe fy g’s.

N ext, the vector of chargesofp underthe (C )° 9 2 action isgiven by £Q1 ;:::50 ¢ g 2; 9-
By mtroducingc g 2 U (1) chem ical potentials z; ; ::3;z. 4 » we can write theM olien for—
mula, which is a localisation form ula of the H ibert series from the am bient space to the
em bedded variety of interest, as

Z c 2 Z C 2
Y 4z, Y Tdz ¥ 1
1 Qe ; c 1
H (XIIUSF [)z H (fy 2%1 tiiZg gg22 g;C7)= T 01 Qc 2;
w1 A w1 A o1 oyozgt oz Y
(2.25)

The e ect of the Integration on the U (1) chem ical potentials z; is to proct onto invariants
of the U (1)’s. In this formula we integrate over the unit circles In z; and we should take
¥ j< 1.

D ue to the Integration on thec g 2 variablesz;,the nalresult for the H ibert series
depends only on g+ 2 independent com binations of the param eters y , which can be set in

correspondence w ith the g+ 2 param eters t;. W e can convert the y variables to the set of
Independent g+ 2 cheam ical potential t; for the toric action using them atrix T as [25]

t = vy (226)

Recall that the g+ 2 variables t; are the cheam ical potentials of the g + 2 elem entary
elds that have been chosen to param etrize F [. The weight of the i-th elementary ed X ;
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fori= 1;:x5E under this param eterization is given by the i-th colim n of the m atrix K .
Denoting with ¢ ¢ (t) the cheam ical potential for the i-th eld we thus have

. 2 (227)

whereweussd Kt T =P.

Form ula (2.2d), orequivalently (2.27), allow sus to determ ine the param etersy; entering
the M olien form ula in temm s of the cham icalpotentials for the elem entary elds of the quiver
gauge theory. T his denti cation can be only donem odulo an intrinsicc g 2 din ensional
am biguity param eterized by the matrix Q : v are determ ined by (2.2d) up to vectors in
the kemel of P . W e will see In the next section that there is an e cient way of assigning
charges under the non-anom alous symm etries to the variables y using perfect m atchings.
Tn particular, ifwe are interested in the H ibert series depending on a single param eter t, we
can always assign charge t to the variables corresponding to extemal perfect m atchings and
charge one to all the other variables. Let us now re<om pute the re ned H ibert series for
the two exam ples studied above, using (2.29). For sin plicity, we com pute the H ibert series
depending on one param eter t, referring to A ppendix [Cl or an exam ple of com putation of
the re ned H ibert series degpending on all param eters.

Sym plectic Q uotient for dPy = C3=Z5;: The kemelof thematrix T, from (2.19), can
be easily com puted to be the vector Q :

P Q=0 ) 0= 1 1 1111 ; (228)

which form s the vector of charges for the linear sigm a m odeldescription of the m aster space
for dPy. In this description, therefore, we nd that the m aster space, which we recall to be
Irreducible, is given by

Co—[ 1; 1; 1;1;1;171: (229)

W e can com pute the H ibert series using the M olien form ula (2.25). For sim plicity, we
consider the H ibert series depending on a single chem icalpotentialty  t. This is obtained
by assigning chem icalpotentialtto all elds of the linear sigm a m odelw ith negative charge.
T his assignm ent of charges is consistent w ith form ula (2.2d) and, as we will see in the next
section, is equivalent to assigning t to the three external perfect m atchings and 1 to the three
Intermal ones. W e Introduce a new chem ical potential z for the U (1) charge and integrate
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on a contour slightly sm aller than the unit circle. U sing the residue technigue outlined in
Section 32 of [11]],we nd that the contribution to the integralcom es from thepolkatz = t,

w hence I

u (t'F[ )= dz 3 1+ 4t+ ¢ ) (2.30)
AT o i1 t=zP@ z)® @ tp

agreeing precisely with (2.10).

Sym plectic Q uotient for C3=Z, Z,: In this case the kemel for the m atrix T , from

(2.19), is three dim ensional and it is encoded by the m atrix:
0 1
1 1 0 110000

B
0"=§ 10 1001100§: (2.31)
0 1 1000011

The rows of Q¢ induce a (C )® action on C°? which allows us to represent the coherent

com ponent of F C[3:ZZ as a sym plectic quotient:

Z2

g [

C3=Z, Z,

=Cc’=(c ) : (2.32)

W e com pute here the H ibert seriesdepending on a sihgle param etert;  t. Fomula (2.28) is
consistent w ith assigning cheam ical potential t to the elds of the sigm a m odelw ith negative
charges and chem ical potentiall to all the others. Aswe will see in the next section, this
corresponds to the natural choice which assigns t to the extermal perfect m atchings and 1 to
the Intermal ones. The M olien form ula reads
drdw ds 1
rws (I t=rw)(l t=rs)(1 t=ws)(l r)?@ w)@ s)?

1+ 6t+ 68+ €

_ ; 233
1 o ( )

H (t;7F ) =

C3:Z2 Z2

which agrees w ith (2.11]) exactly. The com putation of the re ned H ibert series depending
on all six param eters is deferred to A ppendix [C].

2.1.7 DimerM odels and Perfect M atchings

Tt was recently realized that them ost convenient way ofdescribing toric quiver gauge theories
is that of din ers and brane—tilings. Let us re-exam ine our above analysis using the language

of dim ers and perfect m atchings. The reader is referred to [6] and for a com prehensive
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Figure 2: (a) The perfect m atchings for the din er m odel corresponding to dPy, wih p; the
external m atchings and ¢;, the Intemal; (b) The toric diagram , w ith the hbelkd m ultiplicity of
GLSM elds, ofdPy.

Introduction, especially to [8]. W e w ill focus on perfect m atchings and them atrix P de ned
n (2.19).

Now,K isofsize (g+ 2) E with E the number of elds, and g the num ber of gauge
group factors. Them atrix T isofsize (g+ 2) ¢, where c is the num ber of generators of the
dualcone. Thus, P isamatrix of size E c. The num ber c is, equivalently, the num ber of
perfect m atchings for the corresponding tiling (din erm odel). In fact, them atrix P contains
entries which are either O or 1, encoding whether a eld X ; In the quiver is In the perfect

m atching p : g

<1 ¥fXi2p,
P; = (2.34)
0 J'inEp.

D im erM odel for dPy: Letus rstdiscuss in detail the exam ple of dP, = C>3=Z5. U sing
the P m atrix in Equation (2.17) we can draw the 6 di erent perfect m atchings. They are
shown in Figure[d. The rst three perfect m atchings are denti ed as the external perfect
m atchings p; 5 while the last three are the Internal perfect m atchings g », 5 associated w ith
the intemal point in the toric diagram of dPy. For reference we have also drawn the toric
diagram , together w ith the m ultiplicity of the gauged linear sigm a m odel elds associated
with the nodes, which we recall from [9]. In fact, it is this multiplicity that led to the
form ulation of dim ers and brane tilings as originally discussed in the rst reference of [6]].
Here we nd another in portant application of this m ultiplicity.
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@ P, P, (b)

Figure 3: (a) The perfect m atching for the din erm odel corresponding to C 2=7, . The two upper
perfect m atchings are associated w ith the two extemal ponts In the toric dagram and the two
Iower perfect m atchings are assochted w ith the ntemalpoint in the toric diagram ,drawn 1 (b).

Now , from F igure[dwe notice that the collection of all external perfect m atchings cover
alledges In the tiling. Sin ilarly, the collection ofall intermalperfect m atchings cover alledges
In the tiling, giving rise to a linear relation which form ally statespi+ P2+ 3= G+ G+ Gz, Or
asa hom ogenecousrelation, P P P+ G+ @+ i = 0. Since theP m atrix encodesw hether
an edge is In a perfect m atching, the linear com bination of m atchings encodes w hether an
edge is In that linear com bination. U sing the hom ogeneous form of the relation we in fact

nd that the vector ( 1; 1; 1;1;1;1) is In the kemel of P and thus form s a row of the
kemelm atrix Q “. Since the rank of the m atrix P is equal to the din ension of the m aster
Space, g+ 2= 5,we conclude that this is the only elem ent In them atrix Q . W e have thus
re-obtatned the result (2.29).

D in erM odelfor C%=Z,: Next,ltus ook at the exam ple ofC?=Z,. T he toric diagram ,
w ith multplicity 1, 2, 1, and the corresponding perfect m atchings are shown In Figure[3,
denoting the two extemal perfect m atchings by p;, and those of the Intermalpoint by ¢ » .
A quick Inspection of the perfect m atchings shows a linearrelation P, P+ g+ ¢ = 0O,
Jeading to a chargem atrix ( 1; 1;1;1) for the linear sigm a m odel description of them aster
space for the orbifold C?=Z,.As is com puted in [11,/12] and as we shall lJater encounter in
detailin s3.Jwe nd that them aster space is nothing but the conifold.

Diner M odel for C3=Z, Z,: The above argum ents can also be used to com pute the
linear sigm a m odel description of the orbifold C3=Z, Z,. The toric diagram , shown in
F iure[d, consists of 6 points, 3 extemal w ith perfect m atchings p; 5, and 3 ntemal. The
3 intemal points form a local C?=Z, singularity and have m ultiplicity 2. W e nd 6 intemal
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Figure 4: (a) The toric dagram forC°=Z, 7, togetherwih the GLSM m ultplicities/perfect
m atchings m arked for the nodes. There is a total of 9 perfect m atchings in the din er m odel,
which for sake of brevity we do not present here; (b) T he associated quiver diagram .

perfect m atchings g p 3455 - T here are 3 sets of 3 poInts each, sitting on a line. Each such
line is a C2=%, singularity and can therefore be used to write down a relation between the
4 perfect m atchings, giving rise to 3 conifold lke relations, p1 + 2, = G4 + B;p1 + O3 =
B+ Qe+ Ps = G+ . Thus them aster space of the orbibld C3=Z, 7, isan intersection
of 3 conibld-like (quadric) relations in C?,with a charge m atrix

0 1
g, 1 10 110000

0= 10 1001100K: (2.35)
0 1 1000011

w hich precisely agrees w ith Equation (2.31]).

W e see that we can nd a diagram m atic way, using din ers and perfect m atchings, to

nd the charges of the m atrix Q and thereby the charges of the linear sigm a m odel which
describes the m aster space. T his description is good for a relatively am all num ber of perfect
m atchings and sm allnum ber of elds in the quiver. W hen this num ber is large we w ill need
to refer to the com putation using the kemel of the P m atrix. W e thus reach an In portant

conclusion :

OBSERVATION 1 The coherent com ponent of the m aster space of a toric quiver theory
is generated by perfect m atchings of the associated dim er m odel.

T his should be a corollary of the m ore general B irkho Von N eum ann TheorenH 211:

“W e thank A lastairK ing for rst pointing this out to us. T he precise relation betw een this theorem and
perfect m atching is now actively pursued by A lastair K ing and N athan B room head and we look forward to
their upcom ing publication.
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THEOREM 2.1 Ann n doubly stochastic m atrix (ie., a square m atrix of non-negative
entries each of whose row and coluimn sum s to 1) is a convex linear com bination of perm u-

Aton m atrices.

W e can easily m ake contact between the perfect m atching description and the m ore

m atheam atical description of the m aster space outlined in the previous section. A s shown in

6l], the perfect m atchings p param eterize the solutions of the F—tem s condition through
the form ula

Xi= p*o: (2.36)

T his equation determm ines the charges of the perfect m atchings (m odulo an am biguity given
by 0% In term s of the g+ 2 eld theory charges. In the previous section we Introduced a
hom ogeneous variable y for each perfect m atching p . W e see that form ula (2.24) for the
cheam ical potential of the eld X ;

q = v (237)

ollow Ing from the C ox description of the toric variety, nicely m atches w ith (2.36) cbtained
from the din er description.

Finally, there is a very sinple way of determ ining the non-anom alous charges of
the perfect m atchings, which is useful in com putations based on the M olien formula. The
num ber of non-anom alous U (1) symm etrdes of a toric quiver gauge theory is precisely the
num ber of extermal perfect m atchings, or equivalently, the num ber d of extemal points in the
toric diagram . T his leads to a very sim ple param eterization for the non-anom alous charges
28,129]: assign a di erent chem ical potential x; for 1 = 1;:::;d to each extemal perfect
m atching and assign 1 to the intemal ones. An explicit exam ple is discussed in A ppendix
[C]. Tt ©low s from (2.34) that this prescription is equivalent to the one discussed in [28,[29].
Tn particular, In the com putation of the H ilbert series degpending on jist one param eter t,
we can assign cheam ical potential t to all the extermalm atchings and 1 to the intemal ones,
aswe did in section [2.1.4.

2.2 Case Studies

Enriched by a conceptual grase and am ed w ith the com putational techniques for describing

them aster space, we can now explore the wealth of exam ples of toric D brane gauge theordes
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Figure 5: The toric diagram and the quiver for the SP P shgulrity.

which have bedecked the literature. W e shall be reinforced w ith our lesson that F ! for the
U (1) quiver theory is ofdin ension g+ 2 and generically decom poses into severalcom ponents
the top din ensional one of which is also a CalabiY au variety of dim ension g+ 2,aswell as
som e trivial low er-din ensional linear pieces de ned by the vanishing of com binations of the

coordinates.

221 The Suspended P inched Point.

W ebegin rstwith a non-orbifold type of singularity, the socalled suspended pinched point
(SPP), rststudied in [30]. To ram ind the reader, the toric and quiver diagram s are presented
in Figure[d and the superpotential is

Wepp = X11(X 12X 51 X 13X 31)+ X 31X 13X 35X 03 X 51X 15X 53X 35 ¢ (2.38)

ThematricesK ,T and P can readily found to be

[

(2.39)

o o o o &
o o o+ o
o o r o o
o o o o
s o o o o
o o o o
= 2 o o o
o o r o o
s o o o
o o o+ o

[=}
B

o
Il

o o r P o o o

o R o o P o o

© o r O P o o

H O o o o o

- o §>‘(03OOOO -

In this exam ple, we nead to weight the variables appropriately by giving weight t to
all external points In the toric diagram , as discussed above:

X 017X 127X 237X 327X 317X 137X 119 ! £1;1;1;1;1;1;2g ¢« (2.40)
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In the actual algebrogeom etric com putation thism eans that we weigh the variables of the
polynom ials w ith the above degrees and work In a weighted space. Now ,we nd that the
m oduli space isa reduchble variety Fl,, = "Fl,,. [ Lspp with H ibert series:

1+ 2t+ 2 22+ ¢

H (GF ! = 241
’ SPP) (1 t)4(l tz) ( )
and
ImEsEpp = V&xXzp X11;X1X1p X31X13)
Lspp = V&X13;X317X12;X21) (2.42)

where we have used the standard algebraic geom etry notation that, given a set F = ffig
of polynom ials, V (F ) is the variety corresponding to the vanishing locus of F. The top
com ponent F ! . is a toric variety of complex dinension 5 which is the product of a

conifod and a plane C?; it has H ibbert series:

1 £ 1 1+t
P TF e ) = = ;
BG Feee) 1 @ ©2 @ v

(2.43)

w ith a palindrom ic num erator, as was w ith the etudes studied above. T he other com ponent
Lspp isa plane isom orphic C° with H ibert serdes:

H (GLspp ) = 1 2)0 o’ : (2.44)

T he two irreducible com ponents intersect in a C? plane w ith H ibert serdes:

1
H(t; "Fioo \ Lgpp ) = T : (2.45)

W e observe that the H ilbert series of the various com ponents satisfy the additive relation:
H (6Fdpp )= H (t; "Fdpp)+ H (GLspp) H (5 “Fgpp \ Lepp) : (2.46)

T his is, of course, the phenom enon of \surgery" discussed in [31]. W e will see this in allour

subsequent exam ples.

In the sym plectic quotient description, we nd that the kemel of the T-m atrix is
Q= (1; 1; 1;1;0;0)and hence ™F !, ’ C®=0QF. The symm etry group of the coherent
com ponent is easily found to be SU (2)° U (1)?, a rank 5 group as expected from the toric
property of this space. T he non-Abelian part is realized as the repetition of the charges,
1; 1;and 0, respectively.
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1 2

Figure 6: T he toric diagram and the quivers for phases Tand ITof Fy.

2.2.2 Cone over Zeroth H irzebruch Surface

W e continue w ith a sim ple toric threefold: the a ne cone F  over the zeroth H irzebruch
surface, which is sinply P! P!. Ideed, we ram ark that the even sin pler and m ore well-
know n exam ple of the conifold was already studied in [10,[11]], the m aster space tums out to
be just C*;we will retum to this in s42. The toric diagram isdrawn in (d). There are two
toric/Selbery (see for exam ple 32,133]) dual phases, (Fy): and (Fy):r, of the gauge theory
9], and the quivers and superpotentials are:

Wy = 55 pafiBpCiDagi

i m jn i m jn (2.47)
o = i mnX X 53X 5 i mnX 14X 43X 3 ¢

Toric Phase I: W e can readily nd the Ftem's from W ., in (Z47) and using the
techniques outlined above, we can nd the K -m atrix to be

0 1
A1 Ao B1 B Cq D1 Co D
B a; 1 0 0 0 0 0 1 0 C
% A, 0 1 0 0O 0 0 1 0 8
K = % B, 0 O 1 0 0 0 0 1 & (2.48)
% B, 0 0O 0 1 0 0 0 1 éi
c;, 0 0o o0 O 1 0 1 0
pD, 0 0 O0 0 0 1 0 1
W hence, prim ary decom position gives that there are three irreducible pieces:
[ - [ 1 2 .
L It]ﬁE(Fon [ Lieor, [ Diwg), 7 (249)
w ith
Pl = V(@BD1 BiD,;AC; AiCy)
Lig,), = V(C2iC1iAziRA;) (2.50)
L%, = V(D3;D1/ByiBy):
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W ith weight t to all 8 basic elds in the quiver the H ibert series of the total space is given

by
: 1+ 2t+ 38 4+ 2t
HGEE,), )= T o : (2.51)

T he top-dim ensional com ponent of F ([Fo is tordic CalabiYau, and here of din ension

)1
6; this is consistent w ith the fact that the num ber of nodes in the quiver is 4. Speci cally,

o ([FO . is the product of two conifolds and it has H ilbert series (again with palindrom ic
num erator):
1+ t)?
. [ _ .
H (t; I Fo) )= 1 or : (252)

The two lowerdin ensional com ponents are sin ply C*, w ith H ibert series

1
)=H (t L, )= — : (2.53)

H (t; LT,
(G 1 v

(Fo)r

T hese tw o hyperplanes are, asm entioned above, C oulom b branches of them oduli space, they
intersect the ™F ([FO ,, along one of the two three dim ensional conifolds which have H ibert
Series
H ™ L \LL )=H&"FL \L? S 2.54
( 4 (Fo)1 (Fo)r )_ ( 4 (Fo)r (Fo)r )_ (1 t)3 ° ( )

T he H ibert serdes of various com ponents again satisfy the additive surgical relation of [31/]:

H(GF &, )=H @G F L, #+H (GL,, +H (t;LfFO)I) H (5 7F \L}FO)I) H (t;h%(go)l\LfFo)I):

(Fo)1 1 Fo)r

(2.55)

For reference, the dualcone T -m atrix and the perfectm atchingmatrix P = K * T are:

0 ) l1
0 0 0
0 1 0 0 0
o0 0 o0 0 0 1 1 o0 0 0o 0 1 0 1
0o 0 0 0 0 1 0 1C %o 00 1 1 0 0 o%
_ 00 0 1 1 0 0 0 _Bo 0o 1 0 1 0 o0 o0 .
T_%o o 1 0 1 0 0 OA’ P_Bo 1 0 0 0 0 1 08 . (2'56)
01 0 0 0 0 1 0 @1 0 o 1 0o o o oA
10 0 1 0 0 0 0 01 0 0 0 1 0 0
1 0 1 0 0 0 0 0
Sub ently, their kemel is Q t, giving us
’
t_ 0o 1 o 0o 0 1 101 IrrE‘[ ’ 8 t .,
Q" = 10 1 11 0 0 0 ) (Fo)r C O (257)

The fact that the rows of Q* sum to 0 m eans that the toric variety is indeed CalabiYau.
The symm etry of the coherent com ponent is SU (2)* U (1)?, suitable for a product of two
conifolds. W e note that the chargem atrix Q has 8 colum nswhich are form ed out of 4 pairs,
each w ith two identical colum ns. T his repetition of colum ns In the charge m atrix is another
way of determ Ining the non-A belian part of the sym m etry group of the coherent com ponent.
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Toric Phase II: W e can perform a sin ilar analysis for the second toric phase which is
a Seiberg dualof the rst. Note from (2.47) that the gauge-nvariant term s in W ¢, )., now
have a di erent num ber of elds; correspondingly, we m ust thus assign di erent weights to
the variables. T he ones that are com posed of Selberg dualm esons of the elds of the rst
toric phase should be assigned tw ice the weight:

X 112 X 213 X ?%12 X 223 X 511 X 122 X 3112 X 3111 X 114 X i3 X 53 X 124g Vo£1;1;231;2;1;2;2;1;1;1;1g

(2.58)
In the actual algebro-geom etric com putation thism eans that we weight the variables of the
polmnom ials w ith the above degrees and work in a weighted space. Subssquently, we nd
that

1 11 2 1 21 2 1 1 2 12 2 22
X43 X31 X'J4 X73 X31 X73 X'J? X'J4 X'J? X31 X43 XB'J
B X4y 1 0 0 0 0 0 1 0 1 0 1 0
B Xii o 1 0 0 0 0 1 1 0 1 0 0 %
— 2
K =B x% o 0 1 0 0 0 1 1 1 0 0 0 (2.59)
@ xi o 0 0 1 0 0 100 1 1 1 1 A
x2 0 0 0 0 1 0 1 10 0 0 1
X2, 0 0 0 0 0 1 0 0 0 1 1 1

The m aster space a ords the prin ary decom position F [ = o [ [ LY [ L2 [

) (Folrz (Foir (Fo)rz
L?FO)H w ith
TE ([FO)H = VKX 3112X i3 X 3111X 53 X 223X i3 X 213X 53 X 3212X i3 X ??llx 53 X 122X 114 X 112X 124;
XEX1 XEXLXERD XXX EX  XEXFX X5 X5Xa;
X 223X noX fzx i) 73X X X 11X X 3%11 X {,X 317X X 223 X 14X 53;
X 213X 3212 X 223X 3%11 X 112X 3212 X 122X 3%12 X 112X 213 X 114X i3 )
L. = VX {iX 55X 55X 14X 55X 557X 337X 1)
Tore = VX G 4X X SR G X )
Lieor = VXX 31X 5f X 35X 5 X 51X 55X )
(260)
T he H ibert series is
G TFL, )= 1+ 6t+ 172+ 248 + 14t 42+ 4t + 288 : 261)
o @ va er

WeseethatF [  is com posed of four frreducible com ponents: a six din ensional #F |

)11 (Fo)lrr

w hich is the product of tw o conifolds; this is the biggest irreducible com ponent and it actually

. . 1+ t)?
has the sam e H ilbert series E; 36

as the ™F ([FO ), com ponent of st toric phase.

T he other three irreducible com ponents are three four din ensional com plex planes each
de ned by the vanishing of 8 coordinates out of the 12 total. T hese planes intersect only at
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the origin of the coordinate system and have the H ibert serdes

1
H (t; L%Fo)u): (1 t2)4; H (t; L%FO)II): H (t; L‘?Fo)u): (1 t)4 : (2'62)

W eseethatLy, ,
0/1

by the coordinates of tw ice the weight.

_has £ in the denom inator instead of tbecause it is param eterized precisely

T he three C* com ponents and the ™F ([FO ., com ponent intersect in a three din ensional

conifold variety but w ith di erent grading of the coordinates:

1+ ¢ 1+t
. [ 1 _ . . [ 2 _ . [ 3 _ .
H (t’DﬂSF(Fo)H\L(FO)H)_ (1 t2)3’ H (t’DﬂSF(FO)H\L(FO)H)_ H (t’DﬂSF(FO)H\L(FO)II)_ (1 t)3 °
(263)
Once again, we have a surgery relation:
. [ — . [ .71 T 2 .73
= (t'F(FO)H) = H (t’IUﬁE‘(FO)H)-I—H (t'L(FO)II)+H (t’L(FO)11)+H (t'L(FO)II)
. [ 1 . [ 2 . [ 3 .
B " (Fo)rz \ L(FO)II) B " (Fo)rz \ L(FO)II) B i (Fo)rr \ L(FO)II) .
(2.64)
The dualcone T -m atrix and the perfect m atchingmatrix P = K* T are:
0 1
o0 0o o 0 0 1 1 1
o0 0o 0o 1 1 0 o0 1
BO 1 1 1 0 0 0 0 0
OO 0 0 0 0 0 1 1 11 %O 0 0 1 0 0 0 1 1
o 0 0 0o 1 1 0 o0 1C %o o1 0 0o 1 0 0 1
o 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0
T28000100011A’ P:%o1oo101oocz (2‘65)
0 0 1 0 0 1 0 0 1 BO 1 0 1 1 0 0 0 OC
1 0 0 1 0 0 0 1 0 BO 1 1 0 0 0 1 0 OC
@1 o 0o 0o 1 1 0 o oA
1 0 0 0 0 0 1 1 0
1 0 1 0 0 1 0 0 0
Hence, the kemel isQ * and we have
1 1 0 1 0 1 1 0 1
Qt: o 1 o 1 o0 0 11 o0 ) T [ ’ C9=Qt: (2.606)

Fo)
0o 1 10 11 0 0 o0 (o )rx

Again, the rows of Q* sum to 0 and the toric variety is CalabiYau. T he second and third
row s are conifold like relations and the rst row is a relation which is found for the m aster
space of C3=Z5 and isnot in the st phase ofFy.

W e see here that a m anifestation of Seilberg duality is in the fact that the coherent
com ponent of each of the phases are the sam e. T his feature isgoing to repeat itself. D i erent
toric phases of a given CalbiYau singularity w ill exhibit the sam e coherent com ponent of
the m aster gpace. T his is going to be our con ctured relation:
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Figure 7: The torc diagram and the quiver fordP; .

CONJECTURE 1 Quivers which are toric (Seiberg) duals have the sam e coherent com —
ronent of the m aster space.

Tt would be interesting to understand the fate of the linear com ponents under Seiberg duality
and this is left for future work.

2.2.3 Cone over First delPezzo Surface: dP;

In our analysis in 213 we nitiated the exam ple of dP, to which we will Jater retum; for
now , it is only natural that we continue to the higher cases. W e know that P? blown up
till 3 generic points adm it toric description; the a ne cones thereupon have been referred

points, we arrive at the so-called P seudo-del Pezzo surfaces 34 ]; these continue to be toric
and the corresponding theories are known asP dP; 4. T he toric and quiver diagram s fordP,

are given in F gure[] and the superpotential is:

Wap, = ap¥1VaUp+ ap¥3UaVp+ 4pY2U.Z2 Uy (2.67)

Now the K -m atrix is

V2
U,
U,
U2
Y3
Y2

@IET o
o o o o o r <
o o o o~ o g
o o o+ oo g
o o r o o o a
O B O O O O K

0

o 1 o 1 o %

0 1 1 1 1 (2.68)
0 A

0

1
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and the m aster space is the union of two componentsF §, = "F L, [ Lg,,a 6-din ensional

" L, piece and a plane Lgp, representing a C*:

PRl o= V(0Yr UpYs;UiY:  UiY3;0.Vi UnVp;UpVi UpV,;UL0; ULU%;
U2Yzz V2Y3 ;U1Y2Z VlYg ;UzYzz V2Y1 ;U 1Y22 VlYl ) (2 .69)
Lap, = V(Z;7Y3;Y2;Y1;V2Vy) ¢

W e need to weight the elds appropriately:
tVo;01;025U025Y35Y,;V ;Y ;U ;29 Y £2;1;1;15;1;15;2;15;1519g . (2.70)

T he H ibert serdes of the total space is

: 1+ 4t+ 8P+ 42 th+ 6
HGFL )= o o (2.71)

and that of the ™F §,  com ponent is

e 1+ 4t+ 7€+ 40+ ¢ 2.72)
A '

N ote that the denom lnator isequalto (I t)*(1 £)?, signifying that two variables are of
welght 2. Hence, the above H ibert series is iIn the Second form .

The two com ponents Intersect In the three din ensional conifold variety with H ibert

Series:
1+t
. [ —
H (tll‘crf‘dpl \ Lgp, )= W (2.73)
and we Indeed have the surgery relation
HGFp, )= H (G "FL )+ H (5 Lae,) H(GFSH, \Lap,) ¢ (2.74)

For the case of dP; the 6 8 dualcone T-matrix and the 10 8 perfect m atching
matrix P take the form

0 o0 0 o0 0 1 1 11

o0 0 1 1 0 0 ©

0 1 B

o 0o 0 0 0 1 1 1 o0 0 0 1 0 0 1
Bo o 0 1 1 0 0 oC %o o 1 0 0 0 © 1%

o0 0 0 1 0 0 1 1 1 0 0 1 0 0 ©

T= @o 0O 1 0 0 o0 0 1A ’ P = %0 1 0 0 0 0 1 0% (2'75)

1 1 0 0 1 0 0 0 %o o 0o 1 0o 1 1 o
o1 0 o0 0 0 1 1 1 1 0 0 0 0 OA

o0 1 1 0 0 0 0

1 0 0 0 0 1 0 0
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Figure 8: The toric diagram and the quiver fordP,.

The rank of thismatrix isg+ 2 = 6 and we expect a 2 din ensional kemel. This can be
easily com puted to be them atrix Q , which form s tw o vectors of charges for the linear sigm a
m odel description of the coherent com ponent of the m aster space for dP; . In summ ary,

T Q=0 ) ¢= . " o 0 0. ) frL =0t (2.76)

The sum of charges (rows of Q%) is zero, giving a Calbi Yau 6-od. One relation is a
relation found for dPg, as appropriate for dP; is a blowup of dPy that m anifests itself by
Higgsing the Z el ofdP;. The second reltion is a conifold-lke relation. T he symm etry
isSU(2) SU(@R) U((L).0neU (1) isthe R symm etry and the st SU (2) is the natural
one acting on them esonicm oduli gpace. The second SU (2) isa \hidden" sym m etry com ing
from one of the two anom alous baryonic U (1) symm etries. W e w ill use the full symm etry to
com pute the re ned H ibert serdes for this space in section [4.5.

2.24 Cone over Second delPezzo Surface: dP,

M oving onto the next blow up, we have the dP, theory, whose quiver and toric diagram s are

given In Figure[8 and the superpotential is:

W @p,) = X 32X 45X 53 X53Y31X 15 X 34X 42Y23+ ¥23X 31X 15X 50+ X 42X 23¥31X 14 X 23X 31X 14X 45X 55 ¢
(2.77)

W e point out that this m odel is one of the toric phases (phase IT in the notation of
35]), and we shallonly consider this one for now .
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The m aster space hasK -m atrix

0 1
X 14 X 23 X 31 X 45 X 52 X 42 Y23 X 34 X 53 Y31 X 15
X4 1 0 0 0 0 0 0 1 0 0 1
% X 23 0 1 0 0 0 0 0 1 0 0 1
_ B xa1 o 0 1 0 0 0 0 1 0 1 0 .
K = B x. o 0 0 1 0 0 0 1 1 1 1 . (2.78)
@ Xs, O 0 0 0 1 0 0 1 0 1 0 A
Xap O 0 0 0 0 1 0 1 1 1 0
Yos3 0 0 0 0 0 0 1 1 1 0 1
[ — [ 1 2 LT T
and decomposesasF g, = "F g, [ L, [ L3, ,with:
[ _ . . .
Fap, = V(X4sXs3 Xap¥03;X 34X g5 Y31X15;X 42X 23X 14 X 53X 155

XgsX 23X 15 X15Y237;X 15X 31X 50 X 34X 427X 45X 31X 50 ¥31X 425
Y31X 23X 14 X34Y23;¥23X 31X 50 X53¥31;X 31X 50X 03X 14 X 34X 53) (2.79)

LcliPz = V(X14;X23;X15;Y23;X 537X 34)
Lc21P2 = V(Xs52;X31;X42;Y31;X53;X34) :

W e welght the elds appropriately:
X 147X 237X 317X 457X 527X 427Y237X 347X 537Y31;X 159 ! £1;1;1;1;1;2;1;2;2;1;2g ¢ (2.80)

T he H ibert serdes of the total space is

: 1+ 2t+ 58+ 42 ¢ 20+ 2t
HGFGL,)= 1 O ds (2.81)

w hile that of the top com ponent, a 7-din ensional sub—variety, has

TR L )= 1+2t+5t2+2€‘+t4_ 252)
r ap, / — (1 t)7(l+t)2 . o

The two plnes L, and L3, are simply C° (with appropriate graded coordinates)

and their H ibert series are

H (t; Ly, )= H (5 L, )= (2.83)

1 va 2)°
T hey them selves intersect on a com plex line C, which is in fact their comm on intersection

w ith the ™F J,  com ponent:

1
H (5 L, \ L, )= H (5 Ly, \LHp )\ "FL )= T (2.84)

Each, however, intersects “F §,_ on a non trivial 4 din ensional variety with H ibert series:

1+ t+

H(t "Fa, \Lap,) = H (5 "Fp, \ Lgp,) = T va 2

(2.85)
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This is a m anifold of com plete intersection generated by 4 generators of degree 1 and
1 generator of degree 2 satisfying 1 relation of degree 3. Again, we have a surgery relation
am ong the H ibert series, fully exhibiting the intersection structure of the com ponents of the
m aster space:

HGFERL,) = H@G ™ML )+ H (G L)+ H @G L )+ H (G L, \LE )\ "FL)
HG "Fh, \Lg,) HEG™L VL&) H(@G L, \LE,):
(2.86)

For reference, the dualcone T -m atrix and the perfectm atchingmatrix P = K * T are:
0 1

eEEm O
o o r o o o o
o r P O O O O
H o o r o o o
o r o r o o o
o o o o r o o
o r o o r o o
o o o o o r o
o o o o = o
o o o o o o &
OO0
~
o
Il
[ vssvuvsvuvieviovov]
O H O r OO KR O o o O
©O O kFr OO Kr KH O O O O
o+ O o+ O o r o o o
H O O O O r Or O O O
O B O r OO O O kR O o
o or O OFr OO R O O
H O O OO0 O o o r o
O O Fr O Fr O O O o r O
H O O r OO O o o ok

1

0

0
o
oC
ogé : (2.87)
1

0
1A
0

0

Subsequently, their kemel is Q &, giving us

Qt: 1 1 11 0 0 11 0 o ) In:chpz ’ Clo:Qt: (2.88)

1 1 0 0 1 1 0 0 0 0

Once again, the rows of Q * sum to 0 and the toric vardety is CalabiYau.

2.2.5 Cone over Third delPezzo Surface: dP;

Now for the last true toric del Pezzo, et us study dP3, whose toric and quiver diagram s are
given In Figure[d and superpotential:
W @apy) = X 12X 23X 33X 45X 56X 61 + X 13X 35X 51 + X 24X 46X 62

X 23X 35X 56X 62 X 13X 3uX 46X g1 X 12X 24X 45X 51 ¢ (2.89)

Again,we nead to weight the variables appropriately:

X 125X 237X 34 ;X 457X 567X 617X 137X 357X 517X 247X 467X 629 | £1;1;1;1;1;1;2;2;2;2;2;2g :
(2.90)
Again, this is only one of the 4 toric phases of the theory (Phase I in the notation of [34]).

For now , we shall focus on this one.
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Figure 9: T he toric diagram and the quiver fordP;.

The K m atrix for the m aster space is

S
N
w
w
S

61 35
X 12
X 23
X 45

(291)

X 56

e@HEWom ©

X 46
X 34
X 61
X 51
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©O O © © © © o kX
©O O © © © O O X
O O O O O ~» O o X
© O o O o o o X
© o O 0 o o o X
o O O O O o o X

and F §, decomposesas ™F &, [ L, [ L%, [ L3, with

MFC%% = VX 23Xs56X6y X13X51;X3uX61X4s X35X51;X 12X 45X 24 X 13X 355
X 15X 45X 51 X 46X 627X 23X 56X 35 X 24X 467X 3uX 61X 13 X 24X 627
X 23X 33X 56X 61 X 51X 24 ;X 12X 33X 45X 61 X 35X 627X 12X 23X 45X 56 X 13X 46);

Lém = V(X42X46iX35;X13;X345;X12);
L§P3 = V(X 46X 24;X51;X13;X56;X23);
L§p3 = V(Xg2iX24iX51;X35;X61;X34) ¢

(292)
W e see that there are four rreducible sub-varieties: the 8 dim ensional C alabiY au cone and

three 6 din ensional planes. T he various H ibert series are:

. _ 1+ 42+ 4t 6P+ 38, . [ 1+ a4+t
B Fep,)= " oag ¢ B O Fa)= g oap (2.93)

H(GLgp,)=H G LE)=HELE )= g wer ©

The plnes L, , L3, and L3, intersect the ¥}, in a non-trivial 5-din ensional
variety w ith H ibert series
1+ ¢

H(G " F o, \Lp ) =B (G " FL \LL ) =H (G "FL \ L) = T oa 8 (2.94)
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and they intersect them selves in a com plex plane C 2, which isalso their comm on intersection
with &F [

4p, 7+ this Intersection has H ibert series
H (t; Lép3 \ LCZiP} ) = H (t; Lép3 \ LC31P3): H (t; L(:21P3 \ LC31P3):
H (t; Ime‘C%P3 \ L(]iP3 \ L§P3 ) = H (t; IrrE‘C%P3 \ L(]ZiP3 \ L§P3): H (t; IrrE‘C%P3 \ L§P3 \ L§P3): (1 lt)2
(295)
The comm on intersection am ong the three planes and am ong all the four irreducible
com ponents of F£P3 is jast the origin of the em bedding space. Once m ore, we have the

surgery relation

HGFEL ) =

dP3

H"Fh )+ H (G Ly )+ H(G LG )+ H (G L) H@EG L \Li,)
H(G "™, \L%,) H@EG ™ L \Li,) H@EGLE \Li))

H(t Ly \Ly,) H@LE \LE )+ HE ™ L VL, \ L )+

H "o \Lep \Lp )+ H " VL, \ L)

Finally, the dualcone T -m atrix and the perfectmatchingmatrix P = K* T are:

0 1
00 0 0 0 0O 0O 0 0 0 1 1
0 1 B 00 0 0 0O O O 0 1 1 0 0
00 0 0 0 0O O 0O 0 0 1 1 B ¢ 0 0 0 0 0 1 1 0 0 00
B 00 0 0 0 0O O 0 1 1 0 0 B o o o o 1 1 0 0 0 0 0 0
B ° 0 0 0 0 0 1 1 0 0 0 0 B o o 1 1 0 0 o o o o o o
T = B o o o o 1 1 0 0 0 0 0 0 D = E 1 1 0 0 0O O 0 0 0 0 0 O0
" B o o 1 1 0 0 0o 0 0 0 0 o0 ’ - B0 ©° o0 1 0 1 0 0 0 1 0 1
@+ 1 6 0o 0 0 0 o0 0o 0o o oA B o 1 0 0o 1 0 0 1 0 0 1 0
o0 0 1 0 1 0 0 0 1 0 1 B 1 0 1 0 0o 0o 1 0o 1 0o o0 o0
o1 0o 0 1 0 0 1 0 0 1 0 @ o 1 01 0 0 0o 1 0 1 0 oA
o0 1 0 1 0 0 0 1 0 1 0
1 0 0 0 0O 1 1 0 0 0 0 1
(2.96)
. . t . .
Subsequently, their kemel 15 Q -, gIving us
|
111 1 0 o0 0 0 0 0 11
t_ 0 0 1 1 0 0 0 0 101 0 0 I‘asE.[ 7 12 t .
Q"= 1 1 0 0 0 0 101 0 0 0 0 ) o 1= C Q" : (2’97)
111 1 1 1 0 0 0 0 0 0

W e see that the rows of Q" sum to 0 and the toric variety is CalabiYau.

2.2.6 Cone over Fourth P seudo delPezzo Surface: PdP,

By blow Ing dP; up at a non-generic point we can obtain another toric variety, referred to
as a pseudo del Pezzo [34]. The toric and quiver diagram s are given In Figure[1d and the
superpotential is
Weap, = XeX17X 74X 46+ X 21X 13X 35K 50 + X 27X 73X 36X 62 + X 14X 45X 51
X 51X 17X 73X 35 X 21X 14X 46X g2 X 27X 74X 45K 50 X 13X 36X 61
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Figure 10: The torc dagram and the quiver forPdP,.

O nce again, we nead to assign appropriate weights to the variables:

X 457X 937X 467X 211X 367X 727X 527X 357X 171X 625X 517X 27;X 617X 137X 129
V' £2;2;2;2;2;2;2;2;2;2;4;4;4;4;49 ¢

(2.98)

Subsequently, the K m atrix is given as

O X 13 X117 X 35 X 61 X 14 X 27 Xg2 X 51 X 74 X 45 X3 X 46 X 21 X 73 X 52 1
X153 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0
B X 17 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0
% X 35 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0
K — B X 61 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 C . (299)
B x.. o 0 0 0 1 0 0 0 0 1 0 0 1 0 1 Cc -
B X7 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 C
@ X 62 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 A
X 51 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1
X794 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1

and the m aster space has H ibert series

15t 108+ 80+ 2667 + 67C"  162¢!°  set'® + 27620 11187 122¢ + 112€°  142% 1500 + 507
1 gy )N ’

H (t;FE[’dP4):

(2.100)

Now,F /4, hasa top ™F [, component of din ension 9:

HIFP[,dh = V(X46X21X62 Xua5X51;X73X35X17 X45X14;X46X74X17 X36X13;X21X52X35 X36X615
X 45X 74X 52 X 73X 36X 62;X52X35X 13 X46X62X14;X74X 17X 61 X 21X62X14iX73X62X27 Xe1X137
X 74X 52X 27 X51X14;X45X 52X 27 XaeX17X61;X 45X 74X 27 X 21X35X13;X73X36X27 XaeX21X147
X 35X 17X 51 X36X62X27;X73X 17X 51 X 21X52X13;X73X35X51 X46X74X61;X73X46X17X62 X45X52X137
X 73X 21X 35X 62 X45X 74X 617X 74X 52X 35X 17 X36X62X14;X46X21X35X17 X45X36X27;X46X21X74X52 X73X36X 517
X 21X 52X 62X 27 X17X 51X 61X 46X 74X 62X 27 X 35X51X13;X 73X 74X 17X 27 X 21X 13X 14;X 73X 52X 35X 27 X aeX 61X 14) ;
(2.101)
w ith H ibert series
1+ 2+ 6+ 2+ ¢
: (2.102)
1 ey

H (G “Figp,)=
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T are:

The dual cone T -m atrix and the perfect m atchingmatrix P = K ©
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Subsequently, their kemel is Q ¥, giving us

(2.104)

Indesd, the rows of Q" sum to 0 and the toric variety is CalabiYau.

P dPs

C one over Fifth P seudo delPezzo Surface

2.2.7

Trudging on, we can also study one m ore blow up, the P dPs theory. The toric and quiver

diagram s are given In F ure[l]] and the superpotential is

X 46X 67X 72X 24

X 13X 35X 58X g1 + X 14X 46X 65X g1 + X 35X 57X 72X 23

W PdpPs

X 57X 71X 14X 45 + X 58X 82X 24X 45 X 58X g2X 23X 36

+ X 67X 71X 13X 36

(2.105)

Now , all the variables have the sam e weight and the m aster space has K m atrix
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N

; 5

Figure 11: The torc dagram and the quiver for P dPs.

0 1
X 24 X 36 X 67 X g2 X 35 X 57 X g1 X 45 X 46 X 68 X 14 X 13 X 23 X 72 X 58 X 71
X4 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
E X35 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 8
B x¢7 O 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 C
B x4 o 0 0 1 0 0 0 0 ) 0 1 1 0 1 0 0
K = E X35 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 ;
B Xs1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1
8 Xg1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1
X 45 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 A
X4 O 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1
Xgg O 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1
(2.106)
aswell as the H ibert series
S 1+ 6t+ 212+ 402 + 39t 300 + 19t 5107
( 4 PdP5)_ ( 1+ t)10 . ( . )
T he top com ponent is Calabi¥Yau of dim ension 10 given by the Intersection:
g | = VX13X67X36 X14X57X45;X68X23X36 X58X24X145;X13X67X71 X68X23Xg2;X14X57X 71 X58X2aX3g2;

PdPs
X 46X 72X 24 X 13X 71X 367X 46X 72X 67 X58X45X82;X35X 72X 23 X14X71X45;X35X57X23 X46X67X247

X 35X 57X 72 X68X36X82;X81X 46X 68 X57X71X45X81X14X68 X 72X67X24i;X81X14X46 X23X36X827
X 35X 58X g1 X67X71X36;X13X 58X 81 X57X72X23;X13X35X81 X 24X45Xg2;X13X35X58 X14X46X687
X 72X 23X 67X 36 X 58X 81X 14X 45;X 46X 68X 67X 36 X 35X58X57X45;X13X35X23X36 X14X46X24X45;
X 13X 81X 68X 36 X57X 72X 24X 45;X57X 72X 67X 71 X 58X 81X68X82;X14X46X67X71 X 35X58X23X 827
X 13X 35X 57X 71 X 46X 68X 24X 82;X 13X 81X 14X 71 X 72X 23X 24X 82;X35X58X72X24 X14X68X71X367
X 58X 81X 46X 24 X57X23X71X36;X13X35X 72X 67 X14X68X45X82;X13X81X46X67 X57X23X45X827
X 46X 68X 72X 23 X 13X 58X 71X 45;X 14X 68X 57X 23 X 13X 58X 67X 24;X35X81X68X23 X67X24X71X45;
X 14X 46X 57X 72 X 13X 58X 36X 82;X 35X 81X 46X 72 X 71X 36X 45X 82;X 35X 81X 14X 57 X7X24X36X382)

(2.108)
and has H ibert series

1+ 6t+ 212+ 408+ 21t + 62 + ©°
: (2.109)
(1 t)lO

H (G " Figp. )=
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T are:

Finally, the dualcone T -m atrix and the perfect m atchingmatrix P = K ©
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Subsequently, their kemel is Q ¥, giving us
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o MMM

o
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I
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[

14 C24:Qt

PdPs

(2111)

Again, the rows of Q “ sum to 0 and the toric variety is CalabiYau.

R ecapitulation

2.3 TheM aster Space

Having wam ed up with an etude and som e developm ental case studies let us recapitulate

with ourtheme in F [. W e have studied, w ith extensive exam ples for toric theories at num ber
of D 3-branes equaling to N = 1, the algebraic variety form ed by the F- atness equations,

we have seen that in general this is a reducible variety, with a top Calbi¥au com ponent
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of din ension g+ 2. In this section we recapitulate and despen the properties of the m aster
space F | for such toric quiver gauge theories and w ill discuss what happens for N > 1.

231 The ToricN = 1Case

Aswe have seen, F | is a toric g + 2 din ensional variety, not necessarily irreducble. The
coherent com ponent F !, the largest irreducible com ponent of F [, also of dim ension g + 2,
can be quite explicitly characterized. D enoting, as usual, with E the num ber of elds in the
quiver, g the num ber of nodes in the quiver and w ith ¢ the num ber of perfect m atchings in
the dim er realization of the gauge theory, we have de ned three m atrices:

A (g+2) E matrixK obtained by solving the F<+erm s in termm s ofa set of lndependent
elds. T he colum ns give the charges of the elem entary eldsunder the (C )?" 2 action;
In a m ore m athem atical language, they give the sam group generators of the cone ¢

in the toric presentation for ©F !:

b7 spec. [ \ 2977] (2.112)

A (g+ 2) cmatrix T,de ned by K® T 0, and representing the dual cone g .
T he colum ns are the ¢ toric vectors of the g+ 2 din ensional variety ™F [. W e see that
the num ber of perfect m atchings in the din er realization of the quiver theory is the
num ber of extermal points in the toric diagram for ®F [. T his generalizes the fact that
the external perfect m atchings are related to the extemal points of the toric diagram

for the three din ensional transverse Calabi¥Y au space X .

A E cmatrix P = K* T which de nes the perfect m atchings as collections of
elem entary elds.

T he variety ™F [ also has a Jinear sigm a m odel, or sym plectic quotient, description as
pl_ ce—Qt; (2113)

where Q is the kemel of them atrices P and T . From all these descriptions we can extract
som e general properties of the m aster gpace and of its H ibert serdes.
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A s a H igherD im ensional C alabi-Yau: Them ost suggestive property is that ™F ! is
alwaysa g+ 2 dim ensional Cakbi-Yau m anifold. T his has been explicitly checked in all the
exam ples we have discussed. It is sin ple to check the CalabiYau condition in the linear
sigm a m odel description, since it corresponds there to the fact that the vectors of charges
in Q * are traceless, or equivalently, the toric diagram has all the vectors ending on the sam e
hyperplane.

T here isa rem arkably sin ple proofthat ™F ! isC alabi¥Y au which em phasizes the rdle of
perfect m atchings. R ecall from [@]and 2.1 that the quiver gauge theory has a description
n term s ofa din erm odel, this is a bipartite tiling of the two torus, w ith V=2 w hite vertices
and V=2 black vertices, where V is the num ber of superpotential term s. T he elem entary

elds of the quiver correspond to the edges In the tiling, each of which connects a black
vertex to a white one. Now , by de nition, a perfect m atching is a choice of elds/din ers
that cover each vertex precisely once. In particular, a perfect m atching contains exactly V=2
din ers, connecting the V=2 black vertices to the V=2 white ones. Since the colum ns of the
matrix P, of size B c, tellus which elds/dim ers occur In a given perfect m atching we
have the nice dentity
VE ?1;1;::::;1?; (2114)

—_— {7
E Cc

w hich basically counts the num ber of edges in each perfect m atching.

By multiplying this equation on the right by the m atrix kemelQ ofP ,P Q = 0,we
obtain

0= ?1;15{::::;% 0 (2.115)

and we conclude that the vector of charges of the linear sigm a m odel, which are the row s of
them atrix Q %, are traceless. T his proves that “F [ is CalabiYau.

W e again see that the prefect m atchings description is crucial in our understanding of
the properties of the m aster space. A s explained In x2.1.7, the perfect m atchings generates
the coherent com ponent of the m aster space as a consequence of the B irkho Von Neum ann

T heoram .

Seiberg D uality: From our study of the toric dual phases, exem pli ed above by the two
phases of the cone over the H irzebruch surface, we congcture that
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For a pair of Seiberg dual theordes, ™F ! is the sam e for both.

Palindrom ic H ilbert Series: An intriguing property of the H ibert serdes for ¥F [ is its
symm etry. A sm anifest from all our exam ples, the num erator of the H ilbert series (in second
orm ) for ¥F | is a polynom ialin t

P (t) = a tt (2.116)

with symm etric coe cientsa y = ax. Thism eans that there is a ram arkable sym m etry of
the H ibert serdes for ™F  under t | 1=t,

H (1=t;"F H= ¢ ;"F ") (2117)

where them odular weight w depends on &F [,

A polynom ialw ith such a symm etry between its consecutively highest and lowest co-
e clentsay x $ ay isknown asa palindrom ic polynom ial. A beautiful theorem due to

Stanley [36l]] states the follow Ing

THEOREM 2. The numerator to the H iloert series of a graded C ohen-M acaulay dom ain
R ispalindrom ic i R is G orenstein.

W hat this m eans, for us, is that the coordinate ring of the a ne variety ™F ! must be
G orenstein. However, an a ne toric variety is G orenstein precisely if its toric diagram is
coplanar, ie., it isCalabiYau (cf.eg.x 4.2 of [30]). Thuswe have killed two birdsw ith one
stone: proving that ™F ! isa ne toric C alabiYau above from perfect m atchings also show s
that the num erator of its H ilbert series has the palindrom ic sym m etry.

Aswe will see, this symm etry extends to the re ned H ibert series written In term s
of the R charge param eter t and chenm ical potentials for a global symm etry G . A though
G has been up to now Abelian, we will see that In som e special cases of theories w ith
hidden symm etries G becom es non Abelian. Introducing chem ical potentials z for Cartan
subalgebra of G , we w ill w rite the re ned H ibert series as a sum over G <haracters In the

general form , | " n

H (G)= (z)f PE J(z)E (2.118)

45



where PE is the plethystic exponential to be reviewed in 2.3 .3, com puting sym m etric prod—
ucts on a set of generators of the coherent com ponent. The re ned H ibert serdes is now

nvariant under the the combined action of t ! 1=tand chargeconjugation, y x= ,.We
w ill see m any exam ples in Section 4.

2.3.2 GeneralN

T he case foran arbitrary num ber N ofD 3-Joranes ism uch m ore subtle and less understood in
them athem atical literatureld, even though it is clear from the gauge theory perspective. W e
know that the world-=yolum e theory for N D 3-branes is a quiver theory w ith product U (N ;)
gauge groups and In the IR, the U (1) factors decouple since only the special unitary groups
exhibit asym ptotic freedom and are strongly coupled in the IR . T hus the m oduli space of
Interest is the space of solutions to the F- atness, quotiented out by a non-A belian gauge
group

My =F =(SUN,;) ::: SUNy): (2119)

where the index N recalls that we are dealing w ith N branes. The m oduli space M  is of
di cult characterization since the quotient is fully non-A belian and it can not be described

by toric m ethods, as in the N = 1 case.

Them ore fam iliar m esonic m oduli space is obtained by perform ing a further quotient
by the Abelian symm etries. Even for N branes, the A belian group will be constituted of
the decoupled U (1) factors, and hence w ill be the sam e as in the toric, N = 1 case. Once
again, we expect to have som e sym plectic quotient structure, in analogy w ith (1.2), for this
m esonic m oduli space:

meM g f M o =U (1) !: (2.120)

Hence, a toric sym plectic quotient still persists for (2.120), even though the m oduli space in
question is not necessarily toric.

M oreover, our plethystic techniques, which we will shortly review , w ill illum inate us
w ith much physical intuition. First, the m esonic m oduli space for N branes is the N -th
sym m etrized product of that of N = 1:

"M oy Sym'X =XV= (2121)

SW e thank Balazs Szendroi for discussions on this point.
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where y is the symm etric group on N elem ents. W e see that the m esonic m oduli space,
for X a CalabiYau threefold, is of dim ension 3N by (2.12]]). The din ension of the m oduli
gpaceM y isthus3N + g 1 forgeneralN .

233 The P lethystic Programm e R eview ed

W e cannotem bark upon a study ofgeneralN w ithoutdelving Into the plethystic programm e,
whose one key purpose of design was for this treatm ent. Here let us review som e essentials,
partly to set the notation for som e extensive usage In 4 Jater. T he realisation in [9] is that
the m esonic generating function, w ith all baryonic numbers xed to be zero, g, (t; X ) =

1 (t; X ) for the sihgletrace m esonic operators for D 3-branesprobing a C alabiY au threefold
X atN ! 1 isthe Hibert serdes of X . Let us de ne the P lethystic Exponential of a
m ultivariable function g(t ;:::;%, ) that vanishes at the origin, g(0;:::;0) = 0; to be

PE [g(g;::i;8)] = exp EACNARAIA Y : (2.122)

Then the multitrace m esonic operators at N ! 1 are counted by the plethystic
exponentia
!
X of ) 1
g X )=PEE (X) 1ll=exp _ (2.123)

r
r=1

The inverse, f1(t; X ) = PE ![f; (t; X )], is counting obfcts in the de ning ejquation
(syzygy) of the threefold. The m esonic multitrace generating function gy at nite N is
found by the series expansion of the -inserted plethystic exponentialll as

Xoorg ) X .
PE[ £ (5 X )]= exp ——— = aw®": (2124)
r=1 N=0

Tn general [11/], for the com bined m esonic and baryonic branches of the m oduli spac@ ’
the N = 1 operators are counted by the H ibert serdes of the m aster space. T he plethystic

5N ote that in order to avoid an in nity the PE is de ned w ith respect to a function that vanishes when

all chem icalpotentials are set to zero.
"Note that the insertion satis es the condition that the argum ent of PE vanishes when all chem ical

potentials are set to zero. Any attem pt to subtract som ething from this function leads to incorrect results.
8T o be Strict, we should say here the m esonic branch together w ith given F IHparam eters, since atN = 1,
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program can be e clently applied to the study of the coherent com ponent of the m oduli
goace [12]. W ith the generating function for the coherent com ponent of the m aster space,
which we denote gy (£; X )  H (t; TF !), we can proceed w ith the plethystic program and

nd the result for gy (t; X ), counting the com bined baryonic and m esonic gauge invariant

operatorsat nite N .

T he in plam entation of the plethystic program requires a decom position of the g; (t; X )
generating function in sectors ofde nite baryonic charge, to which the plethystic exponential
is applied. A n interesting connection of this decom position is found In [12,/11]w ith K ahler
m oduli. Thisalso enablesa di erent com putation ofg; (t; X ). T hough our current techniques
com pute this quantity using the H ilbert series of the m aster space, we w ill Jater check that
this Indeed agrees w ith the form alism of [12].

T he decom position ofg; (t; X ) requires the know ledge of tw o sets of partition functions,
the geom etrical ones, obtained by localization, and the auxiliary one, obtained from dim er
com binatorics. Speci cally, it was realized that

X
g (g X )= m (P)ap (5 X)) (2.125)

P2GK Z

where the sum m ation is extended over the lattice points P , of m ultiplicity m (P ), of a so-
called GK Z (or secondary) fan of the CalabiYau threefold and ¢g;p is a much more
m anageable ob fct obtained from a localisation com putation, as given in Eq (4.18) of [12].
TheGK Z fan, to ram ind the reader, is the fan of an auxiliary toric variety, which is the space
of K ahler param eters of the original toric threefold X . This space isofdimension I 3+ d,
where T is the num ber of Intermal points and d, the num ber of vertices, of the toric diagram

ofX .

The multiplicity m (P ) of points In this GK Z Jattice fan is counted by an auxiliary
partition function, sonam ed Z 4,5 - This is sim ply the (re ned) H ibert series of the follow -
Ing space: take the sin pler quiver than the original by neglecting any repeated arrow s and
then form the space of open but not closed loops in this sin pli ed quiver. T he expansion of
Z sux Can then be usad to com pute the generating function for one D 3-brane.

A s a brief ram inder to the reader, the procedure to detem ine the re ned generat-
ing function g; in (2.123) is to (1) obtain the generating function g, ,,..., I terms of a

K

there are no baryons. Nevertheless, we can still generate the counting for the baryons for N > 1 using PE
of theN = 1 case.
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set of K ahler param eters ;::; x using the localisation formula (4.18) of [12]; (2) obtain
Zaux (G ;i ) asabove,and (3) replacea term 4" i In 7,4 by an expression forgy; | ;.. , -
W e will not enter In the details of this construction and we refer the reader to [12]. The
In portant point for our ensuing discussions is that the plethystic program can be applied to
the N = 1 partition fuinctions at each point of the GKZ fan in order to obtain the nite N
generating function
X X
gt; X ) = Yy (4 X )= m (P)PE [ gp (t; X )] : (2.126)

N=0 P2GK Z

3 Linear Branches of M oduli Spaces

From the previous section we leamed that themaster space F ! ofan N = 1 quiver gauge
theory on a toric singularity X generically presents a reducible m oduli space. This fact
could appear surprising. Indeed the N = 2 supersym m etric gauge theories are the classical
exam ples of theories w ith reducible m oduli spaces. T hese theories present two well separated
branches: the H iggs branch and the C oulom b branch. M oving along these di erent branches
has a well de ned characterization both in tem s of the geom etry of the m oduli space and
In tem s of the VEV structure of the gauge theory. It would be interesting to have a sin ilar

Interpretation n this m ore generic setupg].

In the case of ust N = 1 brane on the tip of the conical singularity X , the reducibility
of F [ ©llows easily from the toric condition. Indeed, the equations de ning F ! are of the
form \m onom ial= m onom ial", whereby giving us toric deals as discussed in 2.1.4. Let us
em bed this variety into C¢ with coordinates £x; ;:::;x4g, then its algebraic equations have
the fom :

x?l ::rx;jd M (x) M, (x) =0; (3.1)

J J

where j = 1;::5;k runs over the num ber of polynom ials de ning the variety and the poly—
nomials M1, (x) My, (x) are reducble. If some i is di erent from zero the variety is

reducible and is given by the union of the zero locus of M 1 (x) M 2, (x) togetherw ith a set
of planes (linear com ponents) L! given by the zero locus of the factorized part in (3.1).

°0ne can clearly Jook for other interpretations of the reducibility of F |. An interesting line of research
woul be to connect the geom etrical structure of F | to the pattermn of BPS branes in X . W e w ill leave this
topic for future work.
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Figure 12: Q uiver and tortc diagram s for (C?=Z,) C.

Hence, the master space F [ could be the union of a generically com plicated g + 2
din ensional variety with a set of sm aller din ensional linear varieties £C % ;:::;C % g param —
eterized by com binations of the ooordjnate@; this is certainly true for the extensive case
studies seen above in 2.2J. It would be nice to give a gauge theory interpretation to these

an aller din ensional linear branches.

Tn the follow ing subsectionswe w illgive a nice picture for these planes, for som e selected

exam ples. T he lesson we w ill leam is that these planes of the m aster space could param etrize
ows in the gauge theory. Speci cally, there may be chains of ows from one irreducible

com ponent of the m aster space of a theory to another. T he archetypal exam ple which will
be the term inus of m any of these ow s w ill be the gauge theory on a D 3Jorane probing the
CalkbiYau singularity C?=Z, C,towhich we alluded in 32.1.7. Let us rst brie y review

this theory, continuing along the sam e vein as our discussions in s2.1.3.

3.1 The (C?=Z,) C Singularity

T he quiver gauge theory for (C?=Z,) C hasN = 2 supersymm etry with two vector m ul-
tiplets and two bifundam ental hypermultiplets. Tn N = 1 notation we have six chiral
multiplets denoted as 1; ,;A1;A,;B1;B,,with a superpotential

W = 1(AB;y AyBy)+ 2B2A; BiA;) (32)

and the quiver and toric diagram s are given in Figure[IZ. The m aster space F ([c2=z2) . of

19T he reducibility of the m oduli space could persist or N > 1, the sin plest exam ple being the coniold
with N = 2 (see [12]w ith other exam ples) and it would be interesting to have a clearer geom etric picture

even in these m ore com plicated cases. In this section we w ill concentrate on the N = 1 case.
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the theory can be easily found to be

F([czzzz) c=V@&i1B1 ABy; 1A1 A1 1Ax A 1Br 2B 1Ba o 2B2): (33)

Now , F ([ is clearly reducible and decom poses into the follow Ing two irreducible com —

C2=7,) C
ponents asF | = gl [ L with

C2=7,) C (C2=Z,) C

BFl. ., c=V(1 2AB:i AB,); L=V(@Ai;A;B1;B;): (34)

Speci cally, HﬁF([cz:zz) . isC C, where the C isde ned by | = , and the conifold
singularity C is describbed by the chiral elds fA ;A ,;B1;B,g with the constrant A1B; =
A,B,. The component L = C? is param etrized by the edsf ;; ,g. These two branches

m eet on the com plex line param etrized by ;= .

The el theory interpretation of these two branches is standard: m oving In L we are

giving VEV to the scalars in the vector m ultiplet and hence we callL, the Coulom b branch;

: o i
while moving n F (.., | .

hence we call ™F ([ the H iggs branch. Let us go on and revisit the reducibility of

C2=Z,) C

we are giving VEV to the scalars in the hyperm ultiplets and

som e of them aster spaces studied in the previous section trying to give them a gauge theory
Interpretation.

3.2 Case Studies R e-exam ined

First Toric Phase of Fy: Letus start by reexam ining (F);, encountered in s222. W e
recall from (2.49) that the m aster space F F[O is the union of three branches: the biggest one
is six dim ensional and is the set product of two conifold singularities, ie.,C C,and thetwo
an allest ones are tw o copies of C #, param etrized respectively by the VEV of £B ;B ;D 1;D »g
and fA;;A,;C,;Cyg.

Looking at the toric djagram one can easily understand that the gauge theory can
ow to the one associated to the C%=Z, C shgularity in four di erent ways by giving

Y e rem ind the reader that the prescription is as follows [4,[5,[34]. If one toric diagram is derived
by deleting extemal vertices of the other, then the associated gauge theories can ow one into the other.
G eom etrically this is blow ing up the singularity, while in the gauge theory a FI term is tumed on and as a
consequence gives VEV to som e chiral elds, for a product of U (N ;) gauge groups; or a baryonic VEV is
tumed on in the case of product of SU (N ;) gauge groups. It is indeed possible to associate elds of the gauge
theory to each vertex in the toric diagram , as shown in Figure[I3. T he deleted vertex can be associated w ith
the eldsthataregettinga VEV.
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Figure 13: The fourpossbe ows fiom Fy to (C?=Z,) C asexhibied i the toric diagram s.

VEV to one out of the four possible sets of elds: fA,;C.g, fA,;C,g, fB1;D 19, fB,;D 2g.
Once arrived at the xed point one can m ove along the Coulomb branch of the IR theory
giving VEV respectively to the sst of elds: fA,;C,g,fA,,;C.g,fB,;D ,g,fB:;D 9. Hence,
along the o an aller branches of the m oduli space the theory adm its an accidentalN = 2

supersymm etry and the theory m oves along the Coulomb branch of the resulting gauge
theory.

First del Pezzo: In (269) we saw that F [, decomposes Into two irreducible parts:
"F L, and L. The form er is a six din ensional variety, while the existence of the Jatter four
din ensional linear variety L param etrized by fU,;U, ;U ;U,g can be Interpreted asthee ect
of the presence of an accidental N = 2 sector.

Indeed, Jooking at the toric diagram (see gure[d) it is easy to realize that the theory
owsto theN = 2 theory of (C?=Z,) C i two di erent ways: giving VEV to fU,;U;g or
to fU,;U,g, and the Coulom b branch of these ones is param etrized respectively by fU,;U,g
and fU4 ;U g. Hence, as In the case of Fy the linear com ponent in the reducible m aster space
param eterizes the Coulom b branch of the IR N = 2 theory.
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321 M ultiple Flows

At this point we have seen that the reducible part of the m aster space of Fy and dP;
can be interpreted as param eterizing the ows of these theories to the Coulomb branch
of (C°=Z;) C. Indeed,F} containstwo 4 dinensional planes: along Ly the theory can

ow in two di erent ways to (C ?=Z,) C and along L;  the theory can ow in two other
di erent ways to (C%=Z,) C. I alltheF, theory has4 waysto ow toan N = 2 theory
and these various ows are param etrized by the two linear irreducible com ponents of the
m oduli space. O n the otherhand, F Cgpl contains jist one linear four dim ensional irreducible
com ponent which param eterizes the two di erent ways in which this theory can ow to the
(C%=Z,) C theory. It is in portant to note that the linear com ponents of the m aster spaces
of Fy and dP; do not have non trivial intersections am ong them selves.

Tt is a wellknown fact that the dP; theory can ow to the dP, and thence further to
dP; orFy (cf.eg. [34)). T he linear irreducible com ponents of them aster space F i, and F §,,
Intersect in a non trivialway and it would be interesting to understand the link between the
non trivial linear structure of the m oduli space of these theories and the possble ows.

Flow Through dP,: Asalrady explained in (279),F , containstwo ve din ensional
planes that are param eterized by the follow Ing set of coordinates in the m oduli space:

Lépz = X 45;Y317X 427X 317X 529 (35)
Lipz = X 45;X15;Y237X 237X 149 :
T he two hyperplanes intersect along a com plex line param etrized by X 45:
1 2 _
L, \ Lip, = £X 459 ¢ (36)

Inspecting the toric diagram (see gurelf) it is easy to see that the dP, theory can ow to
Fo jast in one way and this ow is param etrized in the m oduli space by the linear variety
L, \ L3, - Along this ow the two linear ve dinensional com ponents of dP ; becom e the
two linear four din ensional com ponents of the m oduli space of Fy:

2 2
L, ! L

MX 4516 0: Ly, ! Ly

Fo 7/

2 (3.7)

W hence the F, theory can ow to the Coulomb phase of (C?=Z,) C in the furdi erent
ways previously explained.
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The dP, theory has another interesting ow to dP;. Again, looking at the blow ing up
structure of the two toric diagram s one can see that there are two possible ways to ow to
dP;: one is to give VEV to the eld X5, in L, in which case this ve din ensional linear
soace ow s to the our din ensional Iinear rreducible com ponent L gp, of them aster space of
dP;; theother isto give a VEV to the eld X ;4 In Lépz In which case this ve din ensional

Iinear space ows to Lgp, . In summ ary,

X516 0 @ Ly, ! Las,
X416 0 : L%, ! Lap, ¢

W hence the theory can ow to the Coulomb branch of (C%=Z,) C alng Lgp, Ih the two
ways previously explained.

Third del Pezzo: From (2.92) we know that FC§P3 contains three six dim ensional hy—
perplanes and these are param eterized by the follow Ing set of coordinates in the m oduli

Space:
Lép3 = X 56;X23;X34;X51;X61;X 249
2
Lip, = IX61iX34;X 127X 45X 35;X 629
3
Lap, = X 12iX45iX 237X 56;X13iX 469 7 (3.8)

every pair of hyperplanes intersect in a C? param eterized by the ©llow ing coordinates:

LéP3 \ L§P3 = fx 34 ;X 61g
L2 \L3 = fX,,;x
dpr; dps 1274 459
Lip, \ L, = fXs6iX 239 : (39)

From the toric diagram (see gure[d) one can see that dP; can ow to dP, In six di erent
ways. These are indeed the six di erent C contained in the various pairw ise Intersections in

(3.9). The six possible di erent VEV s one can give to ow to dP , are:
hX 21, X 931 , WX 341 , HX 451 , B 561 , 1X 611 ¢ (3.10)

0O bserve that every coordinate param eterizing the six di erent com plex lines are contained
Just In two of the three six dim ensional planes in (3.8). Indeed along these ows the two
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planes LéPB ’ L§P3 containing the ed F £,k = 1;2 with non trivial VEV, ow to the two

Ly’

ve din ensionalplanes L}, , L7, of them oduli space of dP,:

hFik;jié 0 :Lép3;L] ! Lép2;L§P2 : (311)

dP3

W hence, giving VEV to the eld param eterizing the second C in the pairw ise Intersections
in (3.9) thetheory owstoFy and thetwo vedin ensionalplanes in them aster space ofdP,
ow s to the two four dim ensional planes in them aster space of Fy. W e can sum m arize these
ow s, observing that dP; can ow In three di erent ways to F ( along the three intersections
in (39),giving VEV to thetwo eldsin theC?:

Mg, \ L3p,16 0:L%, Ly, ! Ly, iLp, : (3.12)

A sexplained above dP, can also ow to dP;. Summ arizing the twom ain di erent ows,we

have that
dp; ! dp, ! dp, ! (C?=z,) C ! Coulmb branch (3.13)
dps ! dpP, ! Fo! (C?*=Z,) C ! Coulomb branch ;

these can be geom etrically interpreted as ow s along the various irreducible linear com po-

nents of the com plete reducible m aster space of dP5.

In this section we have proposed a sinple eld theory Interpretation for the linear
Irreducible com ponents of the m aster space. Tt seem s to work nicely for the case exam ined.
But there are other cases in which the correspondence between ow s and linear spaces is less
straightforward and need further analysis.

4 H idden G lobal Sym m etries

The moduli space of a eld theory may possess symm etries beyond gauge symm etry or
reparam etrisation. Searching for hidden sym m etries of a given supersymm etric eld theory
often leads to insight of the structure of the theory and m ay even provide selection rules
for operators of high m ass din ension. For exam ple, seeking unexpected algebro-geom etric
signatures of the (supersym m etric) standard m odel is the sub fct of 20]. For D Jbrane quiver
theories, an underlying symm etry is everpresent: the symm etry of the CalbiYau space X
isvisble in the UV as a global avor symm etry in the Lagrangian, while the symm etry of
the fullm oduli gpaceM can reveala new hidden global sym m etry which develops as the
theory owsto the R.
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In particular, in [37], the basic elds of the quiver for dP, theories were reordered
Into m ultiplets of a proposed E, symm etry and consequently the superpotential term s into
singlets of this sym m etry. T he exceptional Liie group E,, acts geom etrically on the divisors
of the del Pezzo surfaces and is realized In the quantum eld theory as a hidden symm etry

enhancing the n non-anom alous baryonic U (1)’s of the dP,, quiver.

D o the sym m etries of them aster space, whose geom etrical signi cance we have leamed
to appreciate In the foregoing discussions, m anifest them selves in the fullm oduli spaceM of
the gauge theory? Phrased anotherway,do these sym m etries survive the sym plectic quotient
of (I.1) and m anifest then selves also at nite N ? T his is indubitably a natural question.

In this section, equipped with the new notion of the m aster space we can revisit this
problem and recast all operators into irreducible representations of the symm etry of F L. W e
w ill show thatthese sym m etrries are encoded in a subtle and beautifulway by the fiindam ental
hvariant of the plethystic programme 9] for M , viz., the H ibert series. M oreover, we
w ill dem onstrate m any other exam ples of hidden sym m etries in orbifolds and toric quivers,

enhancing anom alous and non-anom alous A belian symm etries.

Since we will always deal with the coherent com ponent of the m oduli space in the
follow ing and there is no source for am biguity, we w ill adopt a sin pli ed notation for the
H ibert series w hich was already used in [12]:

q X ) HEGTFL) (4.1)

4.1 Character Expansion: A W arm -up w ith C?

TheN = 4 supersymm etric gauge theory does not have a baryonic branch and therefore the
m aster space F ! coincidesw ith the CalabiYaum anifold X = C?. W e therefore do not expect
any new symm etries but instead can use this exam ple as a warm -up exam ple for expanding
in tem s of characters of the global symm etry. For a single D 3-brane, FI 7 M 7 X 7 C3
and there isa U (3) symmetry. Now, there isan SU (4)z symmetry for which U (3) is a
m axin al subgroup, however, we shall see below that the slightly snaller U (3) su ces to

keep the structure of the BP S operators.

The generating function for C° is well known and was com puted in various places
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(cf.eg. 9]). It takes the form

¥ ¥ ¥ 1 _ o)

it itiCY) = —
gl ;&% ) 1 B

n;=0nz=0n3=0
which coincides w ith the grand canonical partition function of the three dim ensional har-
m onic oscillator. T his form is perhaps the sin plest one can w rite down for the exact answer
and from this extract the generating function for any xed N . In this subsection, we w ill
rew rite it in term s of characters of the U (3) global symm etry. T he expansion dem onstrates
how one can explicitly represent this function in temm s of characters. This will help in an-
alyzing the next few exam ples In which expansion in tem s of characters are done but for

m ore com plicated cases.
Equation (£2) adm its a plethystic exponential form ,

Gitit;C°) = PE ; iLitiC’) = =PEL+ b+ t]:
g( &t ) [ a4 gt ) 1 ol od o L+ o+ Bl
(4.3)

W e recall that g; , the generating function for a single D 3Jrane, N = 1, is none other than

the re ned H ibert serdes for C 3, itself being the PE of the de ning equations (syzygies)
for C3, here just the 3 variables. Furthem ore, PE [ g ] encodes all the generators for the
m ultitrace operators (sym m etric product) at general num ber N of D branes.

W e can now Introduce SU (3) weights f;;f, which re ect the fact that the chem ical
potentials i ;4 ;5 are In the findam ental representation of SU (3), and a chem ical potential
tfortheU (1) charge,

£, 1
(Likit)=t fl;f—l;f—2 (4.4)
W e can de ne the character of the fundam ental representation w ith the sym bol
£, 1
L;0]=f1+ =+ — ; (45)
1 £
and get
X
91 (titi;C’)= PE [[1;0)k]= ;0K : (4.6)

n=20

The second equality follow s from the basic property of the plethystic exponential which
produces allpossible sym m etric products of the function on w hich itacts. T he fullgenerating

function is now rew ritten as
n #
®

g( ;8;0;5;C°)=PE n;01 ; (4.7)

n=20
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Figure 14: T he quiver and toric diagram s, as well as the superpotential for the conifod C.

giving an explicit representation as characters of SU (3). W e can expand g( ;&;t;5;C°) =
P
gy (B;t:;C%) N and nd, for exam ple,

N=0

R titit;C)= 1 02K+ ;1Y ;1 PE [1;0k+ 2;0¥ (48)

A Ttematively we can write down an explicit pow er expansion for g, as

3 X b%cj(bnzlc ( b%c k+ 1 n odd
o (bi;kisiCT) = m (n;k)n 2k;k1E; m (n;k)=
heo xeo bic 20%%c+ 1 neven
(4.9)

N ote that g, is not palindrom ic, indicating that the m oduli space of 2 D -branes on C*
isnotCalbiYaulq. Am ed w ith this character expansion let usnow tum to m ore involved

cases w here there is a baryonic branch.

4.2 Conifold R evisited

Having wam ed up w ith C?, let usbegin w ith ourm ost fam iliar exam ple, the coniod X = C.
T he m aster space for the conifold is sinply F [ = C* [10,[11]. The symm etry of this space is
SU((4) U((1)wheretheU (1) is the R—symm etry while the SU (4) symm etry is not visible
at the level of the Lagrangian and therefore w illbe called \hidden". O ne should stress that
at the R the two U (1) gauge elds becom e free and decouple and one is left with 4 non-
Interacting elds, which obviously transform as fiindam ental representation of this SU (4)
global symm etry. Now , there isa mesonic SU (2) SU (2) symm etry and a baryonic U (1)
symm etry, this SU (4) H idden Sym m etry is an enhancem ent of both.

To start Jet us recall the theory In F gure[14. Indeed, we see that when the num ber of
branesN = 1,wehave a U (1)? theory with W = 0. T he vanishing of the superpotential in

121 e thank D avid Berenstein for an enlightening discussion on this point.
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SU@) (Grim1) | SU(2), (m2) | U@}k | U@) || monomial
A, Git3) (0;0) 3 1 tx
A, i ) (0;0) 1 1 &
B (0;0) Gi+3) : 1 ty
B (0;0) (i 3) 5 1 =

Table 4: The transform ation, under the explicit gbbal symm etry group SU (2)1 SU (2),
Ul U@y ,ofthe4d elds i the conifod theory. The m onom 2ls hdicate the assochted
chem ical potentials n the P kthystic programm e.

this case m eans that we have four free variables A, and B, and them aster space should
be C*. T he gauge theory has an explicit globalsymmetry SU (2); SU (2), U (lk U @)
and the four eldstransform under these sym m etries according to Figure[d. W e havem arked
the m onom ials for the counting of baryonic operators w hose generating function forN = 1,
In the notation of the plethystic programm e, was given in Equation (3.3) of [11l]; this isalso
sin ply the re ned H ibert series for the m aster space F

g1 (b ;t%;v;C) H (gix;y;Fl=C?)=

1 ux)1 20 by)l Z) (410)
= PE[Gx+ t;l‘l' t2y+t§2]!

In the above, we recall from A2.33 that the H ibert series is itself the PE of the de ning
equations. M oreover, as in [11l]]we can de ne bwhich counts (ie., is the chem ical potential
associated to) baryon number and t which counts the total R charge; then § = th and
(b = t=b) would respectively count the number of A and B elds appearing in the baryonic
operator. Furthem ore, x and y keep track ofthe rstand second SU (2) weights respectively.
Tndeed, f we unre ned by setting g = tth = thix = 1;y = 1,we would obtain the fam iliar
Hibert series for C* which isg; (t; C*)= (1 t) *.

Now ,the edsin (4) are in the representations of the explicit SU (2) SU (2) U (Lk
U (1)s symm etry, while our hidden symmetry isSU (4) U (1). W e w ill therefore Introduce
SU (4) weights, h; ;hy ;h; and m ap them to the three weightsofthe SU (2) SU(2) U (1)
global symm etry. This is done sim ply by rst taking the four weights of the fundam ental
representation of SU (4), whose character we w illdenote as [1;0;0], and which we recall can
be written In tem s of the weights as

h, hy 1
[0;0;0]= hy + — + —+ — (411)
1 hy hs
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Then wemultlply by t to obtain a SU (4) U (1) representation, which should be m apped
then to the urweightsof SU (2) SU(2) U (1) U (1); in the rightm ost colum n of {4)
above:

hy, hy 1 =] =

— i —— = X;—;by;— 412

1,h1,h2,h3 tEL /XIZYIy ( )
This has a solution t= p@;h1 = Ix;h, = B ;hs = by.
In analogy with (£3), we can now write (4.10) in tem s of a plethystic exponential:

x
g (tshy shyhs;C) = PE [[1;0;0k]= h;0;01" ; (4.13)

n=20

where [n;0;0] is the com pletely symm etric tensor of rank n and din ension “23 . The rst
equality w rites the 4 generators of C*, viz., b x ;2 ;tzy;t;2 ,In theweightsof SU (4) U (1) and
the second equality follow s from the de nition of PE in (2.127) and the fact that expansion
of the plethystic exponential in pow er series of t w ill com pose the n—th sym m etrized product.
Equation (4.13) isa trivialand obvious dem onstration that theN = 1 generating function is
decom posad into irreducible representations of SU (4), precisely one copy of the irreducible
representation [n;0;0]atR chargen. To be precise we are taking here the R charge to ben

tin es that of the basic ed A .

4.2.1 Hidden Symm etries for H igher P lethystics

W e have now seen that the basic nvariant, ie., g;, the H ibert series, och[ , can be w ritten
explicitly as the plethystic exponential of the fiindam ental representation of SU (4). Now ,
the hidden symm etry m ixes baryon num ber w ith m eson num ber and therefore we do not
expect this symm etry to hold for general number N of D 3-branes. For the case of N = 2,
however, baryons and m esons have the sam e R charge and therefore we m ay expect the
global sym m etry to be enhanced.

Actually for N = 2, SU (4) becom es a symm etry of the Lagrangian of the conifold
theory,which isan SO (4) theory w ith four avors in the vector representation and an SU (4)
Invariant superpotentia W riting the 4 avors in the vector representation of SO (4) as a
4 4dmatrix Q we nd that the superpotential isW = detQ . Using the form alisn which
is developed to count gauge invariant operators for the conifold [11l]Jwe nd thattheN = 2

13| e thank Vadin K aplunovsky for a discussion on this point.
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generating function does indeed decom pose into characters of irreducible representations of
SU (4).

T he generating function forN = 2 wascom puted in Equation (3.47) and its predecessor
n [11]. T he expression isgiven asa function ofall4 chem ical potentials and is quite lengthy.
Here,wew ill take this expression and recast it into characters of the globalsymm etry SU (4).
The rstpoint to note is that the generators form the [2;0;0] representation of SU (4). Tt is
natural to expect this since this representation is the second rank sym m etric product of the
generators for N = 1. The other tem s are less obvious and need explicit com putation. A
short com putation yields

o (thishy;hs;C)= 10 [0;0;2 + [1;0;1¥  [0;1;0K° PE [2;0;0FK : (4.14)

This can be seen if we write the explicit expressions for the characters of the irreducible
representations [38]of SU (4) which we can write in term s of the weights as

[2;0;0] = h%+h;—?+ﬁ—§+i—§+hz+é+h—é+i—i+%+%
[0;0;2]1 = %+hi—?+%+h§+h2+é+%+%+%+é
[1;0;1] = i—§+h;—§“+hah1+h;—?+ﬁ+5+ﬁ—§+3+hi}f”h};il = o T b
0;1;0) = By hgpy e Loy kgl
(4.15)

Asa check, (4.14) can be expanded to rst few orders in t,

g (thishyshs;C) = 1+ [2;0;01F + ([4;0;01+ [0;2;0Dt + ([6;0;01+ [2;2;0)t

+ ([8;0;01+ [4;2;01+ [0;4;0) + ([10;0;01+ [6;2;01+ [2;4;0DtE° + :::

and In series form it is
0 1
® o RC
o (t;hy ;hy7hs;C) = € 2n  4k;2k;0P £ (4.16)

Now , using the formula for the dim ension of a generic irreducible representation of
SU (4),

N+ ny+ns+ 3)n;+ny+ 2)(ny+ n3+ 2)(n; + 1)(ny + 1)(ns + 1).

din [Ny ;ny;n3]= 17 7
4.17)

we nd that the unre ned generating function forN = 2 sum s to

1+ 3t + 6t4_

; 418
1 2y ( )

O (5;1;1;1;C) =
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as expected and in agreem ent w ith Equation (3.47) of [11]. Taking the P lethystic Logarithm
we nd that the 7 dim ensionalm anifold is generated by 10 operators of order 2 transform ing
In the [2;0;0] representation of SU (4) subct to 10 cubic relations transform ing in the
[0;0;2] representation of SU (4). Since g, is not palindrom ic we expect the m oduli space of
2 D Joranes on the conifold to be not CalabiYau.

This con m s the expansion in term s of characters of SU (4) for the case of N = 2.
Unfortunately this symm etry does not extend to N = 3 and is not a symm etry for higher
values of N . In the next exam ple we are going to see how a hidden symm etry extends to
allvalues of N , sin ply because the hidden sym m etry does not m ix baryonic num bers w ith
m esonic num bers as it does for the conifold. The symm etry structure then persists to all

ordersin N .

43 Fy Revisited

Let us move on to the Fy theory and focus on the rst toric phase, whose m aster space
we studied in 227, W e recall that for a single D 3-brane, N = 1, it is a six din ensional
reducible variety com posed by a set of coordinate planes and an irreducible six din ensional
Calabi¥Yau piece. This top piece, being toric, adm its a symm etry group which is at least
U (1)°. Reexam ning (2.50) we see that it isactually the set product of two three din ensional
conifold singularities:

B,D; BD,=0;A,C;, A C,=0; (4.19)
hence the group of symm etries isSU (2)* U (1)?,twice of that in sf4.2. The rstSU (2)? isthe
non-A belian sym m etry group of the variety Fy and the second SU (2)? isa hidden symm etry
related to the two anom alous baryonic sym m etries of the gauge theory. T he chiral spectrum
of the theory is sum m arized by the H ilbert serdes:

1 €)1 ©)
1 &w)ra )
where the chen ical potential ; counts the eldsA;;C; while t, counts the eldsB ;D ;.

=PEUL €+ 4t B1; (420)

g (G i%iFg) =

Letusde ne the representation ] M ] [l bl= hm ;p;q]lfor the SU (2)* group.
Equation (4.19) and Table 3 of [12]then in plies thatA ;C are in the [1;0;1;0]representation
and B ;D are In the [0;1;0;1] representation. T he re nam ent for the H ibert serdes (4.20) is
then

g (b tixsyia;az;Fo)= (1 €)1 ©)PE [[1;0;1;0k + 0;1;0;11k1: (421)
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Am azingly, the group SU (2)* U (1)? is the symm etry for the chiral ring for generic N , not
Just forN = 1, and hence the m oduli space of the non-A belian theory on N D 3-ranes has
this group as a symm etry group.

T he generating function for nite N can be com puted using the plethystic exponential
In each sector of the GK Z decom position of the N = 1 partition function. The reader is
referred to [12] for details and to #2.3.3 for a short account of the general philbsophy. In
particular, the in plam entation of the plethystic program goes through the form ulae (2.123)
and (2.128) and requires the com putation of the generating flinctions for xed K ahlerm oduli
and the auxiliary partition fiinction.

Recall from [12] that the generating function for xed integralK ahler m oduli, which
in this case can be param eterized by two integers , °, isequalto

Xl 0 2n+ 2n+ O
gr;; ol iiFo) = 2n+ + 1L)2n+ "+ 1) £ : (422)
n=10
This can be easily re ned In temm s of representations of the global symm etry as
Xl 0 2n+ 2n+ O
g1;; o (Gibix;yia;aziFo) = n+ ;2n+ 50;0l5 © : (423)

n=0
T he auxiliary partition fiinction in Equation (5.56) of [12]also adm its an expression in tem s
of representations of the global symm etry ,

Zaux (b ija15a2;F0) = (1 ££)PE [0;0;1;0k + [0;0;0;1k1; (424)

which has an expansion as

N % i
Zaux (G 72521782 5F ) = 0;0; ; ‘&t 0;0; 2;° 2Kt : (425)

Recalling from 233, once we have gy, ; o and Z 4, we can do the replacem ent titQO n
Zaux DY g1, ; 0 (asdone n Ine 2 below and using the fact that by ourde nition [a;;0;0]
[0;0;c;,d]= [a;b;c;d]) to obtain the generating function for a single brane:

a1 (G reixsyrai;aziFo)

P P v B P -

2n+ ;2n+ % ;O]tir1+ t;m Pn+ ;2n+ 9 2; ° 2% tém
0=0n=0 ; =2n=0
P P P P
Pn+ 2n+ 9 ;O e+ oo+ O 0P &
;O:On=O . 0=Qn=1
P 0
[ 7 0/ ’ 0]t1t2 7
-0
(4.26)
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leaving only positive coe cients and m eaning that SU (2) ¢ U (1)? is indeed a symm etry of
the N = 1 modulispace. The second equality follow s by shiftingn by 1 and the ’sby 2.
The third equality is the ramaihingn = 0 term from both contributions. It is in portant to
note that Equation (4.2d) factorizes Into two conifold generating functions,

! !

P 0 0. ©

[ ;0; 0k 0; 50; &
=0 o

= (1 £)PEI[L;0;1;0k] QO H)PEI[0;1;0;1k] ;

a1 (Giixsyra;aziFo)

(427)
which can be easily checked to equal Equation (4.21]).
N ext, using (2.126), we can w rite a generic expression forany N .
P 0 P 0 2n+ ,on+ O
g( se;hixsyraiaz;Fo) = 0;0; ; "1 PE 2n+ ;2n+ 50,088 ©
;=0 n=0
P 0 2n+ ,2n+ ©
PE Zn+ ;2n+ 50;0K £
n=1
(4.28)

Note thatthe rstPE containsall the termm s In the second P E and hence all the coe cients
In the expansion are positive. T his is the explicit dem onstration that forgeneric N the chiral
spectrum organizes into representations of SU (2)* U (1)? and hence the m oduli space of
the non-A belian theory w ith generic rank N has symmetry SU (2)* U (1)%.

44 dPy R evisited

T he m aster space for dP, is calculated above in 2,14 and is found to be irreducible. Tts
sym plectic quotient description isC®==f 1; 1; 1;1;1;1g.W enote thatthe sum ofcharges
is zero, In plying that this 5-dim ensionalvariety isC albiY au, n agream ent w ith (2.9). This
Space is a naturalgeneralization of the conifold and has the description ofa cone overa 9 real
din ensional SasakiE instein m anifold given by a circle bundle over P2 P2. This structure
reveals a symm etry of the form SU (3) SU (3) U (1).

Indeed, we note that this construction is toric and therefore we would expect a sym —
m etry which is at Jeast U (1)° sihce the m aster space has din ension 5. However, due to the
Special sym m etries of this space the symm etry is larger. The U (1) is the R symm etry and
the st SU (3) is the natural one acting on the m esonic m oduli space X = dP, = C3=75.
The second SU (3) symm etry is a \hidden" sym m etry, and is related to the two anom alous
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baryonic U (1) symm etries that play a r®l as the Cartan subgroup of this symm etry. W e
can use the full symm etry to com pute the re ned H ibert series for this space.

T he H ibert series for jast one charge was com puted w ith the M olien form ula in (2.30)
. dw 1+ 4t+ £
A= Tl mwra wy . @ o
Taking the plethystic logarithm of this expression we nd 9 generators at order t sub Fct to

9 relations at order 2,

(4.29)

PE '[g(;dPo)]= 9t 9%+ ::: (4.30)

T his agrees exactly w ith the content of (2.9) which says that F §,, should be the incom plete
(since the plethystic logarithm does not termm nate) intersection of 9 quadrics in 9 variables.

Now ,wewould like to re ne the H ibert series to include all the 5 global charges. T his
can be done using the M olien form ula or any other of the m ethods discussed in section 2.
Here we nd a shorter way of determ ining it. To do this we recognize the 9 quiver elds
as transform ing in the [1;0] [0;1] representation of SU (3) SU (3). For short we will
write an irreducible representation of this group as a collection of 4 non-negative integer
num bers, here [1;0;0;1] and with obvious extension to other representations. These are
all the generators of the variety (2.29). T he relations are derived from a superpotential of
weight £ so we expect 9 relations at order £ transform ing in the conjigate representation to
the generators, [0;1;1;0]. To get this into e ect we rewrite (4.29) into a form which allow s
generalization to include characters multiplying top and bottom by (1 t)*):
1 9+ 168 9t + £

g1 (5;dPy) = S

(4.31)

T he coe cient of the t? in the num erator can now be identi ed with the 9 relations,
whose transform ation rules are already determ ined to be [0;1;1;0]. Being irreduchble we
expect the H ibert series to be palindrom ic. This gives as the t term as [1;0;0;1]. The
sam e property in plies that the coe cient of the £ term  is self conjugate and hence uniguely
becom es the ad pint representation for SU (3) SU (3), [1;1;0;01+ [0;0;1;1]. Finally, the
denom Inator can be sin ply expressed as a plethystic exponential of the representation for
the generators, [1;0;0;1]. In otherwords, (1  t) °= PE [9t]. In summ ary, we end up w ith

the re nem ent of the H ibert series ErFéPO as:

g1 (tif1 752781 782 ;dPy)
= (1 [0;1;1;01F+ ([1;1;0;01+ [0;0;1;1)F [1;0;0;1 + £©)PE [[1;0;0;1X] :
(432)
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For com pleteness, we list here the explicit expressions for the characters of the repre-
sentations, using weights f; ;£, forthe rst,m esonic SU (3) and a; ;a, for the second, hidden

SU (3):
£ 1 1
[1,'0;0,'1] = fl+ f_j+ g a_1+ 2_2—'— ay g
1 £ 1
[O,'l;l,'O] = E‘F é-ﬁ- f2 a; + Z—f-l— & H
£2 £ £2 1 £ (4.33)
140 - i I L) LI
[1;1;0;,0] = e+ hife+ £ + 2+ =t gt i
2 2
e - - & ar 2 1 az .
0;0;1;1] = o T oaiapt = + 2+ =~ Tt ek

In tem s of the above weights, being generated by the representation [1;0;0;1], the H ilbert
series, (£.37), for the case of N = 1 D 3-brane adm its a sin ple and natural series expansion
of the form

g (tf1ifs5a17a,;dPg) = h;0;0;n1t" : (4.34)

441 Higher Num ber of Branes

U sing the form alism of [12]explained in the previous subsection, we can com pute theN = 2
generating function in termm s of characters of the global symm etry. The com putation is
som ew hat Jlengthy but the result is relatively sim ple:

p e
O (G if25a1 58,5 dPy) = 2n  4k;2k;0;n 12"+
n=0k=0
P P P (4.35)
- [2n, + 3n;  2k;k;0;n, 1820

n2=On3=1k:O

w ith coe cient 1 for each representation which appears in the expansion. Tt is In portant to
dentify the generators of this expression and a quick com putation reveals the order £ and
order £ generators to be the representations, [2;0;0;1], and [3;0;0;0], respectively. W e can
therefore sum the serdes and obtain

o (Gif1ifs5a158,; dPg) = AL,PE  [2;0;0;11€ + [3;0;0;01E ; (4.36)
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where A, is a com plicated polynom ial of order 58 In t which has the st 10 tem s:

A, (Gfifaa) = 10 [2;1;1;0 [1;2;0;110+
+ ([4;1;0;01+ [1;1;0;0]+ [3;0;1;11+ [0;3;1;1] [0;0;0;3Dt
+  ([3;2;1;01+ [2;1;1;0]+ [1;3;1;01+ [1;0;1;01+ [0;2;0;2]+ [0;2;1;0])t
([5;0;0;11  [2;0;1;2] ]
] ]

2;0;0;11+ [1;2;1;2)
(5;2;0;01+ [3;3;0;01+ [2;2;0;01+ [1;1;0;01+ [0;3;0;01+ 2[3;0,;0;0]

[3;0;0;31+ [0;0;0;31+ [2;2;1;11+ [1;1;1;11+ [0;0;1;1nE + :::
(437)

Sim ilarly, we can obtain generic expressions for any N . Recall from [12] that the
generating function fora xed integralK ahlerm odulus is equal to

X 3n + + 2 .
g1; (B) = t ; (4 .38)

n=20

this can be easily written in termm s of representations of the global symm etry as

%
qi; (Gf1;£25a1;8,;dPg) = Bn+ ;0;0;0E" (4.39)

n=20

T he auxiliary partition function also adm its an expression In temm s of representations
of the global symm etry:

Zaux (tia1ja2;dPg) = (1 £)PE [[0;0;0;11]; (4.40)

which has an expansion as

X X
Z aux (Gjag ;a2 7dPo) = 0;0;0; Ik 0;0;0; 3k : (4.41)
-0 -3
Aswith 43, we can use (423) and (44]]) to com pute the generating function for one
D 3-brane:

p ED n+ P P n+
qu (61 7E27a1 782;dP) = Bn+ ;0;0; I Bn+ ;0;0; 3F
=0n=0 =3n=0
P P p P P
= Bn+ ;0;0; ¥ Bn+ ;0;0; ¥ = [ ;0;0; Ik :
—0n=0 —0n=1 -0

(442)
Tn the second equality we shifted the index by 3 and an opposite shift of the index n by 1
In the second term . This allow s us, In the third equality, to cancel all term s for n except for
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the tetm in n = 0. Thus we reproduce (4.34) in a rem arkable cancellation that leaves only
positive coe cients.

Subsequently, we can obtain the expression gy ,by com puting the -—inserted plethystic

exponential and series expansion:

P
Yoy ( stifiifaiaria:;dPy) = g ( ;56 ;f55a1 58, ;dP))
N=0
o P P ,
= [0;0;0; 1 PE Bn+ ;0;0;01E"" PE Bn+ ;0;0;01""

=0 n=10 n=1

(4.43)
Note that the rstPE containsallthe termm s in the second P E and hence all the coe clents
in the expansion are positive. A s a check, we can expand (4.43) to second order in

D G » b .
O (610581 78, ;dPg) = 2 4k;2k;0; ¥ + [ ;0;0; 1 [DBn+ ;0;0;0E"
(4.44)
which indeed agrees w ith (4.39).

45 dP; R evisited

Let us now re-exam ine the dP; theory, studied in 223. The hidden symm etry expected
for the del Pezzo surfaces as an enhancan ent of the non-anom alous baryonic symm etry [3'7]
here is still trivialE; = U (1). On the other hand, from the m atrix of charges Q © for the
sym plectic action, we realize that the symmetry of ™F L, isSU(2) SU(2) U (1)*. One
U (1) istheR—=symm etry and the rstSU (2) is the naturalone acting on them esonic m oduli
space. The second SU (2) is a \hidden" symm etry com Ing from one of the two anom alous
baryonic U (1) sym m etries.

The four edsU transform 1n the (2;2) representation of SU (2) SU (2),the edsV
n the (2;0) representation, (Y1;Y3) In the (0;2) representation while Y, and 2 are SU (2)
SU (2) singlets. W e can use the full symm etry to com pute the re ned H ibert series for this
space. T his can be done w ith any of the m ethods discussed In ®J and the result is

qu(t;dP1) = P (WP E ([1;1]+ [0;1]+ 2[0;0)t+ [1;0¥ (4.45)
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w ith

P(t) = 1 (0;01+ 0;1)F [L;1X+ (2;01+ [0;2]+ 2[0;11+ 2[0;0])t

;1€ (0;01+ 0;1) + £ ; (4 46)

where [n;m ] denotes the representation of dinension (n + 1;m + 1) of SU (2) SU (2).
The variable t is as In 223 and, for sin plicity, we have suppressed the weights under
the ram aining U (1) symm etries. Note that this H ilbert series is palindrom ic, as expected.
A lthough there are m nus signs in the num erator of the re ned H ibert series, it is easy to
see that g; (£;dP; ) has an expansion In temm s of irreducble representations of SU (2) U (1)

that have non-negative coe cients.

4.6 dP, R evisited

Let us now re-exam ine the dP, theory, studied in 2.2.4. This is the rst exam pl where
we expect to see a non trivialhidden symm etry E,, , extending the non-anom alous baryonic
symm etries of the quiver theory for dP, [37]. The expected symmetry for dP, is E, =
SU (2) U (1). W e choose the follow ing assignm ent of charges and weights,

X 145X 237X 317X 451X 527X 427Y237X 34;X 537Y31;X 59 L £3; 1; 1; 4;3; 1; 1;2;2; 1; 1g
(447)
for the U (1) action w ith weight g, and

X 147X 237X 317X 457X 527X 427Y237X 347X 537Y31;X 159 ! £1;1; 1;0; 1; 1;1;0;0; 1;1g
(4.48)
for the action of the C artan generator of SU (2).

W e can again com pute the re ned H ibert series w ith any of the m ethods discussed in
2. The result is

g (Ga;dP,) = P (Gq;x)PE 3[1F "+ [ + 20K + 0k * (4.49)
w ith

P(gx)=1 €(@RF*+ L+ DR %) t(llg g )+ 0O )+

+ PRI+ AN+ g )+ 20) (g’ )+ DY) RE+ L'+ D)+ t£°;
(4.50)
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where [n]denotes the representation ofdimension n + 1 of SU (2).

A Ithough there arem Tnus signs In the num erator of the re ned H ibert series, one can
check by explicit com putation that g (t;9;%x;dP,) has an expansion In tem s of irreducible
representations of SU (2) U (1) with non-negative coe cients.

4.7 dPs R evisited

Let us now show that the dP; theory, studied In 225, has a hidden symmetry E;
SU (2) SU (3),which should be related to the E 3 symm etry discussed In [37]. A sin [37], the
rst six edsin (2.90) with weight t transform in the (2;3) representation o£SU (2) SU (3)
while the other six, w ith weight £, transform as two copies of the representation (1;3). The
H ibert series, which we recall from (2.93) can now be re ned using weightsofSU (2) SU (3)
representations and thus represent the explicit transform ation rules under this group.

To achieve this we will ntroduce som e notation. W e set (3, as the character of
the fiilndam ental representation of SU (2) SU (3). This character can depend on the three
di erent cham ical potentials associated w ith the Cartan subalgebra of SU (2) SU (3). The
choice of the weights is not In portant and is sub fct to personal preference. To be explicit
we can denote the weights of the SU (2) representation w ith spin j and dim ension 23+ 1 by
a chem ical potentialx = €' as

3(x) = Upy(cos ); (4.51)

where U, (x) is the Chebyshev polynom ial of the second kind; for exam ple, 1 x)= x+ =,

1x) = x°+ 1+ X—12, etc. The reader is referred to the Chebyshev gym nastics of [11/].
Sin ilarly, the SU (3) characters can be chosen by selecting weights ;; , for the fundam ental
representation which can be conveniently taken as

1

51 2)= 14—+ — (4.52)
1 2

O ther characters can be com puted by using this basic character. For com pleteness we w rite

the few of direct use below :

1 1
3( 17 2)= —+ —+ 5 (453)
1 2

The character for the fundam ental representation of SU (2) SU (3) then takes the
form

es)X; 15 2)= %(X) 3017 2) 7 (4.54)
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and m ore generally a representation of SU (2) SU (3) with dim ensions (25+ 1;din R ) has
a character
Gr)Xi 17 2)= X)) r (17 2) ¢ (4.55)

W e proceed by recasting the H ibert serdes (2.93) in a way m ore suitable to re ect the
representation structure, by m ultiplying the num erator and denom inator of H (t; *F ;) by

(1 )
1 9tt+ 162 9t 4+ t2 )
1 @1 )y )

Now the coe cients of the num erator are dim ensions of representations w hile the exponents

g (t; dP3) = (4.56)

of the denom nator are also din ensions of representations. T he denom inator takes a form of
a plethystic exponential for the function 6t+ 6t%,which after re neament by SU (2) SU (3)
weights takes the form  53)(X; 17 2)t+ 2 145,( 1; 2)2. This agrees with Tabk (3.8) of
37]and is indeed consistent w ith the general expectation that each el in the quiver is a
generator of the H ibert series for the m aster space. T he re nem ent in term s of weights also
reveals the di erent characters for the num erator which takestheform 1 3 (15)( 17 e+

B+ s 17 2N 3 as( 17 2P+ 2. The representations again are chosen such that
they agree w ith the expected generators and relations, as well as the palindrom ic property.

C ollecting all of these together we nd
G dPs)= (1 3 gt + B+ et 3 ast+ €PE[ gat+ 2 051 (457)

This has the nice feature that the terms n £ and i t2 2 are symm etric with respect
to conjugation of the representation, the term in t° being self conjigate. Equation (4.57)
constitutes the explicit dem onstration that the H ibert series for the non-trivial C alabiY au
com ponent of the m aster space of dP3 decom poses into representations of SU (2) SU (3)
and the basic buiding blocks are given by the sin plest representations of this group.

Expanding (4.57) in powers of twe nd

g (t;dP3) = 1+ gttt (36 + 3 (1,-3))€+ ( wany+ 3 e+ 2 @)t 458)

4
+ ( (5;15)“1‘ 3 (3;150)"‘ 6 (1,‘6)+ 2 (3;3))t + PP

W ew illnow resw rite the H ilbert series in a suggestive form which uses a highest weight
representation aswas done In the preceding subsections. A representation of SU (2) SU (3)
w illnow bedenoted by 3 non-negative integers [n; ;n, ;N3 ]such thatn; = 2jdenotesan SU (2)
representation w ith spin jand n,;ns; are the highest weightsofan SU (3) representation given
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by a Young diagram such thatn, is the di erence between the st row and the second row ,

while nj is the di erence between the second row and the third row . U sing this notation
(457) becom es

g (6 dPs)= (1 3[0;1;0K + (8+ [0;1;1D 3[0;0;1¥ + £*)PE [1;1;0k+ 200;0;1¥ ;
(4.59)
which adm its an explicit expansion as

g (t; dP3) 1+ [1;1;0+ (12;2;01+ 3[0;0;1)F + ([3;3;01+ 3[1;1;11+ 2[1;0;0)E
+  ([4;4;01+ 3[2;2;11+ 6[0;0;21+ 2[2;1;0)t

(15;5;01+ 3[3;3;11+ 6[1;1;21+ 2[3;2;01+ 3[1;0;1N2 + :::

+

(4.60)

In fact, one can collect all the term s in the expansion and get an expression to all

orders In pow ers of t:

P BC
o (t; dP3) = el n 2kn 2kik]
n=0 k=0
p Wopipic ! (461)
+ k+ Jj+ I)ln 2k 23;n 2k 33;k] 5

n=0 J=1 k=0

w here bxc represents the integer part of x. T he restrictions in the summ ation over j and
k are chosen such that every integer in the highest weight representations above is a non—
negative Integer. U sing the form ula for the din ension of a representation ofSU (3) ofhighest
weight [n;;ns], nam ely,

1 1 2
din s = ny+ 1)(ns + 2)(n2+ ns + ); (462)

and recalling the dim ension of the SU (2) representations, we have

(nl+ l)(n2+ 1)(n;+ 1)(n2+ n3+ 2); (4.63)

din [n;;ny;ns3]=

which can be substituted Into (4.61) by setting allweights to 1. The result is ran arkably
sin ple and reproduces (£56) as expected.

48 A Prediction for True dPy

W e have addressed the P seudo-del Pezzo theories above In 2.2 because they are still toric;
the true del Pezzo theories above n = 3 are non-toric and still a terra incognita as gauge
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theorjes . Nevertheless, am ed w ith our hidden sym m etry technigues and using the exact
expression for the H ibert series of dP; we can com e up with argum ents using the H iggs
m echanism [34]and sim ple group decom position in order to propose an exact expression for

the H ibert serdes of true dPy, .

Thematter eldswill be taken to be 10 elds of weight t transform ing in the second
rank antisym m etric tensor 10 = [0;1;0;0]and 5 elds ofwejghtt2 transform ing in the anti-
fundam ental representation 5 = [0;0;0;1]. The hidden symm etry is now expected to be
E, = SU (5) and the under the decom position SU (5) SU (2) SU (3) we have

10 ! 1;L)+ (1;3)+ (2;3)
5 1 (2;1)+ (1;3):

(4.64)

A sabove, we can denote a character of a representation by its highest weight, n ;n,;n3;n41,
where n; are non-negative integers, where n, is the di erence between the rst row of the
Young diagram to the second row , n, is the di erence between second and third row s, etc.,

We propose:

H(G"Fd,) = @ [L;0;0;08+ 22+ [0;1;0;0 [0;0;0;1}

(4 65)
[1;0;0;01 + 28°)PE [ 10t+ -t]:

T his H ibert series is con ctured to have a nice expansion in term s of the sym m etric repre-
sentations of SU (5):

H (G ™F &, )= 1+ [0;1;0;0k+ ([0;2;0;01+ 2[0;0;0;1])t + ([0;3;0;01+ 2[0;1;0;1)t

+ ([0;4;0;01+ 2[0;2;0;11+ 3[0;0;0;20t* + ([0;5;0;01+ 2[0;3;0;11+ 3[0;1;0;2N2 + :::

(4.66)

T his can be used to evaluate the expression to all orders in t,
|

n

p pec
H(G"FL,)= k+ 1)0;n  2k;0;k]
n=0 k=0
P P P @
= k+ 1)[0;2n  2k;0;k] "+ (k+ 1)[0;2n 2k+ 1;0;k] ot
n=0 k=0 n=0 k=0

(4.67)

T he above expression is explicitly checked up to order 15 In t. It is not hard to extend
this to higher order. In fact, it is easy to com pute the dim ension of the representation

see [39] for a discussion of how to obtain non toric theories and their H ibert series via deform ation of

toric ones. See also [40] for som e of the non—toric theories derived from exceptional collections.
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[0;m ;0;1], which is

m + 1+ 4)m + 1+ 3)1A+ 2)(1+ 1)m + 3)m + 2)%°m + 1) )
288 '

(4.68)

W e can now replace the characters of each representation by its din ension and obtain an
expression for the H ibert series of the CalabiY au com ponent of the m aster space of dPy :

1 50+ 20+ 10 5t 52+ 260

H (6 Far,) = 1 oo@ e

(4.69)

An interesting aspect of this serdes is that it gives a din ension 11 for them aster space ofdP,
and not a dim ension 9 as what we expect from all the toric cases. T his deserves a further
nspection.

A nother proposal for the H ibert serdes can be

0 1
Re
d

H (G ™Fh,)= O;n  2k;0;kP € ; (4.70)

which sum s to

(1 [0;0;0;1¥ + [0;0;1;0  [0;1;0;0¥ + [1;0;0;0 t£°)PE [[0;1;0;0k+ [0;0;0;1F):

(4.71)
T he current form is not satisfactory and we need m ore data in order to get the right answer.
T his is left for future work.

5 Conclusions and P rospectus

W ehave enjyed a long them e and variations in F [, touching upon diversem otifs. Let usnow
partw ith a recapitulatory cadence. W e have seen that fora single brane, them aster space is
the algebraic variety form ed by the space of F +erm s. In the case of the singularity X which
the D 3-brane probes being a toric Calabi¥Y au threefold, we have a wealth of techniques to
study F !: direct com putation, toric cones via the K and T m atrices, sym plectic quotients
n the Cox coordinates aswell asdin erm odels and perfect m atchings. U sing these m ethods
we have leamed that

X isthem esonic branch of the fullm oduli spaceM ofa single D 3-brane gauge theory
and is the sym plectic quotient of F' | by the Abelian D ~tem s;
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Fora U (1Y toric quiver theory, F ! is a variety of din ension g + 2;

T hem aster space F! is generically reducible, its top din ensionalcom ponent, called the
coherent com ponent ¥ [, is a CalabiY au variety, of the sam e dim ension and degree

asF !. The lowerdin ensional com ponents are linear pieces L ;, com posed of coordinate

hyperplanes;

7 [ 45 generated by the perfect m atchings in the din er m odel (brane tiling) corre-
goonding to the quiver theory. This should follow from the Birkho -von Neum ann

theoram ;

In the eld theory,™F ! often realizes as the H iggs branch, and the hyperplanes L;,
the Coulom b branch of the m oduli space M . The acquisition of VEV s by the elds
param etrising L ; can cause one theory to ow to another via the H iggsm echanian , an

archetypal exam ple is the chain of dP,, theories;
U nder Sedberg/toric duality, we confcture that™F [ rem ains invariant;

A ccording to the plethystic programm e, the H ibert series of X is the generating func—
tion for the BPS m esonic operators. In order to count the full chiral BP S operators,
Including m esons and baryons, we need to nd the re ned (graded by various chem ical

potentials) H ibert serdes of F [;

T he H ibbert series of the various irreducible pieces of F!, obtained by prim ary decom —
position, cbey surgery relations;

T he num erator of the Hibert series of ™F [, in second fom , is palindrom ic. This
ollow s from the Stanley theoram ;

T he gauge theory possesses hidden global sym m etries corresponding to the sym m etry
of F I which, though not m anifest in the Lagrangian, is surprisingly encoded in the
algebraic geom etry of F !. Tn particular, we can re-w rite the tem s of the single brane
generating function, ie., the re ned H ibert series, of ™F | in the weights of the rep—
resentations of the Lie algebra of the hidden symm etry In a selected set of exam ples.
V ia the plethystic exponential, this extends to an arbitrary num ber N of branes.

In Tablk[d, we illustrate som e of the above points by suum arizing various results for
our host of exam ples encountered throughout the paper. W e present the singlebranem aster
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X Fl T H (t; =r ) G lobal Symm etry

c? c? c? 1 v’ U (3)

C c* c* 1 v U@k SU@)
(€*=z,) C| (4;2)|C C =L U(lk SU@k U@k SUQ)
C’=Z, 7, | (6;14) Lot Uk U@P SuUEy

SPP (5;2) |c C? o U@k U@dwm SU@R)

dPy (5;6) | " F! s U(lk SUBM SUQBKk

Fo (674) | C ¢ Lo JuGk U@k SURE  SURR

dpP, (6;17) Lfnle St f | U (1 SU@WM U@L SUQK

dP, (7;44) simline i U@k SU@kK U@Y

dP; (8796) Tt (SU(2) SU@) U@y

Table 5: The master space, its coherent com ponent and H ibert space as well as the gbbal
symm etry of the gauge theory. T he notation (n;d) denotes the dim ension and degree respectively
of F' L. Forthe symm etries, the subscript R denotesR-symm etry,M denotes the symm etry of the
m esonic branch, B denotes baryon charge, whik H denotes the hidden gbbal symm etry. Note
that the rank of the global symm etry group is equalto the din ension of F L.

Space, its coherent com ponent (by nam e if fam iliar), the assciated H ibert series as well as
the global sym m etry, standard as well as hidden. In passing, noticing the last few rows of
the table, we see that for general toric dP,_ 3, the coherent com ponent of the m aster
space has H ilbert series

1+ (6 2n)t+ (10 Zn+ sn)E+ (6 2n)P+ £
(1 0> (1+ Y '

HE L )= (51)
Tndeed, the num erator is explicitly palindrom ic and there is no need to fret over the appear-

ance of the % therein shcen? 7n always divides 2 for integern.

For a generalnum ber N of D 3Joranes, the situation ism ore subtle. T he m oduli space
isnow the variety of F'— atness quotiented by the special unitary factors of the gauge group,
5o that when quotiented by the U (1) factors as a sym plectic quotient we once m ore arrive at
the m esonic branch, which here is the N +th sym m eterized product of the Calabi¥Yau space
X . However, the plethystic program m e persists through and we can still readily extract the
generating functions for any N . Furthem ore, we still see the representation of the hidden
symm etries In the plethystic exponential.
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W e are at the portal to a vast sub gct. T he algebraic geom etry of the m aster space at
N > 1 num ber of branes deserves as detailed a study as we have done for the singledbrane
exam ple; we have given its form on physical grounds and m athem atically the structure is
expected to be com plicated, doubtlessly H ilbert schem es w ill arise since we are dealing w ith
symm etrised tensor products. P lethystics are expected to elucidate the situation.

T he top-din ensional irreducible com ponent of the m aster space is seen to be an im -
portant ob Bct and we have shown a few of its properties for N = 1. W e have con gctured
that Seberg duality preserves this w ith our exam ple, it would be In portant to prove this in
general, for higher num ber of branes, and indeed for generic N = 1 gauge theories as well.
U sing the encoding of hidden symm etries by the re ned H ibert series, we have also been
able to m ake predictions about gauge theories, such as the true non-toric del Pezzo theories,
whose details have yet to be com pltely settled. W e need to check these predictions w ith
m ore data. Indeed, as em phasized above, our system atic analysis should apply to not only
D brane theories but supersym m etric gauge theories in general; the m aster space and its
associated physical insight need to be thus investigated panoram ically. T he full sym phony
based on ourm otif in F [ awaits to be com posed.
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A ppendices

A H ilbert Series of Second K ind and the R eeb V ector

In this appendix, let us study, In a further detail, the properties of the H ibert series of
a din ension n variety M , in light of its pole structure and the subsequent relation to the
geom etry of M . A Laurent expansion for the H ibert series of second kind in (2.3) can be
developed, as a partial fraction expansion :

v, Vs v, \Y%

1
; = HN Vv 1 ;
H (M) 1 o + 1 o + a t)2+ 1 t+ o+ O ( t) A 2)

where we see explicitly that the H ibert serdes is a rational fiinction and the degree of its
m ost singular pole is thedin ension of M . In the case of M being a toric variety ofdim ension
3,thecoe cientsV 3,5 are related directly to the Reeb vector ofM and in particular, Vs is
the volum e of the spherical SasakiF instein horizon. T he relation to the R eeb vector, at least
for toricM , is as follow s. R e ne the generating function into triwvariate (this can always be
done for toricM ), In tetm s of 1,5 and set

t = exp( bAq) ; b= (b ;I ;bs) is the Recb vector A 3)

and then Laurent expand f (f;4;5) nearq ! 0 to compare with (A_2). A fi1ll discussion
on the relation of the volum e in term s of the R eeb vector isnicely presented in [41]. W ew il
call thism ultivariate Laurent expansion around g ! 0 the expansion ofa re ned H ilbert

series of Second kind.

Let us rst illustrate w ith the sim plest case of C>. W e recall from [9] that the re ned
fuindam ental generating function, is sin ply

H (hibit;Co)= (1 &)1 t)d ) A 4)
Hence, the Laurent expansion gives
1 b+ b+ by
H (exp( sexp ( sexp ( ;C) = + +
exp( bg)jexp( bg);exp( 1»9);C7) bhb T 2h b
M+m%wﬁ+3mm+mm+hmu(a+m+m>hm+mm+mw+o©)

12b b Iyg 24D I by
Therefore, we can read o the volme asV; = (obb;) '. In general, the values of V; are

read o as the coe cients of g * from above.
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Let us study another exam ple, viz., the conifold. W e recall from [9] that the re ned
H ibert series for the conifod is

g 1 B)
H (G;b;5;C)= : A S5
LRS5O T T me o ©® 6 ® )
T herefore, Laurent expansion gives us
H (exp( bg);exp( kpg)iexp( x9);C)= @2 +
bh b b)) b bbb &
N by LB b’ b+ bbb+ bbb+ b
2b b by) b’ by P 12bb, (o by) o by)g
b’ b+’ bbb b
2 + 0 (@)
24b ;o b)) b bbb
T herefore, here the volum e is V3 = Ly , which up to perm utation of thede ni-

by (br bs) (2? bobs)
tion of by, 5, agrees with Eq 7.29 of 41]. The ram aining V,; , can be sin ilarly obtained.

B Re ned H ilbert Series: M acauky? Im plem entation

In this appendix, we present the M acaulay?2 routine (cf. 21,124 ]) which com putes the re ned
H ibert serdes of a toric variety, given its K -m atrix of charges.

toBinomial = (b,R) —> (
top := 1_R; bottom := 1_R;
scan(#b, 1—>if b i > 0 then top =top*R_i~(b_ 1)
else if b i < 0 then bottom =bottom*R_i"~(-b _i));
top — bottom);

toricIdeal = (A) —> (

n :=#(A0);

R= QQ[vars(0..n-1),Degrees=>transpose A,MonocmialSize=>16];
B:
J:

transpose LLL syz matrix A;

ideal apply(entries B, b —> toBinomial(b,R));
scan(gens ring J, f —> J=saturate(J,f));

J);
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The input istheg+ 2by E matrix K and the output of the comm and toricIdeal (K)
isthe re ned H ibert series for the coherent com ponent ™F [ weighted by allthe g+ 2 charges
(chem ical potentials). T he algorithm can be easily generalized to com pute the H ilbert series

depending on only one, or few er, charges.

C Re ned H ilbert Series using M olien Form ula

In this Appendix we give an explicit exam ple of com putation of the re ned H ibert series
using the M olien form ula. The m ethod works well for quivers w ith relatively an all num ber
of elds.

Consider the example of C>=Z, Z,. The H ibert serdes depending on one param eter
twas com puted in 2,18 from the sym plectic quotient description w ith charges (2.31]). To
highlight the result for the re ned H ibert series we w ill exploit the full symm etry of the
m oduli space. The symm etry of them aster space can be readily determ ined to be SU (2)°
U (1)?, the three SU (2)’s com ing from repetition of colum ns i the chargem atrix (2.31)). This
is another exam ple of the general phenom enon related to the existence ofhidden sym m etries
which isdiscussed In detail in 4.

For now , we want to Jleam how to com pute the re ned H ibert series using (2.29). To

this purpose we introduce nine hom ogeneous variablesy ; = 1;::;9 acted on by (C )° with
charges Q ; given by the row s of them atrix (2.31]). The M olien formula (2.29) then reads

g (yI‘GTE1 [ drdw ds 1
’

24 Comzy 2,) = s (1 Zw)@ Zs)1 L)1 yar)(@ ysr)(1 yew )1 yiw)(l ygs)(I yos) °

(C o)
T he result of the three Integrations is a lengthy rational expression that we do not report

here; it depends on 6 independent quantities that can be m atched w ith the six chem ical
potentials t; by soling (2.26). In this case we can use the SU (2)° U (1)° symm etry and
Introduce a set of adapted chem ical potentials respecting the symm etry of them atrix Q :

TY17V2iY3iYaiYsiVeiV7iVeiYod = fh ;5 iz;1=2;y;1=y;x;1=xg : (.7

T he three charges t; param eterize the R charge and the two non-anom alous avor U (1)
sym m etries of the theory; these are obtained by assigning a di erent cheam ical potential to
the three external perfect m atchings in the dim er description as discussed in 2. 1.7. The
variables x ;v ;z are the chem icalpotentials for the C artan subgroup ofSU (2)° and there ned
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H ibert series can be then com puted as

H (&ititixiviziF i, 5,)= P (uititx;yiz)PE [0;1;1]+ &[1;0;11+ t[1;1;01] ;

(C 8)

w ith

P(bibitixiviz) = 1 & § €+ 25bb+ 2868 bt thtg tot+ 588
+ [0;1;11( o+ g+ wg tht wBf+ oo+ € HE8)
+ [1;0;11C tt+ g+ b tBt EhE+ 8.+ tgE  £858)
+ ;1,010 th+ 5+ B thE H8t+ 5B+ 488 £88)

0;2;01(ky €€ tBg+ £88)

(
(
(
+ [2;0;0l(tby €8 thu+ g88)
(
0;0;21(tbty B thB+ gE88) ;

[
[
(C9)

where [n;m ;1]is the character of the representation ofdin ension (n+ 1;m + 1;1+ 1) ofSU (2)°
expressed In the variables x;y;z w ith the speci ed order. For exam ple, [1;0;0]= x + 1=x.

T he plethystic exponential PE in the above isde ned in ¥23 3 which we recall is such
that for polynom ials or power serdes f (t) with £(0) = 0, it is given by

X
PE [f(b)]= exp (Tﬁ) : (C 10)

k=1

In our case, the plethystic exponential counts all possible sym m etric products of the twelve
elem entary eldsorganized asthe [0;1;1];[1;0;1]and [1;1;0]representations ofSU (2)°. The
symm etry of the m aster space ism anifest in the expression of the re ned H ibert series; this
is the subfct of #4. Notice also the rem arkable palindrom ic symm etry of the num erator
of the re ned H ibert series as a polynom ial in three vardiables 4 ;4 ;3 under the exchange
£t s £ *£ '€ *. This point is discussed in detail in 2.3..

On the practical sde, it is som etin es convenient to perform the integration in the
M olien form ula before substituting the expression of the dummy variablesy in temtm sof
since In thisway there is no am biguity in the integration: the contour integral is perform ed
on unit circles and take contributions from the poles inside the unit circles, w here we consider
all j< 1.
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