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W e discuss how naturalness predicts the scale of new physics. Two conditions on the scale are
considered. The rst is the m ore conservative condition due to Velm an (A cta Phys.Polon.B 12,
437 (1981)). It requires that radiative corrections to the electrow eak m ass scale would be reasonably
an all. The second is the condition due to Barbieri and G udice (Nucl. Phys.B 306, 63 (1988)),
which ism ore popular lately. It requires that physicalm ass scale would not be oversensitive to the
values of the Input param eters. W e show here that the above two conditions behave di erently if
higher order corrections are taken into account. Veltm an’s condition is robust (insensitive to higher
order corrections), while B arbieri-G udice condition changes qualitatively. W e conclude that higher
order perturbative corrections take care of the ne tuning problem , and, in this respect, scalar eld
is a natural system . W e apply the Barbieri-G iudice condition with higher order corrections taken
into account to the Standard M odel, and obtain new restrictions on the H iggs boson m ass.

PACS numbers: 11.10H1

Tt was pointed out in E| ,E,E ] that theories w ith scalar
elds are facing a serious problem (and the Standard
M odelisam ong these). It consists in absence ofa natural
explanation for an allvalies ofm asses of scalar particles.
("Sm all" herem eansm uch am aller than the possible fun—
dam ental scales like P lJank m ass or a uni cation scale.)
T he problem appears as follow s. Let us try to expand
the physicalm ass in a serdes of bare couplings. In the
one-loop approxim ation we have
m?=mi+ “P( 0;9): 1)
Herem ? isthe squared m assofa scalarparticle,m ? isthe
corresponding bare m ass of the fundam ental Lagrangian
of the modelde ned at the fundam ental scale ,which
isalsoused asa cuto in the Feynm an integrals, P ( ¢ ;9)
isa polynom ialofdin ensionless bare scalar eld selfcou-
pling ( and the rest ofdin ensionless bare couplings g of
the m odel, and we neglected the corrections depending
logarithm ically on the cuto . (For exam ple, in the Stan—
dard M odel, P ( g;9)= 3395 + gf + 2 o 4y?)=(32 %),
where gy, gy, and y; are the gauge couplings of the gauge
groups SU (1), SU (2), and top quark Yukawa coupling,
respectively B].) H ere com es the question: How to keep
m much lessthan ? One obviousoption isto ne tune
the values ofmg and P ( ¢;9) to make the two tem s
in the righthand-side of Eq. (1) cancel against each
other. But this seam s not to be a naturalway (thus the
nam e of the problem | the naturalness problem ). An-—
otherway isto ask foram odelwhere P ( ;9) is exactly
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zero (which is the case for softly broken supersym m etry
m odels @ ]). M ore generally, if one refcts unnatural ne
tunings of fundam ental param eters, introducing scalar

elds one should also point out a m echanisn that keeps
the hierarchy between m and  (the hierarchy problem ).

On am ore practicalnote, Eq. (1) had been used B,E}
to obtain the scale of new physics. The idea is not to
consider as a fundam ental scale, but as a scale up to
which wecan use the low energy e ective theory in plying
Eqg. (). Onemay restrict requjrjng,ﬁ)rexample],
that the radiative correction to the m ass squared would
not exceed the barem ass squared:

jn2 m§j<m§: (2)

In what follow s we call this condition Veltm an’s condi-
tion.

A nother possibility is to restrict not the m agnitude of
the radiative correction, but the sensitivity of the physi-
calm ass to an all changes in the values of the bare cou-
plings [61:

m2

m @ 0

< g; (3)

w here g param eterizes the stricthess of our requirem ents
(the value g = 10 was suggested in @]). Hereafter, we
call this condition the B arbieriG udice condition.

Now , assum Ing that the radiative correction to m ass
squared is positive (P ( ¢;9) > 0) and neglecting the dif-
ference betw een bare and physical couplings, Velm an’s
condition (2) in plies the follow ing restriction on
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where denotes the physical coupling corresponding to
the bare coupling (. The quantities in the right-hand-
side of this nequality are m easurable. So we can sub-—
stitute the m easured values, and obtain an estin ate for
the scale of new physics. This program was realized In
Ref. []for the Standard M odel. T he outcom e is that the
scale for the new physics is estim ated by 1.2 TeV . Sin —
iarly, f we assum e Eq. (1), Barbieri6G indice condition
(3) in plies

2 < qmiz . (5)

PO ;9)’

where the prim e over P denotes derivative w ith respect
to .
As we see, the two conditions yield sim ilar upper
bounds for the scale of new physics. In fact, Velm an’s
condition and BarbieriG iudice condition are rather dif-
ferent, and the sin ilarity of the bounds (@) and (3) isdue
to the use of the leading order formula ().

Letusconsiderwhatm ay be the In  uence ofhigher or-
der perturbative corrections on the bounds {4) and (3).
This problem was brie y considered in Ref. [§]. Tt was
observed that higher order corrections m odify the poly—
nom ialP ( ¢;g) from (@) (even m aking it dependent on

logarithm ically). If this would be the only way higher
order corrections are getting involred, they could not in—

uence signi cantly the bounddd)) and (8) (at least, at
an all couplings).

Unfortunately, there are In portant higher order cor-
rections overlooked In Ref. [§]: In higher orders of the
expansion of the physicalm ass squared in pow ers of the
bare couplings, Eq. (), higher powers of will appear,
and the larger the order of perturbation theory, the larger
isthepowerof appearing in the right-hand-side ofEq.
(). For example, in the third order n ( there is a
diagram w ith two tadpoles attached to the scalar prop-
agator. It gives contribution proportionalto 3 “=m 3.
Sin ilarly, In the expansion of the physical couplings In
pow ers of bare couplings, In nitely high powersof ap-
pear, and the power of appearing in the expansion is
bounded only ifwe considera nite order of the pertur-
bation theory n .

A direct approach is to study the powersof appear—
Ing in the expansion of physical param eters in powers
of bare couplings. Thism ay be an interesting problem ,
but there is a shortcut allow ing one to avoid it. Indeed,
for renom alizable theories, dependence of kare couplings
on the cuto is known if they are expressed In temm s of
the physical couplings [1]. Let us reiterate: for renor-
m alizable theory, kare m ass squared of a scalar parti-
cle expressed as a series in pow ers of physical couplings
w ith coe clents of the expansion depending on the cut-
o ,physicalm asses and renom alization scale grow s not
faster than the cuto  sguared. Is this statem ent com pat-
blew ith the appearance ofhigherpowersofthe cuto in
the right-hand-side of Eq. ()? It is easy to check that
there is no contradiction. Indeed, schem atically, if we
take the renomn alization scale to be of the order of phys-

icalm ass, the bare m ass squared and the bare coupling
are expressed as follow s

m2 = m 2P 9); (6)

+ Jog( ; (7)
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where P ( ;g) is (in the leading order) the sam e polyno—
mialas in Eq.{),and ( ;g) is the leading order of the
beta function govermming the renom alization group evo—
ution of coupling . If we use the above expressions as
equations form 2and ,wecan determ ine the expansions
ofm? and i powersof . It iseasy to check that both
pow er series involve arbitrary high pow ers of the cuto

T he reason for the appearance of the high powersof 1n
the expansions is the presence ofm ? in the argum ent of
the logarithm . (Logarithm ic term is also present in the
form ula for bare m ass, but we dropped it, because it is
Insigni cant for further reasoning.)

Ifweput ( ;g)= 0in Eq. (1), we derive the bounds
(@) and (@) from Velm an’s condition {2) and Barbieri-
G fudice condition (3), respectively. Evidently, the bound
@) is not n uenced by nonzero ( ;g) i any way. In
what ollow s, we see how the factthat ( ;g)6 0in u-
ences the bound (9).

W e need to com pute the derivative @m °=Q , involved
in BarbieriG indice condition (). M ore generally, we
need to com pute the entries of the m atrix
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T he inverse of the desired A can be com puted w ith Egs.
[@) and (1):
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where primnes over and P denote the derivative w ith

respect to . Thus, the desired A is
|
1 1 — '
A= mZ ; (11)
det®) 2P ;g) 1+ lbg(—)—52
w here
2 . 2 0 .
det®)= —P°% ;9 L), Jog(—2)ﬂ+ 1:
m m
(12)
Now we seewhy it is In portant to keep nonzero ( ;g) in

the consideration: Neglecting ( ;g) rem oves the m ost

In portant rst two tem s in the righthand-side of this
expression. A s a consequence, neglecting ( ;g) lkeadsto

a qualitative m istake in the estin ate of the behavior of
the m atrix of derivatives A in the lin it of large



Finally, in the lim it of in nite ,we have:
|
0 0
A= m’ o G (13)
()
Let us comment on Eq. (I3). As we see, physical

param eters| the observable m ass and coupling| are not
oversensitive to the values of the bare param etersde ned
at a large (eg., fundam ental) scale . T he kading order
relation, Eq. (), ism iskading in this respect. In other
words: Derivative of observable m ass In bare coupling
hasa nite Im it expressible in term s of observable pa—
ram eters when the cuto  is rem oved. ( T his is the worst
sensitivity we have: the physical coupling exhibits uni-
versality, ie., it becom es independent ofbare param eters
atin nitecuto ;the physicalm assbecom es independent
ofthebarem assatin nitecuto .) W econclude that the

ne tuning problem is the problem of the leading order
perturbative approxin ation, Eq. ().

Now we can derive from the Barbieri-G indice condi-
tion (3) the inequality

(14)

where we neglected the di erence between and .
Let us specialize inequality (I4) to the case ofthe Stan—

dard M odel. T he Standard M odelone-loop beta-function

goveming the evolution of the scalar selfcoupling is [9]

6 1., 3, 2
(59) = W( [Zgl + Zg2 ar ]
1 1 3
+ ng+ ggfgg + R@é v (15

where g; and g, are gauge couplingsofSU (1) and SU (2)
respectively, yr = m +=v (m + is them ass of the top quark,
and v is the vacuum expectation of the scalar eld). The
couplings involved in the expression for the beta function
can be expressed via ratios of the m asses and the scalar

eld vacuum expectation value v. In this way, for the
Standard M odel, B arbieri-G udice condition (3) in plies
the follow Ing nequality :

4m 2 v? 3q
B )
Py My my me)J 2!

(16)

wherep(my ;m g ;my ;m¢) is the follow ing polynom ialof
the Higgs, Z ,W and top quark m asses:

mﬁ-kmi meq)
dmf+my+ 2my s (17)

2 2
pmy jmg My ;m¢) = (2m{ my

T hus, Barbieri6G udice condition (3) in plies a restric—
tion on the H iggs boson m ass. U sing known values, we
see that inequality (16) orbids m oderate values of the
H iggs boson m ass. For example, if we take g = 10,
we obtain that the band of values of my approxin ately
from 96 GeV to 540 Ge&V is forbidden. (The valie for
the upper boundary of the forbidden band is hardly reli-
able, because it corresponds to strongly interacting H iggs
bosons.) If we relax the BarbieriG udice condition and
take g = 15 (20), the forbidden band shrinks: it ranges
from 113 (126) G&V to 438 (380) GeV.

Let us summ arize our ndings. Taking into account
higher order perturbative corrections does not change
the basic fact: radiative corrections to the electrow eak
scale are grow ing fast with cuto . At 1.2 T&V the cor-
rection to the interm ediate bosonsm ass squared is about
a half of the totalm ass squared. Is it new physics that
half of the observable m ass scale is due to radiative cor-
rections is a m atter of convention. W e consider such a
situation as deserving the title of new physics. To say
the least, perturbation theory looks fopardized in such
circum stances. Beyond perturbation theory, we still do
not know any m echanism that would provide for am all
m asses of the scalar particles.

O n the other hand, if som e unknown m echanisn pro-
vides for an allm ass of scalar particles, perturbation the-
ory isquite able to explain relative stability of the scalar
m assagainst an allvariations In fundam entalparam eters.
W e dem onstrated that there isno ne tuning problem in
the theory ofquantum scalar eld,and derived inequality
{1d) in the Standard M odel restricting the H iggs boson
m ass. Phenom enological consequences of this restriction
w il be studied elsew here.
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