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Quantization of coordinates leads to the non-commutatiedyct of deformation quantization, but is also
at the roots of string theory, for which space-time coortésabecome the dynamical fields of a two-
dimensional conformal quantum field theory. Appositelyestring diagrams provided the inspiration
for Kontsevich’s solution of the long-standing problem ofagtization of Poisson geometry by virtue of
his formality theorem. In the context of D-brane physics4tommutativity is not limited, however, to the
topolocial sector. We show that non-commutative effectigéions still make sense when associativity is
lost and establish a generalized Connes-Flato-Sternha&iamelition through second order in a derivative
expansion. The measure in general curved backgroundsuisafigtprovided by the Born—Infeld action and
reduces to the symplectic measure in the topological limit,remains non-singular even for degenerate
Poisson structures. Analogous superspace deformatioRRb¥ields are also discussed.

Contribution to the proceedings of the BW2007 Workshop "&mes Beyond the Standard Model”,
September 2-9, 2007, Kladovo, Serbia

1 Introduction

The non-commutative product of deformation quantizatibj2] can be derived from string theory in a
topological limit where the space-time metric is small asmpared to the anti-symmetric B-field (the
ancestor of the Poisson bi-vector) [3-5]. The non-comnuggiroduct thus amounts to a summation
of the leading B-field contributions to the effective actidn the non-symplectic case this interpretation
is spoiled, however, by the absence of a canonical measumn fhe string theory point of view, on
the other hand, associativity is lost for generic backgosufb], but the Born-Infeld action provides a
canonical measure [4, 7]. We show that the concept of effectttions does not require associativity,
but rather a generalized Connes—Flato—Sternheimer ¢ondialled cyclicity [8, 9], i.e. commutativity
and associativity up to surface terms [10]. Cyclicity in@gli however, a compatibility condition between
the star product and the measure [9], which for Born-Infelth$ out to be equivalent to the generalized
Maxwell equation for the gauge field on the D-brane [7, 10]118] we found that cyclicity also requires a
gauge modification of the Kontsevich product at second dgvie order in a derivative expansion and we
discussed the D-brane physics related to these mathesitiogtures.

In section 2 of this note we review some aspects of deformati@ntization and formality in simple
terms by illustrating the emergence of Hochschild cocydBerstenhaber brackets and gauge transforma-
tions accompanying diffeomorphisms in derviative expansi In section 3 we discuss the stringy origin
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of these structures and their interpretation in terms af@ife actions, which requires the existence of a
measure and a generalized Connes—Flato—Sternheimerfytdptile associativity is restricted to Poisson
geometry, string theory naturally introduces the Borneldfmeasure and keeps cyclicity, at least through
second derivative order, independently of associativitgt without a topological limit. We observe that
the results found in [10] straightforwardly extend to namstant dilaton backgrounds. In section 5 we
discuss the Berkovits string in general RR backgrounds heddsulting deformation of superspace. In
section 6 we conclude with a discussion of open problems anll to be done.

2 Deformation quantization, Kontsevich product and formality

The idea of deformation quantization is to emulate the dpefaroduct of quantum mechanics by an
associative produdt 2 g of phase space functiofigg 2 ¢! ™ )with

i . f?2g g?f
frg=fg+ E~ff;ggps +0 (") ) NJJ,mO — = " ff;99 5 ; (2.2)
where the Poisson bracket can be written for arbitrary plsg@ee coordinates as a bi-derivation
ff;9%es = (x)@ £f@ ginterms of a bi-vector field 2 2TM .

2.1 Polyvectors and the Schouten—Nijenhuis bracket

Elementsx 2 TM of the exterior algebra over the tangent space are called polyvector fields and
there is a bilinear operation, the Schouthen—Nijenhuig (8&icket

X ®ly@y Pralry  for x ® 2 PTM  and Y92 9TM™ ; (2.2)

that extends the Lie bracket of vector fields to a graded Lisadton of degree 1onT 2 TM . The
Jacobi identity of the Poisson bracket is equivalent to #irdshing of the SN bracket; ]

X ) 2X
© fff;ggee shgee = 0 , [; 1= 0 with [; ] =3 e e 1 (2.3
Lie derivatives in the direction of 2 TM can also be written in terms of the SN brackek = [ ;X ]

for all polyvectorfieldsx 2 TM .

2.2 Moyal product and Kontsevich graphs

In case of constant, and hence in particular locally for Darboux coordinatesfodmation quantization
can be achieved by the Moyal product
(f?g)(x)= exp 3~ @ @, £(v)g(z) | (2.4)
y=2z= X
After a general change of coordinates in phase spaa# not stay constant, which motivates the consid-
eration of deformation quantization for generaFor the symplectic casgst & 0the existence of a star
product has been shown by De Wilde and Lecompte [11] and stecfinstruction is due to Fedosov [12].
Some details and a historical assessment with referencelsecéound in the review [2]. For the case of
a general Poisson structure which by definition obeys ; 1= 0, the construction of an associative
product is due to Kontsevich [1] and will now be discussed orendetail. Associativity of this product
is, in fact, a corollary of the formality theorem, which dsliahes a quasi-isomorphism DflP algebras.
The formality maps maps polyvector fields; to polydifferential operators (T, ;:::;T, )= w D
and is constructed in terms of graphand coefficients: . The coefficientss are defined by convergent
integrals inspired by open string Feynman diagrams (ctiae®) with functions inserted on the real line
and polyvector fields in the upper half plane as illustratefig. 2.1, where the derivatives of the bidiffer-
ential operators correspond to the arrows pointing ahdg. The first two graphs fig. 2.1a give the order
and 2 terms of the Moyal product, while fig. 2.1b yields first detiva corrections for non-constant
. The latter will be worked out explicitly below. The precissdation of Kontsevich’s construction to
correlation functions of topological sigma models is du€#dtaneo and Felder [5].
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Fig. 2.1 Kontsevich graphs for a) Moyal-type contributions and bj\@give corrections, respectively.

2.3 Hochschild cohomology, Gerstenhaber bracket, andottmedlity theorem

Rather than giving abstract definitions of the involved reathatical structures we now illustrate how they
automatically show up in simple calculations. We ignoresfanoment the relation (2.1) to Poisson brackets
and consider a general deformation of the product

f?2g= fg+ ~B(f;g)+ O (~?)  with B.i(f;q)=B fg; £ @ f; (2.5)
where derivatives of functions are abbreviated by sub&tripheo (~) contribution to the associator,

£2(g?h) (£2g)?h=~ fB;(g;h) Bi(fgih)+ Bi(f;gh) Bi(f;gh + 0 (+%); (2.6)
has exactly the form of a Hochschild coboundary [1]

( C)jeiiifp) = £oC (Erjiie5Ep)  C(fofyjes;fp)+ C(fosfafasiee;fp) oo (2.7)

There are, however, equivalences of the resulting deforassdciative algebras due to invertible maps
£ | D £ with differential operators

D=1+~D,Q@ +D; @@ + ::+ ~*(D,@ + ::3)+ ::: (2.8)

that respect the unit elementl = 1. They lead to the following modification of the star product,
f! Df ) f?2%=D@® '£?D lqg) (2.9)

andhence ?(f;g) Bi(f;g)= £D1(g)+ Di(fg) D, (f)g;atorder~, whichis again a Hochschild
coboundary. Forthe specialcase = D, @ @ thisimpliesthe gauge equivalergé (f;g) B (f;g)=
D, £ g sothat for the first order bidifferential operat®t (£;g)= B, £ g ofeq. (2.5) the symmetric
partofB, can be gauged away with, = Bl( ). With the choices 1 = 51 we thus recover (2.1).

Returning to the Kontsevich graphs fig. 2.1 we now want to vearkthe derivative corrections that are
needed for associativity at ordet. For this purpose we define the Moyal part

2

[£29] fg+ i3 fg F f g HR (2.10)

of a productt ? g as the result of dropping all terms with derivatives actimg oThen

f?2g= [f2g] ~° @ @[f ?2g ]+ blf 2g D+ 0 @2 (2.11)

whereo @2 only counts derivatives acting onand the coefficients  of the two graphs in fig. 2.1b
area andh, respectively. Instead of determining these coefficiemfintegrals over in the upper half
plane we determine them by imposing associativity. The diesivative order part of ? (g2h)is
h i
1
~2x af ?(g?h) +bf ?(@?h) + 71f ?(g ?h )+ af?2g 2h + bf?g ?h ) (2.12)

with x = @ , and theo (@) contributions to(f ?g)?h are

1
—

2 2 f ?g )?h +af ?2g ?h+ bf ?2g 2h) (2.13)

~?% a(f?g) ?h +b(f?g) ?h

sothatf ? (3?h) €?g)?h=~*[f g h](a $)X +(a bX (b 3 )X :Associativity

implies that the coefficientof g h ]Jvanishes. Using the antisymmetry ofve first observe that
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Fig. 2.2 Dressings of a) Lie derivative, b) Poisson bracket and @)@ator, respectively.

cannot be totally antisymmetric. Thus symmetrizationin  and impliesb= 2a % a= 2b+ %
anda + b= 0, respectively. The unique solutionas= b= 1. Hence
1 X
f2(@?h) €29)?h= = g hle @ +0(@%) (2.14)
sothat[ ; 1= 0is anecessary condition for the existence of an associd¢if@mation. The Kontsevich
product through second derivative order (setting 1)

1 1
fog = [E? — £ 2 £ 2 — £ ?
g [f2g] % @ g + g + 24@ @ £ 2?9 ]
! @ @ £ 2 £ 2 ] = @@ f ? £ 2
+ — f I —_— i <
28 g g 28 g g
11 3
+§@( @ )( Q@ ) £ ?g +2f ?g +f 2g +0 (@) (2.15)

has been determined in [10] using the known coefficignof the gauge term and symmetry under com-
plex conjugation combined with the exchangefodndg. Note that each term in (2.15) comprises the
contributions of an infinite number of graphs with Moyal-yadditions to the classical partpiince this
formula holds to all orders in the undifferentiated.

The Gerstenhaber bracket of polydifferential operatars the commutatofp, ;P , Jwith respect to an
appropriate definition of the compositian B of degree 1. For bidifferential operators the bracket
thus yields a tridifferential operator, and in the specader, = P, = 2 the bracket becomes proportional
to the associato%E R;?1(f;9;h)= £2(g?h) (£2g)2h. The formality map can be regarded as a dressing, or
quantization, of polyderivations; 2  TM to higher order polydifferential operators. The formality
theorem ensures that this map isian quasi-isomorphism where the (homotopy) Lie algebra stmest
are related to the SN bracket and the Gerstenhaber braekpgctively.

The cases of vector fields, Poisson tensorsand rank three tensors2  *TM shown in fig. 2.2 are
of particular interest. The quantization of/ields the star product (2.15). Since the SN bracket is mappe
to the Gerstenhaber bracket= [ ; ]as well as its quantization vanish in the case of a Poissootate
[ ; 1= 0. Since[?;?]is the associator this establishes associativity of thetd@wich product (compare
fig. 2.2c to our result (2.14) at leading orde?).
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Fig. 2.3 Sample graphs for dressed coordinate transformationsighreecond derivative order.

For vector fields the classical term is the Lie derivative, which amounts tdvange of coordinates.
Its quantization yields an equivalence transformationof the form (2.9) so that the Kontsevich prod-
uct transforms covariantly under changes of coordinatés wmto gauge equivalence. For infinitesimal
transformations

@ (f?wg)=D f2g+ £2?2D g D (f?9g) with X = (2.16)

In fig. 2.3 we enumerate the graphs that contribute to inBiital transformations (i.e. linear in) through
second derivative order in Note that the additional lines corresponding to derivdigcting on andf



tives on s, plus an infinite number of additional Moyal-type contritbns. Through first derivative order

1
D = @ +— Q @ @ + 0 (@%): (2.17)
24
At second derivative order the graphs define differenti@raporsd containing (non-Moyal) terms with
up to five derivativesp £ = £ + :::+ P @ @ e 'f » but many coefficients
may be zero.

3 Open strings, Born—Infeld electrodynamics and non-commiativity

In order to relate the Kontsevich product (2.15) to stringotty we start with the Polyakov action for closed
strings moving in a ClZJrved background witkform field B . In conformal gauge

sp=2lO d?z@X @X g (X)+B (X) ; (3.1)
wherex ! M maps the closed world sheeto the target manifolth . Note that this action is
invariant under the gauge transformatiors = d .

When we consider open strings, we have to introduce worldtshgith boundaries and specify a hy-
persurface i , i.e. a D-brane, to which the end points of open strings arpped. In the following
we will only gonsider space-filling branes. By Stokes’ theor (3.1) is not gauge invariant anymore,

X B = ., X ,andwe have to introduce a compensator fieldt the boundary, which turns out

to be au (1) gauge field with field strength = da. The associated action,
v4 Z v4

Sa = X A= dt@X A X )= X F; (3.2)
@ @
then restores gauge invariance of (3.1) by settinga = 5 +d .

As a consequence of gauge symmetry the effective actiomdepmn the fieldg. ands only through
the gauge invariant quantities= B + 2 % andH = dB = dF. For slowly varying fields andgthe
effective theory on the D-brane is Born—Infeld electrodyiies [13] governed by

Z
L —
Sg1= dx det(g +F ): (3.3)

M
Let us have a closer look at the quantization of (3.1) and (h2he upper half plane, conformally equiv-
alent to the disk. We split the embedding map into fluctuatiaround a constant mode, (z;z) =
x + (z;z), and organize the perturbative quantization in terms ofrévaiive expansion in the back-
ground fields. Moreover, we regard the metyicc) and the curvature (x) as a classical background in
order to ensure conformal invariance.
The variation of the action requires the mixed Dirichletteann boundary condition

=0; (34)

g @X Fo@,X )

which leads to the following propagator for fluctuationshet boundary (; °2 @ ):
1 n o]

h () (%i= G ®hji F+i = 9 (3.5)

2

wherewe introduced ¢ '+ [ 1= (g + F )! andthesignfunction( )= =7 j

In the limit wheng vanishes (witte  kept finite) [4], the actiors; + S, is topological. Only the
second part in (3.5) survives, and the non-commutative yrodn the D-brane world volume becomes
apparent. For constant backgrounds it is the Moyal prodtartvarying backgrounds we notice, however,
that the Einstein equations for the background fields requie= dF = 0in the topological limit [14], i.e.
F is a symplectic form with Poisson structure= ¥ ' . The resulting non-commutative product is then
the associative product (2.15) due to Kontsevich [1].
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4 Associativity, cyclic invariance and effective actions

From the string theory point of view, the assumption ak) being a Poisson structure is not natural.
The only condition on the background fields should come fromfarmal invariance, or equivalently the
classical equations of motion. Therefore, it is preferabldefine the non-commutative product without
taking the topological limit. Itis clear that the first termthe propagator (3.5) should play a secondary role

in this definition, which suggests tchonsider two (off-$hetrtex operators at a distance = 1[7],
i.e. 1 ~
£(x) glx) =p—— D e®F7 TEX (0)gX (1): (4.1)
I+ F]J

The Born-Infeld measure in the prefactor is cancelled bylghsheet)i-loop diagrams. At higher deriva-
tive orders of the background fields the measure gets ceadtp].
Let us comment on some properties of this product.
An immediate consequence of giving up otx) being Poisson is thiess of associativityso that a
sum over different configurations of brackets will appeaojren string scattering amplitudes and in
the effective action. In the topological limit, the non-cotative product (4.1) becomes the Kontse-
vich product, up to gauge equivalence(f 2 g)= D £ D g, So that associativity is restored.
As was argued in [10], the variational principle for the l@nergy effective theory requires that the

non-commutative product iyclic, i.e.
A

Z Z Z

f g= f g and (f g) h= f (g h); (4.2)
M M M M
where is a measure, which requir@s ( ) = 0:From a string theory point of view the measure
is the Born—Infeld measure that appeared in (3.3), i.e. 3+ F j and cyclicity follows from
the generalized Maxwell equation associated with the Biofietd action (3.3):

P 1
@ ( g+F5 H)=0 () G DF > H F =0: 4.3)

This is in line with the assumption of a classical backgrqumldich ensures conformal invariance
and, in particular, cyclic invariance of disk amplitudestie that if we include the dilaton in the
background, the measure is modifieddo = §+ F j

For Poisson structures the second condition in (4.2) fdlénem associativity, and the first is due
to Connes—Flato—Sternheimer [16]. In fact, for any volumaf subject to@ ( ) = 0there
exists a star-product that satisfies cyclic invariance)(feR However, in contrast to the physical
context above, there is no canonical measure for Poissoctgtes.

In [7] an explicit computation of the product (4.1) was givenfirst derivative orderg , in the
background field, but to all orders in In [10] it was shown that the cyclic invariance (4.2) unibyue
fixes the non-commutative product to second derivativerowdi¢h the result

1
£ g-f?g @e (g )f g: (4.4)

The first contribution is the same expression (2.15) as thedawich product but without the Poisson
constraint on and the second is a gauge term that is needed to ensure cyeitince.

If we want to use the non-commutative product (4.1) to cormtiting S-matrix elements we have to
impose on-shell conditions not only on the background fibldsalso on the vertex operator insertions. In
the present context the vertex operators are functibis,), and thus the on-shell condition is the one for
an open string tachyon (x)

1 1
T=—@ G @T = —T: (4.5)
This fixes the kineticZ term for the low-energy effectivrfe aati The resultis
1 n 1 8 ©
S= — G @T@T —T? WT(T T); (4.6)

2g°

o

where the cubic tachbflon interaction was found in [17] by catimg 3-point amplitudes.



5 Superstrings and non-anticommutative superspace

The superstring in Green-Schwarz (GS) related formulatisran embedding of a string in superspace.
It thus appears natural that, in addition to hon-commuitsitf space-time coordinates, there should be
a mechanism that deforms the anticommutation of the ferimismperspace coordinates. Indeed such a
mechanism exists. Independently of string theory, speziaés of non-anticommuting supercoordinates
were already considered by van Nieuwenhuizen and others8h(fi = % SUSY, see [19]). A more
general ansatz was presented in [20]. After indication®in22] that similar structures originate from the
superstring, this could eventually be shown in [23] for angfrin four dimensions (with six dimensions
compactified on a Calabi-Yau) and was generalized in [24¢todimensions. In both cases a constant
RR-field-strength was considered and turned out to be resdiplerfor the nonanticommutativity of the
supercoordinates. The calculations where performed ifergifit versions of the covariant superstring
[25-27]. This non-(anti)commutativity can again be impéerted via a star product, now on superspace
(see [28] and references therein). For non-constant baakgr fields (but in the topological limit), this
corresponds to a graded generalization of Kontsevich'saatve star product. A derivation from &
model with super-targetspace along the lines of Cattandd-afder [5] was presented in [29]. The effect
of a constant RR-potential (not field strength) on the de&diom of the bosonic space was already studied
in [31]. In the following we sketch how non-anticommutatyof superspace arises from the Berkovits
pure spinor superstring [24].

Although we will consider an open string with type | supersgetry, we want to couple it to the type
Il bulk fields (see e.g. [31]). In particular the RR-fieldsdug to the bulk and will take over the role of the
B-field in the fermionic case. It is therefore necessary tdedthe string into a type Il superspace with
coordinates<” = (x™ ; ;). In this section Greek letters will be reserved for fermiinidices while
bosonic indices are %enoted by Latin letters. In confornaallgge, the GS action in flat background reads

Ses d’z 1 2 . S+ Lyg, (conformal gauge)

A

1 a ~
I—'WZ 2 z a@ a@ +

A

( @)@y (z$ z); (5.1)

[SIE

where 2_ are the supersymmetric momenta. They can be described asithack of the bosonic part

of the suzp:JZervierein }7 {

EA dx"Ey? 2 dx*+d * +d =" ;d ;dY (5.2)

to the worldsheet. Letters from the beginning of the alphaball denote “flat indices” (with respect to
the local frame), while letters from the end of the alphabiditdenote “curved indices”. This distinction is
more relevant for the curved background to be discussed kesausual, @ denotes the off-diagonal chiral
block of the 10-dimensional Dirac gamma matrix, in a representation where it is real and symmetric
(i.e. graded antisymmetric) in the indicesand .

The Wess-Zumino term.;; , is responsible for the existence of a local fermionic symehe -
symmetry. Indeed, the theory contains a number of fermioaitstraintsi, , d, . Only half of each set,
however, is first class and the constraint algebra is thezefot closed:

fd, ()d. (%9 /2% L | %): (5.3)

Being a spinor in an irreducible representatian, cannot covariantly be separated into first and second
class and thus does not allow covariant quantization. A Bingygle to overcome this problem resulted in
the invention of the pure spinor string [27, 30] as an altéwegormalism.

Berkovits’ pure splL\nor formalism has two basic ingrediefise first is a free action of the form

Sfree = RdZZ %@Xm mn@xn + @ P t+ @AApZA
= d%z 12 BP4Lys+@ d o+ @7de; (5.4)
wherep, , p, are independent variables and o (2 ) @x° % 2@ %A 2@” and

its hatted counterpart have the same algebra as the conistadithe GS-string. In addition, this action
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coincides classically with the GS-action far = d,~ = 0. The second basic ingredient are the BRST
operators -
0= dz d, ; 0= dz "d,~; (5.5)

AA

which implement in some sense the constraiiits = d,~ = 0 cohomologically. and are
ghost fields of even parity. Containing also second classteaints, the above BRST operators fail
to be nilpotent in general. This can be repaired by constrgithe ghost fields to be so-called pure
spinors, obeying ® = " 2" = 0:Like the fermionic coordinates, the ghost fields should kit le
and right-mO\ﬁng respectively and one thus adds the cooregipg ghost term to the free action (5.4):
Sps = Sgeet d’z @ !, + @1, 4+ L,a( 2 )+ L,..(" *7):The implementation of the pure
spinor constraints with the help of Lagrange multipliersriediately reveals (by varying with respect to
the ghost) a gauge symmetry of the antighosts of the farm!, = ..( ® ) which corresponds to
the (first-class) pure-spinor constraints. Because the &glations are basically free, one gets free field
operator products after quantization. For the antighokt,fibis statement is restricted to gauge invariant
operators like the ghost current or the Lorentz current.rAfsam the central charges, their OPEs look as
if there was no pure spinor constraint. To determine theraéoharges, one has to solve the constraint
once (see e.g. [27]).

In order to complete the description for the open string, tlleneed boundary conditions. For vanishing
background a natural choice isto set ~and = " at the boundary. This can be implemented by the
variation of a boundary term that one should add to the acfitve precise form of this boundary term is
fixed byN = 1 supersymmetry, BRST invariance and the antighost gaugengym. As the final form of
the boundary action is quite lengthy and not very illumingtiwe refer to [32] for further details.

The open string in a general background of bulk and boundeldsficonsists of a bulk part of the same
form as a closed string in general background and an additiooundary part. The closed pure spinor
superstring in general background was studied first by Batk@and Howe in [33]. Already at classical
level, conservation and nilpotency of the BRST charges émgint the type Il supergravity constraints.
Those, in turn, guarantee 1-loop quantum conformal innaeaof the theory [34]. The presentation of the
bulk part in the following is based on [35]. The starting gasmthe most general classically conformally
invariant ac%ion:

Spuk = &’z %@XM Guu (x)+ Byy (x))@x" + @x" Ey (x)d, + @x" Ey “(x)d,» +
+d, P A(x)cfZA+ C Tx)l, e+ V8L (x) P, ~d, +
+ @+ ex" oy (x) + @AA+ ~ e "o (%) P~
+%Lzza( 2 )+%ﬁzza(A e Ys . T, ros (5.6)

The variablex containsx™ ; and”". In addition to the action, we need the two BRST operators. In
principle they could contain background fields as well, big always possible to reparametrize and

d, ~ such that they have the same form as in the flat case. Corwistéthe equations of motion with the
pure spinor constraints requires that the background fields and " - " are each a sum of a spinorial
Lorentz-transformation and dilatation in the last two mel. They can thus be regarded as Lorentz plus
scale connections. This property also establishes thglargt gauge symmetry in the general case. BRST
invariance of the action requires that the symmetric twste is of the fornz,, y = Ey 2 ..Ey °. The
background fields, #, Ey andE, "~ can then be combined to a single object* and regarded as
supervielbein. BRST invariance and nilpotency of the BR&hgformations put several restrictions on
the background fields which turn out to be equivalent to tipe iy supergravity constraints [33—-35].

For the moment, we restrict ourselves to a glance at the gaipa l.e., we are interested in the
quadratic part of the action and do not yet need all the caimsr. Expanding the coordinates around
a constant zero mode, restricting to vanishing zero modé¢h®rfermionic coordinates and the ghosts,
choosing a parametrization which corresponds to the W4ygaund restricting to the quadratic part, one



arrives at =
S _o= 230" e ®(X) e (X)+ Bualx) @ "+ d, P (x)d- (5.7)
+@ ™ . (x)d, + @ d +e™ W x)da+re " A re 1, + @7 s

zZ

with x* (z;z) = ¥ + ™ (z;z). Atthis stage it becomes visible that the Ramond-Ramond (RRIs

P will enter the propagator between the fermionic coordisat€his observation was made for con-
stant RR-fields in [23] for four dimensions (with six compfiet! on a Calabi-Yau) and in [24] for ten
dimensions. The associated anticommutation relations feemd to be

£ ;Vg/P (5.8)
Turning on the field strengtl modifies the boundary conditions for all world sheet fieldd atso leads
to a RR background dependent shift in the noncommutatiatgmeter ™ [31].

For general backgrounds, one needs to check the consisiétigyboundary action with the bulk BRST
transformations and the pure spinor constraints. Alreadyte open pure spinor string in an open string
background this is a long story, which was discussed by Bétkand Pershin in [32]. In addition to the
boundary tern%that was mentioned before they add the irtesdjcgpen string vertex operator of the form

1
V/ d A (x;+)+ §Bp&;.)+dW (x;+)+5(N+) (F) x;+) (5.9)

to the action. The worldline fields with index '+ are just &ble linear combinations of the left and
rightmoversandN, ) / . !*.Theobjectsx ,B,,w andF areN = 1backgroundsuperfields.
The consistency requirements of the boundary action witB BRivariance and the pure spinor constraint
leads to the field equations of supersymmetric Born—Infetdtiese background superfields.

In order to generalize the result (5.8) to non-constant fielkds one has to become yet more general,
combining the boundary pavt with the bulk action (5.6) and studying the consistent b@umdonditions
and field equations. This is work in progress.

6 Conclusion

In this note we gave an introduction to the Kontsevich produnc discussed our proposal for a general-
ization to the non-associative case. We established dydiicough second derivative order, which allows
for the non-commutative product to be used in the conswnati effective actions. We checked that our
previous results [10] generalize to non-constant dilatackigrounds, with the only modification being the
prefactorexp( ) in the measure. We also reviewed the existing results arabidbout generalizations
to superstrings, which have been investigated so far fostem background fields.

There is a number of obvious directions for further work. FEoe bosonic string a non-commutative
generalization of the gauge field effective action shoulcttestructed, which presumably is related to
derivative corrections to the measure. The non-abeliae sheuld also have interesting implications for
commutative non-abelien Born-Infeld actions. A quite dadiag task will be the generalization of our
results to superstrings in curvedk ands -field backgrounds. On the more mathematical side, it woald b
interesting to establish cyclicity to all orders in the aative expansion and if possible explicitly construct
the non-associative product.
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