Electroweak Symmetry Breaking without Higgs Bosons at LHC

Pierre-Antoine Delsart
on behalf of ATLAS and CMS collaborations

Université de Montréal L.A.P.P. (Annecy)

Susy07 conference, Karlsruhe

Introduction

We investigate the alternative scenarii to the EW symmetry breaking by the Higgs mechanism

Several motivations

- No Higgs yet discovered
- Theoretical annoyances: hierarchy, naturalness, triviality
- Higgs potential is ad-hoc (why a fundamental scalar?), Yukawa couplings are ad-hoc...

Alternatives studied at LHC

- Technicolor (strong dynamic symmetry breaking)
- Chiral Lagrangian (generic parametrization of new physics)
- Warped Extra-dimensions (Symmetry broken by boundary conditions)

The Detectors & the LHC

Large Hadron Collider: p-p collision at √s=14TeV, high luminosity up-to 10³⁴cm⁻²s⁻¹ (10¹³ bb, 10¹⁰ Ws, 10⁸ tt, 10⁶ Higgs per year)

2 multi-purpose detectors with different concepts:

ATLAS: A Toroidal LHC ApparatuS CMS: Compact Muon Solenoid

Technicolor models

Technicolor in short

- A new strong interaction, new technifermions, mimicking QCD at higher E
- Dynamic symmetry breaking: 3 Goldstone bosons (or technipions) are "eaten" to give mass to W,Z bosons.
- QCD \leftrightarrow TC SU(3) \leftrightarrow SU(N_{TC}) $<qq>\sim \Lambda_{QCD}^{3} \leftrightarrow <TT>\sim \Lambda_{TC}^{3}$

- Advantages : dynamic EW breaking (not ad-hoc), free of naturalness & hierarchy problems

But: Mass of fermion? Agreement with data (EW precision constraint)?

Extension of Technicolor

- Extended Technicolor: color & technicolor are subset of higher group.
 Massive fermions but allow FCNC
- Walking TC: slow running of couplings raises <TT> masses & prevent FCNC
- Topcolor assisted TC: new interaction for 3rd family contributes to top mass

Technicolor in CMS

A "straw-man" model is considered : phenomenology of lowest technihadrons in the color-singlet sector : π_{TC} (pseudo-scalar) and ρ_{TC} , ω_{TC} (vectors)

$$\rho_{\rm TC} \rightarrow \cos^2 \chi \langle \pi_{\rm TC} \pi_{\rm TC} \rangle + 2\cos \chi \sin \chi \langle \pi_{\rm TC} W_{\rm L} \rangle + \sin^2 \chi \langle W_{\rm L} W_{\rm L} \rangle$$

K. Lane hep-ph/9903372

Signal channel : $qq \rightarrow \rho_{TC} \rightarrow WZ \rightarrow 3lept + \nu$ cleanest channel scan of several masses of ρ_{TC} , π_{TC} .

Main backgrounds

WZ : 0.38pb

ZZ : 0.07pb

Zbb : 330pb

tt:: 490pb

P. Kreuzer CMS Note 2006/135

The Analysis

Event production

- Signal & backgrounds events generated with Pythia 6.2 (+comphep for Zbb)
- Detector simulation/reconstruction with CMS fast simulation FAMOS
- Pile-up addition according to low luminosity at 2x10³³cm⁻²s⁻¹
- Fast-sim validated against full-sim for a test point at m(ρ_{TC}), m(π_{TC})=300 GeV

Event reconstruction

Reconstructed leptons: 3 highest-pt, isolated, $P_{T}(1,2,3) > 30,10,10$ GeV

Z Reconstruction: same flavor, opp. charge, |mII - mZ| < 7.8 GeV

W Reconstruction: 3^{rd} lepton+Etmiss, choose solution with min $p_z(v)$

W,Z kinematics : $|\eta(Z) - \eta(W)| < 1.2$ $P_T(Z), P_T(W) > 30 GeV$

Analysis: illustrations

Pt distributions keep cuts low to preserve exponential shape

Analysis results

- Fit performed on final mass distrib (signal: gaussian pdf, bg : expo pdf)
- Sensitivity computed from likelihood : $S = sqrt(2 ln (L_{S+B}/L_B))$
- Repeat several 'MC experiments' to get average sensitivity for each point

Systematic uncertainties estimated from full sim studies

- missing Et
- fake leptons in Bg
- lepton ID
- ⇒ Effect on significance ~ -11%

Effect from NLO cross-sections

~ -6%

Vector Boson Scattering

For alternative scenario to Higgs mechanism, Vector Boson Scatering (VBS) is of crucial importance

$$a_0^0(\omega^+\omega^- \to \omega^+\omega^-) \stackrel{s << M_h^2}{\longrightarrow} -\frac{s}{32\pi v^2}$$

$$a_0^0(\omega^+\omega^- \to \omega^+\omega^-) \stackrel{s>>M_h^2}{\longrightarrow} -\frac{M_h^2}{8\pi v^2}$$

In no higgs scenario when (√s>1.7TeV)

or even in too heavy Higgs scenario (M_H >870GeV) ...

... VBS processes lead to pertubative unitarity violation

This is non-physical so we MUST see new physics here

Chiral Lagrangian models

A generic low-energy effective theory

- expanded in terms of EW Goldstone boson fields
- new physics parametrized through coeff. of higher order operators
- lowest dimension (4) operators contribute to VBS with 2 couplings a & a s

Higher order terms suppress unitarity violation. Assume nevertheless a unitarization procedure inspired from QCD pions scattering (Pade procedure)

Warped Extra-dimension

Csaki et al. hep-ph/0308038 Cacciapagila et al hep-ph/0409126

A more recent model

- 2 branes at different energy scale
- Separated by a warped ED on which SM fermions are localized

EW symmetry broken through boundary conditions

... also give mass to fermions according to their position in ED

Resonances through KK excitations of vector bosons

<u>Analysis in Atlas</u>

Signal

focus on WW, WZ scattering in ChL model

xsection for ~1TeV resonance

WW : 50-100 fb

WZ : 1-10 fb

Main Backgrounds

irreducible qq → VVqq reducible ttbar

W/Z+Njets

4pb

700pb

60/25 pb and+

High p_T bosons

Few/no jets in central region (no colour exchange)

Forward tag jets

SM irreducible bg

Essential cuts

High Pt, isolated leptons -> V reconstruction

High Pt jet(s) -> V reconstruction

Forward Jet tag

Jet veto

Mass cuts (V mass, resonance)

WW analysis in Atlas

WW \rightarrow qql ν fast (ATLFAST) simulation study : signal & w+jets, ttbar generated in Pythia Work being compared with full simulation, Alpgen

	Total o	after even	er event selection (fb)	
Signal scenario	Signal	ttbar	W+jets	S/√B for 30 fb ⁻¹
Scalar (A)	1.05	0.04	0.28	10.17
Vector (B)	0.70	0.04	0.28	6.78
Scalar + Vector (C)	1.33	0.04	0.28	12.88
Continuum (D)	0.47	0.04	0.28	4.26

WZ Analysis in Atlas

First fast-sim analysis in WZ→ jjll channel

Full-sim in 3 decay channels : jjll , jjlv ,lllv

Generation : Pythia(signal)
 Madgraph (qqWZ bg)
 MC@NLO (ttbar bg)
 Alpgen (W+4jets)

- Full Atlas simulation/reco

Expected sensitivity:

1.15 TeV resonance 100fb^{-1} in WZ \rightarrow jjll, lvjj channels 300fb^{-1} in WZ \rightarrow lllv channel

750 GeV resonance 100fb⁻¹ in WZ → jjll channel Atlas Note com-phys-2006-041

Experimental challenges

Previous/current full-simulation analysis allow to identify experimental challenges related to VBS studies

Jets importance

 High Pt VB produce large jets with sub-structure

Reconstruction issues

Bg rejection criteria

Tools development such as "Ysplitter"

(Y ~ Kt distance between subjets inside a jet)

Jet Tagging / veto-ing (important cuts)
 Pile-up effects

Difficult experimental backgrounds

W/Z+jets: theoretical uncertainties, mis-identification...

Next important focus in work plans

Conclusion

Electroweak symmetry breaking is still NOT understood. Several alternate models are seriously under study at the LHC

Atlas & CMS expect to be sensitive to a wide parameter space

- Starting at a few fb-1 in technicolor models
- from 30 fb⁻¹ at typical points of the generic Chiral Lagrangian model
- Studies have stressed out key difficulties of the analysis: work is now focusing on these points

We expect very exciting discoveries if no Higgs is found!

Back-up slides

CMS Sensitivity for TC including systematic errors

Relative systematic uncertainties on SM BG:

- accuracy of lepton
 efficiency
 determination
 n: 2.7%
- accuracy of fake rate determinatio n: 8.5%
- absolute E_T^{miss} energy scale: 6.6%

ATLAS TDR Technicolor study with ZW final state

- Considers only the largest background (ZW).
- Lepton reco. eff. assumed 100% (it is more like 90%).
- Similar selection criteria to CMS study, but without Δη_{zw} cut.
- Cut on ρ_{TC} helicity.

Azuelos et al. Atlas Note phys-99-020

Detailed cuts WW analysis

- Leptonic W: highest-p_T lepton + E_T^{miss}
- Hadronic W: highest-p_T jet(s)
- top cut: reject events with m(W+jet)~m_{top}
- tag jets: more outward than Ws
- $p_{\tau}(WW+tag\ jets) \sim 0$:
- central jet veto:

- Cut at p_T^W>320GeV
- \rightarrow Cut at p_Tw>320GeV, m_w±2 σ
- 140 < m(W+jet) < 270GeV</p>
- > E>300GeV, |η|>2.5
- p_⊤(WW+tag jet) <50GeV</p>
- \geq 1 extra jet, p_T> 20GeV

Detailed cuts WZ analysis

Leptons Id, isolation, Pt cut (15 GeV)

Vector Boson Mass cut (± 15 GeV), Pt cut (59GeV), $\Delta \Phi(W,Z) > 1.0$

Forward Jets 2 required, E>200 GeV, Pt>15 GeV, $\Delta \eta$ >4

JetVeto No extra central Jet, No b-jet

Resonance Mass cut: ±150GeV