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B lack hole form ation m ay occur if the spectrum of the curvature perturbation increases strongly
as the scale decreases. A s no such increase is observed on coan ological scales, black hole form ation
requires strongly positive running n® of the spectral index n, though the running m ight only kick
in below the ‘cosn ological scales’ probed by the CM B anisotropy and galaxy surveys. A concrete
and well{m otivated way of producing this running is through the running m ass m odel of slow roll
in ation. W e obtain a new observationalbound n’ < 0:026 on the running provided by thism odel,
Im proving an earlier result by a factor two. W e also discuss black hole production in m ore general

scenarios. W e show that the usual conditions

P (k), the introduction of higher order param eters

PACS num bers: 26.354¢,98.80LCq, 9880 Ft

I. INTRODUCTION

T he prim ordial curvature perturbation isonly of or-
der 10 * on cosm ological scales, but it m ight be of order
1 on sm aller scales. Prim ordialblack holesw ill then form
as those scales enter the horizon, w ith possibly observ-
able consequences. The purpose of this paper is to see
to what extent the value of order 1 is reasonable, taking
into account observationalconstraints and current think—
ing about the origin of

In Section IT we see what is required for black hole
form ation, In term s of the spectral ndex n(ink)
dIhP =dInk,which speci es the scale-dependence of the
spectrum of . Averaged over the whole range of scales
we need strongly increasing n corresponding to running
n® 102 . Up to this point we assum ed nothing about
the origin of . In Section III we Introduce the assum p-—
tion that it originates from the in aton perturbation dur-
ing slow +oll iIn ation (the standard paradigm ). W ithin
this paradigm , the only extantm odel giving the required
running n° is the running m ass m odel, which typically
m akes n roughly constant hence requiring n® 102 on
cosm ological scales.

In Section IV we ask whether such a large valie of
the running is still pemm itted by current data, thereby
updating an earlierwork.W e nd that it is.

T he question then arises, w hether black hole form ation
can still be achieved if n® is negligble on cosm ological
scales, asm ight be required by future data. In Sections
V to VIIIwe show thatblack hole form ation can indeed
be achieved w ithin the standard paradigm . A long the
way, we are led to consider the standard paradigm in
m ore detail than before.

In Section IX we depart from the standard paradigm ,
by allow Ing a curvaton-type m echanisn to contribute to
the curvature perturbation. W e show that black hole
form ation can occur if there isa sw itch from the standard
paradigm to a curvaton-type paradigm as we go up in
scale, or viceversa. W e conclude in Section X .

land j j 1 are enough to derive the spectrum
2 ete. being optional.
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II. FORM ING BLACK HOLES
A . Viable black hole form ation

T he curvature perturbation  is tin e<independent dur-
ing any era w hen there is a unique relation P ( ) between
pressure and energy density ﬂ]. From the success of
the BBN calculation, we know that such is the case to
high accuracy a few Hubble tin es before coan ological
scales start to com e inside the horizon. O n cosm ological
scales, the spectrum P (k) is then observed to be about
5 105 )2 @].# 1

W hen amaller scales start to com e inside the hori-
zon P (k) could be bigger. To discuss that case, recall
that the typicalvalue of (x) in the observable Universe
(31, sn oothed on the scale k ', is of order P "% (k). If
P % (k) is bigger than 10 % or so, then black holes w ill
form Q]wji'h an abundance that can be ruled out E] by
a variety of observations. A som ew hat sn aller value, say
p =2 103 ,would give an abundancew hosee ectm ay
be observable In the future. W e want to see how such a
value m ay be generated over som e range of k.

T he spectral index n isde ned by

_dhP k), dhP N)

n(k)
dhnk dN

(1)

In the nalexpression we assum e aln ost-exponential in—

ation, with N (k) the num ber of e-folds of in ation re-
m aining after the epoch of horizon exit k = aH for the
scale k. W e will freely use N as an altemative variable
to nk.

#1 T he precise num ber refers to the pivot scale de ned in Section
III. A s usual, k is the coordinate wavenum ber so that k=a is
the physicalw avenum ber, w ith a the scale factor of the U niverse
nom alized to 1 at present. T he Hubble param eter is H a=a
and horizon entry isde ned ask = aH .
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W e take Ny = 50 unless otherw ise stated, where the
subscript 0 denotes the epoch of horizon exit for the
present Hubble scale k = H (. This is the Jargest observ—
able scale, and am aller scales Jeave the horizon N > 0
efolds later. For scales probed by W M AP and galaxy
surveys, N 7 121.

Until Section IXB we w illassum e that the black holes
form on the scale leaving the horizon at the end of n a—
tion, corresponding to N = 0. W e w ill take the criterion
for signi cant black hole form ation to be P (0) = 10 3.
Then weneed NP (0)=P (No)]’ In(10 3=10°)’ 14.
W ith constantn thisrequiresn 17/ 14Ny’ 0:3. This
was com patible w ith observation for m any years but is
now exclided.

Taking instead n°
form ation requires

dn=d Ink to be constantblack hole

P (0 1
1a-n =9 =Nomng 1)+=NZn"

P (No) 2 @)

Since observation requires ng 17 O:O5|3], the rst
term is negligble and we need n® ’ 28=NO2 " 001. As
we will see, this is com patible w ith observation. At the
end of n ation,neng 17 1 Ny 05. Thism ghtbe
regarded asm ore or less com patible w ith the requirem ent
T 13 1, that must hod if at the end of In ation
is generated by the perturbation In a single light eld
@,B,E]. W e are going to assum e such a scenario and
therefore rule out fieng 17 1.

F inally, suppose that n® increases m onotonically aswe
go down in scale. A signi cant increase would require
Hlena 17 1 which we rule out. A signi cant decrease
would require n8 signi cantly bigger than 0:01,which as
wew ill see would be in con ict w ith observation.

B. ThecaseP 1

W e end this section by discussing brie y the case
P (k) 1.If isgenerated from the In aton perturba-
tion during slow roll in ation (the standard paradigm ),
this is ruled out. The reason is that the regineP > 1
then corresponds to etermal in ation @},whose duration
is inde nitely Iong. Then the slow rollm odel has noth-
ing to do w ith the observed perturbations, w hich instead
have to be generated when the etermal in ation is over.

H ow ever, such a perturbation could also be generated
by the perturbation of a curvaton-lke eld E, ], as
one can readily understand from the non-perturbative
form ula ﬁ,lﬁ,lﬂ] = N which m akes sense no m atter
how big is . In that case, a local observer would notice
nothing am iss before horizon entry, and it is not clear
what w ill happen at horizon entry.

III. RUNNING M ASSMODEL

Now weassum e that isgenerated by the In aton per—
turbation in a single- eld slow +ollm odel. O f the m any

such m odels that have been proposed, the only one giving
the lJarge positive running required for black hole form a-
tion is the running mass m odel [12,[13,[14,[19,[2d1 2 .
T his m odel invokes softly broken global supersym m etry
during in ation,w ith a potential

V = Vg ; (3)

and a runningmassm *( ) whose form is determ ined by
R enom alization G roup Equations (RGE’s).

O ver the lin ited range of cosm ological scales, n(N )
typically has the tw o-param eter form

) 1 set®o NO o (4)
2
W ith
c’ 10' to 10° (5)
this gives
ng= 2(s <) 1; 18: 2sC; (6)
whose Inverse is
S
n 1 no 1 z n?
c= 0 + =0 (7)
4 4 2

W e see that signi cant negative running is orbidden; 3

ng> (m 17=8 3 1d¢: 8)

H igher derivatives n™) & n=d( N} are sup-
pressed;

n®™*rH ™, m 1; 9)

but as the form (4) is only approxin ate one should not
take higher derivatives too seriously.

G oing furtherdown in scale, the form ofn (N ) depends
on the assum ed interactions that determ ine the RGE ’s.
T ypically, n® w ill increase or decrease m onotonically. A s
we have seen, black hole form ation w ill then need n° to
have a roughly constant valie, n° 102 , and this can
be achieved w ith suitable interactions .From Eq. (),
n® 10% correspondstotoc’ s’ nJ=2, m aking
+j 10!, i agreem ent w ith the expectation (3).

#2 See for instance [21]and references therein form odelsw ith strong
negative running

# 3 This corrects the relation n§ > (np  1)?=4 given in f14). W e are
ignoring the correction to slow roll invoked in part of that work.



Iv. OBSERVATIONAL BOUND ON THE
RUNNING MASSMODEL

T hem ost recent com parison ofthe runningm assm odel
w ith observation wasm ade in 2004 using W M AP (year
on) and galaxy survey data available at the tin e E]. Tt
gave n8 < 0:04 or so, easily allow ing black hole form ation
in versions of the m odel w here n® does not increase too
strongly going down in scale. In this section we report
an update to the earlier bound, using year threeW M AP
data and m ore recent galaxy survey results.

In the earlier t, we took ¢ and s as the param eters
to be tted, and only afterward generated contour plots
of ng versus nj. In the present t, we instead took ng
and n8 as the param eters to be tted. Taking advantage
of the fact that Eq. {4) practically exclides negative n8 ,
and that it requires n® to have slow variation, we took n®
to be constant and in posed n > 0 asa prior. As in the
previous twe took the tensor perturbation to be negli-
gible since that is a prediction of them odel. Thisdi ers
substantially from the m ethod adopted in E] w here the
running of the spectral index was let free to negative val-
ues and w here tensors were included. In that case a neg—
ative value of the running is obtained, w ith no running
exchided at the levelof 1 (seeeg.ld,1d,17,18,19).
W hile this approach is obviously correct when a general
set of In ationary m odels is considered, it is in portant
to stress that in our case, w here we don 't consider m od—
elswith n® < 0, the inclusion of those m odels could bias
the result tow ards m ore restrictive bounds. M oreover, a
modelw ith n®= 0 gives an acceptable goodness-of- t to
the WM AP data and it is therefore statistically legiti-
m ate to assum e the priorn® 0.

A s isnow comm on practice, we base our analysis on
M arkov Chain M onte Carlo m ethods m aking use of the
publicly available cosmomc package @ . We sample
the follow ing din ensional set of cosn ological param e-
ters, adopting at priors on them : the physical baryon
and CDM densities, ', = ph® and !'c = . h?, the ra-
tio of the sound horizon to the angular diam eter dis-
tance at decoupling, <, the scalar spectralindex,n,and
the opticaldepth to rejonization, . W e consider purely
adiabatic initial conditions. W e choose a pivot scale at
k= 0:002h 'M pc.

The M CM C convergence diagnostics are done on 7
chainsapplying the G eln an and R ubin \variance of chain
m ean"=\m ean of chain variances" R statistic for each
param eter. Our 1 D and 2 D constraints are ob—
talned after m argialization over the rem ahing \nui-
sance" param eters, again using the program s included in
the cosmomc package. Tem perature, cross polarization
and polarization CM B uctuations from the WM AP 3
year data a,,,] are considered and we Include a
top-hat age prior 10 Gyr< tp < 20 Gyr.

W e also consider the anallscale CM B measure-
ments of the CBI [2d], vsa [21], AcBAR [24] and
BOOM ERANG 2k2 ] experin ents. W e com bine the
CM B data w ith the real-space pow er spectrum of galax—
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FIG.1: 68% and 95% c. Ilkelhoods in the n ’ plane
from the W M AP data alone (Top Panel) and W M AP+ LSS
(Bottom Panel).

jes from the 2dF survey @]. W e restrict the analysis to
a range of scales overw hich the uctuations are assum ed
to be in the linear regin e (technically,k < 02h ' M pc)
and we m arginalize over a bias b considered as an addi-
tional nuisance param eter.

In Figure[llwe plot the 68% and 98% con dence levels
in the nn’plane for two di erent choices of our datasets:
W M AP data alone, that should be considered as the
m ost conservative result, and \W M AP+ LSS" that in—
cludes the ram aining CM B data and galaxy clistering
data from 2dF.

A swe can see from the F igure, when negative running
isnot considered, the data is still in good agreem ent w ith
a an all, but still non—zero running. W hen the W M AP
dataset is considered we found a 95% cJl. upper lim it
of n® < 0:039, while the spectral index is bound to be
n = 0935 °9Y agan at 95% . The best t (maxinum
likelihood) m odel has a negligible running n® = 0:005
and n = 0:953. W hen the ram aining coan ological data
are Included, w e found a strongerbound on running, w ith
n%< 0:026,and n = 0:940" 2222 at 95% cl.. Thebest t
(m axinum lkelhood)m odelhas param etersn®= 0:0026
and n = 0:951. W e conclude that the valie n° 102
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FIG .2: Theband corresponds to the spectrum P versusInk,

w ith constant slope corresponding ton = 0:94. The width of
the band corresponds to a fractional uncertainty 0:025. The
range of nk corresponds to the range of coam ological scales,
explored by observation of the cmb anisotropy and galaxy
surveys. W e see that the band is narrow enough to m ake the
variation of P signi cant over the cosn ological range.

required by the running m assm odel is still viable.

W e have checked that our lim its on n’ are also con-
sistent w ith the W M AP results even in the case when a
negative running is allowed. The tted param etes are In
reasonable agreem ent w ith the lm its we quoted above,
even if slightly m ore stringent due to the inclusion of
negative running.

In perform ing this t, we chose a pivot point k =
0:002h M pc L, corresponding to N = 18. Our tted
valuen = 0:94 therefore correspondstong = 0:94 18P,
(R ecall that the subscript 0 denotes the scalek = Hy =
0:00033hMpc ' .) In Fiure[d, we plt the shape of
the spectrum with (i) no running and n = 095, (i),
n’= 0:01,and n = 0:95 at the pivot point. In the second
case,n 1 soon clin bs to positive values aswe go down
below thepivotscale. (The nitew dth oftheband isnot
In portant at this stage, and w il be discussed in Section
V1.

V. SLOW ROLL FORM ALISM

In the future, observation m ay require negligible run—
ning on coam ologicalscales. W ehave seen that thiswould
not pem it black hole ©m ation if n® increased or de-

creased m onotonically aswe go down in scale, but black
hole form ation m ay still be possible w ith a m ore com pli-
cated behavior of n’. W e are going to exhibit a couple of
form s ofn (k) that would do the Pb, and stillbe com pat-
ble with slow +ollin ation. In order to do that, we nesd
to consider carefully what the slow xoll approxin ation
involves. * 4

The slow roll form alisn is reviewed for Instance in
[,032,133,[341. 1t starts from the exact Friedm ann equa-
U'Ol’l# 5

2.

MAHZ=V ( )+ ; (10)

N

and the exact unperturbed eld equation

av
+3H —+ — = 0; 11)
d
from which follow the dentity
HM 2= 2= (12)

In itsm ostbasic form , the slow vollapproxin ation con—
sists of the two assum ptions;

lo

(13)

H M 2 H —

T hese assum ptions are usually stated in the egquivalent
form s

3MEZH? 7 V() (14)
3H — 7 VY ); (15)
and they i ply 1 where
M2 v 2 (16)
2 7 v

To calculate the spectrum P (k) one usually considers
additional param eters;

2VOO
R (17)
v Oy @
PoMi (18)
v By @0
3 P6 73 . (19)

T he last two param eters can have either sign despite the
notation.

#4 1 e consider only single- eld in ation m odels. The generation
of black holes has recently been investigated within a double
in ation m odelw ith a strong negative running @].

#5 AsusualM p = 2 10'® GeV is the reduced Planck m ass and V
is the potential of the iIn aton eld



Using Eq. {I8) one nds

dInH
aN 20)
d(In )
e = 4 + 2 (21)
d 2
E = 2 + (22)
d2
o - ¢ Feo? (23)
M ore generally one can de ne
in l(dm+lv:dm+l)
no MZT = ; (24)
which satisfy
dn
N [(m 1) an o+ w1 (25)

A ssum ing that the rstderivative ofEq. (I3) isalsoc a
valid approxin ation, one nds

= i (26)

C om paring Eq. {I3) w ith the exact equation, we see that
the fractionalerror in Eq. {I8) isO ( ; ), and so we re—
quire the additional condition
ji 1: (27)
A ssum ing that the curvature perturbation is generated
from the vacuum uctuation of , its spectrum In the
slow roll approxin ation is given by @]

1 v
P k) = YR L+0 () (28)
P
= . v B+0o0(; )] (29
ETIEVER ’

The right hand side is evaluated at the epoch of hori-
zon exit. T he displayed uncertainty takes account of the
fractional error In the slow roll approxin ation that we
Jjust estin ated, and rst order (linear) corrections to the
calculation of the vacuum uctuation described by the
M ukhanov-Sasaki equation @,@,@,@} (Tt does not
account fornonlinear e ects, com ing from interactionsof
. Such e ects, which would generated non-gaussianity

of ,are expected to be sn alllEl_JJ].
Now di erentiate Eq. (28) w ith respect to Ink, using

dhk = dN and ignoring the uncertainty. One nds
€]

n 1= 2 6 (30)

n®=22+24% 16 (31)

1, com iIng from the derivative of the
2:;  ).W ewillassum e that there is

The error in n
errorin P ,is0 ( %;

no cancellation between the two term s of Eq. (30), and
m ake a sim ilar assum ption ©orn® and higher derivatives.
Also,wewill assum e that is negligible com pared w ith
, 2 and any other relevant [ . Then the fractional

uncertainty inn 1 willbe an all ifand only if

i%3 3 ¥ (32)
Sin ilarly, the fractional error in n® will be an all if and
only if

3’3 3%% (33)
In principle one can go on to calculate higher derivatives
of n, requiring a m ore extended hierarchy

Jm+1d Jn 3 (34)
From Eq. (21l), this is equivalent to
d® In da tmh

(35)
dN ™ dN ™ 1

W e have been exploring the validity of successive
derivatives w ith respect to N , of the slow -roll approx—
in ation Eq. (30) or n 1. Barring cancellations, the
valdity of these up to a given order w illbe equivalent to
the valdity of derivatives of the slow roll approxin ation
forthe el equation Eq. (1), up to one higher order. To
see this, start w ith Eq. (28) which expresses the validity
of the rst derivative of Eq. (Idl). Put it into Eq. (),
anduse n(1+ x)’ x to nd the approxin ation

n(¥ %)= nEH 59+ (36)

3

A ssum Ing that the derivative of the approxin ation
Eq. (26) is also valid, we can di erentiate this with re-
spect to N :

dny°% dh(3H _)+ d
dN  dN dN 3

(37)

Barring cancellations, the st term on the right hand
side is of order n 1 as is easily seen by com paring it
w ith the dervative of Eq.(29). T herefore, barring can—
cellations, the validity of this approxin ation is indeed
equivalent to the valdity of the rst derivative of the
approxin ation Eq. (30), and so on for higher derivatives.

The equivalence that we saw in the last paragraph
m eans that the standard slow+oll approxin ation for
n 1, and so on willbe vald, if the second, third and
50 on derivatives of the slow wroll approxin ation Eq. (26)
to the exact el equation Eq. () are vald. R everting
to our assum ption that is negligible, we conclude that
the hierarchy Eq. (32), Eq. (33) etc. willhod (jastifying
the standard formulas orn 1, P etc.) to the extent
that derivatives of the slow <oll approxin ation Eq. (24)
hold.

W ith the hierarchy in place,one can system atically in -
prove the predictions (Z8), (30) and &) 3¢,:39]. Thehi
erarchy is in generalsatis ed by the running m assm odel,



and including the leading order correction [38], the run—
ning m ass prediction {4) becom es [14]

nN) 1

> = (s+ 1:06cs)ec™o M) c

(38)

7 (s+ 050n%) Mo M) e (39)
Such corrections are usually equivalent to a change In
param eters w hose values are not known (In this case, a
change to s), making them of Iim ited practical in por-
tance.

O f course, a given inequality in the hierarchy will
fail for a few Hubble tin es if its right hand side passes
through zero. For instance, Eq. (32) will fail if passes
through zero. Then, if is negligble, n 1 will pass
through zero as well, and while it is doing so the frac—
tionalerror in its predicted value w illbecom e lJarge. A c-
cording to our tto thedata,n(N ) 1 willindeed pass
through zero on som e scale near the bottom end of the
cogan ologically accessible range, if n® has a slow Iy vary—
ing value of order 10 ? . The passage of n 1 through
zero need not be a m atter of concem, as the absolute er—
ror rem ains the sam e. The running m ass prediction (39)
should rem ain valid even asn passes through zero.

M ore generally, it could happen that derivatives of
Eq. (I9) beyond the rst are invalid over an extended
range, so that the hierarchy fails over an extended range.
To handle such casesone can use the exact (at rstorder)
M ukhanov-Sasakiequation or an analytic approxin ation
401,

VI. FINITE DIFFERENCE VERSION OF THE

SPECTRAL INDEX

A Xthough the hierarchy leads to sin ple and widely—
used results, we have seen that its use m ay som etin es
be problam atic and we will see som e m ore exam ples of
that In the follow ing two sections. For that reason, we
explain In this section how the hierarchy can if necessary
be avoided.

The starting point is to realise that the prediction
Eq. (28), with a suitably sm all error, w ill accurately de—

ne the variation of P over a nite range, even if the
m athem atical derivative should have large errors (com —
ing for Instance from an oscillation or a break). This is
illustrated in Figureld.

Let us therefore rede ne n

nite di erence:

1 so that it speci es a

nP ]nPl.

1 40
n Tk ; (40)

where Ink Ink, Ink and P ; P (kij). To the
extent that observationalbounds on the variation ofn (k)
are quite weak, this nite di erence is really about all

that observation can determ ine at present,with Ink ’
7 or so.

Theermrorinn 1 generated by a fractional error x In
the prediction (28)) willbe at m ost of order

X .
Ink °

1) (41)

Letusassumex ’ 0:025, corresponding to Eq. (28) w ith

3 37 005 (the observed value of 1 17). Then the
error In the theoretical prediction will be an all, if the
prediction satis es

be
—— '’ 0:004:

Tk (42)

T 13
As illustrated in Figure[d, this is very well satis ed if
n 1 has the observed value ’ 0:05.
W e can go a bit further, to consider a nitedi erence
version of the running;

o0 hP; hP3 hP 3 hP, iy
Ink=2 Ink=2

NP , 2hP s+ hP
= ; (44)
( Ik)?2=4

Ink+£23)

with 2Inks Ik + Ink,. The error in r® generated by
the error x in the prediction w illbe at m ost of order® °

0 10x

—_—: 4
Ik 2 (45)

T he error w ill be sn all if the prediction satis es

10x

( k)2 ’

#°] 10%; (46)
where we again set x = 0:025 as an illustration. Taking
account of the uncertainties, the prediction for the nite-
di erence version of the running m ay be vald if n°

10 2.

VII. FLOW EQUATIONS

In the above analysis we worked directly w ith the po—
tential. A di erent approach works initially w ith the eld

(t), connecting only Iaterw ith the potential. T he start-
ing point is Eq. (1J), providing a param eter 5 which
m ay be written in various fom s;

B d(nH)

§ H2 N
1 4 , lan “?

= S — =2MZ S i @7
M2 dN d

# 6 The factor 10 accounts roughly for the 1=4 in the denom inator
and the four tem s of the num erator.



Tts derivatives satisfy the exact set of equations

d(In )
dNH = 2(s + 1) (48)
dn _ + 49
an = (1 mgyg)n m+17 (49)
w here @,@]
- d =af"=H" — (50)

Equivalently, one can use instead of N as the vari-
able. Then [42]

d(n(y )
TH: 2(6 1) (51)
d o
i [(m 1)1, mugln+t ne1s (52)
where]
M, ™ au " tahtlg
" " a g Y

T hese are referred to as ow eguations.
The ow equations (equivalently Egs. (49)) and (&Q))
resembl Egs. (20), Z1l), and (28) but are exact. Slow

rollw ith the potential hierarchy (34), up tom = M , is
obtained if there is a hierarchy® ’

Im+13  In F (54)
or equivalently

Jm+1J Jnd (55)

uptom =M + 1. Following @]onem Ight call this the
‘Hubble hierarchy’, as opposed to the ‘potential hierar-
chy’ (34).

C onversely, if the potential hierarchy is satis ed up to
m = M ,then one can expect the solution (t) to satisfy
the hierarchy (89) (equivalently B4)) up tom =M + 1,
at least for low M . T his is because the slow voll approx—
in ation (I8) is known to be a strong attractor for a w ide
range of initial conditions. A s w ith the potential hierar-
chy, the Hubble hierarchy w ill fail brie y if a param eter
(n or n passesthrough zero,and itm ight notbe vald
atall.

# 7 The stronger hierarchy o+ 13 ™ * 1) < 95 7™ ) is som etin es
considered (equivalently 4 +13" ™ 1 < 5 F7™® ), It in plies
the potential hierarchy j n+ 13- ™*1) < 5, §°®@), which is
satis ed by a wide class of potentials but not by the running
m ass potential.

VIII. TW O FORM SFOR THE POTENTIAL

Now we consider form s of the potential, which would
pem it slow rollin ation leading to black hole form ation,
and be consistent w ith a negligble value of n8 . A com—
m on procedure for generating potentials consistent w ith
assigned values of (say) ng and n8 uses the ow equa-—
tions. T he equations are num erically Integrated w ith an
inithl hierarchy in posed such @s jm+ 13 m < 1=5 [44]
or 1=10 @}. T his procedure is quite com plicated, and
w ill obviously m iss potentials violating the initial hierar-
chy as discussed at the end of the previous section *

O ur procedure w illbe to sim ply specify suitable form s
ford(In )=dN ). (It resem bles the one advocated in @].)
From these the potentialcan be constructed using

n Z #
N
N) =  (0b)exp dih (56)
0 . dN
n ZNO #
H©N) = H ©No)exp N AN (57)
N
ZNO
No) () = Mp 2 (N )N (58)
N
V()= 3MZH?(): (59)

The value H (N() is determ ined once the in ation scale
V (Ng) is set, and then (Ng) is obtained from Eq. (28)
using the observed valieP (No)= (5 107 )%.

To keep things sin plewe focuson an all- eld in ation,
which corresponds to  far below 1. To be precise, we
assum e 1Ny or 0 < N < N, corresponding to
tensor fraction r 16N, ’ 0:03. Then V can be taken
to be constant, and black hole form ation requires

I Ih[ Mo)= (0)]" I[P (0)=P (No)]" 14: (60)

T he predictions for the spectral index and its running
are then

n 1 ,v @ 1dh
= My— = (61)
2 Y 2 dN
n® M4\/0\/0OO 1d*n 62)
2 Pye 2 dN 2
W e have considered follow ing two form s.
d(n ) N P N A
=B — 1 — D :CaseI;
dN No Ny
(63)

#8 The ow equations were used in @] to search for potentials
consistent w ith black hole form ation but none were found. T he
authors concluded that \ ... it seem s extrem ely unlikely to us that
prin ordialblack holes form ed as a result of in ationary dynam —
ics". It was the discrepancy between this result and the earlier
positive conclusion of @] that m otivated the present investiga-
tion. W e suppose that it is caused by the use in ] of the ow
equations and the hierarchy.



n(No) n(No N ) n’No) n’(N o N )

Case I 09500 09529 0 0.0017
Case II 0.9500 09511 14942 10 *° 59700 10 *°

TABLE I:n and n®atN = No and N = Ny N inCaseI
and Case II.

and

d(In ) N
= B exp _— D :Case IT:

(64)

In F ig [Jw e plot the schem atic pictures in case I (top) and
case II (bottom ), respectively. In gure[d we show the
dertvativesofdIn =dN w ith respect to N . T he hierarchy
(39) is in general respected except w here the denom ina-
tors pass through zero.

W e In pose the observationalconstraintson P ,n and
n®. To be on the safe side we also in pose a rough nite-
di erence version of the constraint on n® in the olow ing
way. TheW M AP data spansa rangeroughly * 0O (1) {
0 (10%), corresponding to N 7( N ,and n derived
from that data has an error of about 0:1. Therefore,
we require that n should change by less than 0.02 in
the range Ny to N N . W e have checked that the
condition (60) needed for the PBH production is satis ed
w ith all of the observational constrains forp= 1,g= 3,
B 7 55,D ' 005,Ng = 60and N = 5 for Case
I,andg= 10,A = 5,B 7 05,D 7 005,Ng = 50
and N = 10 for Case II. For the detailed num erical
values of n and n% see Tabk[d. It is clear that with a
param eterisation like the one in Figure[3, we can m ake
n practically constant over the range N 10 of scales
probed by large-scale observations.

For the param eterisation I, the potential has a scal-

ing Vg / 0)?. Wepbt i i Figure[d. Note that
vV, M , shoud be lessthan 10 for the slow <ol in—
ation 1Ny, and < M ;. This shape is sim ilar to

those in som e classes of hilltop In ation m odels @ ].

IX. BLACK HOLE FORMATION IN A
CURVATON-TYPE PARADIGM

The In aton contrbution ;(k) is tin e-ndependent,
and is the only one present at horizon exit. Subsequently
though, the contribbution . (t;k) of som e other (curvaton-—
type) eld could grow and becom e dom inant. (See E 1for
a discussion of the possibilitiesw ith extensive references.)
Eventually (t) will level out to the ocbserved value;

k)= ik)+ c(k); (65)

where the last term is the eventual tin e-independent
value of the curvaton-type contribution. In an obvious
notation, the observed spectrum is now

P =P;+ Pg; (66)

a) Case I
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FIG . 3: Scheam atic pictures of functional form ofy (N ) in Case
I (top) and Case II (bottom ), respectively. For reference we
also plot the constant case, n = 03 (see the text).
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A .

B lack holes from the in aton perturbation

1 at the end of In ation so

0.08F, | )@ (a) Casel
0.06 W e rstassum e that £,
: that black holes are generated by the in aton perturba-—
0.04 tion, but that f; 1 while coam ological scales leave the
w 0.02 . horizon. To agree w ith observation, we w ill dem and at
£ F----- e @_s_)(‘” X 52 (In &)™ x5 N = Ny
T T
ne 1"n 1’ 005 (68)
and
. . 2.,
(b) Case 11 finh;y 1< 1 10°: (69)
0.01 (n ) To om black holes, Eq. (60) becom es
@
(In €) /](L
0 YRS < \_/ %o 0 14 = In[P (0)=P.(Ny)] (70)
s -0.01 N = I[P (0)=P (No)]+ In[f;(0)] (71)
“ .02 % (ni 1N + N(5(0)); (72)
-0.03 where we set n{ = 0 to get the last line. T hese require-
~0.04 m ents are satis ed with, for exam ple, £5(0) / 10 ! and
“.‘ 1 @ n; /' 14, and the observational bound on the running
-0.05 AWALR in poses no fiirther constraint.
T he required spectral index n; correspondsto = 02
which is more or less com patlble with the slow xoll re—

)=dN w ith respect to N for Case

FIG .5: D erivatives of d(In
I (top) and Case II (bottom ), respectively. Here we plot the

o=

higher derivatives (In d7(n )=dN") or‘= 2,3,and

4.

()
| T
e;\./'
=
< (B)
&
3
In 10H,

In H,
Ink

FIG. 6: Two scenarios for generating black holes using a
curvaton-type paradigm .

and the spectral index is
1= fi(n;

n H+ £ 1); (67

where f; = P;=P and f. = P.=P
two di erent possibilities for the ratio P ; (k )=P . (k ), illu

trated in Figureld.

. W e will consider

1. In the context of supergravity such a
0:025 re-

quirem ent j j
value ism ore naturalthan the am allvalue
quired to t observation. T his looks prom ising for black

hole form ation, but we have to rem em ber that in a cur-

vaton type m odel the prediction for n becom es [§]

n 1=2 2 (73)
1 @°v
3H2 @ 2 (4)

If isnegligble aswe are assum ing, this requires
0:025 which may di cult to achieve since will tend
to rollaway from any m axinum of its potential [§]. In a
curvaton typem odel it m ay therefore be m ore attractive
33]to take negligbleand = 0:025,butwehavenot

explored that option.

B . Black holes from the curvaton-type contribution

Now we suppose that the roles of the in aton and
the curvaton are reversed, so that the In aton gener-
ates the observation curvature perturbation while the
curvaton perturbation generatesblack holes. In this case
black hole generation occurs only when the curvaton-type
m echanism operates which will usually be long after in—

ation is over.

In this scenario, we have to m odify Egs. (&9){ (Z2) by
Interchanging i and ¢, and replacing the epoch N = 0 by
an earlier epoch Ny . This is the epoch at which the
scale leaves the horizon, that is entering the horizon w hen
the curvaton m echanian operates. To achieve black hole

)

s



form ation we w ill therefore generally need n. > 14, but
that need not be a problem . Indeed, w ithin the context
of supergravity a value n. signi cantly bigger than 1 is
expected E}, Jjust as it is for n;. This, our third scenario
for generating black holes, therefore seem s at least as
good as the other two.

A particularly interesting possbility In this case, is
that the curvature perturbation generating the black
holes could easily be highly non{gaussian, to be pre-
cise the square of a gaussian quantity E}. This would
notm ake much of a change ] in the m agnitude of P
needed to generateblack holes (upon w hich our estim ates
are based) but it could alter the predicted shape of the
black hole m ass function.

X. CONCLUSION

T he possbility of prim ordial black hole form ation at
the end of In ation has a long history, which was long
overdue for an update. T he update is needed partly be-
cause observation now reguires on cosm olgical scaks a
tilt far below 0:3 (and w ith negative sign) and not too
much running. It is also needed because the original
paradigm , that the in aton perturbation is entirely re—
sponsible for the curvature perturbation, isnow only one
possbility.

A ccording to the standard paradigm , the curvature

10

perturbation is generated during slow roll in ation from
the vacuum uctuation of the in aton eld. W ithin
this paradigm , the running-m ass m odel provides a well-
m otivated way of achieving black hole form ation. To
form black holes, them odel probably requires strong run—
ning on cosm ologicalscales,n®  0:01.

Such running is allowed by the data. If a value
n® 10? on cogn ological scales is ruled out in the fu-
ture, n® will still have to Increase to > 10 2 i order
to form black holes. W e saw that thism ay be achieved
within the standard paradigm by a suitable potential.
A tematively, it m ight be achieved by a sw itch from the
standard paradigm to a curvaton-type paradigm ,or by a
sw itch from the curvaton-type paradigm to the standard
paradigm .

For observers, we would like to re-terate and earlier
conclision @], that an upper bound n®< 103 , Oor de—
tection, would have In portant in plications and is a very
worthw hile goal.

XI. ACKNOW LEDGEMENTS

W e thank W ill K nney and Andrew Liddle for com —
m ents on the draft of this paper. The research at Lan-
caster is supported by PPARC grant PP /D 000394/1 and
by EU grants M RTN-C T -2004-503369 and MRTN-CT -
2006-035863.

[11D.H.Lyth,K .A .M alk and M .Sasaki, JCAP 0505,004
(2005);

[2]1 D .N .Spergeletal.,A strophys.J.Suppl.170,377 (2007).

[3]1D .H.Lyth,arX v:0707.0361 [astro-ph].

[4]B.J.Carrand S.W .Hawking,M on.Not.Roy.A stron.
Soc. 168, 399 (1974); B. J. Carr, A strophys. J. 201, 1
(1975); K . Kohri and J. Yokoyam a, Phys. Rev.D 61,
023501 (2000); B. J. Carr, In the Proceedings of 22nd
Texas Sym posium on Reltivistic A strophysics at Stan-
ford U niversity, Stanford, C alifornia, 13-17 D ec 2004, pp
0204, [arX v astro-ph /0504034 ; I. Zaballa,A .M .G reen,
K.A.Malk and M . Sasaki, JCAP 0703, 010 (2007),
arX v astroph/0612379|].

b1B.J.Carr,J.H .Gibertand J.E.Lidsey,Phys.Rev.D
50 (1994) 4853 [arX v astro-ph/9405027].H . I.K In and
C.H.Lee,Phys.Rev.D 54 (1996) 6001.A .M .G reen
and A. R. Liddl, Phys. Rev. D 56 (1997) 6166
arX v astroph/9704251]. M . Lem oine, Phys. Lett. B
481, 333 (2000) jarX v hep-ph/0001238]. A .M . G reen,
Phys.Rev.D 60 (1999) 063516 [arX ivastro-ph/9903484|].

[6]1M .Sasakiand E.D . Stewart, Prog. T heor. Phys. 95, 71
(1996) [arX i astroph/9507001/].

[71D .H .Lyth and A .R Iotto, Phys.Rept.314,1 (1999).

[B1D. H. Lyth, JCAP 0606 (2006) 015
arX ivastro-ph/0602285|].
O]A. D. Linde , Phys. Lett. B 327, 208 (1994);

astro—-ph/9402031; A . Vilenkin, Phys. Rev. Lett. 72,
3137 (1994)./hep-th/9402085.
[10]JA. D. Linde and V. M ukhanov,

Phys. Rev. D

56 (1997) 535 [arX wastroph/9610219]; D . H. Lyth
and D. Wands, Phys. Lett. B 524, 5 (2002)
arX whep-ph/0110002]; T. M oroi and T . Takahashi,
Phys. Lett. B 522 (2001) 215 [Erratum -bid. B 539
(2002) 303] [arX v hepph/0110096]; D . H . Lyth,C .Un-
garelli and D . W ands, Phys.Rev.D 67 (2003) 023503
arX v astro-ph /0208055 ]; S .M ollerach,Phys.Rev.D 42,
313 (1990).

[L1]A .A . Starobinsky, JETP Lett. 42, 152 (1985) [Pimm a
Zh.Eksp. Teor. Fiz. 42, 124 (1985)]; D . H. Lyth and
Y .Rodriguez, Phys.Rev.Lett. 95 (2005) 121302.

[12]E.D .Stewart,Phys.Lett.B 391,34 (1997) E.D . Stew—
art, Phys.Rev.D 56,2019 (1997)

[13]L.CoviD .H .Lyth and L .R oszkow ski, Phys.Rev.D 60,
023509 (1999) L.Coviand D .H .Lyth,Phys.Rev.D 59,
063515 (1999) L.Coviand D .H .Lyth,M on.Not.Roy.
A stron. Soc. 326, 885 (2001); D . H.Lyth and L. Covi,
Phys.Rev.D 62,103504 (2000).

[14]L.Covi, D .H .Lyth and A .M elchiorri, Phys.Rev.D 67,
043507 (2003).

[15]L.Covi, D.H.Lyth, A.Melchiorri and C. J.Odman,
Phys.Rev.D 70,123521 (2004).

[16]W .H.Kinney,E.W .Kob,A .M elhiorriand A .R lotto,
Phys.Rev.D 74 (2006) 023502

[17]R .Easther and H . Peiris, JCAP 0609 (2006) 010

[18]F. Finelli, M . Rianna and N .M andolesi, JCAP 0612
(2006) 006

[19]1J.M artin and C .R ingeval, JCAP 0608 (2006) 009

[20]S.M .Leach,I.J.Grivelland A .R .Liddl,Phys.Rev.D


http://arxiv.org/abs/0707.0361
http://arxiv.org/abs/astro-ph/0504034
http://arxiv.org/abs/astro-ph/0612379
http://arxiv.org/abs/astro-ph/9405027
http://arxiv.org/abs/astro-ph/9704251
http://arxiv.org/abs/hep-ph/0001238
http://arxiv.org/abs/astro-ph/9903484
http://arxiv.org/abs/astro-ph/9507001
http://arxiv.org/abs/astro-ph/0602285
http://arxiv.org/abs/astro-ph/9402031
http://arxiv.org/abs/hep-th/9402085
http://arxiv.org/abs/astro-ph/9610219
http://arxiv.org/abs/hep-ph/0110002
http://arxiv.org/abs/hep-ph/0110096
http://arxiv.org/abs/astro-ph/0208055

62,043516 (2000)

[211M . Kawasaki, T. Takayama, M . Yamaguchi and
J.Yokoyam a,Phys.Rev.D 74,043525 (2006);G .Balles-
teros, J.A .Casas and J.R . Espinosa, JCAP 0603, 001
(2006).

[22]1A .Lewisand S.Bridle,Phys.Rev.D 66,103511 (2002).
Available at the website: coan ologist.info

[23]1L. Page et al. W M AP Collaboration], A strophys. J.
Suppl. 170, 335 (2007).

[24] G .Hinshaw etal. W M AP Collaboration ], A strophys. J.
Suppl. 170,288 (2007).

[25] N . Jarosk et al. W M AP Collaboration], A strophys. J.
Suppl 170,263 (2007).

[26] A .C.S.Readhead etal., A strophys.J. 609,498 (2004).

[27]1C.Dickinson et al,, M on. Not. Roy. A stron. Soc. 353,
732 (2004).

[28]C.L.Kuo etal, Am erican A stronom ical Society M eet-
ng,Vol 201 (2002).

[29]C .J.M acTavish et al., A strophys.J. 647, 799 (2006).

[30] S. Cole et al.,, Mon. Not. Roy. A stron. Soc. 362, 505
(2005).

[31]1T.Kawaguchi, M . Kawasaki, T. Takayama, M . Yam -
aguchiand J.Yokoyam a,larX iv:0711.3886| [astroph].
[32]A .R.Liddkeand D .H .Lyth,Cosn ological In ation and

Large Scale Structure, (CUP, Cam bridge, 2000)

[33]L.Akbidiand D .H .Lyth,JCAP 0605, 016 (2006)

[34]1D .H .Lyth,arX ivhep-+th/0702128.

[35]A.H.Guth and S.Y.Pi, Phys. Rev. Lett. 49 (1982)
1110.A .A . Starobinsky, Phys. Lett. B 117 (1982) 175.
J.M .Bardeen,P.J. Steinhardt and M . S. Tumer, Phys.

11

Rev.D 28 (1983) 679.

[36]A.R.Liddke and D .H .Lyth,Phys.Lett.B 291 (1992)
391;

[37]V .F .M ukhanov,JETP Lett.41,493 (1985);M . Sasaki,
Prog. Theor.Phys. 76, 1036 (1986).

[38]E.D. Stewart and D . H . Lyth, Phys. Lett. B 302, 171
(1993) [arX v gr-gc/9302019|].

[39]1J.0.Gong and E. D . Stewart, Phys. Lett. B 510, 1

(2001).

[40]E. D. Stewart, Phys. Rev. D 65, 103508 (2002)
arX v astro-ph/0110322]].

[4114J. M aldacena, JHEP 0305, 013 (2003)

arX wastroph/0210603]; D. Seery and J. E. Lid-
sey, JCAP 0509, 011 (2005) arX i astro-ph/0506056/];
D. Seery, J. E. Ldsey and M. S. Slbth, JCAP
0701, 027 (2007) [arX vastro-ph/0610210]; D . Seery,
J.E.Lidsey and M . S. Sloth, JCAP 0701, 027 (2007)
arX v astro-ph/0610210|].

[42]W .H .Kinney,Phys.Rev.D 66, 083508 (2002).

[43]1A .R.Liddk,P.Parsonsand J.D .Barrow ,Phys.Rev.D
50, 7222 (1994) [arX ivastro-ph/9408015|].

[44] S. Chongchithan and G . Efstathiou, JCAP 0701, 011
(2007)

[45]A. R. Liddlke, Phys. Rev. D 68,
arX v astro-ph/0307286|].

[46] L. Boubekeur and D H.Lyth, JCAP 0507, 010 (2005);
K.Kohri,C.M .Lin and D.H.Lyth, JCAP (2007) in
press,larX v:0707.3826 [hep-ph].

[47]J.C .H idalgo,larX 37:0708.3875| [astro-ph ].

103504 (2003)


http://arxiv.org/abs/0711.3886
http://arxiv.org/abs/hep-th/0702128
http://arxiv.org/abs/gr-qc/9302019
http://arxiv.org/abs/astro-ph/0110322
http://arxiv.org/abs/astro-ph/0210603
http://arxiv.org/abs/astro-ph/0506056
http://arxiv.org/abs/astro-ph/0610210
http://arxiv.org/abs/astro-ph/0610210
http://arxiv.org/abs/astro-ph/9408015
http://arxiv.org/abs/astro-ph/0307286
http://arxiv.org/abs/0707.3826
http://arxiv.org/abs/0708.3875

