
 
 
 
 
 
 

 
1

Storage Resource Manager Version 2.2: design, 
implementation, and testing experience 

Flavia Donno(1) 

Co-authors: Lana Abadie(1),Paolo Badino(1), Jean-Philippe Baud(1), Ezio Corso(2), 
Shaun De Witt(3), Patrick Fuhrmann(4), Junmin Gu(5), Birger Koblitz(1), Sophie 
Lemaitre(1), Maarten Litmaath(1), Dimitry Litvintsev(7), Giuseppe Lo Presti(1), 
Luca Magnoni(6), Gavin McCance(1), Tigran Mkrtchan(4), Rémi Mollon(1), Vijaya 
Natarajan(5), Timur Perelmutov(7), Don Petravick(7), Arie Shoshani(5), Alex Sim(5), 
David Smith(1), Paolo Tedesco(1), Riccardo Zappi(6) 
(1)European Organization for Nuclear Research CERN G06910, CH-1211 Genève 23, 
Switzerland, (2)Abdus Salam International Centre for Theoretical Physics (ICTP), 
Strata Costiera 11, 34014 Trieste - Italy, (3)Rutherford Appleton Laboratory (RAL), 
Harwell Science and Innovation Campus Didcot OX11 0QX, United Kingdom, 
(4)Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, 
Germany, (5)Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road Mail 
Stop, Berkeley, CA, USA, (6)Centro Nazionale per la Ricerca e Sviluppo nelle 
Tecnologie Informatiche e Telematiche (CNAF) , Viale Berti Pichat 6/2, 40127 
Bologna, Italy, (7)Fermi National Accelerator Laboratory (FNAL), P.O. Box 500 
Batavia, IL 60510-5011, USA 

Flavia.Donno@cern.ch 

Abstract. Storage Services are crucial components of the Worldwide LHC Computing Grid 
Infrastructure spanning more than 200 sites and serving computing and storage resources to the 
High Energy Physics LHC communities. Up to tens of Petabytes of data are collected every 
year by the four LHC experiments at CERN. To process these large data volumes it is 
important to establish a protocol and a very efficient interface to the various storage solutions 
adopted by the WLCG sites. In this work we report on the experience acquired during the 
definition of the Storage Resource Manager v2.2 protocol. In particular, we focus on the study 
performed to enhance the interface and make it suitable for use by the WLCG communities. At 
the moment 5 different storage solutions implement the SRM v2.2 interface: BeStMan 
(LBNL), CASTOR (CERN and RAL), dCache (DESY and FNAL), DPM (CERN), and StoRM 
(INFN and ICTP). After a detailed inside review of the protocol, various test suites have been 
written identifying the most effective set of tests: the S2 test suite from CERN and the SRM-
Tester test suite from LBNL. Such test suites have helped verifying the consistency and 
coherence of the proposed protocol and validating existing implementations. We conclude our 
work describing the results achieved. 
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1.  Introduction 
The Worldwide LHC Computing Grid (WLCG) [1] Infrastructure is the largest Grid in the world, 
including about 230 sites worldwide [2]. It has been mainly established to support the 4 Large Hadron 
Collider (LHC) experiments at CERN. The LHC is the world’s biggest machine to study the 
fundamental properties of sub-atomic particles and is due to start operating in 2008. 

The goal of the WLCG project is to establish a world-wide Grid infrastructure of computing 
centers to provide sufficient computational, storage and network resources to fully exploit the 
scientific potential of the four major experiments operating on LHC data: Alice, ATLAS, CMS and 
LHCb. These experiments will generate enormous amounts of data (10-15 Petabytes per year). 
Computing and storage services to analyze them would be implemented by a geographically 
distributed Data Grid.  

Given the variety of the storage solutions adopted by the sites collaborating in the WLCG 
infrastructure, it was considered important to provide an efficient and uniform Grid interface to 
storage and allow experiments to transparently access the data, independently of the storage 
implementation available at a site.  This effort has given rise to the Grid Storage Management 
Working Group (GSM-WG) at the Open Grid Forum (OGF) [3]. 

In what follows, we report on the experience acquired during the definition of the Storage Resource 
Manager (SRM) v2.2 protocol. In particular, we focus on the study performed to enhance the interface 
and make it suitable for use by the WLCG communities. 

In Section 2, we elaborate on the protocol definition process and on the collection of the 
requirements as described by the LHC experiments. In Section 3, we talk about version 2.2 of the 
SRM protocol as it is defined today and implemented by multiple storage solution providers. In 
Section 4, we describe the storage solutions that provide SRM v2.2 compliant interfaces today. 
Section 5 summarizes the activities that led to the design of the static and dynamic models. To validate 
the protocol against the user requirements and verify the compliance of the several implementations 
against the specification, the need of test suites was recognized. In Section 6, we report on the study of 
the protocol and the design of test suites. In order to achieve concrete results it was important to 
establish a testing framework: the S2 testing framework is described in Section 7.  Exhaustive tests 
can demonstrate the correctness of the system under test (SUT). However, exhaustive tests are 
impracticable. Black box techniques have therefore been applied to reduce the number of tests.  
Section 8 elaborates on that. In Section 9, we give a summary of the CERN S2 families of tests 
available today and show the results obtained. In Section 10, we report about other testing efforts 
performed in order to check the usability of the high-level tools and APIs available in WLCG. We 
conclude reporting on related work and outlining the main achievements.  

2.  Storage Requirements 
In the second quarter of 2005, the WLCG Baseline Service working group [4] was established in 

order to understand the experiment requirements for the first data challenges. A data challenge is a set 
of tests to establish the extent of readiness and functionality of the computing frameworks of the LHC 
experiments. The report of the working group based on early experience was published [5]. In the 
report, the definition of a “Storage Element” is given and the main functionalities of a storage service 
and the needed file access protocols are listed together with target dates for their availability. 

However, during the Mumbai workshop preceding the CHEP conference in 2006, it was clear that 
the LHC experiments had learned more about what was needed in terms of storage and changed their 
requirements. The WLCG Data Management Coordination group was therefore established to discuss 
the last open points and converge to a final agreement. It was only in May 2006 during the Grid 
Storage Workshop at Fermilab that the final WLCG Memorandum of Understanding for a Grid 
Storage Service [6] was agreed to by experiments and Grid Storage Service providers. 

At the end of 2006, a second working group was established in WLCG, the Storage Class Working 
Group. The mandate of this working group was to understand definition and implementation issues of 
the qualities of storage demanded by the experiments. It has evolved into the Grid Storage System 
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Deployment (GSSD) working group [7], in charge of coordinating the deployment into production of 
the new Grid Storage Services. 

2.1.  The Storage Element 
A Storage Element (SE) is a logical entity that includes:  

• A mass storage system (MSS) which is defined by disk-based hardware, or some disk cache 
front-end backed by a tape system. 

• A storage interface to provide a common way to access the specific MSS.  
• A GridFTP service to provide data transfer in and out of the SE, to and from the Grid. The 

implementation of this service must scale to the bandwidth required.  
• Local POSIX-like input/output calls providing application access to the data on the SE. 
• Authentication, authorization and audit/accounting facilities, based on ACLs and Virtual 

Organization Management System (VOMS) roles and groups [8].  
A site may provide multiple SEs with different qualities of storage. For example, it may be considered 
convenient to provide an SE for data intended to remain for extended periods and a separate SE for 
data that is transient – needed only for the lifetime of a job or set of jobs. Since most applications will 
not communicate with the storage system directly, but use higher-level applications, it is clear that 
these applications must also be enabled to work with storage interfaces.  

2.2.  The Storage Service Interface 
The WLCG Baseline Service Working Group has defined a set of required functionalities that all SE 
services must implement before the start of LHC operations. In what follows we describe the main 
characteristics of the WLCG Grid Storage Interface.  
  
File types  
The need to introduce the concept of several file types has been recognized: 

• Volatile: it is a temporary and often sharable copy of an MSS resident file. If space is needed, 
an unused temporary file can be removed by the MSS garbage collector daemon. Applications 
using the file can impose or extend the lifetime of the file (“pinning”). If the lifetime is still 
valid a file normally would not be automatically removed by the system. 

• Permanent: it is a file that can be removed only by the owner or other authorized users.  Files 
in WLCG are permanent  (but a file may have a number of volatile copies as well). 

 
Space types  
A need was expressed to be able to operate on a set of files at once. This can be achieved introducing 
the concept of space. A logical space is a container that hosts a set of files. Two categories of space 
have been defined corresponding to the two file types. The meaning of each type being similar to the 
one defined for files.  Spaces in WLCG are mostly permanent. 
 
Space reservation  
Experiments require the ability to dynamically reserve space to ensure that a store operation does not 
fail. Space can be statically reserved by site administrators explicitly allocating storage hardware 
resources to a Virtual Organization (VO), or in advance by VO managers (via some administrative 
interface), or at run time by generic VO users. The reservation has a lifetime associated with it. The 
user is given back a space token that he/she will provide in the following requests to retrieve a file 
from tape or from another remote storage system, or to write a new file. The space can be released 
either by the user/VO manager or by the system when the lifetime associated with the space expires.  
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Permission and Directory functions  
Similar to POSIX Access Control Lists (ACLs), permissions may be associated with directories or 
files.  LHC VOs desire storage systems to respect permissions based on VOMS groups and roles. 
ACLs are inherited from the parent directory, by default.  
For administrative reasons, functions to create/remove directories, delete files, and rename directories 
or files are needed. File listing functions are also needed. However, it was felt that there is no need for 
“mv” operations between two different SEs.  
 
Data transfer control functions  
These functions do not normally move any data but prepare the access to data. These are the functions 
that deal with the MSS stagers. The only exception is the copy function that moves data between two 
Storage Elements. All these functions can operate on a set of files and they report a status or error 
condition for each file.  
 
Other requirements  
Experiments have expressed the need to refer to directory paths with respect to the VO base directory. 
This would allow experiments to refer to files in a site-independent way. The storage interface should 
discover the correct namespace for a given VO. This also allows catalogue entries to be shorter. 
The need to be able to send multiple requests to the MSS and to allow the MSS to handle priorities, 
and to optimize tape access was deemed as essential by the storage system managers, and recognized 
by the experiments. The use of the storage interface methods guarantees this ability, and would be the 
preferred method of initiating file transfers.  
It is vital that all the storage interface implementations interoperate seamlessly with each other and 
appear the same to applications and grid services. To this end, a test-suite has to be used to validate 
implementations against the WLCG agreed set of functionality and behaviour.  

2.3.   The Storage Classes 
In WLCG the Storage Class Working Group was in charge to understand the requirements of the 

LHC experiments in terms of quality of storage (Storage Classes) and the implementation implications 
for the various storage solutions available. For instance, this implied the study of how to assign disk 
pools for LAN or WAN access and to devise common configurations for VOs and per site. 

  
A Storage Class determines the properties that a storage system needs to provide in order to store 

data.  
 
The LHC experiments have asked for the availability of combinations of the following storage 

devices: Tapes (or reliable storage system always referred to as tape in what follows) and Disks. If a 
file has at least a copy on Tape then we say that the file is in Tape1. If a file resides on an experiment-
managed disk, we say that the file is in Disk1. Tape0 means that the file does not have a copy stored 
on a reliable storage system. Disk0 means that the disk where the copy of the file resides is managed 
by the system: if such a copy is not pinned or it is not being used, the system can delete it.  

Following what has been decided in various WLCG Storage Class Working Group meetings and 
discussions only the following combinations (or Storage Classes) are needed and therefore supported:  

• In the Custodial-Nearline storage class, data is stored on some reliable secondary storage 
system (such as a robotic tape or DVD library). Access to data may imply certain latency. 
When a user accesses a file, the file is recalled in a cache that is managed by the system. The 
file can be “pinned” for the time the application needs the file.  

• In the Custodial-Online storage class data is always available on disk. A copy of the data 
resides permanently on tape, DVD or on a high-quality RAID system as well. The space 
owner (the virtual organization) manages the space available on disk. If no space is available 
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in the disk area for a new file, the file creation operation fails. This storage class guarantees 
that a file is never removed by the system.  

• The Replica-Online storage class is implemented through the use of disk-based solutions not 
necessarily of high quality. The data resides on disk space managed by the virtual 
organization. 

3.  The Storage Resource Manager protocol version 2.2 
A Storage Resource Manager (SRM) is a middleware component whose function is to provide 

dynamic space allocation and file management on shared storage components on the Grid [9].  
An SRM is a standardized interface offered by a Storage Element that satisfies most of the 

requirements explained in Section 2. It allows authorized clients to initiate requests for allocating and 
managing a given amount of space with a given quality. The space can be used to create new files or 
access existing files stored in the underlying storage system.  

The v2.2 SRM interface functions or methods are described in detail in [10] and can be categorized 
in five families: space management functions, permission functions, directory functions, data transfer 
functions, and discovery functions.  

3.1.  Space Management Functions 
Space management functions allow the client to reserve, release, and manage spaces, their types 

and lifetime. Once the space is assigned, it can be referred to with a space token. The main space 
management functions are: srmReserveSpace, srmUpdateSpace, srmReleaseSpace, 
srmChangeSpaceForFiles, srmExtendFileLifeTimeInSpace.  

3.2.   Data Transfer Functions 
Data transfer functions have the purpose of retrieving files from and getting files into SRM 

spaces, to/from the client’s computer or other remote storage systems on the Grid. Data transfer 
functions support requests for multiple files within a single transaction. These functions constitute the 
core of the SRM specification. The main methods are: srmPrepareToGet, srmBringOnline, 
srmPrepareToPut, srmPutDone, srmCopy, srmReleaseFiles srmAbortRequest/srmAbortFiles, 
srmExtendFileLifeTime.  

3.3.  Other Functions 
Other SRM functions include: 
• Directory functions which are similar to their equivalent UNIX functions. The SRM interface 

offers a namespace, which is similar to that of a filesystem. In particular, files have a path and a 
filename. The SRM directory functions allow users to put files with different storage 
requirements in a single directory. Changing the space characteristics of a file does not change 
its position in the directory but only its assignment to the corresponding space. 

• Permission functions which allow a user to assign read and write privileges on a specific file 
to other users. Such functions allow client applications to specify ACLs as well, wherever 
supported by the underlying storage service. 

• Discovery functions which allow applications to query the characteristics of the storage 
system behind the SRM interface and the SRM implementation itself.  

4.  Storage Solutions 
In order to define a successful Grid Storage Protocol and Interface, it is important that the 

developers of Grid Storage Services get involved in the definition process and provide prototype 
implementations of the proposed protocol early enough to allow for the discovery of inefficiencies in 
the protocol and incoherence in the interface. In what follows we give a brief overview of the Storage 
solutions adopted in WLCG that provide an SRM v2.2 implementation as of today. 
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4.1.   dCache  
dCache [11] is a Grid storage service jointly developed by DESY and Fermilab.  It can manage 

very large numbers of disks and supports various tape back-ends.  

4.2.  DPM 
The LCG lightweight Disk Pool Manager (DPM) [12] is a complementary solution to the dCache 

system. It focuses on manageability at smaller sites and therefore has been made easy to install and 
configure. It only supports disk storage at this time.  

4.3.  BeStMan 
The Berkeley Storage Manager (BeStMan) [13] has been developed by LBNL primarily to manage 

disk storage, while also supporting HPSS as tape back-end. 

4.4.  StoRM  
The StoRM [14] system implements a Grid storage solution based on parallel or distributed file 

systems. StoRM is the result of a research collaboration between INFN and ICTP (International Centre 
for Theoretical Physics, in Trieste, Italy) to build a disk-based SRM service on top of high-
performance parallel file systems and at the same time provide a pilot national Grid facility for 
research in economics and finance.  

4.5.   CASTOR  
CASTOR [15], the Cern Advanced STORage system, is a scalable, high throughput storage 

management system that offers support for several tape back-ends. 

5.  The SRM Static and dynamic model 
The definition process of SRM v2.2 has been quite long, involving many discussions around the 

concepts of spaces, file copy management, and name space handling. Confusion arose from the 
absence of a clear data model for SRM. The SRM was in fact specified in terms of its application 
programming interface that reflected the requirements of storage system users. The need for a domain 
analysis model was recognized later. The model described in [16] supplements the API and other 
specifications with an explicit, clear and concise definition of its underlying structural and behavioural 
concepts. Furthermore, this model makes it easier to define the semantics, helps service developers 
and providers for a more rigorous validation of implementations, helps identifying unanticipated 
behaviors and interactions. 

6.  The SRM testing suites 
Another important aspect in the definition of a protocol and in checking its efficiency is the 

verification against various implementations. The verification process helps to understand if foreseen 
transactions make sense in the real world. It shows as well if the protocol adapts naturally and 
efficiently to existing storage solutions. These reasons lead to setting up a test bed where real use cases 
can be tested. In what follows we describe the design of a functional test suite to verify the compliance 
of the implementations with the defined interface and their interoperability. In particular, an analysis 
of the complexity of the proposed SRM interface shows that a large number of tests need to be 
executed in order to fully check the compliance of the implementations to the specifications. An 
appropriate testing strategy has to be adopted to allow a finite set of tests to provide a sufficiently large 
coverage.  

7.  The S2 testing framework 
In order to speed up the development of the testing suite, we looked for a testing framework with 

the following characteristics:  
• Support for quick development of single test cases  
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• Minimization of human coding errors.  
• Plug-in support for external libraries such as an SRM client implementation.  
• A powerful engine for parsing the output of a test program.  
• Support for both parallel and sequential execution of testing units; support for timers at 

instruction and test unit level. 
• “self-describing” logging facility.  
 
We examined several products available on the market based on the TTCN-3 standard for 

telecommunication protocols. Such products often had the problem of being protected by license or 
being too complex and very much oriented to the telecommunication world. In the end we focused on 
S2 [17], a tree-based language with SRM 2.2 protocol support developed initially at RAL specifically 
for executing tests.  

An S2 tree consists of command branches. The S2 interpreter starts the evaluation of an S2 tree at 
its root: the first branch without indentation. Branches are in relationship with other branches (parents, 
children or disconnected). Together with a set of optional parameters, a specific action defines the 
branch.  

A fundamental action is the execution of an SRM command. The S2 interpreter recognizes a set of 
expressions with a command-line syntax that exercise all the implemented SRM calls. The output of 
an SRM command is stored in variables. By use of regular expressions, the occurrence of given 
patterns in the output can be searched for.  

S2 has allowed us to build a testing framework that supports the parallel execution of tests where 
the interactions among concurrent method invocations can be tested easily. The S2 test suite has 
allowed for the early discovery of memory corruption problems and race conditions. The coding of 
such test cases required very little time (a few minutes).  

8.  The black box techniques 
In order to verify the compliance of a specific implementation to a protocol a test-case-design 

methodology known as Black Box or functional testing is often adopted.  Functional testing is used 
for: 

• Validation: of the system against the explicit and implicit user requirements 
• Consistency: checking for inconsistency, incompleteness, or inefficiency 
• Verification: correctness of implementations with respect to the specification 
• Performance and reliability 

Exhaustive testing can demonstrate the correctness of the System Under Test (SUT). However, 
such an approach is impracticable given the infinite number of test cases. Therefore, the Black Box 
testing technique focuses on identifying the subset of all possible test cases with the highest 
probability of detecting the most errors. The specifications are examined to find the input domain of 
the system, the operating conditions that affect the system behavior and input-output relationships that 
define how the system reacts to inputs under given operating conditions. 

 The most popular black box testing approaches are Equivalence partitioning, Boundary-value 
analysis, Cause-effect graphing and Error guessing [18]. Each of these approaches covers certain 
cases and conditions but they do not ensure the identification of an exhaustive testing suite. However, 
one of them can be more effective than the other ones depending on the nature of the SUT.  

9.  The S2 test families and results 
The S2 testing framework and the described black box testing approaches [20] have been used to 

design a test suite to validate the correctness of the implementations with respect to the protocol 
established. We proceeded dividing the test suite in families that probed the SUTs with an increasing 
level of detail. In particular, we have designed and developed six families of tests: 

• Availability: the srmPing function and a full put cycle for a file are exercised.  
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• Basic: the test suite checks the basic SRM v2.2 functionality, testing that the expected status 
codes are returned when passing simple input parameters. Here the equivalence partitioning 
and boundary condition analysis is applied.  

• Use cases: boundary conditions, exceptions, real use cases extracted from the middleware 
clients and experiment applications are tested. The cause-effect graphing technique is used to 
reduce the number of test cases.  

• Interoperability: remote operations (servers acting as clients) and cross copy operations 
among several implementations are exercised.  

• Exhaustive: These tests check the reaction of the system when long strings or strange 
characters are passed as input arguments or when mandatory arguments are missing or optional 
arguments are improperly used. 

• Stress: Parallel tests are used for stressing the systems, sending multiple requests, concurrent 
colliding requests, space exhaustion, etc. 

 
The S2 tests have been run typically 5 times per day against up to 21 SRM v2.2 endpoints running 5 

different storage services with different configurations. The S2 test suite has been integrated in the 
WLCG certification process. S2 has been used as well by the developers to check their 
implementations and distributed to the USA Open Science Grid project for Tier-2 validation. The Test 
families have been expanded continuously to cover new scenarios, new decisions taken at the protocol 
level, and to check for discovered bugs or race conditions. 

 
Figure 1 plots the results of basic tests for all implementations. The number of failures over the 

number of total tests executed is reported over time. After a long period of instability, the 
implementations converged on a large set of methods correctly implemented. We note that new 
features and bug fixes introduced by the developers together with the addition of new tests produced 
oscillations in the plot. Toward the end of the testing period the number of failures is almost zero for 
all implementations. That is when large-scale testing can stop.  

 

 

Figure1. Plot showing the number of failures/number of basic tests performed over a period of time 
that goes from November 2006 to August 2007 
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10.  Other tests 
Together with the S2 families of test suites, other testing efforts contributed to the success of the 

SRM v2.2 protocol. We explicitly mention the LBNL SRM-Tester written in Java, the only test suite 
available since the first version of the SRM v2.2 specification. 

Other testing efforts have contributed to: 
• Check the status of the high-level WLCG SRM v2.2 clients such as GFAL, lcg-utils, FTS 
• Verify the transparent access to storage independent of the protocol in use (SRM v1.1 vs 

SRM v2.2). 
• Experiment data access patterns. 
• Verify the correct handling of VO specific proxies with VOMS groups/roles. 
• Verify the compliance to user requirements and functionalities needed 
• Check the availability of required bindings (C++, Python, Perl, etc.) and support for 

mandatory platforms (Scientific Linux 4 in 32-bit mode, 64-bit mode later). 
The main outcomes of these activities are: 

• User documentation, education and training. 
• Preparation for the integration of experiment frameworks with the SRM v2.2 environment. 

11.  Conclusions and related work 
Storage management and access in a Grid environment is a rather new topic that is attracting the 

attention of many scientists. Given the heterogeneity of the existing storage solutions with their 
constant evolution and the complexity of the functionality required by Grid applications, a completely 
satisfactory solution to storage in the Grid has not yet been proposed.  

There are many attempts made in this direction. For instance, the “Grid storage” initiative 
promoted by IBM and proposed in the Open Grid Forum's File System Working Group aims at 
creating a topology for scaling the capacity of NAS in response to application requirements, and 
enabling a single file system. However, the issue of offering a transparent interface to data stored on 
different media with different access latencies and management technologies is not tackled.  

The Internet Backplane Protocol (IBP) [19] aims at providing a virtual publicly sharable storage all 
over the world. The main idea is to make an online storage available for public usage. Therefore, 
quality of storage and transparent access to any kind of MSS is not normally a concern of IBP.  

We have introduced the SRM proposed by the OGF SRM-WG that aims at proposing a control 
protocol for storage management and access in the Grid. The SRM offers important functionalities 
such as the possibility of dynamically reserving space of a certain quality, dynamic space and file 
management, access to system optimization patterns, the negotiation of file access and transfer 
protocols between client and server, optimized copy operations, uniform namespace management 
functions, file permission functions, transparent data access, etc.  

Designing a protocol and achieving a wide acceptance is a long and time-consuming effort that has 
evolved in a strong international collaboration. The experience acquired with the design and 
implementation of SRM v2.2 has allowed us to acquire fundamental knowledge in terms of protocol 
design and specification techniques.  
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