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ABSTRACT

A calculation of the minimum value of the focusing force near the
centre in a cyclotron is made assuming magnetic as well as electric focus-
ing. By eguating the vertical space-charge force and the minimum focusing
force, expressed as a function of the starting phase angle, the intensity
1limit is determined by an integration over the starting phase interval.
The current is found to vary with the 7,-power of the dee voltage in CW
cyclotrons, and proportionally to the dee voltage times the repetition
rate in synchro-cyclotrons. In the weak fecusing synchro-cyclotron, a
high slope of the magnetic field in the centre is favoured. The optimum
value of the initial equilibrium phase depends on the injected phase range
as well as on the magnetic field law, and is found quite close to the phase

of zero energy gain.
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INTRODUCTION

Mechanisms f'or current limitations in cyclotrons and synchro-

cyclotrons have recently been discussed extensively'-d. Several reasons

for the observed limitations, especially those in synchro-cyclotrons,
have been put forward. The vertically directed fields from the accelera-
ted charge can, if sufficiently strong, create beam losses against the
electrodes near the centrea). Beam~loading effects might in some cases
cause unstable accelerating conditions®/. Azimuthal space-charge effects
can modify the phase motion in synchro-cyclotrons and induce losses®’.
The above-mentioned limitation occurring at small radii seems in many
cases to be the most fundamental one. In this paper it will therefore be

taken as a basis for the estimation of obtainable currents.

Past calculations have been done without taking into account the
electrostatic focusing. Depending on the onset of the magnetic force,
one arrives at current laws which go from I ~ V® for an abrupt onset of
the magnetic force at a certain radius, to I ~ V%é for a parabolic shape
of the magnetic field. In the following calculations, first-order electro-
static focusing will be included. It is assumed that the narrow-gap theory
is applicable. This excludes the conventional open-source, wide-gap
synchro-cyclotron, where the particles make hundreds of revolutions within

the dee gap.

THE SPACE-CHARGE FORCE

hages

For the range of starting ph which are electrically focused;

Ly ’

the total vertical focusing force decreases with radius to a mirimum value.
This occurs at a radius where the rate of decrease of the slectric force
equals the rate of increase of the magnetic one. The calculations given
below are based on the assumption that the space-charge limitation takes
place here. Particles in the main part of the useful starting-phase range
have to travel several turns in order to reach this radius. The separation
between the individual turns can then be neglected7) when calculating the
space~charge force, and the charge can be considered to be smeared-out
radially. In the median plane near the centre, the accelerated ions
occupy a Sector-shaped area, With a beam height much smaller than the

azimuthal dimension of the sector, the vertical space-charge force can be
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approximated by the force from an infinite sheet of charge”zk In MKSA
units this force is

- Ml
P Sl
Sp 2,Vo (1)

where I is the instantaneous current, V, is the voltage gein per turn, m
is the particle mass, and w is the orbital angular frequency. In general,
particles starting off from the centre with a given phase angle ¢, may
reach the critical point at a moment when the phase angle ¢ is different
from ¢,. However, considering the motion to be unrelativistic, we have
area conservation in a A(r?), Ap-plane. This means that a small surface
element r dr d¢ is constant during acceleration. As the space~charge
force (1) is proportional to the density projected on the median plane
one has in Eq. (1) Vo, = V cos ¢, where V is the maximum voltage gain

per turn,

Under the more realistic assumption that the above-mentioned sector
of charge has a vertical height comparable to the azimuthal width, the
situation is more complicated since the azimuthal and vertical fields are
of the same order of magnitude. The vertical field components at the
edges of the sector will be considerably lower than in the infinite sheet
approximation., The effect is most important at the upper end of the phase
range where the focusing is strongest. Lacking a better representation of
the space-charge force, we will use Eq. (1) with the modification V, =
V cos &, with & equal to the phase angle in the middle of the starting

phase range, which is assumed to extend from ¢, = 0 to at most ¢, = 75°.

2
THE Qz min—POINT

The focusing force acting on a particle at a distance z above the

median plane is

¥ = om?Q oz, (2)

where m is the particle mass, and Q; is the vertical betatron frequency

in units of oscillations per turn. For the following calculation we write

(

N




s

2

-

2 eVe sin ¢ W 2 2 \
= + (K=-1) « = +r® +ar 3
z 211'E°w2 r? ( ) c? ! )

where B, is the rest energy of the particle, r is the radius, c¢ is the
velocity of light, and ¢ is the phase angle of the dee voltage when the
particle passes the middle of the dee gap (¢ = O when the gap traversal
occurs at maximum accelerating voltage). The first term is due to first-
order electric focusing, and the second term is due to the weak focusing
of the magnetic field, Instead of the field index n, we have here used
K = 1 + nc?/y2r? 8). We consider K to be constant at small radii, which
is true for a parabolic shape of the mean magnetic field. The third
term gives for a # 0 the contribution from an azimuthally varying
magnetic field. For the simplicity of the f'ollowing calculations, we

have chosen it tc have the same radial dependence as the second term.

Using Egs. (1), (2), and (3) one can find a "balance line" z = z(r)
for which there is no vertical accéleration of the particle. Although
this line is not a solution of the difterential equation for the vertical
motion, the solutions will exhibit oscillations around it%/, Disregard-
ing these oscillations, we seek the maximum point of the balance line,

thus the minimum of QZ. From Egs. (1) and (2) we then get, with z = h,

~the half aperture,

I = zeovosz . h . (h')

As the electrostatic focusing is phase-dependent, one has to take into

account the phase motion during the first part of the acceleration, when

calculating Q; min® We do so using the phase-slip equation:

g&_ws—w’ 4aE (5)
2r - w eV cos ¢ ’

where

w_ = synchronous revolution frequency

ion revolution frequency

€
H

=
i

energy.
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When the particle starts at zero radius the phase is ¢, and the synchronous

revolution frequency (i.e. the frequency of the accelerating voltage) is
Weg e At the time t we have
+ o0t . (6)
The connection between frequency-time derivative @_, and the equilibrium

phase Pgs is given by'o
(7)

_ eVwiK

Here E is the total energy of the particle, for our purpose equal to the
We write the revolution frequency w as

(8)

rest energy E,.
w=w°+Aw,

where w, is the frequency at r = 0, and Aw is the change in frequency when
Expressing this in radius we have first

the particle is at the radius r.
from the definition of X;

o o g 4E

W n
For small AB/E
E = .&’_ 2,2
A8 = 5oz T
which gives
Kw® 2
A = = 5=—T" . (9)
2¢?
The connection between time t and radius r is given by
(10)

onE
it = —2e 4L gn |
eV c2 COoS ¢

For the purpose of our calculation we may neglect the variation of

cos ¢ with radius in Eq. (10). Thus
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TEyw 2 .
t= eV ¢c2 cos ¢, . (11)

The time derivative of the phase is equal to the difference between elec-

tric and ion revolution frequency. Thus at zero radius we have

([.)o = wso = Wo o (12)
Using the expressions (6) to (12) and

2
dE = E, %; r dr

we can integrate Eq. (5) and find

sin ¢ = A + Br? + Cr* (13)
where
A = sin ¢,
B = TEpw Qg
eV c2
C = 7By w'K 4 - cos P4 )
LeV c4 cos ¢q

Introducing this result into Eq. (3) we get

AA

QZ = jﬁ? + AB + (AoC + By) - r?, (14)
where
eV c¢?
AO—Z’HEO(,\)z
w?
Bo = (K=-1) -5FZ+ua.

For sin ¢, > O We can now find a minimum of Eq. (14) by derivation with
respect to r and multiplying with dr/dt. Now dr/dt = O when the phase

reaches #/2. Assuming that this occurs after dQ;/dr = 0 we have a minimum




-6 -

point at dQ;/dr = 0, The radius at which this minimum occurs is

1
roin = [Ach/(A,C + Bo)]'4. With the constants inserted:

. ! cos ¢ -Y%
- so& [/ eV sin ¢p \* 8 K-1_ ac¢? 4
Tmin ‘Qw ( 7B K ) ‘ [1 = Cos 9g | 8 ( X K )] . (15)

As g numerical example: V = 60 kV, K = 2, ¢, = 45°, cos ¢y = 003, and a

magnetic field of 1.9 Wb/m® gives for protons Toin = 8 cm., The number of

turns required to reach this radius is about 26.

Introducing Eq. (15) into Eq. (14) we find

@ =d/ VRN, 2% k-1,
z min 2 7, COS ¢p K

0

5l

=i

2>:|1/2-sin %Vé + %“: .
(16)

The terms 1 - (cos @s/cos 9o) and $o/2w are due to the slip in phase which
occurs between r = 0 and r = Toin® The interesting range of ¢, lies in-
side the phase stability region (K # 0), that is

1
. V 2
el 2 ( e,,Ef)/ - B (g0,0,)

where

F (pospg) = sin ¢o + sin ¢ - (9o + 9 ) cos o . (17)

In this region the accuracy of Eq. (16) is generally in the order of
a few per cent for ¢, ranging from 0-75° except for high ¢, when ¢, > 0. A
particle with these starting conditions may reach ¢ = #/2 and begin to be
decelerated before the radius as given by Eq. (15) is reached. Q: min
occurs then at ¢ = #/2 and is larger than the value given by Eq. (16).
We neglect this effect here as the mentioned starting conditions are
present only in synchro-cyclotrons, and then for a small fraction of the

captured particles,
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The total current is found from Egs. (16) and (4) by averaging over

one period. Assuming K # 0 we have for the interval (¢,,¢2)

i,_gn«_uz_:ros @h(:éi,) . [[ <¢0,2>+x dog (18)

where we have used

S s, gfK=1,a¢ : 19)
G(<P°’(Ps)=[:1-cos ol ( X +§;;>]Sln% (19

. eV K 72
$o = w<1rEo L X (20)
For negative ¢o, ¢, is determined from
1
G/z(mscps) = -

as the integrand always must be positive. With other parameters being
constant, we have in Eq. (18) a V?; dependence. (However, with a given
arrangement of the extracting electrodes in the centre, ¢, is likely to
increase with dee voltage. Assuming a conical aperture in the centre,

the same is true for h, which is the aperture at the Q -point.

min
With h ~ r, one would have h ~ V”a from Eq. (15), thus at least I ~ V/4 )

In the isochronous case (K = 0) one arrives at

' : P2 v/
- 2 2 ]
I = Eow COF S0 7 co; ¢h¥ { l: ——2Ee:’ <a . :, - 1) sin (Po] +£"20'g} deo (21)

P4
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SYNCHRO-CYCLOTRON

The time during which a particle of a given starting phase ¢, can be

captured into phase-stable orbits is1°)

% Lirors,) |
soo) =% (F) e - (22)

During this time, particles in the interval (90, @o + dp,) are cap-
tured within a fraction dgo/2w of each RF cycle. We can therefore write
the captured current as

di=T + At fm - -"-2‘2; (23)

where fm is the repetition rate of the acceleration cycle and I is the
current supplied during each dgg interval, Assuming that I is limited
by space charge, we have from Bgs. (&), (16), (19), (20), and (22)

L(‘Po "Ps)
cos ¢

di =

E B [V

fm + o V cos & h<évé(¢o,¢s) + X> . doo o (24)

From Egs. (12) and (20) one has X ~ _ = wo. As the assumption deO/dt
= const is valid during the capture time, we can average X in Eq. (24)
from its value at the beginning and at the end of the capture period. The
region within which X may vary can be seen in Fig. 1, which shows the
initial phase space with focusing and capture areas in a typical case.
Only the overlépping part of the areas is useful. Particles start ioc be
captured at X = 2L - F12. For ¢,y < 9o < 942, Where ¢,, and ¢, are
given by 2L(py450g) - F%(cpm%) = -G12(<p11,<ps) and G1/2(<P:z:¢s) =

F z(¢12,¢s), respectively, focusing is lacking when Xv; -G i; Here the
effective capture time is thus proportional to 2L - F’2 + G’2 instead of
2L [as in Eq. (22)] and the average value of X is L - (Fi/? + G1/2)/2. The
angle ¢,, is generally <<1 so we have from Egs. (17) and (19) approx-

imately

sin ¢_ - ¢_ COS ¢
K s s 8
P12 =F =z . (25)
K-1+a-. ;’T )
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For ¢o > 942, QZ min is positive during the whole cépture time, Ea. (22),

' 4 1
which ends at X = —F/é, so X averages to L - F’é. Introducing this result
into Eq. (24) with the proper modifications of the factor 2L, we find the

current by integrating over the starting-phase interval (g,,9:)

P2 1 A
62 (9050,) = F**(90,9,) 2
_ 2 Po sPg PosPg a
i—';reo meOS@h'v [ < > +L((P°’(p8)>.;-6-sgn(;—
S
P41
P2
L( )
1 1 PosPg
+] (G/z(%,(ps) + L(gos9g) - Fé(cpo,cps)> ‘men g Mo |- (26)
5
" Pe2

We have assumed that ¢, < ¢., and ¢» > @,2. Other parameters being
constant, the current is thus proportional to the dee voltage. However,
for a given final energy, the repetition rate can be increased proportion-

ally to the dee voltage, which would give the current a V2-dependence.

The two integrands (denoted Int; and Int,, respectively) are shown
in Fig. 2 for cos ¢ = 0.3, K < 1 corresponds to an average field in-
creasing and K > 1 to a field decreasing with radius. It should be re-
marked that ¢y @s well as K are initial values, valid in the region of
the first phase oscillation. The figure shows the importance of the
higher starting phases which are subject to both better focusing and
capture. Note also that for small « (a<w?/c?) the value of the inte-
grand increases with K, making a high slope of the magnetic field at
small radii desirablc in a conventional weak-focusing synchro-cyclotron.

In Figs. 3 to 6 the integration has been performed and the current,
normalized to iy = (2/m) €o fm cos & h - V, is shown as a function of
cos g for three different starting phase ranges. As a numerical example,
we may use data from the Orsay synchro-cyclotron: V = 44 kV, K = 2,
fm = 455 p/sec, h = 2,5 x 10" ?m, end starting-phase range 0-45°. Choosing
the maximum point in the curve Fig. 3 we find i = 5.2 pA [actuslly measured

value ko6 uA11)].

In order to find the condition which optimizes the current i, the

variation of repetition rate with the initial K and cos g must be known.
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However, this will depend on the magnetic field law and on the final
energy. Assuming frequency-time curves optimized by the adiabatic
theorem'o), the repetition rate can, in general, be higher with a higher
K in the centre. The decrease of fm withvcos ?q in the region of the
optima in the figures will also be less important when K is high, so the
real current optimum in the case without flutter will occur at smaller
cos ¢ than in the low K flutter situations. This makes the high K case
without flutter (Fig. 3) more attractive than it appears to be, compared
to the low K flutter cases (Figs. 4 to 6). |

To illustrate this we might use some data from Ref. 10, where the
acceleration time to 600 MeV has been calculated for a magnetic field
which approximates the field of the CERN synchro-cyclotron (K ® 2 in the
centre) and for some semi-isochronous cases (K < 1). Fora=0,K=5
and starting-phase range 0-75° (Fig. 3) we find, using the repetition
rate as calculated for the approximative CERN SC-field and adding 10%
due to the higher K, that the optimum current is found at the initial
cos ¢ to be slightly less than 0.05. Using cos ¢ = 0,05 and eV =
60 x 10® we get fm = 495 p/sec (25% flyback time). With h = 3 cm we
obtain from Fig., 3 the current i = 50 pA,

With @ = 2m 2, K = 0.5 (Fig. 6), and a repetition rate calculated
for a semi-isochronous field (K = 0.8 at full energy) we get a flat
optimum at cos 9g = 0.1, for which fm = 270 p/sec. Using h = 2 cm
(aperture somewhat reduced in order to obtain a = 2m °) the current
(from Fig. 6) becomes i = 58 pA, which is not much more than the previous
figure., It must be remembered, though, that in the semi-isochronous case
the required frequency variation for the dee voltage is considerably
smaller. This would in practice make it possible to raise the current

limit by increasing the dee voltage.

LIMITATIONS OCCURRING AFTER THE BUCKET IS FORMED

During the first inward phase oscillation the particles may again
come to the region where the electric focusing is effective., The minimum
value of Q; experienced must, however, always be greater than that given by
Eq. (16). The space~charge force during this motion is determined from

the captured charge and the bucket areaé). Using here also the infinite
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sheet approximation and the charge as calculated above, it is found that
with the largest starting-phase range (0~75°) a further intensity limita-
tion might occur for these particles swinging back closest to the centre.
The effect has not been fully evaluated, but it is felt that this limita-
tion is of minor importance as only a small fraction of the particles come

back close enough to the centre.

CONCLUSION

It has been shown that the minimum value of the square of the vertical
betatron frequency Qz occurring near the centre of a cyclotron, can be
expressed as a function of the starting-phase angle. This permits a
calculation of the space-charge limit at small radii in cycloirons by an
integration over the starting-phase interval. Combined with the theory
for capture, the maximum charge which can be accelerated in 2
synchro~cyclotron, is found. The given curves will permit a quantitative
estimate of the space-charge limited current in synchro-cyclotrons, and a

comparison of the merits of some different schemes.

The calculations of the minimum velues of Q; are approximative in the
sense that only first-order electrostatic focusing is considered. Includ-
ing higher-order terms, on the other hand, would only extend the usable
phase range a few degrees near zero phase, which would be unimportant,
particularly for the synchro-cyclotron case, where phases around zero are
generally badly captured. A more precise calculation of the space charge

forces remains to be done,
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Figure captions

Fig. 1

Fig, 2

Fige &
Fige 5

Fig. 6

Initial phase space with focusing and capture areas., Angle

1 1
¢44 is defined at the crossing of the lines 2L - F/; and -G’é,
-Gvé -Fvé.

and ¢,, at the crossing of and

Current integrands versus starting phase for cos Py = 0.3.
Curves with a = 2m™2 are plotted for B = 1.9 Wb/m?, For other
field values, they are valid for a = 5.44 - w?/c®. K speci-
fies the shape of the average magnetic field in the region of
the first phase oscillation. Due to the electric fécusing,

only positive phases give a contribution to the current.

Current as a function of ccs Pg for the weak focusing case
(a = O).

Current as a function of cos Pge
Current as a function of cos Pge

Current as a function of cos Pge
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