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The calculation of the magnetic field for an arbitrary-geometry air-core magnet is performed by numerous
computer codes. However, the accelerator scientist is often interested in the multipole content of the fields,
which can be difficult to compute accurately and to high orders for arbitrary coil geometry. Applying the
tools of differential algebra, a computer code has been devised that can compute arbitrary-order multipoles
and the changes in these multipoles as a function of the coil locations for air-core magnets.
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1 INTRODUCTION

Compact electron storage rings with superconducting dipole magnets are being built
as sources of soft x-rays for x-ray lithography.! In several of these designs the dipole
magnets are of the coil-dominated air-core variety. For example, the SXLS ring,
under construction at BNL, contains two 180° air-core superconducting dipoles with
a nominal field of 3.87 T. Because the machine is so compact, with a circumference
of only 8.5 meters, the dipoles must be “combined-function” magnets that contain a
gradient for vertical focusing and a sextupole component for chromaticity correction.
The field is generated by a set of coils shown schematically in Figure 1.

The magnetic field in an air-core magnet is given by the Biot-Savart Law,?

By =0 [ T M

where J() is the current density in the conductor and 7 is the observation point.

* Work performed under the auspices of the U.S. Department of Energy and funded by the Defense
Advanced Research Projects Administration
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FIGURE 1: Coil geometry for 180° air core superconducting dipole magnet

For a given coil configuration, the field can in principle be computed to the limits of
the computer’s precision, since there is no cumbersome mesh required as in an iron
dominated magnet. Numerous computer codes3 > exist to carry out air-core magnetic
field calculations. The difficulty remains in obtaining the correct multipole coefficients
and determining the sensitivity of these to the coil locations.

2 THREE-DIMENSIONAL NONISOMAGNETIC FIELDS AND MULTIPOLE
COEFFICIENTS

For the complicated coil geometry given in Figure 1, the magnetic field is truly
three-dimensional, the curvature of the magnet is large (p = 60 cm) and, for an air-
core magnet, the field is nonisomagnetic. The general expression for the midplane
symmetric magnetic field in curvilinear coordinates (z,y, s) is given by Brown and
Servranckx®. For the present purpose it suffices to write out the expression only to
second order in the transverse coordinates z and v,

By (z,y,s) = An1y + Apzy + - - (2a)
1 1
By(z,y,s) = Ao+ A1z + 51‘1129152 + '2—,1430!/2 + - (2b)
By(z )——1——[A + (20)
S >y7$ - (1+hl') loy
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where Al,n(s) = B"By(s)/(‘?m”, Ago(s) = —Alg — A12 — hAll, Am = dAlo/dS and
h=1/p(s).

The coefficients A; ,(s) = 0" By(s)/0z", are the multipole coefficients widely used
in accelerator physics; A;9 = Dipole, A;1 = Quadrupole and A;2 = Sextupole,
etc. There are two other types of terms in Equation (2): nonisomagnetic terms, for
example, Ajo; and combined function feed-up terms such as hA;;.

Several methods to obtain the multipole coefficients have been used in the past:
1. Numerical finite differencing to compute derivatives.
2. Fitting of the pointwise field data by polynomials in x and/or y.

3. Fast Fourier Transform (FFT) of the field on a circle surrounding the reference
trajectory.

Each of these methods suffers from drawbacks for nonisomagnetic combined-
function bending magnets.

Numerical finite differencing yields unacceptable results for all but the lowest order
multipole coefficients.

Typical problems encountered with polynomial fitting of data are as follows:
How many data points are required?
Over what range in z or y should the fit be applied? And,

What is the maximum order of the polynomial to be used?

Finally, the FFT method, which is best suited for straight multipole elements such as
quadrupoles or sextupoles, runs into trouble with the nonisomagnetic and combined-
function feed-up terms.

3 APPLICATION OF DA TOOLS TO FIELD COMPUTATIONS

What is really desired is to be able to obtain a Taylor series expansion of equation
(1) in z,y and s directly. This is precisely what the DA software of Berz’~2 can do.
In this way the multipole coefficients, the nonisomagnetic terms, and the combined-
function feed-up terms are obtained without any of the problems associated with the
above methods. We have written a computer code to perform these magnetic field
calculations and added DA capabilities to be able to compute the desired multipoles
throughout the magnet [A; ,(s)] and the changes in these multipoles due to positional
errors in the coil placement®.

The coils in the SXLS air-core superconducting magnet are constructed out of arcs
or straight sections of rectangular cross section. For a magnet constructed of arcs of
rectangular cross section with a uniform current density J;, the vertical field in the
midplane is given as a single numerical integral over the angular extent of the coil,
and the radial and vertical integrals in Equation (1) can be carried out analytically:
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FIGURE 2: Geometry of arc of rectangular cross section
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where r; and y; are the lower left hand coordinates of the coil location, w; and h; are
the width and height of the coils, respectively (see Figure 2). For a midplane symmetric
magnet the above sum need only be done over the top plane coils and the result is
simply doubled. A simpler expression, where all the integrals can be done analytically,
for a straight section of rectangular cross section is given in Reference 3.

From the point of view of the DA tools, the above expression is simply an analytic
function of several variables:

coils

By(z,71,91) ZJ d¢F &, x,T1, Y1) 4)
=1

The DA tools provide for arbitrary-order differentiation with respect to any of the
variables (¢, z;,7;,¥;). It must be noted that the derivatives are not computed as
numerical finite difference quotients, which would give very poor accuracy.
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4 MULTIPOLE COEFFICIENTS

The DA package can compute the Taylor coefficients, 97 B, (s), defined as follows,

z2 z3
By(x, ) = By(s) +x- axBy(s) + o1 aiBy(s) + 31 'aiBy(s) + )

where the 07 B, (s) are evaluated on the reference orbit and  is the deviation from the
reference orbit in the radial direction. The Taylor coefficients are simply the multipole
coefficients widely used in accelerator physics codes. The nonisomagnetic terms in
equation (2) are also directly computed as 07*07 By (s) for arbitrary m and n. For
a midplane symmetric magnet the other two field components, B, and B;, can be
obtained from the 0797 B, (s) or an expression such as equation (3) can be used with
the DA tools to produce these multipole components.

5 COIL POSITION TOLERANCES

The DA tools can also be used to compute the effects of coil positioning errors on
the various multipole by producing a Taylor series of B with respect to the position of
each of the coils, r; and y;, which serve as limits to the integrals in Equation (3). Such
a tool is very valuable to set limits on the coil positioning errors during construction
of the magnet. Table 1 shows some of the possible coefficients.

6 APPLICATION TO AIR-CORE SUPERCONDUCTING DIPOLE MAGNETS

The DA-equipped version of the Biot-Savart was used to layout the set of coils shown
in Figure 1 for the superconducting dipole magnet for the SXLS storage ring at BNL.
Figure 3 displays the calculated multipole components through the decapole term
for half of the symmetric magnet, the center of the magnet is taken as s = 0. Near
the ends of the magnets (s ~ 1 meter) where the field is highly nonisomagnetic
the DA-equipped version of the Biot-Savart law is particularly adept at extracting
the multipole coefficients as evidenced by the smooth, continuous behavior shown
in Figure 3.

TABLE 1: Effects of Coil Positions on Multipoles

Derivative Tolerance Coefficients
Or, By(s) Change of dipole field with r;
8y, 0L B,(s) Change of quadrupole with y;

8y, 03B, (s) Change of octupole with y;
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FIGURE 3: Multiple coefficients B(z,s)zz B, (s) z™/n!, vs. arc length for half of a symmetric 180°
magnet (center of magnet is at S=0, p=0.6037 m).
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FIGURE 3: (Continued)
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FIGURE 3: (Continued)

In Table 2 the multipole coeflicients at the center of the magnet are given as well
as the changes in these coefficients due to a 10-mil (.254-mm) deviation of the coils
from their ideal locations. The deviations were taken in a direction to maximize the
change to each of the multipoles independently and, in this case, to maintain midplane
symmetry.

TABLE 2:  Ideal Multipole Coefficients and Tolerances at the Magnet Center

Multipole Ideal A1;(0) A A;1; Coil Position
Ao [T] 3.87 +0.009

A1; [T/m] -1.05 +0.14

Ajg [T/m?] -9.1 +3.4

Ai3 [T/m3] -5.1 +100

Ay4 [T/m? 595.1 + 6,000
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7 CONCLUSIONS

The numerical computation of magnetic field multipoles and the effects of coil posi-
tion tolerances for arbitrary geometry air-core magnets is greatly facilitated by the use
of differential algebra software tools. We have developed a computer code to carry out
this analysis for air core magnets composed of straight sections and arcs of rectangular
cross section. The resulting code has been applied to the design of a superconducting
dipole magnets for a compact storage ring.
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