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Preliminary results of B, in the static limit from tmQCD Filippo Palombi and Mauro Papinutto

1. Introduction

Currently, theoretical determinations of the mixing paedensBg, (q = d;s) are becoming
more and more urgent in relation to the Unitarity Triangl@lgeis. TheB-parameters are defined
as the relative deviations from the Vacuum Saturation Agipnation (VSA) of the matrix elements
of AB = 2 four-fermion operators betwedimeson states, i.e.

0 _/508=-2 R0+

Bo -
3 'By' ' Bq

They encode the low-energy information related to pad#siéparticle oscillations and are for-
mally accessible to lattice QCD simulations. Neverthelesdirect computation oBg, is ham-
pered by the presence of the large value oflifguark mass, which imposes the adoption of tiny
lattice spacingsa 1=(5GeV)) in order to avoid large lattice artefacts. A possible wayisub
expand theB-parameters in Heavy Quark Effective Theory (HQET), i.einverse powers of the
b-quark mass. The leading contribution, also known as théc sipproximation, is expected not
to be far from the relativistic value, as previous latticeuks have shown. Even so, the naive lat-
tice discretization of the effective four-fermion openmatof the static theory, based on Wilson-type
light fermions, is affected by a non-trivial renormalizati mixing, due to the explicit breaking of
chiral symmetry, which pushes the numerics up to the edgaio€arrent technology. Although
Ginsparg-Wilson fermions appear as the natural discridizao study left-left four-quark opera-
tors, we follow a computationally cheaper approach, basetivisted mass QCD (tmQCD}][1],
which allows for purely multiplicative renormalization the same computational cost as with Wil-
son quarks.

OF %= oy ¥Wq oy ¥ - (1.1)

2. Computational strategy

Our starting point is the equation relating the left-lefeagtor of the fully relativistic theory
to the four-fermion operators of HQET,

1
O (M) = Cy(Mp;1)Q (M) + Co (My;1)Q2 (U)+ O o (2.1)

Q1 = ﬁ\?\t/afAA_ U_lhyuq-’q ‘I’HVqu + ‘ﬁhVuVS‘l’q ‘I’HVuVS‘/-’q ; (2.2)

Q= O3, = (Ghg) Wrdg)+ WhysWq) rysig) (2.3)

Eqg. (2.1) has to be understood as a scheme dependent peviurpatching between two renor-
malizable field theories. The coefficierts known at NLO in theMS/NDR scheme[]2], provide
the RG evolution from the defining scats, of the effective theory down to a scgle 1 GeV.
Although a natural hierarchy < my has to be assumed in the matching equation, it should be
observed that, due to the renormalizability of the statéotly, the four-fermion operatof3; p are
perfectly defined at any scale. In particular, they can beupeatively evolved up to the RGI point

through the appropriate 2 2 static anomalous dimension matrix, i.e.
" # " #
RGI
Ql _ é(IJ ) Ql (“ )

%° T @4
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wherec(u ) will be defined later.
The advantage of introducing RGI operators is twofold. Gndhe hand, they are truly non-
perturbative quantities, free of systematic uncertaintedated to perturbative truncations. On the
other, they are regularization independent. As such theyedinked to any specific lattice regular-
ization, to be chosen on the basis of computational conmegieA simplification of the renormal-
ization pattern is achieved if we perform a change of bagswe introduce the primed operators
" RGI # " RGI # " # " RGI # " RGI #
Q Qi 10 Q¢ _ &

(2.5)

QERGI Q?Gl_i_ 4Q§GI 1 4 QSGI Q;GI

This redefinition becomes particularly advantageous onldhieee if the relativistic degrees of
freedom are discretized according to tmQCD at full twise, i.with twist anglea = n=2 [f].

In particular, from now on we consider the specific case ofBkeneson, for which we assume a
fermion content made of a static quark plus a twisted strapngek belonging to a fully twisted
(c;s)-doublet. Lighter degrees of freedom, i.e. the up and dovarle) do not need to be further
specified, since they do not enter the valence skctor tmQCD the operator@%2 are mapped
onto their odd parity counterpart@fz, which renormalize purely multiplicatively, as proved in
[B]. In other words, with some abuse of notation

HQFf!i= lim 2} 1 (G0 @)h2F @)ingco 7
QS = lim Z ey (G0 @25 @)igmaco (2.6)
where
2] = On.n = Uhulq GryuysWq + hVuvsWq Ghvulq i (2.7)
23 = Omon + 40psso= UnYully GnVuysWq + Unyu¥slq Pnvulq +

A1(PnysWq) Wrtg) + (Untg) WrysW)] - (2.8)

The RGI renormalization constaniﬁRG, (k= 1;2) have been recently obtained in the quenched
approximation [[4] through finite size techniques based @enSbhrédinger functiona[][5]. Since
the latter allows for the adoption of mass independent selsethe computation (ff@RGl has been
performed with standard (untwisted) Wilson fermions. Alipninary study of the non-perturbative
renormalization folN; = 2 has been also presented at this conferefjce [6].

3. Non-perturbative renormalization in the Schrédinger functional

In order to study the renormalization of the four-quark @ers, we consider a theory with a
light quark sector consisting of two massles@@mproved Wilson-type quarkgy; ;. ) entering
the four-quark operators, plus a third light spectator gupyd, regularized in the same way, whose
réle will be clarified in a moment. Suitable renormalizatioonditions can be specified in terms of

IThis freedom allows to extend the present strategyte 2 with any kind of dynamical sea, without incurring in
mixed action issues, such as the adoption of differentkatiégularizations for valence and sea quarks.
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SF correlators made of bilinear boundary source operatggs 22132 (lying resp. on the two time
boundariesq = 0 andxg = T)

Sas M= 8y 4 X5 ) ; 2oe M 1= 25 00reg ) 5 (3.1)
Xy Xy

and the four-fermion operator8; 12- Due to the flavour and parity structureﬁﬁz, zero-momentum
correlators need at least three bilinear boundary soufiaes.bilinears are placed & = 0 and the
third one atxg = T. Their product gives rise to a generalized source

W 1A 2 3]= ZinlM1 FoslM2 By Mal; (3.2)

which is parity-odd under five different choices of the Diraatricesl 1, ', andl3, i.e.

SO e 7@ = eim? M Y1

=1

ENE

1
6,

3
S W v (3.3)
k=1

Wl

3
Z Yk iYs ik ] y(S):

OOII—‘

1 3
@) _ — @4) _
S = 3 Z Vsikikl; L =

All of the above sources have the same quantum numbﬁ@and can be used as probes within
the correlators

ZE x0) = L 320 x).7 )1 (3.4)

Nevertheless, their renormalization is non-trivial anduiees the introduction of multiplicative
renormalization constants to absorb the additional ldgawic divergences of the boundary fields
from Eq. (3:4). To avoid this, we introduce some boundardandary correlators

1
f' = ﬁhzo Vs Bnalys i ; (3.5)
o oy L ; 3.6
1= 5% Pl ; (3.6)
I 13
k1 = @kzlhzlz[yk EZlM(]l; (3-7)
and use them in the ratios
ZE %)
0 00) = <oy (3.8)

FE 42 o gl p i

in such a way that the additional renormalization factorthefboundary sources in E{. (3.4) drop
out. The parametensr in the exponent oﬂ‘{' and k! can be freely chosen without changing the
flavour content of the denominator and, in what follows, il teike valuesa = 0;1=2.

Renormalization conditions, formulated in terms of theasahlis; (Xo ), read

e @oitt  1=L)H (T=2)= h&) (T=2)4,-0 ; (3.9)
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whereT = L, no background field is introduced and the &Fangle [J] is set t®@ = 05. In our
simulations we adopt four different lattice discretizasoof the heavy quark action, i.e. the stan-
dard Eichten-Hill one[]8] and its statistically improvedsens where the naive parallel transporter
is replaced by a smeared APE, HYP1 or HYP2 gauge [ihk [9]. Heweén this talk we only report
on results with the HYP2 action, i.e. the one with the bestaigo-noise ratio. Out of the plethora
of renormalization schemes that can be defined by [EJ. (3@)xheose our preferred ones to be
s;a)= (1;0)fork= lands;a)= (3;0)fork= 2 (cfref. ] for further details), thus eliminating
the indicessanda from the notation.

4. Renormalization group running

The formal solution of the Callan-Symanzik equation redatee scheme-dependent RG run-
ning operator2, (1) to the renormalization group invariant on&,) .,

( 1)
5 y©'=2bo 7 )
(M) g yg) .
2 = 2oy TH ex dg *= Ik _ 20uéu); (4.1
k rol = Zk(H) —7 - P 99 B g kMG 5 (4.1)
whereg(u) is the scheme and scale-dependent renormalized coupling.g@al is to compute
& (1) non-perturbatively. In practice the strategy we follow ds dplit perturbative and non-
perturbative contributions at a high renormalization e¢at,

Dk RGI — Ex (Hpt Wi (Upt iHnad) 2K (Hnad) 7 (4.2)

whereU 2 (Upt itlhad) & (Hnad)=Cp (Lipt ) represents the evolution of the renormalized opera@jtg: )
from the low-energy hadronic scalg,qto the high-energy perturbative scalgg  thag. Our first
task has been to compute it non-perturbatively. Since itfiedlt to accommodate scales which
differ by orders of magnitude in a single lattice calculafidt is useful to factorize the evolution
and adopt a recursive approach. Accordingly, we introdineesb-called step-scaling functions
(SSFs)oi and o, which describe the change in the renormalization constand the gauge cou-
pling respectively, when the energy scalés decreased by a factor of two,

owu)= g (u=2); u Fu);

O/ oAy o
o) = U2 ;u=2) L= lim 2(go au=2) m

—_ limZyguau) ; 4.3
a' 0 ,,@i(o(go;au) u @u) a!'o kUzap) (4.3)

andgg denotes the bare coupling. Having computed the SSFs forueseq of couplingsi ;i =
0;1,2;:::;n 1, we can construct the non-perturbative evolutiﬁ[?”uhad;uhad) from the product
of SSFs
( 01 ) 1 o
U\ 2" thadiHhad) = rLGk U) 7 U=0"R"Ypaq) : (4.4)
i=

In the present computatigm,aq is taken to be a few hundreds of MeV and we have chosers8,
so that we could trace the evolution non-perturbativelyr theee orders of magnitude. In this way
Upt  2Unag is large enough to allow for a perturbative evaluationcpfLiy) with the operator
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anomalous dimension approximated at NI [3]) and #hinction at NNLO [I]L]. The relation
between the RGI operators and the bare lattice ones defiadstét RGI renormalization factor

Dk RGI = ZIS,RGl(go )2¢ @) : (4.5)
A comparison between Ed. (4.2) and Hq.|(4.5) leads to

Zdr61(G0) = € (Upt U (Hpt iHhad) 2 (Do ialhad) : (4.6)

The factor,,@’](o(go ;alhag) Must be determined for each operator in a lattice simulaidixed tpag
for arange of bare couplings, using suitable renormabretonditions. In our simulations we have
Unad= 1=2Lmax) 270 MeV wheremaxis fixed through the conditiog2-(1=Lmax) = 3480. This
corresponds to havinbmax=ro = 0:718(16) (ro = 05fm) [L0]. The sequence of couplings =
Q§F(2 "Lmax) is obtained by solving the recursion relation= 3480,0 (. 1)= u, | = 0;1;:::.

5. Continuum extrapolation of the step scaling functions

The lattice SSF&x must be extrapolated to the continuum limit (i.e. vanishagg) at fixed
gauge coupling in order to obtain their continuum countegaa. Since the four-fermion operators
have not been improved, we expect the dominant discraiizatffects to be @); therefore our
data should exhibit a linear behaviouraaL. Accordingly, we have fitted to thensatz

2xu;a=L)= o)+ pu)@=L): (5.1)

Fits have been performed using either four values of thécéatpacing, i.e.L=a= 6;8;12;16
or, alternatively, without taking into account the coatsdstal =a = 6, which may be subject to
higher-order lattice artefacts. The results from threed &ur-point fits are always compatible
within one standard deviation for all operators and schers@ge for a few exceptions in which
the agreement drops at the level of 1.5 standard deviatiohs &Ve have therefore decided to
choose the three-point based linear extrapolations taextur final estimates afi. The resulting
continuum limit extrapolations for our preferred renorimation schemes are illustrated in Ffg. 1.
The maximal statistical uncertainty faf, is 15% and is found at the largest value wfvhen
discarding data dt=a = 6. The values op obtained in the fits of2{ are always compatible with
zero within the statistical uncertainty, while in the ca$e2j they are not compatible with zero for
us& 2, thus signalling a stronger dependence upon the cut-off.

6. Non-perturbative RG running in the continuum limit

In order to compute the RG running of the operators in theioaotm limit as described
in section|}1, we need to fit the results fog (u) to some functional form. We follow the same
procedure as for the renormalized quark mask [12], i.e. wptatie polynomial ansatz

M
ocu)= 1+ z snu™ ; (6.1)

m=1
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Figure 1: Continuum limit extrapolation of the SSBg (with s= 1;a = 0) andX; (with s= 3;a = 0) at
various SF renormalized couplings computed using the HdRR2 ¢ discretisations of the static action. The
SF couplingu increases from top-left to bottom-right.

with M = 2;3;4 ands; always & possibly) set to its perturbative value
si= 'In2 ; = y¥In2+ <y3°’> + boy® (n2)? : 6.2)

It is worth mentioning that i, is fitted as a free parameter, it turns out to lie in the bakpafr
perturbation theory. The RG running factt(fnad) = € (2" Hhad)J (2" HhadiHhad), Which is now

a function of the fit parameters only, can be obtained with ragete control of the systematic
effects. We have indeed checked that its value is fairlyrisgize to the fit ansatz and to whether
S, is set to its perturbative value or not. We choose to quotaiafimmal results those obtained with
M = 3, s fixed by perturbation theory arsd, s3 kept as free parameters.

In practice, due to constrains imposed by Heavy Quark SpmrBgtry, the number of inde-
pendent SF schemes f@, is downgraded to four fok = 1 and to eight fok = 2. These lead to
total RGI renormalization factors which are scheme inddpehapart from @a) lattice artefacts.

The main criterion to define suitable schemes amounts tokafgethat the systematic un-
certainty related to truncating the perturbative evolutfactorc} (uy) of Eq. (4.2) at NLO in the
anomalous dimension is well under control. This in turn isEgian estimate of the size of the
NNLO contribution tocf (pt). To this purpose we have re-computeiLiy) with two different
values of the NNLO anomalous dimensiog’: in the first case we sef.” =y 5= =4

in the second case, we gu%Q@) by performing a one-parameter fit to the SSF veihs, flxed by
perturbation theory, and equating the resulting valus; @b its perturbatlve expression

0(0)

3= ykz’InZ + yk 'y 2b0 'y b1y (In2) +

+ % 3+ by ()2 bgylf“’ In2y3: (6.3)
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For the operator2?, we find that in either case the central value of the commnad‘jg (Uhad)

& (Hpt U (pt ;Hnad) changes by a small fraction of the statistical error, of thieo 01-03 stan-
dard deviations (depending on the renormalization scherfie) the operator2J, which carries
relatively large NLO anomalous dimensions, the effect cam®large as 8—10 standard devia-
tions. Therefore, we add tc (Linag) @ corresponding systematic uncertainty of this order. & ha
to be stressed that the impact of this extra uncertaintyeateel of theB-B mixing amplitude is
not particularly worrying, since the matrix element.8f enters the latter only at @s), when the
static-light theory is matched to QCD. The results for thé&$8nd the operator RG running in the
reference schemes (see the end of Selion 3) are illusiratédure[p.

1.05 m 1.06 T T T E\ ]
2 E SR SO S S
100~ ] B S 2t S r e A ]
095 [ iiﬁg 1 o9 [ ) &
2 r ;iii 1 32 r ]
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Figure 2: Upper plots: the step scaling functioas, (discrete points) as obtained non-perturbatively. The
shaded area is the one sigma band obtained by fitting thesptoiat polynomial. The dotted (dashed) line
is the LO (NLO) perturbative result. Lower plots: RG runniuig,@fi obtained non perturbatively (discrete
points) at specific values of the renormalization sgalén units of A. The lines are perturbative results at
the order shown for the Callan-Symangfikfunction and the operator anomalous dimension

7. Matching to hadronic observables

The RGI operator is connected to its bare counterpart viatated renormalization factor
ZERG, (@o) of Eq. (@.6). We stress th&?ERG, (go) is a scale-independent quantity, which more-
over depends upon the renormalization scheme only viafoetfeicts. Indeed, it depends on the
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k s & (Hnad) ay (o Ck
1 1 0777(17) 05731(11) -0.171(11) 0.082(25)
2 3 0675(12) 0.7258(14) -0.061(14) 0.016(33)

Table 1: Runningcﬁ (Unhad) (With thad= (2Lmax) 1) and fits to the total renormalization factor of @4.6.

particular lattice regularization chosen, though only thia factor,,@io(go ;alhag), the computation
of which is much less expensive than the total RG runningfagt(tnad)-

We have compute&ﬁ(o(go 7Alhad) ; Mnad= 1=(2Lmax) Non-perturbatively at four values @gffor
each scheme and four-fermion operator, and for the fouemifft static actions under considera-
tion. The total renormalization factors are obtained upaittiplying by the corresponding running
factors on third column of Tablg 1. Polynomial interpolasoof the form

Zlpei @)= a+ (B 6)+ B 6F; (7.1)

can be subsequently used to obtain the total renormalizdgictor at any value of within the
covered rangg60 [ 65). We provide in Tab[¢ 1 the resulting fit coefficients for the PY
action in our reference renormalization schemes. Thesametrizations represent our data with
an accuracy of at least®%. The contribution from the error in the RG running factof§able[1
has not been included: since these factors have been caiputee continuum limit, they should
be added in quadratuwter the quantity renormalized with the factor derived from H§1§ has
been extrapolated itself to the continuum limit.

8. SF correlators for the bare matrix elements

In order to simulate the physical matrix elements neededHeB-parameter, we adopt a
formalism similar to the one described in the previous sest where the heavy quark field is
described by the HYP2 static action, while the light quarldfie described by the tmQCD action
including the Sheikoleslami-Wohlert term with non-pebatively definedcsy,. The interpolating
operators of thd&s- and Bs-mesons are provided by the boundary soumsandzgﬁ. Correlation
functions are then constructed by inserting a bilinear asua-fermion operator in the bulk of the
SF. Accordingly, the building blocks of the computation gheen by

ad ad
B0) = — 3 Xns0)Zshi ; fXo)= - > g X ()1 ; (8.1)
X X

Fe(x0) = 8y B Ygis () Zsni ; (8.2)
X

whereX = AZ\S®tandY = 29,. To be precise, the extraction of tBeparameter of Eq.[(1].1)
requires that the matrix elem(—:‘ntsﬁlf2 be normalized by the square of the decay matrix element
of the B:-meson mediated by the static axial current. Since therlatteotated at full twist into
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a linear combination of axial and vector currents, we obtam single contributions to thB-
parameter from the plateau region of the ratios

3 F.,JO(XO) .
Ro)= = i=12; (8.3)
8 2hy v X0) 1207 , (T xJ)J
where 1
v 00) = P Z32 30 xg) R 5 %0) (8.4)

The RGI axial constarﬂ:,f'tg(gI has been non-perturbatively computed[in] [14, 9]. The scalepen-
dent ratioZ$'%a =z is taken from [Ip]. We performed simulations = 60;6:1;62 with the
strange quark mass set to physical values af jn [16]. Lgtdacameters are collected in Taple 2.

9. Analysis of the excited state contaminations

The standard way to identify a plateau interval for a threevpcorrelation function such as
Eqg. (8.) is to analyse the exponential decay rate of theespanding meson propagatay ,,
obtained via the binding energy

B T L3 Ker K H
60 | 32 16° | 0135196 | 0435181 | 0028669
1 hy v @) 61 | 38 24 | 0135665 | 0135650 | 0028532
aEe X9)= =log ———— 9.1 : 3 : :
5109 M v 00 ) (9.1) | 62| 44 24 | 0135795 | 0135785 | 0022890

. . Table 2: Lattice parameters
This procedure may work only provided that the

lowest valuexd'", at which the fundamental state

is numerically isolated, fulfills the conditiof'™ < T=2. Correspondingly, the interva'™ ;T

xg“” Jcan be certainly used to extract the plateau value of thetpoint correlator. Unfortunately,
this is not the case, as shown in Figs. 3 fnd 4 (left): due teril mass gap between the lowest
and the first excited states in the static-light channel plhgeau starts at about the middle of the
lattice. Simulations at larger time extensions are indregyg expensive owing to the exponential
rise of the noise-to-signal ratio related to static propaiga Irrespective of this, the observabiRs

0.7 T T

T T T T
V =32x16° —E5— 0.8 V = 32x16° —E—
07
0.6 r (N ] peiy
> el a e e P0alaoEhasha,
Z 06
o
05
05 g0
. 0.4 [k} =[0:135181,0.0286685]
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28 Vv =32x16% 5
= 0.9
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[K,1]:=[0.135181,0.028669; [K,p]: = [0.135181,0.0286685]
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Xo/T Xo/T

Figure 3: The binding energy and the contributions to Bieparameter af = 6 0.
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are characterized by a very flat time dependence; exampgsavided by Figq]3 ar{d 4 (right). In
order to understand this behaviour, we perform an expardi&uys. [8.11,8]2) through the insertion
of complete sets of Hamiltonian eigenstates. Assuminglhige¢xcited contributions in the vacuum
channel may be disregarded, one easily arrives at the egston

n
gMm

p — (T XO)A(B) XOA(B)
R B(O,O)1+ 2 nsme 09) B'i(om fomGnme o @ X0l

« T %008 xoA®) i (9.2)
1+ z(n:m)é 00) fnmgnm(‘-‘ no @ o

whereA ™ = Ef®'  EP'is the energy gap between theh Hamiltonian eigenstatg ;B with the

guantum numbers of a stafBz-meson and the fundamental state. Moreover,

nm) _ m;BjQinn;Bi . (9.3)
' 8m;BAoD;0i0,0A;Bi '
Hg;Bim;Bigi m;B+ ;0iH0;04 ;Bi
g _ M isi G = Fod FomBi (9.4)

g PBiDBigi H0;BAoD0i10,0A0D;Bi -
Here igi represents the SF boundary state corresponding to thenaatithe bilinear sources
Eqg. (3:1) on the vacuum. In particular, one should obserag¢ Bﬁ‘m) represents a generaliza-
tion of the B-parameter, describing the particle-antiparticle mixofgexcited states. Numerator
and denominator of Eq[ (9.2) look quite similar. They onlffeti by the weighting coefficients
Zom = Bimm):Bi(op)_

The hypothetical conditiod,, 1 would act on the ratioR (Xg) as an additional damping
factor of the excited state contaminations, together with éxponential decays due to the mass
gapsAr(,Efn). In practice, what really matters for our concern is the fegtited contribution, because
already the second excitation is reasonably expected t@emwith the 0* glueball fomg
1:7 GeV). Data suggest thafp could be quite close to one.

0.7 T T T T T
V = 44x24° —H— 0.9 V = 44x24° —H5— 4

0.6 0.8

LT St e L

R1(Xo)

0.5

0.6

BZ62
0.5 [ [kl =[0:135785,0.02289
— 0.4 TKHE=|
£ S 01 02 03 04 05 06 07 08 09
K 0s - o ooEoEssEEsa0EE @
' BEE T T T
- LB -0.75 V = 44243 —8— ]
0.2 [5® 0.9
g 1o L S P
0.1 S, e Gy BIE it
B=6.2 : i
[k = [0.135785,0.022890 135 L B=62
0 [k.j] = [0.135785,0.022890]
01 02 03 04 05 06 07 08 09 15
X 01 02 03 04 05 06 07 08 09

Xol T
Figure 4: The binding energy and the contributions to Byeparameter af = 6 2.

Since the quantum state3;ni and B;0i differ only by their mass, we are led to speculate
about the mass dependence of the generalBapdrametersBi(”m). Although quantitative state-
ments are highly non-trivial, it is not difficult to identifst least one extreme situation where the

11



Preliminary results of B, in the static limit from tmQCD Filippo Palombi and Mauro Papinutto

limits z,m= 1 could be realized. This is a scenario in Whaﬁ’m) is weakly dependent upon the
mass of the external states. Bf'™ is close toB°”, then their ratio will be close to one. This
picture imposes no restrictions on the valuedgt”’.

An apparently different possibility is represented by th&A/ which impIiesBi(”’m) =1, and
consequently,m = 1. Though speculative, it is not unreasonable that the twleof the VSA
depends weakly upon the mass of the external states angg@wable in the end for the realization
of the above-mentioned scenario.

A quantitative check of the suppression of excited statdagnimations inRyp (Xp) would
be provided by the level of stability of the observed plaieander a variation of the boundary
interpolating operators. In the framework of the Schrodinfyinctional this possibility is explored
via the introduction of boundary wave functions likefin|[1@nfortunately, the computational price
required at present for the practical implementation of gearing technique amounts to giving
up one of the boundary summations of Hg.](3.1), with a coordimg increase of the statistical
error by a factor OF L3. The situation is even worse with a three-point correlatmhsas Eq.[(8]2),
which has interpolating sources on both boundaries. Incése the introduction of smearing wave
functions increases the statistical noise by a factoc®fwhich makes the check useless. This
problem can be hopefully overcome through the implememtatif a SF all-to-all propagator like
proposed in[[1g], 19, 0]. This is currently under way.

10. A two-state stochastic model

In order to have a qualitative view about the impact of largeiations ofz from one on
the time dependence & (Xp), we consider a two-state model. Here, the binding energytlzad

contributions to thé-parameters are described by the stochastic variables
(

1 1 pebto D

E@X;iT)= e+ §|Og 1 pedoorD ; (10.1)
1 Zpe A(XO)+ e AT Xo)

P ZXoiT)= ; (10.2)

1 pe by e AT %)

where p andA are differently distributed random coefficients, whd@nd e parametrizez;o and
EéB’. Obviously,A is meant to represent the energy gap of the first excited. Staben a two-state
analysis ofEgs (Xg), it is roughly known thatA  022(3). Therefore, we model this variable
according to a Gaussian distribution probability, i.e.

a ;' (h;op)= (022;003) : (10.3)

1
PA)= —p—ex
& op 21 P 202

On the other handp is supposed to represent the product of the matrix elemigtand g,
defined in Eq.[(9]4). Choosing a distribution probability thiis variable is delicate, because we are
largely ignorant about the projection of the SF boundariesigi onto the first excited statg ;Bi
and the decay constant of the latter. We can heuristicajpeetthat

HBAD01 mgfg
OBAD0L mefs

huo = (10.4)
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Nevertheless, if we believe thdgi is well projected onto{;Bi, then fip 0. In this case we
should choose a probability distribution pfpeaked aroungb = 0. By contrast, if we believe that
igiis a balanced mixture op;Biand ;B4 it follows that f;g 1. It makes sense to assume
a given sign forp and not to allow for fluctuations of the opposite sign. A fldgilistribution
probability allowing for a definite sign is the Log-normakttibution, defined by
( )
_ 1 inp p¥
P(p;p;0p) = — ex —_— 10.5
R T Hoo
Having producedN samplestAigi- 1.5 and£pig-1..n Of A and p, we approximate the ensemble
averages ofi ;o ;T )ande (e;xg;T ) via
(
. 1 N 1 pe Dixp 1)
1 N 1 ZpeAi(XO)+eAi(T Xo)
Ni; 1 pebiedT x

The ensemble averagésand.% are now functions of the distribution parameteranda,, which

can be varied in order to change the shape of the distrihu@ore of the worst cases we considered
is the one corresponding tp=  1-8;¢, = 1-4), i.e a Log-normal distribution peaked around
exp( p)’ 088. In the spirit of the two-state model, such a distributitascribes a large overlap
between the interpolating boundary state and the firstexahe. As shown in Fig] 5, the binding
energy resembles very closely the one of fjg. 3. The shapeée & parameter corresponding of
different choices of suggest that;o could be very close to one in the real case, thus supporting
our interpretation in terms of the VSA.

KH2ZXoiT)=1pEZX;T)i’

(10.7)

11. Conclusions

B® B° mixing remains among the most important processes thateapgred to pin down
the elements of the CKM matrix precisely. However, in ordeconstrain the unitarity triangle
sufficiently well and to look for signs of new physics, tha@al uncertainties associated with
hadronic effects must be reduced. In this talk we have redooh a new strategy for the com-
putation of the heavy-lighB-parameters in lattice QCD, based on tmQCD and HQET. Its main
advantage is the exact absence of mixing under renormalizawhich plagues standard Wilson
fermions, at the same computational cost of a Wilson-typelegization. We have described our
fully non-perturbative calculation of the relations bebmeparity-odd, static-light four-quark op-
erators in quenched lattice QCD and their renormalized ®oparts. We have also described our
first experiences with the computation of the bare matrirelets for theBs  Bs mixing and their
excited state contaminations. Before attempting a contiaxtrapolation of the matrix elements,
a deeper analysis of the excited state contributions has tiohe and we hope that the all-to-all

propagator, like proposed ifi [1B,]19] 20] will be of greathtiere.

References

[1] R. Frezzotti, P. A. Grassi, S. Sint and P. Weisz, JHEB8(2001) 058 [arXiv:hep-lat/0101001].

13



Preliminary results of B, in the static limit from tmQCD Filippo Palombi and Mauro Papinutto

06 T T T T 13 T T T T
€=0.396, T=32 —5— 2=0.88,T=32
2=0.96,T=32 —&—
z2=1.04, T=32 ——
12 z=112,T=32
0.5
1.1
A 0.4 o s A
- -eaEeaEeEEEEEE
[ =85 FEeE = %\A‘—\A AA,%
< =7 R s e
o = N e T TYY LE T TN
® =1 <3 v v
v 03 . v ;
o [
&
0.2 |
(p.0,) = (-0.125,0.25) 0.8 (p.0y) = (-0.125,0.25)
01 1 1 1 07 1 1 1
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
X/ T Xl T

Figure 5: The binding energy and the contributions to Bygparameter within a two-state stochastic model.

[2] G. Buchalla, Phys. Lett. B95(1997) 364 [arXiv:hep-ph/9608232].
[3] F. Palombi, M. Papinutto, C. Pena and H. Wittig, JHEG®8(2006) 017 [arXiv:hep-lat/0604014].
[4] F. Palombi, M. Papinutto, C. Pena and H. Wittig, arXiv0&74153 [hep-lat].

[5] M. Lischer, R. Narayanan, P. Weisz and U. Wolff, Nucl. PHy384(1992) 168
[arXiv:hep-1at/9207009].

[6] P. Dimopoulos, G. Herdoiza, F. Palombi, M. PapinuttoP€na, A. Vladikas and H. Wittig,
PoS(LAT2007)368 arXiv:0710.2862 [hep-lat].

[7] M. Luscher, S. Sint, R. Sommer and P. Weisz, Nucl. Phy47B(1996) 365 [arXiv:hep-lat/9605038].
[8] E. Eichten and B. R. Hill, Phys. Lett. B34(1990) 511.
[9] M. Della Morte, A. Shindler and R. Sommer, JHBB08(2005) 051 [arXiv:hep-lat/0506008].

[10] S. Necco and R. Sommer, Phys. Lett583(2001) 135 [arXiv:hep-ph/0109093].

[11] A. Bode, P. Weisz and U. Wolff, Nucl. Phys.5¥6(2000) 517 [Erratum-ibid. B500(2001
ERRAT,B608,481.2001) 453] [arXiv:hep-1at/9911018].

[12] S. Capitani, M. Lischer, R. Sommer and H. Wittig, NudiyB. B544(1999) 669
[arXiv:hep-1at/9810063].

[13] A. Hasenfratz and F. Knechtli, Phys. Rev6®(2001) 034504 [arXiv:hep-lat/0103029].
[14] J. Heitger, M. Kurth and R. Sommer, Nucl. Phys6&9(2003) 173 [arXiv:hep-lat/0302019].
[15] F. Palombi, arXiv:0706.2460 [hep-lat].

[16] J. Rolf and S. Sint, JHEB212(2002) 007 [arXiv:hep-ph/0209255].

[17] M. Della Morte, S. Diirr, J. Heitger, H. Molke, J. Rolf, Shindler and R. Sommer, Phys. Lett5B1
(2004) 93 [Erratum-ibid. B512(2005) 313] [arXiv:hep-lat/0307021].

[18] L. Giusti, P. Hernandez, M. Laine, P. Weisz and H. WittlglEP0404(2004) 013
[arXiv:hep-1at/0402002].

[19] J. Foley, K. Jimmy Juge, A. O’'Cais, M. Peardon, S. M. Rgad J. I. Skullerud, Comput. Phys.
Commun.172(2005) 145 [arXiv:hep-lat/0505023].

[20] M. Lischer, JHE®707(2007) 081 arXiv:0706.2298 [hep-lat].

14



