

1

Storage Resource Manager Version 2.2: design,
implementation, and testing experience

Flavia Donno(1)

Co-authors: Lana Abadie(1),Paolo Badino(1), Jean-Philippe Baud(1), Ezio Corso(2),
Shaun De Witt(3), Patrick Fuhrmann(4), Junmin Gu(5), Birger Koblitz(1), Sophie
Lemaitre(1), Maarten Litmaath(1), Dimitry Litvintsev(7), Giuseppe Lo Presti(1),
Luca Magnoni(6), Gavin McCance(1), Tigran Mkrtchan(4), Rémi Mollon(1), Vijaya
Natarajan(5), Timur Perelmutov(7), Don Petravick(7), Arie Shoshani(5), Alex Sim(5),
David Smith(1), Paolo Tedesco(1), Riccardo Zappi(6)
(1)European Organization for Nuclear Research CERN G06910, CH-1211 Genève 23,
Switzerland, (2)Abdus Salam International Centre for Theoretical Physics (ICTP),
Strata Costiera 11, 34014 Trieste - Italy, (3)Rutherford Appleton Laboratory (RAL),
Harwell Science and Innovation Campus Didcot OX11 0QX, United Kingdom,
(4)Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg,
Germany, (5)Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road Mail
Stop, Berkeley, CA, USA, (6)Centro Nazionale per la Ricerca e Sviluppo nelle
Tecnologie Informatiche e Telematiche (CNAF) , Viale Berti Pichat 6/2, 40127
Bologna, Italy, (7)Fermi National Accelerator Laboratory (FNAL), P.O. Box 500
Batavia, IL 60510-5011, USA

Flavia.Donno@cern.ch

Abstract. Storage Services are crucial components of the Worldwide LHC Computing Grid
Infrastructure spanning more than 200 sites and serving computing and storage resources to the
High Energy Physics LHC communities. Up to tens of Petabytes of data are collected every
year by the four LHC experiments at CERN. To process these large data volumes it is
important to establish a protocol and a very efficient interface to the various storage solutions
adopted by the WLCG sites. In this work we report on the experience acquired during the
definition of the Storage Resource Manager v2.2 protocol. In particular, we focus on the study
performed to enhance the interface and make it suitable for use by the WLCG communities. At
the moment 5 different storage solutions implement the SRM v2.2 interface: BeStMan
(LBNL), CASTOR (CERN and RAL), dCache (DESY and FNAL), DPM (CERN), and StoRM
(INFN and ICTP). After a detailed inside review of the protocol, various test suites have been
written identifying the most effective set of tests: the S2 test suite from CERN and the SRM-
Tester test suite from LBNL. Such test suites have helped verifying the consistency and
coherence of the proposed protocol and validating existing implementations. We conclude our
work describing the results achieved.

2

1. Introduction
The Worldwide LHC Computing Grid (WLCG) [1] Infrastructure is the largest Grid in the world,
including about 230 sites worldwide [2]. It has been mainly established to support the 4 Large Hadron
Collider (LHC) experiments at CERN. The LHC is the world’s biggest machine to study the
fundamental properties of sub-atomic particles and is due to start operating in 2008.

The goal of the WLCG project is to establish a world-wide Grid infrastructure of computing
centers to provide sufficient computational, storage and network resources to fully exploit the
scientific potential of the four major experiments operating on LHC data: Alice, ATLAS, CMS and
LHCb. These experiments will generate enormous amounts of data (10-15 Petabytes per year).
Computing and storage services to analyze them would be implemented by a geographically
distributed Data Grid.

Given the variety of the storage solutions adopted by the sites collaborating in the WLCG
infrastructure, it was considered important to provide an efficient and uniform Grid interface to
storage and allow experiments to transparently access the data, independently of the storage
implementation available at a site. This effort has given rise to the Grid Storage Management
Working Group (GSM-WG) at the Open Grid Forum (OGF) [3].

In what follows, we report on the experience acquired during the definition of the Storage Resource
Manager (SRM) v2.2 protocol. In particular, we focus on the study performed to enhance the interface
and make it suitable for use by the WLCG communities.

In Section 2, we elaborate on the protocol definition process and on the collection of the
requirements as described by the LHC experiments. In Section 3, we talk about version 2.2 of the
SRM protocol as it is defined today and implemented by multiple storage solution providers. In
Section 4, we describe the storage solutions that provide SRM v2.2 compliant interfaces today.
Section 5 summarizes the activities that led to the design of the static and dynamic models. To validate
the protocol against the user requirements and verify the compliance of the several implementations
against the specification, the need of test suites was recognized. In Section 6, we report on the study of
the protocol and the design of test suites. In order to achieve concrete results it was important to
establish a testing framework: the S2 testing framework is described in Section 7. Exhaustive tests
can demonstrate the correctness of the system under test (SUT). However, exhaustive tests are
impracticable. Black box techniques have therefore been applied to reduce the number of tests.
Section 8 elaborates on that. In Section 9, we give a summary of the CERN S2 families of tests
available today and show the results obtained. In Section 10, we report about other testing efforts
performed in order to check the usability of the high-level tools and APIs available in WLCG. We
conclude reporting on related work and outlining the main achievements.

2. Storage Requirements
In the second quarter of 2005, the WLCG Baseline Service working group [4] was established in

order to understand the experiment requirements for the first data challenges. A data challenge is a set
of tests to establish the extent of readiness and functionality of the computing frameworks of the LHC
experiments. The report of the working group based on early experience was published [5]. In the
report, the definition of a “Storage Element” is given and the main functionalities of a storage service
and the needed file access protocols are listed together with target dates for their availability.

However, during the Mumbai workshop preceding the CHEP conference in 2006, it was clear that
the LHC experiments had learned more about what was needed in terms of storage and changed their
requirements. The WLCG Data Management Coordination group was therefore established to discuss
the last open points and converge to a final agreement. It was only in May 2006 during the Grid
Storage Workshop at Fermilab that the final WLCG Memorandum of Understanding for a Grid
Storage Service [6] was agreed to by experiments and Grid Storage Service providers.

At the end of 2006, a second working group was established in WLCG, the Storage Class Working
Group. The mandate of this working group was to understand definition and implementation issues of
the qualities of storage demanded by the experiments. It has evolved into the Grid Storage System

3

Deployment (GSSD) working group [7], in charge of coordinating the deployment into production of
the new Grid Storage Services.

2.1. The Storage Element
A Storage Element (SE) is a logical entity that includes:

• A mass storage system (MSS) which is defined by disk-based hardware, or some disk cache
front-end backed by a tape system.

• A storage interface to provide a common way to access the specific MSS.
• A GridFTP service to provide data transfer in and out of the SE, to and from the Grid. The

implementation of this service must scale to the bandwidth required.
• Local POSIX-like input/output calls providing application access to the data on the SE.
• Authentication, authorization and audit/accounting facilities, based on ACLs and Virtual

Organization Management System (VOMS) roles and groups [8].
A site may provide multiple SEs with different qualities of storage. For example, it may be considered
convenient to provide an SE for data intended to remain for extended periods and a separate SE for
data that is transient – needed only for the lifetime of a job or set of jobs. Since most applications will
not communicate with the storage system directly, but use higher-level applications, it is clear that
these applications must also be enabled to work with storage interfaces.

2.2. The Storage Service Interface
The WLCG Baseline Service Working Group has defined a set of required functionalities that all SE
services must implement before the start of LHC operations. In what follows we describe the main
characteristics of the WLCG Grid Storage Interface.

File types
The need to introduce the concept of several file types has been recognized:

• Volatile: it is a temporary and often sharable copy of an MSS resident file. If space is needed,
an unused temporary file can be removed by the MSS garbage collector daemon. Applications
using the file can impose or extend the lifetime of the file (“pinning”). If the lifetime is still
valid a file normally would not be automatically removed by the system.

• Permanent: it is a file that can be removed only by the owner or other authorized users. Files
in WLCG are permanent (but a file may have a number of volatile copies as well).

Space types
A need was expressed to be able to operate on a set of files at once. This can be achieved introducing
the concept of space. A logical space is a container that hosts a set of files. Two categories of space
have been defined corresponding to the two file types. The meaning of each type being similar to the
one defined for files. Spaces in WLCG are mostly permanent.

Space reservation
Experiments require the ability to dynamically reserve space to ensure that a store operation does not
fail. Space can be statically reserved by site administrators explicitly allocating storage hardware
resources to a Virtual Organization (VO), or in advance by VO managers (via some administrative
interface), or at run time by generic VO users. The reservation has a lifetime associated with it. The
user is given back a space token that he/she will provide in the following requests to retrieve a file
from tape or from another remote storage system, or to write a new file. The space can be released
either by the user/VO manager or by the system when the lifetime associated with the space expires.

4

Permission and Directory functions
Similar to POSIX Access Control Lists (ACLs), permissions may be associated with directories or
files. LHC VOs desire storage systems to respect permissions based on VOMS groups and roles.
ACLs are inherited from the parent directory, by default.
For administrative reasons, functions to create/remove directories, delete files, and rename directories
or files are needed. File listing functions are also needed. However, it was felt that there is no need for
“mv” operations between two different SEs.

Data transfer control functions
These functions do not normally move any data but prepare the access to data. These are the functions
that deal with the MSS stagers. The only exception is the copy function that moves data between two
Storage Elements. All these functions can operate on a set of files and they report a status or error
condition for each file.

Other requirements
Experiments have expressed the need to refer to directory paths with respect to the VO base directory.
This would allow experiments to refer to files in a site-independent way. The storage interface should
discover the correct namespace for a given VO. This also allows catalogue entries to be shorter.
The need to be able to send multiple requests to the MSS and to allow the MSS to handle priorities,
and to optimize tape access was deemed as essential by the storage system managers, and recognized
by the experiments. The use of the storage interface methods guarantees this ability, and would be the
preferred method of initiating file transfers.
It is vital that all the storage interface implementations interoperate seamlessly with each other and
appear the same to applications and grid services. To this end, a test-suite has to be used to validate
implementations against the WLCG agreed set of functionality and behaviour.

2.3. The Storage Classes
In WLCG the Storage Class Working Group was in charge to understand the requirements of the

LHC experiments in terms of quality of storage (Storage Classes) and the implementation implications
for the various storage solutions available. For instance, this implied the study of how to assign disk
pools for LAN or WAN access and to devise common configurations for VOs and per site.

A Storage Class determines the properties that a storage system needs to provide in order to store

data.

The LHC experiments have asked for the availability of combinations of the following storage

devices: Tapes (or reliable storage system always referred to as tape in what follows) and Disks. If a
file has at least a copy on Tape then we say that the file is in Tape1. If a file resides on an experiment-
managed disk, we say that the file is in Disk1. Tape0 means that the file does not have a copy stored
on a reliable storage system. Disk0 means that the disk where the copy of the file resides is managed
by the system: if such a copy is not pinned or it is not being used, the system can delete it.

Following what has been decided in various WLCG Storage Class Working Group meetings and
discussions only the following combinations (or Storage Classes) are needed and therefore supported:

• In the Custodial-Nearline storage class, data is stored on some reliable secondary storage
system (such as a robotic tape or DVD library). Access to data may imply certain latency.
When a user accesses a file, the file is recalled in a cache that is managed by the system. The
file can be “pinned” for the time the application needs the file.

• In the Custodial-Online storage class data is always available on disk. A copy of the data
resides permanently on tape, DVD or on a high-quality RAID system as well. The space
owner (the virtual organization) manages the space available on disk. If no space is available

5

in the disk area for a new file, the file creation operation fails. This storage class guarantees
that a file is never removed by the system.

• The Replica-Online storage class is implemented through the use of disk-based solutions not
necessarily of high quality. The data resides on disk space managed by the virtual
organization.

3. The Storage Resource Manager protocol version 2.2
A Storage Resource Manager (SRM) is a middleware component whose function is to provide

dynamic space allocation and file management on shared storage components on the Grid [9].
An SRM is a standardized interface offered by a Storage Element that satisfies most of the

requirements explained in Section 2. It allows authorized clients to initiate requests for allocating and
managing a given amount of space with a given quality. The space can be used to create new files or
access existing files stored in the underlying storage system.

The v2.2 SRM interface functions or methods are described in detail in [10] and can be categorized
in five families: space management functions, permission functions, directory functions, data transfer
functions, and discovery functions.

3.1. Space Management Functions
Space management functions allow the client to reserve, release, and manage spaces, their types

and lifetime. Once the space is assigned, it can be referred to with a space token. The main space
management functions are: srmReserveSpace, srmUpdateSpace, srmReleaseSpace,
srmChangeSpaceForFiles, srmExtendFileLifeTimeInSpace.

3.2. Data Transfer Functions
Data transfer functions have the purpose of retrieving files from and getting files into SRM

spaces, to/from the client’s computer or other remote storage systems on the Grid. Data transfer
functions support requests for multiple files within a single transaction. These functions constitute the
core of the SRM specification. The main methods are: srmPrepareToGet, srmBringOnline,
srmPrepareToPut, srmPutDone, srmCopy, srmReleaseFiles srmAbortRequest/srmAbortFiles,
srmExtendFileLifeTime.

3.3. Other Functions
Other SRM functions include:
• Directory functions which are similar to their equivalent UNIX functions. The SRM interface

offers a namespace, which is similar to that of a filesystem. In particular, files have a path and a
filename. The SRM directory functions allow users to put files with different storage
requirements in a single directory. Changing the space characteristics of a file does not change
its position in the directory but only its assignment to the corresponding space.

• Permission functions which allow a user to assign read and write privileges on a specific file
to other users. Such functions allow client applications to specify ACLs as well, wherever
supported by the underlying storage service.

• Discovery functions which allow applications to query the characteristics of the storage
system behind the SRM interface and the SRM implementation itself.

4. Storage Solutions
In order to define a successful Grid Storage Protocol and Interface, it is important that the

developers of Grid Storage Services get involved in the definition process and provide prototype
implementations of the proposed protocol early enough to allow for the discovery of inefficiencies in
the protocol and incoherence in the interface. In what follows we give a brief overview of the Storage
solutions adopted in WLCG that provide an SRM v2.2 implementation as of today.

6

4.1. dCache
dCache [11] is a Grid storage service jointly developed by DESY and Fermilab. It can manage

very large numbers of disks and supports various tape back-ends.

4.2. DPM
The LCG lightweight Disk Pool Manager (DPM) [12] is a complementary solution to the dCache

system. It focuses on manageability at smaller sites and therefore has been made easy to install and
configure. It only supports disk storage at this time.

4.3. BeStMan
The Berkeley Storage Manager (BeStMan) [13] has been developed by LBNL primarily to manage

disk storage, while also supporting HPSS as tape back-end.

4.4. StoRM
The StoRM [14] system implements a Grid storage solution based on parallel or distributed file

systems. StoRM is the result of a research collaboration between INFN and ICTP (International Centre
for Theoretical Physics, in Trieste, Italy) to build a disk-based SRM service on top of high-
performance parallel file systems and at the same time provide a pilot national Grid facility for
research in economics and finance.

4.5. CASTOR
CASTOR [15], the Cern Advanced STORage system, is a scalable, high throughput storage

management system that offers support for several tape back-ends.

5. The SRM Static and dynamic model
The definition process of SRM v2.2 has been quite long, involving many discussions around the

concepts of spaces, file copy management, and name space handling. Confusion arose from the
absence of a clear data model for SRM. The SRM was in fact specified in terms of its application
programming interface that reflected the requirements of storage system users. The need for a domain
analysis model was recognized later. The model described in [16] supplements the API and other
specifications with an explicit, clear and concise definition of its underlying structural and behavioural
concepts. Furthermore, this model makes it easier to define the semantics, helps service developers
and providers for a more rigorous validation of implementations, helps identifying unanticipated
behaviors and interactions.

6. The SRM testing suites
Another important aspect in the definition of a protocol and in checking its efficiency is the

verification against various implementations. The verification process helps to understand if foreseen
transactions make sense in the real world. It shows as well if the protocol adapts naturally and
efficiently to existing storage solutions. These reasons lead to setting up a test bed where real use cases
can be tested. In what follows we describe the design of a functional test suite to verify the compliance
of the implementations with the defined interface and their interoperability. In particular, an analysis
of the complexity of the proposed SRM interface shows that a large number of tests need to be
executed in order to fully check the compliance of the implementations to the specifications. An
appropriate testing strategy has to be adopted to allow a finite set of tests to provide a sufficiently large
coverage.

7. The S2 testing framework
In order to speed up the development of the testing suite, we looked for a testing framework with

the following characteristics:
• Support for quick development of single test cases

7

• Minimization of human coding errors.
• Plug-in support for external libraries such as an SRM client implementation.
• A powerful engine for parsing the output of a test program.
• Support for both parallel and sequential execution of testing units; support for timers at

instruction and test unit level.
• “self-describing” logging facility.

We examined several products available on the market based on the TTCN-3 standard for

telecommunication protocols. Such products often had the problem of being protected by license or
being too complex and very much oriented to the telecommunication world. In the end we focused on
S2 [17], a tree-based language with SRM 2.2 protocol support developed initially at RAL specifically
for executing tests.

An S2 tree consists of command branches. The S2 interpreter starts the evaluation of an S2 tree at
its root: the first branch without indentation. Branches are in relationship with other branches (parents,
children or disconnected). Together with a set of optional parameters, a specific action defines the
branch.

A fundamental action is the execution of an SRM command. The S2 interpreter recognizes a set of
expressions with a command-line syntax that exercise all the implemented SRM calls. The output of
an SRM command is stored in variables. By use of regular expressions, the occurrence of given
patterns in the output can be searched for.

S2 has allowed us to build a testing framework that supports the parallel execution of tests where
the interactions among concurrent method invocations can be tested easily. The S2 test suite has
allowed for the early discovery of memory corruption problems and race conditions. The coding of
such test cases required very little time (a few minutes).

8. The black box techniques
In order to verify the compliance of a specific implementation to a protocol a test-case-design

methodology known as Black Box or functional testing is often adopted. Functional testing is used
for:

• Validation: of the system against the explicit and implicit user requirements
• Consistency: checking for inconsistency, incompleteness, or inefficiency
• Verification: correctness of implementations with respect to the specification
• Performance and reliability

Exhaustive testing can demonstrate the correctness of the System Under Test (SUT). However,
such an approach is impracticable given the infinite number of test cases. Therefore, the Black Box
testing technique focuses on identifying the subset of all possible test cases with the highest
probability of detecting the most errors. The specifications are examined to find the input domain of
the system, the operating conditions that affect the system behavior and input-output relationships that
define how the system reacts to inputs under given operating conditions.

 The most popular black box testing approaches are Equivalence partitioning, Boundary-value
analysis, Cause-effect graphing and Error guessing [18]. Each of these approaches covers certain
cases and conditions but they do not ensure the identification of an exhaustive testing suite. However,
one of them can be more effective than the other ones depending on the nature of the SUT.

9. The S2 test families and results
The S2 testing framework and the described black box testing approaches [20] have been used to

design a test suite to validate the correctness of the implementations with respect to the protocol
established. We proceeded dividing the test suite in families that probed the SUTs with an increasing
level of detail. In particular, we have designed and developed six families of tests:

• Availability: the srmPing function and a full put cycle for a file are exercised.

8

• Basic: the test suite checks the basic SRM v2.2 functionality, testing that the expected status
codes are returned when passing simple input parameters. Here the equivalence partitioning
and boundary condition analysis is applied.

• Use cases: boundary conditions, exceptions, real use cases extracted from the middleware
clients and experiment applications are tested. The cause-effect graphing technique is used to
reduce the number of test cases.

• Interoperability: remote operations (servers acting as clients) and cross copy operations
among several implementations are exercised.

• Exhaustive: These tests check the reaction of the system when long strings or strange
characters are passed as input arguments or when mandatory arguments are missing or optional
arguments are improperly used.

• Stress: Parallel tests are used for stressing the systems, sending multiple requests, concurrent
colliding requests, space exhaustion, etc.

The S2 tests have been run typically 5 times per day against up to 21 SRM v2.2 endpoints running 5

different storage services with different configurations. The S2 test suite has been integrated in the
WLCG certification process. S2 has been used as well by the developers to check their
implementations and distributed to the USA Open Science Grid project for Tier-2 validation. The Test
families have been expanded continuously to cover new scenarios, new decisions taken at the protocol
level, and to check for discovered bugs or race conditions.

Figure 1 plots the results of basic tests for all implementations. The number of failures over the

number of total tests executed is reported over time. After a long period of instability, the
implementations converged on a large set of methods correctly implemented. We note that new
features and bug fixes introduced by the developers together with the addition of new tests produced
oscillations in the plot. Toward the end of the testing period the number of failures is almost zero for
all implementations. That is when large-scale testing can stop.

Figure1. Plot showing the number of failures/number of basic tests performed over a period of time
that goes from November 2006 to August 2007

9

10. Other tests
Together with the S2 families of test suites, other testing efforts contributed to the success of the

SRM v2.2 protocol. We explicitly mention the LBNL SRM-Tester written in Java, the only test suite
available since the first version of the SRM v2.2 specification.

Other testing efforts have contributed to:
• Check the status of the high-level WLCG SRM v2.2 clients such as GFAL, lcg-utils, FTS
• Verify the transparent access to storage independent of the protocol in use (SRM v1.1 vs

SRM v2.2).
• Experiment data access patterns.
• Verify the correct handling of VO specific proxies with VOMS groups/roles.
• Verify the compliance to user requirements and functionalities needed
• Check the availability of required bindings (C++, Python, Perl, etc.) and support for

mandatory platforms (Scientific Linux 4 in 32-bit mode, 64-bit mode later).
The main outcomes of these activities are:

• User documentation, education and training.
• Preparation for the integration of experiment frameworks with the SRM v2.2 environment.

11. Conclusions and related work
Storage management and access in a Grid environment is a rather new topic that is attracting the

attention of many scientists. Given the heterogeneity of the existing storage solutions with their
constant evolution and the complexity of the functionality required by Grid applications, a completely
satisfactory solution to storage in the Grid has not yet been proposed.

There are many attempts made in this direction. For instance, the “Grid storage” initiative
promoted by IBM and proposed in the Open Grid Forum's File System Working Group aims at
creating a topology for scaling the capacity of NAS in response to application requirements, and
enabling a single file system. However, the issue of offering a transparent interface to data stored on
different media with different access latencies and management technologies is not tackled.

The Internet Backplane Protocol (IBP) [19] aims at providing a virtual publicly sharable storage all
over the world. The main idea is to make an online storage available for public usage. Therefore,
quality of storage and transparent access to any kind of MSS is not normally a concern of IBP.

We have introduced the SRM proposed by the OGF SRM-WG that aims at proposing a control
protocol for storage management and access in the Grid. The SRM offers important functionalities
such as the possibility of dynamically reserving space of a certain quality, dynamic space and file
management, access to system optimization patterns, the negotiation of file access and transfer
protocols between client and server, optimized copy operations, uniform namespace management
functions, file permission functions, transparent data access, etc.

Designing a protocol and achieving a wide acceptance is a long and time-consuming effort that has
evolved in a strong international collaboration. The experience acquired with the design and
implementation of SRM v2.2 has allowed us to acquire fundamental knowledge in terms of protocol
design and specification techniques.

References
[1] Worldwide LHC Computing Grid Project Web site: http://www.cern.ch/lcg
[2] WLCG Site Functional Tests Web Page: https://lcg-sft.cern.ch/sft/lastreport.cgi
[3] OGF web site: http://www.ggf.org/
[4] The WLCG Baseline Service Working Group http://cern.ch/lcg/PEB/BS
[5] I. Bird, J. Andreeva, L. Betev, M. Branco, P. Charpentier, A. De Salvo, F. Donno, D.

Duellmann, P. Elmer, S. Lacaprara, E. Laure, R. Popescu, R. Pordes, M. Schulz, S. Traylen,
A. Tsaregorodtsev, A. Wannanen The WLCG Baseline Service Working Group Report v1.0,
24 June 2005 http://lcg.web.cern.ch/LCG/peb/bs/BSReport-v1.0.pdf

10

[6] The WLCG Memorandum of Understanding for a Grid Storage Service, FNAL, May 2006
http://cd-docdb.fnal.gov/0015/001583/001/SRMLCG-MoU-day2%5B1%5D.pdf

[7] https://twiki.cern.ch/twiki/bin/view/LCG/GSSD
[8] V. Ciaschini, A. Frohner Voms Credential Format http://edgwp2.web.cern.ch/edg-

wp2/security/voms/edg-voms-credential.pdf
[9] A. Shoshani, P. Kunszt, H. Stockinger, K. Stockinger, E. Laure, J.-P. Baud, J. Jensen, E. Knezo,

S. Occhetti, O. Wynge, O. Barring, B. Hess, A. Kowalski, C. Watson, D. Petravick, T.
Perelmutov, R. Wellner, J. Gu, A. Sim Storage Resource Management: Concepts,
Functionality, and Interface Specification, GGF 10, The Future of Grid Data Environment,
9-13 March 2004, Humboldt University, Berlin Germany

[10] A. Sim et al., SRM v2.2 Specification, 2 April 2006, http://sdm.lbl.gov/srm-
wg/doc/SRM.v2.2.html

[11] M. Ernst, P. Fuhrmann, T. Mkrtchyan, J. Bakken, I. Fisk, T. Perelmutov, D. Petravick,
Managed data storage and data access services for Data Grids CHEP, La Jolla, California,
March 2004

[12] LCG Disk Pool Manager (DPM): https://twiki.cern.ch/twiki/bin/view/LCG/DpmAdminGuide
[13] A. Shoshani, A. Sim, J. Gu Storage Resource Managers: Middleware Components for Grid

Storage, 9th IEEE Symposium on Mass Storage Systems, 2002
[14] E. Corso, S. Cozzini, F. Donno, A. Ghiselli, L. Magnoni, M. Mazzucato, R. Murri, P. Ricci, H.

Stockinger, A. Terpin, V. Vagnoni, R. Zappi. StoRM, an SRM Implementation for LHC
Analysis Farms, Computing in High Energy Physics (CHEP 2006), Mumbai, India, Feb. 13-
17, 2006.

[15] CASTOR: CERN Advanced STORage manager - http://castor.web.cern.ch/castor
[16] F. Donno, A. Domenici, A Model for the Storage Resource Manager, ISGC 2007, International

Symposium on Grid Computing, Taipei, March 26 . 29, 2007
[17] F. Donno, J. Mençak The S2 testing suite 15 September 2006, http://s-2.sourceforge.net
[18] G. J. Myers, C. Sandler (Revised by), T. Badgett (Revised by), T. M. Thomas (Revised by) The

ART of SOFTWARE TESTING 2 edition, December 2004, ISBN 0-471-46912-2
nd

[19] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and R. Wolski The Internet Backplane

Protocol: Storage in the network in Network Storage Symposium, 1999.
[20] F. Donno, Storage Management and Access in WLHC Computing Grid, Ph.D. Thesis,

University of Pisa, May 2006, http://etd.adm.unipi.it/theses/available/etd-07122007-101513/

