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APPLICATION OF THE PHASE COMPRESSION -
PHASE EXPANSION EFFECT FOR ISOCHRONOUS STORAGE RINGS
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Swiss Institute of Nuclear Research (SIN) 5234 Villigen, Switzerland, and
TRIUMF, University of British Columbia, Vancouver-B.C., Canada

In an isochronous cyclotron acceleration is accomplished through several acceleration gaps. A nonuniform voltage
distribution along these gaps produces a time-varying magnetic field which affects the longitudinal bunch size. A
radially increasing (decreasing) acceleration voltage compresses (expands) the bunch size. This effect can be utilized
in an isochronous storage ring with A/2 cavities, where particles undergo a cycle of acceleration, coasting at
maximum energy, deceleration and coasting at minimum energy. This cycle could be repeated many times if H~
ions are injected into the ring and stripped to protons. Stored beams up to 100 A look feasible.

The phase expansion effect can also be utilized to improve the duty cycle of isochronous cyclotrons by a
decreasing dee voltage towards the extraction radius or by insertion of decelerating C-electrodes like in the present

improvement programs for several synchrocyclotrons.

1. INTRODUCTION

The phase compression—phase expansion effect was
first mentioned by Mueller and Mahrt.! They
derived a formula which is valid for small rf phases
only. In this report a general formula will be given
which includes the addition of ‘flat-topping’
harmonics and is valid for all phases. This extension
leads to some interesting applications for iso-
chronous storage rings.

2. THE PHASE COMPRESSION-PHASE
EXPANSION EFFECT IN CYCLOTRONS

To get a simple picture of the phase compression
effect we assume the acceleration gaps to be
perpendicular to the orbits and of short azimuthal
extent (small transit time effects). A closer analysis
shows that oblique gap crossings do not affect the
revolution time of a particle. This result was found
in the 1930’s, where the idea of a spiraling dee gap—
to increase the energy of a classical cyclotron—was
examined and soon discarded! The phase compres-
sion formula—derived for perpendicular gap cross-
ings—is therefore also valid for oblique gap
crossings.

Let us adopt a Cartesian coordinate system at the
acceleration gap as shown in Figure 1 and let us
assume the electric field of an acceleration gap to be
constant over an effective gap width g and to be of
the form:

E(r,)=E(r)coswt=E(r)cos¢ )]
W, = 27v,; = hw, 18 the frequency of the rf system

_ gﬁ is the isochronous revolution frequency of
®~ ¢, the particles

h (positive integer) is called the ‘harmonic’ of
acceleration

¢ is the relative rf phase and defined by

d¢ _ . T—7(leading phase: ¢ <0

dn =T~ 2mh = 2mh 1, lagging phase: ¢ > 0)
@)

dE . .

an eV (R) - cos¢ istheenergy gain perturn (3)

n = turn number
E = kinetic energy of particle

0=machine center

Z=vertical direction

particle orbit

s=azimuthal direction

Es(r t) =electric field of
acceleration gap

r=radial direction

FIGURE 1 Coordinate system (r, s, z) adopted for the
explanation of the phase compression—phase expansion
effect. The assumptions are that the particle orbits are
perpendicular to the acceleration gap and that the electric
field is uniform across the gap.
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Vi (R) = peak voltage gain per turn
T = revolution time of particle
R = average radius of particle orbit.

The magnetic field b produced by a nonuniform
acceleration gap is given by Maxwell’s equation:

b= —curlé
. 08
b,=— _};—:L) cos¢
. . d
with the convention '= 3 Ve get
éﬂl
b,= ——sin¢. %)

Thus a transverse gradient of the electric field
produces a time-varying magnetic field which is 90°
out of phase with the electric field (in most cyclo-
trons this magnetic field is located far outside the
useful volume for acceleration). This rf magnetic
field points in the vertical direction as does the
static cyclotron field. It gives a horizontal deflection
op to those particles which do not arrive at the
moment of peak voltage across the acceleration gap.
Thus the orbits of particles with different phases ¢
become different with a consequent change in
revolution time and phase. The deflection ay across
the acceleration gap g is given by

b.g 9 . Vee .
=B " a0 T " 0g )" O
Vpee (R) = peak voltage gain across the gap
(Bp) = magnetic rigidity of particle.

2.1. Nonrelativistic Classical Cyclotron
The effect of a nonuniform dee voltage on the beam
is illustrated in Figures 2 and 3 for a homogeneous
static magnetic field B,. We assume two accelera-
tion gaps at 0° and 180° with radically increasing
peak voltage (Vpe. > 0).

For this special case the following results are
easily obtained from geometrical considerations:

a) the fractional change in the revolution time is
Aty _1($)—1(0) _ap %
7(0)~  (0) T
which according to (2) leads to a contribution to the
phase slip per turn of
d¢ _ Vs
dn o (Bp)

sin ¢ (8)

orbit cen’ter
Radius

FIGURE 2 Orbit of accelerated particle in the case of a
uniform external magnetic field in the z-direction and a 180°
dee with radially increasing voltage. A particle with positive
phase (¢ > 0) arrives late at the acceleration gap and gets a
radially inward kick from the rf magnetic field. The ideal
orbit center is displaced by a distance x¢ from the dee gap
and jumps across the gap at each crossing.

orbit "center

machine
center

acceleration
gap

Radius

FIGURE 3 Same situation as in Figure 2, except that the
particle arrives early (¢ < 0) at the acceleration gap and gets
a radially outward kick which forces it on a longer path.
Combining Figures 2 and 3 leads to a compression of the
longitudinal bunch size.

b) the rf magnetic field displaces the orbit center
perpendicular to the acceleration gap which leads
to a phase dependent center spread x, given by

oB Vi

T R— =
Yo 2 4w, B,

sin ¢. €))

2.2 Relativistic Isochronous Cyclotron with Single
rf System

We leave now the special case of Figures 2 and 3

and we will treat the general case of a relativistic

isochronous cyclotron with a static magnetic field

B,(r,0) and an arbitrary number of acceleration

gaps. We assume that the change in voltage gain
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Vs (R) from turn to turn is small. This condition for
adiabatic acceleration can be written as

E
Ec <~ 10
t<z (10

where we defined for convenience the peak energy
gain per turn

E;(R) = eV (R). (11)

The phase slip equation (2) can be split into two
parts:
d¢

i = @,; (nonisochronism)
n

d
+d~qé (nonuniform energy gain) (12)
n

The first term ¢,; arises from deviations of the
magnetic field and rf frequency from their iso-
chronous values. We will mention it again in Eq.
(26). For our purposes we need to treat only the
second term which arises from the magnetic field of
a nonuniform acceleration gap.

The rf field b,(r, ¢) changes the revolution time ©
according to?3

A¢) _ 1<{b>
w0)  ¥*<B)
where y = (1— %)~ /% = relativistic factor, f = v/c
{> means average over one revolution along the

orbit.
From Eq. (5) we get:

(& . Ve
~—s

by === sing = —5 b

For positively charged partlcles and positive
rotation of the beam around the cyclotron center
{B,> is negative. We therefore define

By(R) = —{(B,(R)) (positive). (15)
Combining Egs. (2), (13), (14) and (15) yields

sin ¢.
(16)

In order to proceed further let us list some well-

known relations for isochronous cyclotrons (see,
e.g., Ref. 3)

13)

- bll’l ¢. (14)

/

de¢ ( i in)
— (110onuniform €ner; am) =
dn &8 yzBoR @q

c . .
R, = o = cyclotron unit of radius

0

B., —Mo®o _ cyclotron unit of magnetic field
moc Eq
R, B,, = — =—(=31.3kg.mfor protons)
e ec
R = BR,,
BO (R) = yBcu
Bo(R)R = [fyB., R, = (Bp) = magneticrigidity
dE _E,
— = = ecB 17
iR "R, By = ecB., By’. (17)
With these relations Eq. (16) becomes
d dE
¢ %sin ¢. (18)

dn~  dE

Combining Egs. (3) and (18) we observe that the
energy E and the rf phase ¢ are canonically conju-
gate variables with the Hamiltonian

H(E(n), ¢(n)) = Egsin ¢ = constant (19)

which leads to the ‘equations of motion’:

dE  0H

=54 n = Egcos ¢ (20)
do 0H _ dEG
= "= qgtine (21)

Since the Hamiltonian H does not depend explicitly

_6H_0 it is a
dn  on S

on the turn number n<

constant of motion. This leads us to the important
relation between peak energy gain and phase of a
given particle during acceleration between two radii
R, and R, of an isochronous cyclotron:

| Eg(Ry)sinp(R,) = Eg(R,)sin p(R;) | (22)

This is a generalization of the result obtained by
Mueller and Mahrt! for small phases (sin ¢ ~ ¢).
We obtain further

dE

—tan ¢ = const 23
dn

whereas differentiating (20) again yields
d’E dE; 1d
a2 = Lo dEG 3 dE(EG) independent of phase.

(24)
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The big effect of a nonuniform acceleration gap on
the phase-width of the beam (as illustrated by Eq.
(22)), will be seen in the second stage of the Indiana
cyclotron* (operational in 1974). For protons the
energy gain at injection (15 MeV) will be 4 x 75keV
= 300keV, whereas at extraction (200 MeV) it will
be 4x220keV = 880keV. For operation with a
single rf frequency (no flat top) the relation between
initial and final phase is given by (22):

Sin ¢g;p. = 0.35sin @

initial*
For example a bunch length of initially 20° will be
compressed to about 7° during acceleration.

A slight phase compression will also occur in the
SIN 590 MeV ring cyclotron which has four 1/2 rf
cavities. Injection into the ring at 72 MeV occurs at
60 per cent, extraction at 85 per cent of the
maximum energy gain per turn. An initial bunch
length of about 20° will be compressed to 16°.

In many cases one is interested in an extracted
beam with a high duty cycle for coincidence
experiments. With a radially decreasing dee voltage
one can indeed expand-the phase width according to
Eq. (22). At the same time one benefits from a
smaller energy spread in the extracted beam. The
disadvantage of this scheme is a lower extraction
efficiency in conventional cyclotrons, where one
relies on the turn separation for extraction with a
septum. The improvement of the duty cycle with
the phase expansion effect could however be most
advantageous for H™ cyclotrons like TRIUMEF,
where the extraction by stripping is almost 100 per
cent even with a low dee voltage.

The same phase expansion can also be achieved
with decelerating C-electrodes at the extraction
radius, as is foreseen for the improvement program
for several synchrocyclotrons. In this case it is the
time-dependent radial electric field at the inner edge
of the C-electrodes which produces the required
phase slip.

2.3 Relativistic Isochronous Cyclotron with Two
Radiofrequency Systems

The addition of another radiofrequency system
operating on the mth harmonic of the fundamental
radiofrequency can alter the effective waveform of
the acceleration voltage favorably for operation
with high duty cycle or low energy spread (flat top).
Second harmonic (m = 2) flat-topping will be avail-

able for the Indiana cyclotron,* while SIN® and
TRIUMF® will use the third harmonic (m = 3).

The addition of this frequency will modify the
energy gain per turn of a particle:

dE

5. = Ea1 (R)cos ¢+ Eg, (Rycos m(§p— ) (25)

where Eg, (R) is the peak energy gain (positive in
general) from the fundamental frequency, Eg,,(R)
the peak energy gain (negative for flat-topping)
from the harmonic frequency.

Again the variables E, ¢ are canonically conju-
gate with the equations of motion derived from the
Hamiltonian for the general case:

H=Eg (R)sin¢

+ 20D i (g~ g, fcpn.(E)dE (26)

dE 0H

%: % gives back Eq. (25)
d¢ 0H G1
B p— . E -
dn aE (pnl ( dE

-~ ;;; sinm(p—¢,). (27

@,; is the phase slip per turn in not quite iso-
chronous cyclotrons as mentioned in (12). If we
have a uniform acceleration gap and no flat-top
harmonic Eq. (26) gives the well-known formula for
the phase history of particles in a realistic cyclotron
with imperfections:

E>

sin (E)—sin $(E) = = | om(E)IE. (28)

GJE;

3. ISOCHRONOUS STORAGE RING

An interesting application of the phase compres-
sion—phase expansion effect is an isochronous
storage ring with 1/2 rf resonators. To be a bit more
specific let us demonstrate the basic principle with a
four sector ring cyclotron illustrated in Figure 4.
The drawing is not to scale, since we do not specify
anything on energy and radiofrequency. The
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magnetic field of the sectors is shaped such that the
revolution time for a closed orbit without accelera-
tion is identical at all energies.

magnet

return yoke \ H ~injection
magnetpole
stripper
~~maximum
\ vd energy
X2 cavity
minimum
energy

) N
extraction -
magnet

\\ extracted
N\ beam

FIGURE 4 Schematic example of a four sector ring
cyclotron used as a storage ring. H™~ ions are injected into the
cyclotron at a relatively low energy, stripped to protons and
then accelerated up to a maximum energy, where they are
decelerated again. The rf magnetic field of two A/2 cavities
drives the particles out of phase at the endpoints of the
cavity. The protons oscillate thus between a minimum and
maximum energy in the cyclotron. Extraction of the stored
beam is not an easy problem and one possibility is indicated
in the diagram with a pulsed kicker magnet.

For a really relativistic cyclotron there would be
more than four sectors necessary and they would
have to be spiralled to provide adequate vertical
focusing. Between the magnet sectors are rectangu-
lar A/2-cavities operating in the so-called H, ;-
mode (SIN-cavities®) as illustrated in Figure 5.

For a perfect rectangular box of length L and
height H the resonant frequency for this mode is
given by

_ C\/(L2+H2).

2LH 29

rf
The minimum—or cutoff—frequency is obtained
for H= o0:

b (min) = (30)

The insertion of lips around the acceleration gap
lowers this frequency without affecting the high Q-
value substantially. These cavities provide a peak
energy gain per turn of the form

(R—Ro)

Eg(R) = E,sinm=———2 (31)
With the definition
R—Ry) .
W=l i o R = R(E) (32)

the Hamiltonian (19) becomes

H = E,sin Wsin¢ = const (33)
dE ©0H -
d—ﬁ:Eq—S:El,schos¢ (34)

d oH 0H dw E
d¢o = = = "%r _ cos Wsin ¢.

dn~  6E  ¢WdE  L(dE/dR)

E
Using % from (17) leads to

d
a%: —pcos Wsing (35
aw
—— = psin Wcos ¢ (36)
dn
n R,E,
= = 37
H=4537T E, (37
z

Beamn / Beam / s

H 1
%7

L=Xx/2

,/9/=gap

FIGURE 5 Geometry of a rectangular 1/2 cavity (SIN
cavity operating in the H,oy-mode). There is only an electric
field component & with a sinusoidal distribution in the r- and
z-direction. The rf magnetic field is confined in the (r, z)-plane
and the beam passes through the cavity in the s-direction.
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The curves H = constant given by (33) are illus- W =mn/24+jr, ¢ = n/2+Ir stable fixpoint (38)
trated in Figure 6. The fixpoints are given by .
W=jn, ¢=In unstable fixpoint (39)
d¢ dE 0 .
a“ E& = J,1 = integers.

| RF-PHASE -4
H=E; sinw sin g = const.
T /
ﬁ/ ?
I
2 | D
RADIUS
0 -
T _
% w= (R-Roly
L
L
2
-T

-~ L=\/2 -

FIGURE 6 Particle trajectories in phase space (radius or W, rf phase ¢) of an isochronous storage ring with
cavities of a single frequency. The center of the squares represent stable fixpoints and the corners unstable fixpoints.
The two hatched rings contain particles with phases between 2° and 10° respectively —2° and — 10° in the center of
the cavities at W = I1/2. The cavity walls are located at W =0 and W =11.
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Around the stable fixpoint W = /2, ¢ = n/2, ucan
be regarded as constant, which decouples Eqgs. (34)
and (35)

d’E dWdE d
= < d—cosWsinqS+a%sianos¢>

dn?~ TP\ dE dn
~ pE,sin Wcos W
d’E  u . .
d—nzzEE‘,sm2W 40)
and similarly
d2 2
Eﬁ(’g ~ %sin?. (41

'L hese two equauons are similar to the equation oi

absolute motion
of particles

a rigid pendulum or to the longitudinal motion in a
synchrotron (without acceleration).

Expanding the phase ¢ around g

Eg+¢ V<l (42)

leads to the harmonic oscillator equation:
&y
dn?
which shows that u—given by (37)—is the oscil-
lation frequency around the stable fixpoint. 27/u is

the number of revolutions necessary for one cycle.
Braun’ at SIN did some numerical studies with a

+utp =0 (43)

relative motion
of particles

| 1809

FIGURE 7 Snapshot of particle distribution in the four-sector cyclotron of Figure 4. For graphical simplicity
the harmonic number of acceleration is chosen as 4. With uniform acceleration gaps we would thus have only the
4 bunches at the azimuths 0°, 90°, 180°, 270°. With 1/2 cavities all particles undergo a periodic cycle of acceleration
@, drifting at maximum energy @), deceleration @ and drifting at minimum energy @. At intermediate energies
the beam is strongly bunched while at the extreme energies we have practically a dc beam.
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hypothetical short 1/2 cavity in the 590 MeV iso-
chronous ring cyclotron. Formula (37) for the
oscillation-frequency u explains his results very well.

The (W, ¢)-diagram of Figure 6 shows that even
in a perfectly isochronous cyclotron the particles
can never be accelerated into the cavity walls—if
condition (10) is fulfilled. The rf magnetic field
which is strongest at the walls is changing the
revolution time of the particles till they get out of
phase with the electric field and are decelerated
again. This effect could thus be used for storing
particles in an isochronous ring. The basic idea is
illustrated in Figures 4 and 7.

H ™ ions would be injected into the ring cyclotron
at some intermediate energy and stripped to pro-
tons. These are accelerated to a maximum radius—
which depends on the initial rf phase—decelerated
to a minimum radius and accelerated again,
performing thus a periodic cycle. To avoid particles
with phase 0° interfering with the cavity walls at the
extreme radii one can separate the cavity completely
along the median plane into an upper and a lower
part. This is possible since in the H,,,-mode there
are no surface currents inside the cavity across the
median plane. One can also avoid particles getting
close to the minimum and maximum radius by
filling two separate phase-intervals on both sides of
0°. This could be done by injecting beam with
negative phases for a while and then switching to
positive phases. The stored particles fill finally two
ring areas in (W, ¢) phase space as indicated in
Figure 6. For this example the particles occupy
phases between —2° and —10° and between +2°
and + 10° in the middle of the cavity, whereas at the
inner and outer radius the beam fills almost all
phases.

Thus a bunched beam at intermediate energy is
transformed into a practically dc beam at high and
low energy. Since E, ¢ are canonically conjugate
variables the flow of particles in (E, ¢) phase space
is governed by Liouville’s theorem (constant phase-
space density, incompressible fluid). Figure 6 and
Egs. (35), (36) show that the beam spends most of
its time at the inner and especially at the outer radii.
This feature is very desirable for fast extraction and
for keeping the stored beam away from the stripper.

3.1. Storage Ring with Addition of Flat-top Cavities
The above-mentioned characteristic of an iso-

chronous storage ring can be further improved with
the addition of 3" harmonic cavities. These flat-top
cavities would have the same radial length L but
three times the resonant frequency of the main
cavities. They would operate in the so called H, o5-
mode with a voltage waveform given by

V3(R, §) = Vs,sin3n (R zRi) cos3¢p.  (44)

The combined peak energy gain per turn of the
main and flat-top cavities is thus modified from (31)
to

R—R -
E;(R) = Ep[sinn(—L—O)—é"3 sin 3 n(R—LLO)]

(45)
and the new Hamiltonian H(E(n), ¢(n)) becomes

é
H=E, [sin W sin gb———; sin 3Wsin 3¢ | = const.
(46)

Curves H = const for different initial conditions are
plotted in Figure 8 with &5 =0.3. The hatched
rings contain phases from —2°to —10° and from 2°
to 10° at W = n/2 in the middle of the cavity.

The equations of motion are given by:

i—f =66—I; = E, [sin Wcos ¢ —&3sin 3W cos 3¢]
1
(47)

or for W

daw . . :

P ulsin Wcosp—&5sin3Wcos3¢]  (48)
d 0H
d—i =25 = — ufcos Wsin ¢ — &5 cos 3W sin 3¢].

(49

Note that u is dependent on radius as given by (37)
and that the connection between § and W is

B = B P+ B (50)

Ry+L .
ot determine

ItO
6 . =—andf —_
min R a max

S r o0

the minimum and maximum energy of the storage
ring.
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A RF-PHASE #
H=sinw sing - 1sin3w sin 34 = const.
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FIGURE 8 Same situation as in Figure 6 except that there are two different types of rf cavities with frequencies
vie and 3y, operating in the modes H;o, and Hj 3 respectively (flat-top operation).

3.2. Numerical Example

To get a better quantitative picture of the particle
trajectories in (radius, ¢)-phase space of a storage
ring, let us look at a ring cyclotron operating
between ., =023, E_, =26MeV and B,
=0.75, E,. =500 MeV. The orbital frequency
and thus the size of the machine is still flexible,

although one could have something in mind similar
to the SIN 590 MeV cyclotron.

Figure 9 shows four representative particle
trajectories—inside a hatched ring of Figure 8—
obtained from numerical integration of Egs. (48)
and (49).

Figure 10 shows the radial particle density of a
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FIGURE 9 Four particle trajectories in (radius, ¢) phase space inside hatched ring of Figure 8. The example of
a storage ring operating between 26 and 500 MeV was chosen.

stored beam neglecting finite emittance effects. The
ratio of the two peaks at the minimum and maxi-
mum energy is given approximately by the ratio of
the corresponding p-values:

umax — Bmax ymaxs

“min ﬁmin ymins
which is about 9 for our example. About 50 per cent
of the stored beam is contained in a small radial

interval of AR = 0.04L between 420 and 470 MeV.
This storage ring is actually an acceleration—and

storage ring, since the H™ beam can be injected at
an energy as low as 45 MeV.

The interesting question is of course: How much
current can be stored in such a cyclotron?

Again, to get some feeling for the numbers
involved, let us assume that the above-mentioned
500 MeV storage ring has a minimum radius of
1.5m and a maximum radius of 5m. The iso-
chronous revolution time for a particle is then about
140 nsec. The rf cavities are then about 3.5 m long
and could operate, e.g. on 50 MHz and 150 MHz.
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4‘ radial
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FIGURE 10 Storage ring with flat-top cavities (€5 = 0.3). Radial particle density for particles in hatched rings
of Figure 8. The phase width of the injected beam is 2 x 8° whereas at the extreme energies the beam is practically
dc. About 50 per cent of the stored beam is contained in a radial interval of AR = 0.04 L between 420 and 470 MeV.

Two main cavities with 500 kV and two flat-top
cavities (150 MHz) with 150 kV peak voltage give
about 5 mm turn separation at the injection energy
of 45 MeV. This should be enough for the protons
to avoid the stripper after one revolution. For the
particle trajectories in Figure 9 the cycle period is
then about 5000 revolutions or 0.7 msec. A
continuously injected H™ beam of 100 uA average
current would give in one storing cycle 500 mA of
circulating beam, half of which would be inside a
radial width of 14 cm between 420 and 470 MeV.
But there is no need to stop injecting after one
cycle. Let us assume that we use a carbon stripper of
100 pg/cm?. The rms-Coulomb-scattering angle per
traversal at 45 MeV is then 0.2 mrad. After 200
storing cycles or 140 msec the average scattering
angle produced by the 400 stripper traversals

amounts to 4 mrad, which should be tolerable.
This means that from this point of view 100 A of
stored beam are theoretically possible. Since ring
cyclotrons have in general a strong vertical focusing
(with v, around 1) the transversal space-charge
limit is also in the 100 A region.

3.3. Problems

The great problem of this storage ring concept
seems to be the extraction. Neutron physicists
would be extremely interested if this large stored
proton current could be extracted in a few micro-
seconds. The stored current fills the circumference
of the machine almost uniformly. Therefore even
fast kicker magnets will produce beam spills, since
the very large aperture of these magnets prevent
very short risetimes. Another method could be a
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slow resonance extraction scheme. One could
conceive even a vertical extraction, taking advan-
tage of the free sectors in a ring cyclotron. At the
anticipated high beam current one runs into
activation problems. One may fill the storage ring
therefore only once every few seconds to lower the
activation level.

Since the particles coast a long time at maximum
energy, the isochronism of the cyclotron has to be
very good. The magnetic field has to be trimmed to
an accuracy of typically 10”4 to 10~>. This looks
feasible for a fixed excitation of the magnets. Beam
loading of the cavities should not be a big problem,
since only the newly injected particles have to be
accelerated to the average energy of the stored
particles.

4. CONCLUSION

The phase compression—-phase expansion effect has
to be takeninto account in cyclotrons with a radially
varying energy gain per turn. A closer look at this
effect reveals that it could be utilized in storing
several amperes of protons using radial 1/2 resonat-
ors. Abunched H™ beamat injection energyis trans-
formed into an almost dc beam at maximum energy.
Since the author is familiar with the SIN 590 MeV
isochronous ring cyclotron, some numerical calcu-
lations were done for a storage ring of similar
dimensions. No obstacle can be seen yet why this
storing concept could not work at higher energies
too, using, e.g. the 800 MeV H™ beam of LAMPF
for injection. At TRIUMF where the H™ ions are
normally stripped to protons for extraction one

could possibly use the v, =3/2 resonance to extract
the H™ ions at about 400 MeV.8 The protons could
then be further accelerated in a ring cyclotron and
stored at around 1500 MeV. More detailed calcu-
lations are necessary to determine if the problem of
extraction from a storage ring can be solved.

The phase expansion effect can also be used to
stretch the duty cycle of a cyclotron by lowering the
dee voltage at extraction radius or by inserting
C-electrodes at the maximum energy.
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