CERN - DATA HANDLING DIVISION
DD/73/ 30
R.D. Russell
October, 1973

CAMAC FACILITIES IN THE PROGRAMMING LANGUAGE PL-11

Abstract

This paper describes the features for programming CAMAC
easily and efficiently in the programming language PL-11.

(To be presented at the First International Symposium on
CAMAC in Real-Time Computer Applications, December 4-6,
1973, Luxembourg.) ’

Introduction

PL-11 is an intermediate-level, machine-
oriented programming language for the PDP-11
computer (1). It was designed and implemented
as the programming tool for the on-line mini-
computers used in data acquisition at the CERN
OMEGA project (2). Because all the experiment
electronics are connected to the computer via
CAMAC, facilities have been incorporated into
PL-11 that enable the physicists to program
both CAMAC and the PDP-11 in a single language.
This paper, which is a condensation of an
earlier paper (3), discusses just the features
of the language that are related to CAMAC.

1. Design Philosophy

There are three basic requirements that
must be met by any CAMAC programming system if
this system is to be an easily used and under-
stood tool for effective use of CAMAC.

1. The programmer must have the ability
to give meaningful symbolic names of his
choice to any CAMAC C-N-A triple. The
association of a name with a triple
appears exactly once in any program (in
PL-11, as a declaration at the beginning
of the program), and all operations with
this CAMAC module are done by referring
to this symbolic name. Not only does
this make the program more readable, it
also makes modification of a CAMAC
configuration extremely simple. One has
only to change a single declaration and
recompile the program. The compiler will
then ensure that the addresses in all
operations to this module are changed
properly.

2. The programmer must have the ability
to give meaningful symbolic names of his
choice to any CAMAC function.

3. The programmer should be able to use
the same syntactic notation for CAMAC
variables and functions as he uses for
ovdinary program variables and functions.
This includes the ability to test Q
responses in the same manner as normal
Boolean tests are made, the ability to
index through arrays of CAMAC variables
in the same manner as normal arrays are
indexed, etc. Such a consistent use of
2 high-level language syntax makes it
casy for a non-professional progranmer

to utilize CAMAC effectively, since he is
able to manipulate CAMAC data in exactly

the same way as he deals with normal data.

P1.-11 is designed to be syntactically as
high~level a language as possible so that
readable, structured programs can be
written easily. At the same time, PL-11
is semantically as close to the machine
architecture as necessary in order to
puarantee efficiency and the ability to

utilize fully all features of the hard-
ware. Therefore, in addition to the
three requirements listed above, there is
a fourth requirement satisfied by the
CAMAC facilities in PL-11:

4. The compiler should produce efficient,
in-line object code for every CAMAC
operation. There should be no subroutine-
calling overhead and no required run-time
system to support the CAMAC features of
the language. This implies that an entire
real-time operating system can be written
in PL-11 without the use of any other
language and without any necessary run-
time environment.

2. Declaring CAMAC Variables

The purpose of CAMAC variable declarations
in PL-11 1s to give programmer-defined symbolic
names to CAMAC registers so that all operations
to CAMAC can be done by reference to these
names. The syntactic form of such declarations
is analogous to the PL-11 construct that
enables the programmer to give a symbolic name
to any machine register, memory cell, or I/0
device register.

INTEGER PRINTBUFFER SYN MEMORY ($177566) ,
PRINTSTATUS SYN MEMORY ($177564);

gives the symbolic name PRINTBUFFER to the
memory cell with absolute address 177566
octal, and the name PRINTSTATUS to the cell
with absolute address 177564 octal.

INTEGER CRTBUFFER SYN CRATE 1 STATION 2
SUBADDRESS 14,
CRTSTATUS SYN CRATE 1 STATION 5
SUBADDRESS 0 GROUP 2;

gives the symbolic name CRTBUFFER to the CAMAC
register in crate 1 station 2 subaddress 14
group 1 (by default), and the name CRTSTATUS

to the group 2 register at subaddress 0 station
5 of crate 1. In such declarations, the
compiler will accept only crate numbers in the
range (1,7), station numbers in (0,31), sub-
address numbers in (0,15), and group numbers

in (1,2).

It is important to note that both memory
and CAMAC integers are 16-bit quantities. In
keeping with the philosophy of designing a
fully integrated system it was decided very
early that since a PDP-11 word is only 16 bits
all CAMAC modules used in OMEGA would utilize
only the low-order 16 bits of the 24 data bits
provided in CAMAC. This decision has proven
to be correct: all programming errors due to
a mismatch of precision are eliminated, and no
time is lost packing and unpacking PDP-11
words. Since many 16-bit CAMAC modules are
cormercially available, no penalty was paid
in higher costs or lost data. Clearly this
decision also made it easier to integrate CAMAC

variables into PL-11.

¢

performs the transfer. Hence this method is
"as efficient as possible' as well as being
easy to use and understand.

3. Using CAMAC Variables -

Once a CAMAC variable has been declared,
it is used just like any other PL-11 variable.
Assuming the declarations written above,

X =»> PRINTBUFFER;

moves the contents of location X into location
PRINTBUFFER, which causes a character to be
typed on the teletype due to the definition
of PRINTBUFFER as absolute address 177566
octal (the teletype data register).

X => CRTBUFFER;

writes the contents of location X into the
CAMAC register CRTBUFFER, which presumably
causes the module at that CAMAC location to
display this character on a CRT. ‘

PRINTSTATUS => Y;

moves the contents of PRINTSTATUS (the tele-
type status register) into location Y.

CRTSTATUS => Y;

reads the contents of CAMAC register
CRTSTATUS into memory location Y.

Of course it is not necessary to store
these status values in memory as they can be
tested directly as follows:

WHILE PRINTSTATUS = BUSY DO ;

is an empty wait loop for the teletype to
become 'not busy'.

WHILE CRTSTATUS = BUSY DO;

is a wait loop for the CAMAC display modules
to indicate '"not busy'" in the same manner.
To test for an ordinary variable X in some
range we can write:

IF X >= LOWLIMIT & X <= HIGHLIMIT THEN
BEGIN COMMENT WITHIN RANGE; ... END;

If SCALER is declared as a CAMAC register, we
can write a similar test:

IF SCALER >= LOWLIMIT & SCALER <= HILIMIT
THEN BEGIN COMMENT WITHIN RANGE;...END;

If we wish to wait until SCALER reaches some
value THRESHHOLD, we write:

WHILE SCALER < THRESHHOLD DO ;

In all of these examples, the PL-1l
compiler generates for each CAMAC reference
the two in-line instructions that are required
by the manufacturer's CAll interface for a
CAMAC operation. The first instruction sets up
the crate and function codes, the second sets up
the station and subaddress codes and actually

4, CAMAC Arrays and Block Transfers

A block of ten CAMAC registers starting
at station 1 subaddress 0 of crate 1 can be
declared in PL-11 as:

ARRAY 10 INTEGER SCALER SYN
CRATE 1 STATION 1 SUBADDRESS 0;

If we also define a compile-time constant
SPACING to be the address increment between
consecutive SCALER modules:

EQUATE SPACING SYN Z;
then the statement:

FOR R1 FROM 0 STEP SPACING UPTO 9*SPACING DO
0 => SCALER(RL);

will generate code to reset to zero ten scalers
in consecutive subaddresses at the same station.
The same statement will reset to zero ten
scalers in consecutive stations if we instead
declare:

EQUATE SPACING SYN. 32;

In order to accunulate the sum of these
scalers in a variable SUM with the average
in variable AVERAGE, we can write:

0 => SUM;

FOR R1 FROM 0 STEP SPACING UPTO 9*SPACING DO
SUM + SCALER(R1);

SUM => AVERAGE/10;

If we wish to store the ten scaler values in a
ten element array X, we can write:

0 => R2;

FOR R1 FROM 0 STEP SPACING UPTO 9*SPACING DO
BEGIN
SCALER(R1) => X(R2); R2Z + 24
END; ; ’

where we have to keep an extra index register
RZ to account for the constant spacing of 2
between consecutive integers in memory.

This last example demonstrates a transfer
of ten words in which each word transferred
requires a CAMAC read operation. If this
scaler block included a control module that
allowed the entire block to be transferred
with a single command to that module, this
could also be done in PL-11 as follows:

INTEGER BLOCKSTART SYN CRATE 1 STATION 3
SUBADDRESS 0;

REF(X) => BLOCKSTART;

where REF(X) is the memory address of array X
and we assume that initializing the BLOCKSTART

control module with a memory address will
cause the block of scalers to be transferred
into memory starting at that address. A more
common situation is to include in the CAMAC
control module a block size register, to
define how many words to transfer. Then the
block transfer is written in PL-11 as:

REF(X) => BLOCKSTART; 10 => BLOCKSIZE;

5. Other CAMAC Functions

The preceding sections demonstrated the
CAMAC read, write, and reset functions in PL-11
and showed that they could be written with the
same syntactic form as normal variable
operations in PL-11. There are, however, 32
possible CAMAC functions, and any or all of
these can be given symbolic names by PL-11
declarations such as the following;

CAMAC FUNCTION ENABLE(26), DISABLE(24),
TESTLAM(8), CLEARLAM(10);

where the symbolic name is chosen by the
programmer, and the function number must be in
the range (0,31). These functions can be
applied to any CAMAC variable using the normal
function notation:

ENABLE(SCALER) }
DISABLE (CRTSTATUS) ;
CLEARLAM(SCALER(R1+8));

For example, if we wish to read a block
of scalers into an array X such that each
scaler is read only when it responds to a
TESTIAM function, we can write in PL-11:

0 => R25

FOR Rl FROM 0 STEP SPACING UPTC 9*SPACING DO
BEGIN

TESTLAM(SCALER(R1));

IF NOT Q THEN GOTO WAIT;

SCALER(R1) => X(R2);

R2 + 23

END;

wherce we have used the name Q which is a pre-
declared PL-11 name for a bit in memory that is
sct o1 reset by the CAMAC (A1l interface
according to the Q-response of a CAMAC
operation.

WAIT:

Interrupts caused by CAMAC modules can be
handlcd in PL~11 by declarations such as:
CAMAC INTERRUPT 20 PROCEDURE SCALEROVERFLOW: ,
LEGIN END;

This dceclaration is just an extension to CAMAC
of the interrupt handling mechanism present in
the P1-11 language. It causes the compiler to
set up transfer vectors by which the operating
systuim can call this procedure whenever an
interrupt is caused by LAM bit 20. The
interrupt number must be in the range (1,24),

and all interrupt cnabling, disabling, clear-
ing, and resolution of multiple LAM sources
can and must be programmed explicitly with
PL-11 functions.

6. Conclusion

The CAMAC features integrated into PL-11
are efficient, easy to use, and easy to
understand. They make the full range of CAMAC
functions available to the programmer in a
simple symbolic notation. This has been
accomplished by a slight extension of an
existing language to include CAMAC variables,
functions, and interrupt procedures. Clearly
this technique can be applied to other languages,
such as FORTRAN, ALCOL, and especially PL/I
since its structure allows an easy extension
by the addition of a CAMAC attribute. The PL-11
compiler is able to generate highly efficient
in-line code for each CAMAC operation due to
the simple design of the CAll interface
between the PDP-11 and CAMAC. For a more
complex interface a compiler would probably
have to generate calls to system subroutines,
but the notation used by the programmer would
remain unchanged (this is the technique used
for FORTRAN floating-point operations on many
small computers that lack floating-point
hardware). It is suggested that such an
extension of a widely used language, such as
ALGOL, FORTRAN, or PL/I, along these lines
would be a highly desirable way to provide a
universal tool for programming CAMAC.

References
1. RUSSELL, Robert D. 'Preliminary
Specifications for PL-11: A Programming
Language for the DEC PDP-11 Computer',
OMEGA Project Development Note SW-29
(Nov. 1971).

RUSSELL, Robert D. 'The OMEGA Project:

A Case History in the Design and
Implementation of an On-line Data Acquisi-
tion System', Proceedings of the 1972 CERN
Computing and Data Processing School

CERN 72-21 (Dec. 1972) PP 275-340.

RUSSELL, Robert D. 'Easy and Efficient
CAMAC Programming in PL-11', Paper
presented at the Third European Seminar on
Real-time Programming (May 1973).

