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In thisseriesofthreelectures,wediscussseveralaspectsofhigh energy scattering am ong

hadronsin Q uantum Chrom odynam ics.The�rstlectureisdevoted to a description ofthe

parton m odel,Bjorken scaling and the scaling violations due to the evolution ofparton

distributions with the transverse resolution scale.The second lecture describes parton

evolution at sm allm om entum fraction x,the phenom enon ofgluon saturation and the

Color G lass Condensate (CG C).In the third lecture,we present the application ofthe

CG C to the study ofhigh energy hadronic collisions,with em phasison nucleus-nucleus

collisions.In particular,we provide the outline ofa proofofhigh energy factorization

forinclusive gluon production.
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1. Introduction

Q uantum Chrom odynam ics(Q CD)isverysuccessfulatdescribinghadronicscatter-

ingsinvolvingverylargem om entum transfers.A crucialelem entin thesesuccessesis

theasym ptoticfreedom ofQ CD 1,thatrendersthecoupling weakerasthem om en-

tum transferscale increases,thereby m aking perturbation theory m ore and m ore

accurate.The otherim portant property ofQ CD when com paring key theoretical

predictionsto experim entalm easurem entsisthefactorization oftheshortdistance

physicswhich can be com puted reliably in perturbation theory from the long dis-

tancestrong coupling physicsrelated to con�nem ent.Thelatterareorganized into

non-perturbativeparton distributions,thatdepend on thescalesoftim eand trans-

verse space atwhich the hadron isresolved in the processunderconsideration.In

fact,Q CD notonly enablesonetocom putetheperturbativehard cross-section,but

also predicts the scale dependence ofthe parton distributions.A generic issue in

�Lectures given atthe X th H adron PhysicsW orkshop,M arch 2007,Florianopolis,Brazil.
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Fig.1.G eneric hard process in the scattering oftwo hadrons.Left:Leading O rder.R ight:N ext-

to-Leading O rdercorrection involving gluon radiation in the initialstate.

theapplication ofperturbativeQ CD to thestudy ofhadronicscatteringsistheoc-

currenceoflogarithm iccorrectionsin higherordersofthe perturbative expansion.

These logarithm scan be large enough to com pensate the extra coupling constant

�s they com e accom panied with,thus voiding the naive,�xed order,application

ofperturbation theory.Considerforinstancea genericgluon-gluon fusion process,

asillustrated on theleftof�gure1,producing a �nalstateofm om entum P �.The

two gluonshavelongitudinalm om entum fractionsx1;2 given by

x1;2 =
M ?
p
s
e
� Y

; (1)

where M ? �

q

P
2
? + P 2 (P 2 � P�P

� isthe invariantm assofthe �nalstate)and

Y � ln(P + =P � )=2.O n the right of�gure 1 is represented a radiative correction

to thisprocess,where a gluon isem itted from one ofthe incom ing lines.Roughly

speaking,such a correction isaccom panied by a factor

�s

Z

x1

dz

z

Z M ? d2k?

k2
?

; (2)

wherezisthem om entum fraction ofthegluon beforethesplitting,and k? itstrans-

verse m om entum .Such corrections produce logarithm s,log(1=x1) and log(M ? ),

that respectively becom e large when x1 is sm allor when M ? is large com pared

to typicalhadronic m assscales.These logarithm stellusthatparton distributions

m ust depend on the m om entum fraction x and on a transverse resolution scale

M ? ,thatare setby the processunder consideration.In the linearregim ea,there

are\factorization theorem s" { kt-factorization
2 in the �rstcaseand collinearfac-

torization 3 in the second case{ thattellusthatthe logarithm sareuniversaland

can besystem aticallyabsorbed in thede�nition ofparton distributionsb.Thex de-

pendence thatresultsfrom resum m ing the logarithm sof1=x istaken into account

by the BFK L equation 4.Sim ilarly,the dependence on the transverse resolution

scaleM ? isaccounted forby the DG LAP equation 5.

aW e use the denom ination \linear" here to distinguish it from the saturation regim e discussed

later that ischaracterized by non-linearevolution equations.
bThe latter iscurrently m ore rigorously established than the form er.
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Theapplication ofQ CD isa lotlessstraightforward forscattering atvery large

centerofm assenergy,and m oderatem om entum transfers.Thiskinem aticsin fact

dom inatesthe bulk ofthe cross-section atcolliderenergies.A striking exam ple of

thiskinem aticsisencountered in Heavy Ion Collisions(HIC),when one attem pts

to calculate the m ultiplicity ofproduced particles.There,despite the very large

center ofm ass energyc,typicalm om entum transfersare sm alld,ofthe orderofa

few G eVsatm ost.In thiskinem atics,two phenom ena thatbecom e dom inantare

� G luon saturation :the linear evolution equations (DG LAP or BFK L)

forthe parton distributionsim plicitly assum e thatthe parton densitiesin

the hadron aresm alland thatthe only im portantprocessesaresplittings.

However,atlow valuesofx,the gluon density m ay becom e so large that

gluon recom binationsarean im portante�ect.

� M ultiple scatterings :processesinvolving m orethan oneparton from a

given projectilebecom esizeable.

It is highly non trivial that this dom inant regim e of hadronic interactions is

am enable to a controlled perturbative treatm entwithin Q CD,and the realization

ofthis possibility is a m ajor theoreticaladvance in the last decade.The goalof

these three lecturesisto presentthe fram ework in which such calculationscan be

carried out.

In the �rst lecture,we willreview key aspects ofthe parton m odel.O ur re-

curring exam ple willbe the Deep Inelastic Scattering (DIS) processofscattering

a high energy electron at high m om entum transfers o� a proton.Beginning with

the inclusive DIS cross-section,we willarrive at the parton m odel(�rstly in its

m ostnaive incarnation,and then within Q CD),and subsequently atthe DG LAP

evolution equationsthatcontrolthe scaling violationsm easured experim entally.

In thesecond lecture,wewilladdresstheevolution oftheparton m odeltosm all

values ofthe m om entum fraction x and the saturation ofthe gluon distribution.

After illustrating the trem endous sim pli�cation ofhigh energy scattering in the

eikonallim it,we willderive the BFK L equation and its non-linearextension,the

BK equation.W e then discuss how these evolution equations arise in the Color

G lassCondensatee�ectivetheory.W econcludethelecturewith a discussion ofthe

closeanalogy between theenergy dependenceofscattering am plitudesin Q CD and

the tem poralevolution ofreaction-di�usion processesin statisticalm echanics.

The third lecture is devoted to the study ofnucleus-nucleus collisionsathigh

energy.O urm ain focusisthe study ofbulk particle production in these reactions

within the CG C fram ework.After an exposition ofthe power counting rules in

the saturated regim e,weexplain how to keep track ofthein�nite setsofdiagram s

cAtR H IC,centerofm assenergiesrangeup to
p
s = 200 G eV /nucleon;theLH C willcollidenuclei

at
p
s = 5:5 TeV /nucleon.

dForinstance,in a collision at
p
s = 200 G eV between gold nucleiatR H IC,99% ofthem ultiplicity

com es from hadrons whose p? isbelow 2 G eV .
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thatcontribute to the inclusive gluon spectrum .Speci�cally,we dem onstrate how

these can be resum m ed at leading and next-to-leading order by solving classical

equationsofm otion forthe gauge�eldsTheinclusive quark spectrum isdiscussed

aswell.W e conclude the lecture with a discussion ofthe inclusive gluon spectrum

at next-to-leading order and outline a proofofhigh energy factorization in this

context.Understanding thisfactorization m ay hold thekey to understanding early

therm alization in heavy ion collisions.Som e recent progress in this direction is

briey discussed.

2. Lecture I :Parton m odel,B jorken scaling,scaling violations

In thislecture,wewillbegin with thesim pleparton m odeland develop theconven-

tionalO peratorProductExpansion (O PE)approach and the associated DG LAP

evolution equations.To keep thingsassim pleaspossible,wewilluseDeep Inelastic

Scattering to illustrate the ideasin thislecture.

2.1. K inem atics of D IS

k
k’

P

θ

q





X

Fig.2.K inem aticalvariables in the D eep Inelastic Scattering process.k and P are known from

the experim entalsetup,and k0 isobtained by m easuring the deected lepton.

The basic idea ofDeep Inelastic Scattering (DIS) is to use a wellunderstood

lepton probe (that does not involve strong interactions) to study a hadron.The

interaction isviatheexchangeofavirtualphotone.Variantsofthisreaction involve

the exchange ofa W � orZ 0 boson which becom e increasingly im portantatlarge

m om entum transfers.The kinem atics of DIS is characterized by a few Lorentz

invariants(see �gure2 forthe notations),traditionally de�ned as

� � P � q

s� (P + k)2

M
2

X
� (P + q)2 = m

2

N
+ 2� + q

2
; (3)

eIfthe virtuality ofthe photon issm all(in photo-production reactionsforinstance),the assertion

that the photon is a \wellknown probe that does not involve strong interactions" is not valid

anym ore.Indeed,the photon m ay uctuate,forinstance,into a � m eson.
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wherem
N
isthe nucleon m ass(assum ing thatthe targetisa proton)and M

X
the

invariantm assofthe hadronic�nalstate.Becausetheexchanged photon isspace-

like,one usually introduces Q 2 � � q2 > 0,and also x � Q 2=2�.Note that since

M 2
X
� m 2

N
,we m ust have 0 � x � 1 { the value x = 1 being reached only in the

casewherethe proton isscattered elastically.

The sim plest cross-section one can m easure in a DIS experim ent is the total

inclusive electron+ proton cross-section,where one sum soverallpossible hadronic

�nalstates:

E
0d�e� N

d3k
0
=

X

states X

E
0d�e� N ! e� X

d3k
0

: (4)

The partialcross-section associated to a given �nalstateX can be written as

E
0d�e� N ! e� X

d3k
0 =

Z
[d�

X
]

32�3(s� m 2
N
)
(2�)4�(P + k� k0� P

X
)

D

jM
X
j
2
E

spin
; (5)

where[d�
X
]denotestheinvariantphase-spaceelem entforthe�nalstateX andM

X

isthe corresponding transition am plitude.The \spin" sym boldenotesan average

over allspin polarizations ofthe initialstate and a sum over those in the �nal

state.The transition am plitude isdecom posed into an electrom agnetic partand a

hadronicm atrix elem entas

M
X
=

ie

q2

�
u(k

0
)�u(k)

� 

X
�
�J�(0)

�
�N (P )

�
: (6)

In thisequationJ� isthehadronelectrom agneticcurrentthatcouplestothephoton,

and
�
�N (P )

�
denotesa statecontaining a nucleon ofm om entum P .

Squaring thisam plitude and collecting allthe factors,the inclusive DIS cross-

section can be expressed as

E
0d�e� N

d3k
0 =

1

32�3(s� m 2
N
)

e2

q4
4�L�� W �� ; (7)

wherethe leptonic tensor(neglecting the electron m ass)is

L
�� �



u(k

0
)�u(k)u(k)�u(k

0
)
�

spin

= 2(k�k0� + k
�
k
0� � g

��
k� k

0): (8)

and W �� { the hadronictensor{ isde�ned as

4�W �� �
X

states X

Z

[d�
X
](2�)4�(P + q� P

X
)

�



N (P )

�
�Jy�(0)

�
�X

�

X
�
�J�(0)

�
�N (P )

��

spin

=

Z

d
4
y e

iq� y



N (P )

�
�J

y
�(y)J�(0)

�
�N (P )

��

spin
: (9)

The second equality is obtained using the com plete basis ofhadronic states X .

Thus,the hadronic tensoristhe Fouriertransform ofthe expectation value ofthe

productoftwocurrentsin thenucleon state.An im portantpointisthatthisobject
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cannotbecalculated by perturbativem ethods.Thisrank-2tensorcan beexpressed

sim ply in term softwo independentstructurefunctionsasa consequenceof

� Conservation ofthe electrom agneticcurrent:q�W
�� = q�W

�� = 0

� Parity and tim e-reversalsym m etry :W �� = W ��

� Electrom agnetic currents conserve parity : the Levi-Civita tensor �����

cannotappearf in the tensorialdecom position ofW ��

W hen one worksoutthese constraints,the m ostgeneraltensorone can construct

from P �;q� and g�� reads:

W �� = � F1

�

g�� �
q�q�

q2

�

+
F2

P � q

�

P� � q�
P � q

q2

� �

P� � q�
P � q

q2

�

; (10)

whereF1;2 arethetwostructurefunctions
g.Asscalars,theyonlydepend on Lorentz

invariants,nam ely,the variablesx and Q 2.The inclusive DIS cross-section in the

restfram eofthe proton can be expressed in term sofF1;2 as

d�e� N

dE 0d

=

�2em

4m
N
E 2 sin4(�=2)

�

2F1 sin
2 �

2
+
m 2

N

�
F2 cos

2 �

2

�

; (11)

where
 representsthe solid angleofthe scattered electron and E 0 itsenergy.

2.2. Experim entalfacts

Two m ajor experim entalresults from SLAC 7 in the late 1960’splayed a crucial

role in the developm ent ofthe parton m odel.The left plot of�gure 3 shows the

SLAC

x

F
2

0.90.80.70.60.50.40.30.20.10

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

F2

FL

FL vs. F2 for Q2 = 20 GeV2

x

10.10.010.0011e-04

2

1.5

1

0.5

0

Fig.3.SLAC resultson D IS.

m easured values of F2(x;Q
2) as a function of x. Even though the data covers

a signi�cant range in Q 2,allthe data points seem to line up on a single curve,

indicating thatF2 dependsvery little on Q 2 in thisregim e.Thisproperty isnow

fThisproperty isnottruein D IS reactionsinvolving theexchange ofa weak current;an additional

structure function F3 isneeded in this case.
gThe structure function F2 di�ersslightly from the W 2 de�ned in 6 :F2 = �W 2=m

2

N
.
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known asBjorken scaling 8.In the rightplotof�gure 3,one seesa com parison of

F2 with thecom bination
h F

L
� F2 � 2xF1.Although therearefew data pointsfor

F
L
,onecan seethatitissigni�cantly lowerthan F2 and closeto zero

i.Asweshall

see shortly,these two experim entalfacts already tellus a lot about the internal

structureofthe proton.

2.3. N aive parton m odel

In ordertogeta�rstinsightintotheinnerstructureoftheproton,itisinterestingto

com paretheDIS cross-sectionin eq.(11)and thee� �� cross-section(alsoexpressed

in the restfram eofthe m uon),

d�e� ��

dE 0d

=

�2em �(1� x)

4m �E
2 sin4 �

2

"

sin2
�

2
+
m 2

�

�
cos2

�

2

#

: (12)

Note that,since this reaction is elastic,the corresponding x variable is equalto

1,hence the delta function in the prefactor.The com parison ofthisform ula with

eq.(11),and in particularitsangulardependence,issuggestiveoftheproton being

com posed ofpointlikeferm ions{nam ed partonsbyFeynm an {o�which thevirtual

photon scatters.Iftheconstituentstruck by thephoton carriesthem om entum pc,

thiscom parison suggeststhat

2F1 � F2 � �(1� xc) with xc �
Q 2

2q� pc
: (13)

Assum ing thatthisparton carriesthefraction x
F
ofthem om entum oftheproton,

i.e.pc = x
F
P ,therelation between thevariablesx and xc isxc = x=x

F
.Therefore,

weget:

2F1 � F2 � x
F
�(x � x

F
): (14)

In other words,the kinem aticalvariable x m easured from the scattering angle of

the electron would be equalto the fraction ofm om entum carried by the struck

constituent.NotethatBjorken scaling appearsquite naturally in thispicture.

Having gained intuition into whatm ay constitute a proton,we shallnow com -

pute the hadronic tensor W �� for the DIS reaction on a free ferm ion icarrying

the fraction x
F
ofthe proton m om entum .Because we ignore interactions for the

tim ebeing,thiscalculation (in contrastto thatfora proton target)can bedonein

hF
L
,the longitudinalstructure function,describesthe inclusive cross-section between the proton

and a longitudinally polarized proton.
iFrom currentalgebra,itwaspredicted thatF2 = 2xF1;thisrelation isknown astheCallan-G ross

relation 9.
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closed form .W e obtain,

4�W
��

i �

Z
d4p0

(2�)4
2��(p02)(2�)4�(x

F
P + q� p

0)

�



x
F
P
�
�J�y(0)

�
�p0
�

p
0
�
�J�(0)

�
�x

F
P
��

spin

= 2�x
F
�(x � x

F
)e2i

�

�

�

g
�� �

q�q�

q2

�

+
2x

F

P � q

�

P
�� q�

P � q

q2

��

P
�� q�

P � q

q2

��

;

whereei istheelectricchargeoftheparton underconsideration.Letusnow assum e

thatin a proton there arefi(xF
)dx

F
partonsoftype iwith a m om entum fraction

between x
F
and x

F
+ dx

F
,and that the photon scatters incoherently o� each of

them .W e would thushave

W
�� =

X

i

Z 1

0

dx
F

x
F

fi(xF
)W

��

i : (15)

(Thefactorx
F
in thedenom inatorisa \ux factor".)Atthispoint,wecan sim ply

read the valuesofF1;2,

F1 =
1

2

X

i

e
2
ifi(x) ; F2 = 2xF1 : (16)

W ethusseethatthetwoexperim entalobservationsofi)Bjorken scalingand ii)the

Callan-G rossrelation areautom atically realized in thisnaivepictureoftheprotonj.

Despiteitssuccess,thism odelisquitepuzzling,becauseitassum esthatpartons

are free inside the proton { while the rather large m ass ofthe proton suggests

a strong binding of these constituents inside the proton.O ur task for the rest

ofthis lecture is to study DIS in a quantum �eld theory ofstrong interactions,

thereby turning the naive parton m odelinto a system atic description ofhadronic

reactions.Beforeweproceed further,letusdescribein qualitativeterm s(see 10 for

instance)whataproton constituted offerm ionicconstituentsbound by interactions

involvingtheexchangeofgaugebosonsm aylooklike.In theleftpanelof�gure4are

Fig.4.Cartoons ofthe valence partons ofa proton,and their interactions and uctuations.Left:

proton at low energy.R ight:proton at high energy.

represented thethreevalencepartons(quarks)oftheproton.Thesequarksinteract

jIn particular,F
L
= 0 in thism odelisintim ately related to the spin 1=2 structure ofthe scattered

partons.Scalar partons,forinstance,would give F1 = 0,at variance with experim entalresults.
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bygluon exchanges,and can alsouctuateintostatesthatcontain additionalgluons

(and also quark-antiquark pairs).These uctuations can exist at any space-tim e

scalesm allerthan theproton size(� 1 ferm i).(In thispicture,oneshould think of

the horizontalaxisasthe tim e axis.)W hen one probesthe proton in a scattering

experim ent,the probe (e.g.the virtualphoton in DIS)ischaracterized by certain

resolutions in tim e and in transverse coordinate.The shaded area in the picture

is m eant to represent the tim e resolution ofthe probe :any uctuation which is

shorterlived than thisresolution cannotbe seen by the probe,because itappears

and diesouttoo quickly.

In therightpanelof�gure4,thesam eproton isrepresented aftera boost,while

the probehasnotchanged.The m ain di�erenceisthatallthe internaltim e scales

areLorentzdilated.Asa consequence,theinteractionsam ong thequarksnow take

placeovertim esm uch largerthan theresolution oftheprobe.Theprobetherefore

sees only free constituents.M oreover,this tim e dilation allows m ore uctuations

to be resolved by the probe;thus,a high energy proton appearsto contain m ore

gluonsthan a proton atlow energyk.

2.4. B jorken scaling from free �eld theory

W e willnow derive Bjorken scaling and the Callan-G rossrelation from quantum

�eld theory.W e will consider a theory involving ferm ions (quarks) and bosons

(gluons),butshallat�rstconsiderthefree�eld theory lim itby neglecting alltheir

interactions.W e willconsider a kinem aticalregim e in DIS that involves a large

value ofthe m om entum transfer Q 2 and ofthe center ofm ass energy
p
s ofthe

collision,while the value ofx iskeptconstant.Thislim itisknown asthe Bjorken

lim it.

To appreciatestrong interaction physicsin the Bjorken lim it,considera fram e

in which the 4-m om entum ofthe photon can be written as

q
� =

1

m
N

(�;0;0;

q

�2 + m 2
N
Q 2): (17)

From the com binationsofthe com ponentsofq�

q
+ �

q0 + q3
p
2

�
�

m
N

! + 1

q
� �

q0 � q3
p
2

� m
N
x ! constant; (18)

and because q� y = q+ y� + q� y+ � q? � y? ,the integration over y� in W �� is

dom inated by

y
� �

m
N

�
! 0 ; y

+ � (m
N
x)� 1 : (19)

kEquivalently,ifthe energy ofthe proton is �xed,there are m ore gluons at lower values ofthe

m om entum fraction x
F
.
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Therefore,theinvariantseparationbetween thepointsatwhich thetwocurrentsare

evaluated isy2 � 2y+ y� � 1=Q 2 ! 0.Noting thatin eq.(9)theproductofthetwo

currentscan bereplaced by theircom m utator,and recallingthatexpectation values

ofcom m utatorsvanish forspace-likeseparations,wealsoseethaty2 � 0.Thus,the

Bjorken lim itcorrespondsto a tim e-likeseparation between thetwo currents,with

the invariantseparation y2 going to zero,asillustrated in �gure 5.Itisim portant

z

t

y2 = 1/Q2

Fig.5.R egion ofy� that dom inates in the Bjorken lim it.

to notethatin thislim it,although theinvarianty2 goesto zero,thecom ponentsof

y� do notnecessarily becom e sm all.This willhave im portantram i�cationswhen

weapply the O peratorProductExpansion to W �� .

Forourforthcom ing discussion,considerthe forward Com pton am plitude T ��

4�T�� � i

Z

d
4
ye

iq� y



N (P )

�
�T(Jy�(y)J�(0))

�
�N (P )

��

spin
: (20)

q q

P P

Fig.6.Forward Com pton am plitude.W e have also represented a cutcontributing to W �� .

It di�ers from W �� by the fact that the two currents are tim e-ordered,and as

illustrated in �gure6,one can recoverW �� from itsim aginary part,

W �� = 2Im T�� : (21)

At �xed Q 2,T �� is analytic in the variable �,except for two cuts on the real

axisthatstartat� = � Q2=2.The cutatpositive � correspondsto the threshold
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(P + q)2 � m 2
N
above which the DIS reaction becom es possible,and the cut at

negative� can beinferred from thefactthatT�� isunchanged undertheexchange

(� $ �;q $ � q).Itisalso possible to decom pose the tensorT�� in term softwo

structurefunctionsT1;2 :

T�� = � T1

�

g�� �
q�q�

q2

�

+
T2

P � q

�

P� � q�
P � q

q2

� �

P� � q�
P � q

q2

�

; (22)

and theDIS structurefunctionsF1;2 can beexpressed in term softhediscontinuity

ofT1;2 acrossthe cuts.

W e now rem ind the readerofsom e basic results aboutthe O perator Product

Expansion (O PE)11;12.Considera correlator


A (0)B(y)�(x1)� � � �(xn)

�
,where A

and B aretwo localoperators(possibly com posite)and the�’sareunspeci�ed �eld

operators.In the lim it y� ! 0,this object is usually singular,because products

ofoperatorsevaluated atthe sam e pointare ill-de�ned.The O PE statesthatthe

nature ofthese singularities is a property ofthe operators A and B,and is not

inuenced by thenatureand localization ofthe�(xi)’s.Thissingularbehaviorcan

be expressed as

A (0)B(y) =
y� ! 0

X

i

Ci(y)O i(0); (23)

where the Ci(y)are num bers(known asthe W ilson coe� cients)thatcontain the

singulary� dependenceand theO i(0)arelocaloperatorsthathavethesam equan-

tum num bersastheproductA B.Thisexpansion {known astheO PE {can then be

used to obtain thelim ity� ! 0 ofany correlatorcontaining theproductA (0)B(y).

Ifd(O i);d(A ),and d(B)arethe respective m assdim ensionsofthe operatorsO i;A

and B,a sim ple dim ensionalargum enttellsusthat

Ci(y) �
y� ! 0

jyjd(O i)� d(A )� d(B) (up to logarithm s): (24)

(Here jyj=
p
y�y

�.) From this relation,we see thatthe operatorsO i having the

lowestdim ension lead to them ostsingularbehaviorin thelim ity� ! 0.Thus,only

a sm allnum berofoperatorsare relevantin the analysisofthislim itand one can

ignorethe higherdim ensionaloperators.

Things are however a bit m ore com plicated in the case ofDIS,because only

the invariant y2 goes to zero,while the com ponents y� do not go to zero.The

localoperators that m ay appear in the O PE ofT(Jy�(y)J�(0)) can be classi�ed

according to the representation ofthe Lorentzgroup to which they belong.Letus

denotethem O
�1� � � �s

s;i ,wheresisthe\spin" oftheoperator(thenum berofLorentz

indices it carries),and the index i labels the various operators having the sam e

Lorentzstructure.TheO PE can be written as:

X

s;i

C
s;i
�1� � � �s

(y)O
�1� � � �s

s;i (0): (25)
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Because they depend only on the 4-vectory�,the W ilson coe�cients m ust be of

the form l

C
s;i
�1� � � �s

(y)� y�1
� � � y�s

Cs;i(y
2); (26)

whereCs;i(y
2)dependsonly on theinvarianty2.Sim ilarly,theexpectation valueof

theoperatorsO �1� � � �s
s in theproton statecan onlydepend on theproton m om entum

P �,and the leading partin the Bjorken lim itism

D

N (P )

�
�O

�1� � � �s

s;i (0)
�
�N (P )

�E

spin
= P

�1 � � � P
�s


O s;i

�
; (27)

wherethe


O s;i

�
aresom enon-perturbativem atrix elem ents.

Letus now denote by ds;i the m assdim ension ofthe operatorO
�1� � � �s

s;i .Then,

the dim ension ofCs;i(y
2)is6+ s� ds;i,which m eansthatitscaleslike

Cs;i(y
2) �

y2! 0
(y2)(ds;i� s� 6)=2 : (28)

Becausethe individualcom ponentsofy� do notgo to zero,itisthisscaling alone

thatdeterm inesthebehaviorofthehadronictensorin theBjorken lim it.Contrary

to thestandard O PE,thescaling dependson thedi�erencebetween thedim ension

oftheoperatorand itsspin,called itstwistts;i � ds;i� s,ratherthan itsdim ension

alone.TheBjorken lim itofDIS isdom inated by theoperatorsthathavethelowest

possible twist.Aswe shallsee,there isan in�nity ofthese lowesttwistoperators,

because the dim ension can be com pensated by the spin ofthe operator.Ifwe go

back to the structurefunctionsT1;2,we can write

Tr(x;Q
2)=

X

s

x
ar� s

X

i



O s;i

�
D r;s;i(Q

2) (r= 1;2); (29)

where a1 = 0 and a2 = 1.The di�erence by one powerofx (at�xed Q 2)between

T1 and T2 com esfrom theirrespectivede�nitionsfrom T �� thatdi�erby onepower

ofthe proton m om entum P .Eq.(29)givesthe structure functionsT1;2 asa series

ofterm s,each ofwhich hasfactorized x and Q 2 dependences.(ThefunctionsD r;s;i

(r= 1;2)arerelated totheFouriertransform ofCs;i(y
2),and thuscan only depend

on the invariantQ 2).M oreover,fordim ensionalreasons,the functionsD r;s;i m ust

scale like Q 2+ s� ds;i.Therefore,itfollowsthatBjorken scaling arisesfrom twist2

operators.Itisim portantto keep in m ind thatin eq.(29),thefunctionsD r;s;i are

in principle calculable in perturbation theory and do notdepend on the nature of

thetarget,whilethe


O s;i

�
’sarenon perturbativem atrix elem entsthatdepend on

thetarget.Thus,theO PE approach in ourpresentim plem entation cannotprovide

quantitativeresultsbeyond sim ple scaling laws.

lThere could also be term s where one or m ore pairs y�iy�j are replaced by y2 g�i�j,but such

term sare lesssingularsin the Bjorken lim it.
m H ere also,there could be term s where a pair P �iP �j is replaced by m 2

N
g�i�j,but they too

lead to subleading contributions in the Bjorken lim it.
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It is easy to check that T1 is even in x while T2 is odd;this m eans that only

even valuesofthe spin s can appearin the sum in eq.(29).W e shallnow rewrite

this equation in a m ore com pactform to see whatittells us aboutthe structure

functionsF1;2.W riting

Tr =
X

even s

tr(s;Q
2)xar� s =

X

even s

tr(s;Q
2)

�
2

Q 2

� s� ar

�
s� ar ; (30)

weget(fors even)

tr(s;Q
2)=

1

2�i

�
Q 2

2

� s� ar Z

C

d�

�
�
ar� s Tr(�;Q

2); (31)

whereC isasm allcirclearound theorigin in thecom plex � plane(see�gure7).This

ν

C

Fig.7.Contour in the com plex � plane,and its deform ation to pick up the contribution ofthe

cuts.

contourcan then bedeform ed and wrapped around thecutsalong therealaxis,as

illustrated in the�gure7.Becausethestructurefunction Fr isthediscontinuity of

Tr acrossthe cut,wecan write

tr(s;Q
2)=

2

�

Z 1

0

dx

x
x
s� ar Fr(x;Q

2): (32)

Therefore,weseethattheO PE givesthex-m om entsoftheDIS structurefunctions.

In orderto go furtherand calculatethe perturbativeW ilson coe�cientsD r;s;i,

wem ustnow identify thetwist2 operatorsthatm ay contributeto DIS.In a theory

offerm ionsand gaugebosons,wecan constructtwo kindsoftwist2 operators:

O
�1� � � �s

s;f
�  f

f�1@
�2 � � � @

�sg f

O �1� � � �s

s;g � F�
f�1@

�2 � � � @
�s�1 F

�sg� ; (33)

where the brackets f� � � g denote a sym m etrization ofthe indices �1 � � � �s and a

subtraction ofthetraced term son thoseindices.Tocom putetheW ilson coe�cients,

the sim plestm ethod isto exploitthe factthatthey areindependentofthe target.

Therefore,we can take as the \target" an elem entary object,like a quark or a

gluon,forwhich everything can becom puted in closed form (including the


O s;i

�
).
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Consider�rsta quark stateasthetarget,ofa given avorf and spin �.Atlowest

order,one has



f;�

�
�O

�1� � � �s

s;f0

�
�f;�

�
= �ff0u�(P )

f�1u�(P )P
�2 � � � P

�sg



f;�

�
�O �1� � � �s

s;g

�
�f;�

�
= 0: (34)

Averaging overthe spin,and com paring with P �1 � � � P�s



O s;i

�
,we get



O s;f0

�

f
= �ff0 ;



O s;g

�

f
= 0: (35)

O n the otherhand,we have already calculated directly the hadronic tensorfora

single quark.By com puting the m om ents ofthe corresponding F1;2,we get the

tr(s;Q
2)fors even :

t1(s;Q
2)=

1

�
e
2
f ; t2(s;Q

2)=
2

�
e
2
f : (36)

From this,the bareW ilson coe�cientsforthe operatorsinvolving quarksare

D 1;s;f(Q
2)=

1

�
e
2
f ; D 2;s;f(Q

2)=
2

�
e
2
f : (37)

By repeating thesam estepswith a vectorboson state,thoseinvolving only gluons

are

D 1;s;g(Q
2)= D 2;s;g(Q

2)= 0 ; (38)

ifthe vectorbosonsareassum ed to be electrically neutral.

G oingback toanucleon target,wecannotcom putethe


O s;i

�
.However,wecan

hidem om entarily ourignoranceby de�ningfunctionsff(x)and f�f(x)(respectively

the quark and antiquark distributions)such thatn

Z 1

0

dx

x
x
s
h

ff(x)+ f�f(x)

i

= hO s;fi : (39)

(Thesum ff(x)+ f�f(x)isknown asthesingletquarkdistribution of avorf.)Thus,

theO PE form ulasforF1 and F2 on a nucleon in term softhesequark distributions

are

F1(x)=
1

2

X

f

e
2
f

h

ff(x)+ f�f(x)

i

; F2(x)= 2xF1(x): (40)

W e see that these form ulas have the required properties:(i) Bjorken scaling and

(ii)the Callan-G rossrelation.

Despite the factthatthe O PE in a free theory ofquarksand gluonsleadsto a

resultwhich isem barrassinglysim ilartothem uch sim plercalculation weperform ed

in the naiveparton m odel,thisexercisehastaughtusseveralim portantthings:

nD IS with exchange ofa photon cannot disentangle the quarks from the antiquarks.In order to

do that,one could scatter a neutrino o� the target,so that the interaction proceeds via a weak

charged current.
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� W e can derive an operatorde�nition ofthe parton distributionsfi(x)(al-

beititisnotcalculableperturbatively)

� Bjorken scaling can be derived from �rst principles in a �eld theory of

free quarksand gluons.Thiswasa puzzle pre-Q CD because clearly these

partonsareconstituentsofa strongly bound state.

� The puzzle could be resolved ifthe �eld theory ofstrong interactionsbe-

cam eafreetheory in thelim itQ 2 ! + 1 ,aproperty known asasym ptotic

freedom .

Asshown by G ross,Politzerand W ilczek in 1973,non-Abelian gaugetheorieswith

a reasonable num ber offerm ionic �elds (e.g.Q CD with 6 avors ofquarks) are

asym ptotically free1 and were therefore a naturalcandidate for being the right

theory ofthe strong interactions.

2.5. Scaling violations

Although itwasinteresting to see thata freequantum �eld theory reproducesthe

Bjorken scaling,thisfactalonedoesnottellm uch aboutthedetailed natureofthe

strong interactions at the levelofquarks and gluons.M uch m ore interesting are

theviolationsofthisscaling thatarisefrom theseinteractionsand itisthedetailed

com parison ofthese to experim entsthatplayed a crucialrolein establishing Q CD

asthe theory ofthe strong interactions.

The e�ectofinteractionscan be evaluated perturbatively in the fram ework of

the O PE,thanks to renorm alization group equations.In the previous discussion,

we im plicitly assum ed thatthere isno scale dependence in the m om ents


O s;i

�
of

the quark distribution functions.But this is not entirely true;when interactions

are taken into account,they depend on a renorm alization scale �2.The parton

distributions becom e scale dependent as well.However,since F1;2 are observable

quantitiesthatcan be extracted from a cross-section,they cannotdepend on any

renorm alization scale.Thus,therem ustalso bea �2 dependencein theW ilson co-

e�cients,thatexactly com pensatesthe� 2 dependenceoriginatingfrom the


O s;i

�
.

By dim ensionalanalysis,theW ilson coe�cientshavean overallpowerofQ 2 setby

theirdim ension (see the discussion following eq.(29)),m ultiplied by a dim ension-

lessfunction thatcan only depend on the ratio Q 2=�2.By com paring the Callan-

Sym anzik equations12 for T �� with those for the expectation values


O s;i

�
,the

renorm alization group equation12 obeyed by the W ilson coe�cientsis o

��
� Q @

Q
+ �(g)@g

�
�ij � s;ji(g)

�
D r;s;j(Q =�;g)= 0; (41)

where�(g)isthebeta function,and s;ji(g)isthem atrix ofanom alousdim ensions

for the operators of spin s (it is not diagonalbecause operators with identical

quantum num berscan m ix through renorm alization).

oW e have used the fact that the electrom agnetic currents are conserved and therefore have a

vanishing anom alousdim ension.N otealso thatwehaveexploited thefactthatfortwist2 operators

D r;s;j depends only on Q 2=�2,so that we can replace �@� by � Q @
Q
.
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In order to solve these equations,let us �rst introduce the running coupling

g(Q ;g)such that

ln(Q =Q 0)=

Z g(Q ;g)

g

dg0

�(g0)
: (42)

Note thatthisisequivalentto Q @
Q
g(Q ;g)= �(g(Q ;g))and g(Q 0;g)= g;in other

words,g(Q ;g)isthevalueatthescaleQ ofthecouplingwhosevalueatthescaleQ 0

isg.The usefulnessofthe running coupling stem sfrom the factthatany function

thatdependson Q and g only through thecom bination g(Q ;g)obeystheequation

�
� Q @

Q
+ �(g)@g

�
F (g(Q ;g))= 0: (43)

Itisconvenientto expressthe W ilson coe�cientsatthe scaleQ from those atthe

scaleQ 0 as

D r;s;i(Q =�;g)= D r;s;j(Q 0=�;g(Q ;g))

h

e
�

R

Q

Q 0

dM
M

s(g(M ;g))
i

ji
: (44)

In Q CD,which isasym ptotically free,we can approxim ate the anom alousdim en-

sionsand running coupling atoneloop by

s;ij(g)= g
2
A ij(s) ; g

2(Q ;g)=
8�2

�0 ln(Q =� Q C D
)
: (45)

(The A ij(s)areobtained from a 1-loop perturbativecalculation.)In thiscase,the

scaledependence ofthe W ilson coe�cientscan be expressed in closed form as

D r;s;i(Q =�;g)= D r;s;j(Q 0=�;g(Q ;g))

2

4

�
ln(Q =�

Q C D
)

ln(Q 0=� Q C D
)

� � 8�
2

� 0
A (s)

3

5

ji

: (46)

From thisform ula,wecan write the m om entsofthe structurefunctions,

Z 1

0

dx

x
x
s
F1(x;Q

2)=
X

i;f

e2
f

2

2

4

�
ln(Q =�

Q C D
)

ln(Q 0=� Q C D
)

� � 8�
2

� 0
A (s)

3

5

fi

hO s;ii
Q 0

; (47)

(and asim ilarform ulaforF2).W eseethatwecan preservetherelationship between

F1 and thequarkdistributions,eq.(40),providedthatweletthequarkdistributions

becom escaledependentin such a way thattheirm om entsread

Z 1

0

dx

x
x
s
h

ff(x;Q
2)+ f�f(x;Q

2)

i

�
X

i

2

4

�
ln(Q =�

Q C D
)

ln(Q 0=� Q C D
)

� � 8�
2

� 0
A (s)

3

5

fi

hO s;ii
Q 0

:(48)

By also calculating the scale dependence ofF2,one could verify thatthe Callan-

G rossrelation F2(x;Q
2)= 2xF1(x;Q

2)ispreserved atthe1-loop order.Itiscrucial

to note that,although we do not know how to com pute the expectation values

hO s;ii
Q 0

atthe starting scale Q 0,Q CD predictshow the quark distribution varies

when onechangesthescaleQ .W ealsoseethat,in addition to a dependenceon Q 2,
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the singletquark distribution now depends on the expectation value ofoperators

thatinvolveonly gluons(when the index i= g in the previousform ula).

The scale dependence ofthe parton distributions can also be reform ulated in

the m ore fam iliar form ofthe DG LAP equations.In orderto do this,one should

also introducea gluon distribution fg,also de�ned by itsm om ents,

Z 1

0

dx

x
x
s
fg(x;Q

2)�
X

i

2

4

�
ln(Q =�

Q C D
)

ln(Q 0=� Q C D
)

� � 8�
2

� 0
A (s)

3

5

gi

hO s;ii
Q 0

: (49)

Then onecan check thatthederivativesofthem om entsoftheparton distributions

with respectto the scaleQ 2 aregiven by

Q
2@fi(s;Q

2)

@Q 2
= �

g2(Q ;g)

2
A ji(s)fj(s;Q

2); (50)

where we have used the shorthandsff � ff + f�f ;fg � fg.In orderto turn this

equation into an equation forthe parton distributionsthem selves,onecan use

A(s)f(s)=

Z 1

0

dx

x
x
s

Z 1

x

dy

y
A(x=y)f(y); (51)

that relates the product of the m om ents of two functions to the m om ent of a

particularconvolution ofthese functions.Using this result,and de�ning splitting

function Pij from theirm om ents,
Z 1

0

dx

x
x
s
Pij(x)� � 4�2A ij(s); (52)

itiseasy to derivethe DG LAP equation5,

Q
2@fi(x;Q

2)

@Q 2
=
g2(Q ;g)

8�2

Z 1

x

dy

y
Pji(x=y)fj(y;Q

2); (53)

that resum s powers of�s log(Q
2=Q 2

0).This equation for the parton distributions

hasaprobabilisticinterpretation :thesplittingfunction g2Pji(z)ln(Q
2)can beseen

astheprobability thata parton jsplitsinto two partonsseparated by atleastQ � 1

(sothataprocesswith atransversescaleQ willseetwopartons),oneofthem being

a parton ithatcarriesthe fraction z ofthe m om entum ofthe originalparton.

At1-loop,the coe�cientsA ij(s)in the anom alousdim ensionsare

A gg(s)=
1

2�2

8
<

:
3

2

4
1

12
�

1

s(s� 1)
�

1

(s+ 1)(s+ 2)
+

sX

j= 2

1

j

3

5+
N f

6

9
=

;

A gf(s)= �
1

4�2

�
1

s+ 2
+

2

s(s+ 1)(s+ 2)

�

A fg(s)= �
1

3�2

�
1

s+ 1
+

2

s(s� 1)

�

A ff0(s)=
1

6�2

8
<

:
1�

2

s(s+ 1)
+ 4

sX

j= 2

1

j

9
=

;
�ff0 ; (54)
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whereN f isthenum berofavorsofquarks.O n can notethat,sinceA gf(s)isa-

vorindependent,thenon-singletp linearcom binations(
P

f
afO s;f with

P

f
af = 0)

areeigenvectorsofthem atrix ofanom alousdim ensions,with an eigenvalueA ff(s).

Theselinearcom binationsdonotm ix with therem ainingtwooperators,
P

f
O s;f

and O s;g,through renorm alization.By exam ining these anom alousdim ensionsfor

s= 1,wecan seethattheeigenvalueforthenon-singletquark operatorsisvanish-

ing :A ff(s= 1)= 0.G oing back to the eq.(50),thisim pliesthat

@

@Q 2

8
<

:

Z 1

0

dx
X

f

af

h

ff(x;Q
2)+ f�f(x;Q

2)

i
9
=

;
= 0 (55)

forany linearcom bination such that
P

f
af = 0.Thisrelation im pliesforinstance

thatthenum berofu+ u quarksm inusthenum berofd+ d quarksdoesnotdepend

on the scale Q ,which isdue to the factthatthe splittingsg ! qq producequarks

ofallavorsin equalnum bers (ifone neglects the quark m asses).An interesting

relation can also beobtained fors= 2.Forthism om ent,them atrix ofanom alous

dim ensionsin the singletsector,

�
A ff(2) A fg(2)

N fA gf(2)A gg(2)

�

=
1

�2

 
4

9
� 4

9

�
N f

12

N f

12

!

; (56)

has a vanishing eigenvalue,which m eans that a linear com bination ofthe avor

singlet operatorsis not renorm alized :O
��

2;g +
P

f
O
��

2;f
.This leads also to a sum

rule

@

@Q 2

8
<

:

Z 1

0

dxx

2

4
X

f

h

ff(x;Q
2)+ f�f(x;Q

2)

i

+ fg(x;Q
2)

3

5

9
=

;
= 0 ; (57)

whose physicalinterpretation is the conservation ofthe totalm om entum ofthe

proton { which thereforecannotdepend on theresolution scaleQ .(Collinearsplit-

tings,thatare responsible forthe Q dependence ofthe num berofpartons,do not

altertheirtotalm om entum .)

W ehaveseen thatQ CD can beused to calculatethevalueoftheW ilson coe�-

cientsaswellasthescaledependenceofthenon-perturbativeparton distributions.

In practice,when one com paresDIS data with theoreticalpredictions,one needs

only to adjustthe value ofthe parton distributionsata relatively low initialscale

Q 0,and then oneusestheDG LAP evolution equationsin ordertoobtain theirvalue

ata higherQ .This program hasnow been im plem ented to three loops(NNLO ),

and hasbeen very successfulin explaining the inclusive DIS data.The agreem ent

between Q CD and theDIS m easurem entsisillustrated in �gure8 (seeforinstance
13 form oredetails).

pH ere,the word \singlet" refersto the avor ofthe quarks.
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Fig.8.Com parison ofthe m easured F2 with Q CD �ts.

3. Lecture II :Parton evolution at sm allx and gluon saturation

In the �rst lecture,we introduced the parton m odeland the evolution ofparton

distributionswith thetransverseresolution scaleQ 2 {and thecorrespondingresum -

m ation ofthe powersof�s log(Q
2).W e now turn to the logarithm sof1=x.These

logarithm sare expected to be the dom inante�ectin processeswhere the collision

energy
p
s ism uch largerthan the typicaltransversem om entum scale involved in

the process,and m ay lead to gluon saturation atvery sm allx.

3.1. Eikonalscattering

Before going to the m ain subjectofthislecture,letusm ake a detourthrough an

im portant result concerning the high energy lim it ofthe scattering am plitude of

som estateo� an external�eld.O urderivation herefollows 14.Considerthegeneric

S-m atrix elem ent

S�� �


�out

�
��in

�
=


�in

�
�U (+ 1 ;� 1 )

�
��in

�
; (58)

forthe transition from a state � to a state� where

U (+ 1 ;� 1 )= T+ exp

h

i

Z

d
4
x Lint(�in(x))

i

; (59)

is the evolution operator from t = � 1 to t = + 1 .(T+ denotes an ordering in

the light-cone tim e x+ .) The interaction Lagrangian Lint contains both the self-

interactionsofthe �eldsand theirinteractionswith the external�eld.Now apply
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a boost in the z direction to allthe particles contained in the states � and �.

Form ally,this can be done by m ultiplying the states by exp(� i!K 3),where ! is

the rapidity ofthe boostand K 3 the generatoroflongitudinalboosts.O urgoalis

to com pute the lim it! ! + 1 ofthe transition am plitude,

S
(1 )

��
� lim

!! + 1



�in

�
�e
i!K

3

U (+ 1 ;� 1 )e� i!K
3�
��in

�
: (60)

Thebehaviorofscattering am plitudesin thislim itiseasy to understand.Thetim e

spentby theincom ing particlesin theregion wheretheexternal�eld isacting goes

to zero astheinverseofthecollision energy E .Ifthecoupling to theexternal�eld

waspurely scalar,thiswould im ply thatthescatteringam plitudeitselfgoesto zero

asE � 1.However,in the case ofa vectorcoupling,the longitudinalcom ponentof

thecurrentincreasesasE ,which com pensatesthedecreasein theinteraction tim e,

thereby leading to a �nite (non-zero and non in�nite)high energy lim it.

For this reason,let us assum e that the coupling ofthe �elds to the external

potentialisofthe form gA �(x)J
�(x)where J� isa vectorcurrentbuiltfrom the

elem entary �eldsofthetheory underconsideration.In orderto sim plify thediscus-

sion,we also assum e thatthe externalpotentialisnon-zero only in a �nite range

in x+ ,x+ 2 [� L;+ L](thisisto avoid com plicationswith long rangeinteractions).

The action ofK 3 on statesand operatorsis

e
� i!K

3

a
y

in
(q)ei!K

3

= a
y

in
(e!q+ ;e� !q� ;q? )

e
� i!K

3�
�p� � �in

�
=
�
�(e!p+ ;p? )� � �in

�

e
i!K

3

�in(x)e
� i!K

3

= �in(e
� !

x
+
;e

!
x
�
;x? ); (61)

nam ely,it m ultiplies the + com ponent ofm om enta by e! and their m inus com -

ponentby e� !,whilekeeping the transversecom ponentsunchanged.The external

potentialA �(x)isuna�ected by K
3,and thecom ponentsofJ�(x)arechanged as

follows:

e
i!K

3

J
i(x)e� i!K

3

= J
i(e� !x+ ;e!x� ;x? )

e
i!K

3

J
� (x)e� i!K

3

= e
� !

J
� (e� !x+ ;e!x� ;x? )

e
i!K

3

J
+ (x)e� i!K

3

= e
!
J
+ (e� !x+ ;e!x� ;x? )

BecauseK 3 doesnotm odify the ordering in x+ ,wecan write

e
i!K

3

U (+ 1 ;� 1 )e� i!K
3

= T+ expi

Z

d
4
x Lint(e

i!K
3

�in(x)e
� i!K

3

): (62)

In addition,we can splitthe evolution operatorinto threefactors

U (+ 1 ;� 1 )= U (+ 1 ;+ L)U (+ L;� L)U (� L;� 1 ) (63)

so thatonly the factorin the m iddle containsthe external�eld.In orderto deal

with the �rst and last factor after the boost,it is su�cient to change variables
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e� !x+ ! x+ ,e!x� ! x� .Thisleadsto

lim
!! + 1

e
i!K

3

U (+ 1 ;+ L)e� i!K
3

= U0(+ 1 ;0)

lim
!! + 1

e
i!K

3

U (� L;� 1 )e� i!K
3

= U0(0;� 1 ); (64)

where U0 is the sam e as U ,but with the self-interactions only.For the factor

U (L;� L),the changeofvariablese!x� ! x� givesus

lim
!! + 1

e
i!K

3

U (+ L;� L)e� i!K
3

= T+ exp

h

ig

Z

d
2
x? �(x? )�(x? )

i

; (65)

with

8
>><

>>:

�(x? )�

Z

dx
+ A � (x+ ;0;x? );

�(x? )�

Z

dx
�
J
+ (0;x� ;x? ):

(66)

O nly the m inuscom ponentofthe externalvectorpotentialm atters,because this

is the com ponent that couples to the longitudinalcurrent J+ which is enhanced

by the boost.Therefore,the high energy lim itofthe transition am plitude can be

written as

S
(1 )

��
=


�in

�
�U0(+ 1 ;0)T+ exp

h

ig

Z

x ?

�(x? )�(x? )

i

U0(0;� 1 )
�
��in

�
: (67)

Thislim itisknown asthe eikonallim it.Itisim portantto keep in m ind thatthis

form ula is the exact answer for the high-energy lim it;no perturbative expansion

hasbeen m adeyet,and the form ula stillcontainsthe self-interactionsofthe �elds

ofthetheory to allorders.A rem arkablefeatureofeq.(67)isthatitseparatesthe

self-interactions ofthe �elds and their interactions with the externalpotentialin

three di�erentfactors,a property which isstrongly suggestiveofthe factorization

between the long and shortdistancephysicsin high energy hadronicinteractions.

In orderto useeq.(67)in practice,itisnecessary to m akean expansion in the

self-interactions ofthe �elds,by introducing com plete sets ofstates between the

threefactors,

S
(1 )

��
=
X

;�



�in

�
�U0(+ 1 ;0)

�
�in

�

�


in

�
�T+ exp

h

ig

Z

x?

�(x? )�(x? )

i�
��in

�

�in
�
�U0(0;� 1 )

�
��in

�
: (68)

The factor
P

�

�
��in

�

�in
�
�U (0;� 1 )

�
��in

�
is the Fock expansion ofthe initialstate.

It reects the fact that the state � prepared at x+ = � 1 m ay have uctuated

into anotherstate � before itinteractswith the externalpotential.There isalso a

sim ilar expansion for the �nalstate.Assum ing that we have perform ed the Fock
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expansion to the desired orderq,one needsto evaluatem atrix elem entssuch as



in

�
�exp

h

ig

Z

�a(x? )�
a(x? )

i�
��in

�
: (69)

W ehavereinstated colorindicesin thisform ula,sincewehaveapplicationsto Q CD

in m ind.In orderto calculate thism atrix elem ent,the �rststep isto expressthe

operator �a(x? ) in term s ofcreation and annihilation operators ofthe particles

thatcan coupleto theexternalpotential.Forinstance,thecontribution thatcom es

from the quarksand antiquarksisgiven by

�
a(x? )= t

a
ij

Z
dp+

4�p+

d2p?

(2�)2

d2q?

(2�)2

n

b
y

in
(p+ ;p? ;i)bin(p

+
;q? ;j)e

i(p
?
� q

?
)� x?

� d
y

in
(p+ ;p? ;i)din(p

+
;q? ;j)e

� i(p
?
� q

?
)� x?

o

:(70)

(The quarks com e with a positive sign and the antiquarks with a negative sign.)

The contribution ofthe gluons would be sim ilar,but the color m atrix would be

replaced by an elem ent ofthe adjoint representation.From this form ula,we see

thatin eq.(69),the states� and  m usthave the sam e particle content,because

each annihilation operator in �a is im m ediately followed by a creation operator

that creates a particle ofthe sam e nature.The + com ponent ofthe m om enta of

the particles in � and  m ust also be identical.The only di�erence between the

states � and  is in the transverse m om enta and in the color oftheir particles.

In order to recover the eikonallim it in a m ore fam iliar form ,one should go to

im pactparam eterrepresentation by perform ing a Fouriertransform ation ofallthe

transversem om enta in the interm ediate states� and ,by de�ning the light-cone

wavefunction

	 ��(fk
+
i ;xi? g)�

Y

i2�

Z
d2ki?

(2�)2
e
� iki? � xi?



�in
�
�U0(0;� 1 )

�
��in

�
: (71)

Then,from the explicit form of�a,it is easy to check that the only e�ect ofthe

externalpotentialistom ultiply thefunction 	 �� by aphasefactorforeach particle

in the interm ediatestate:

	 ��(fk
+
i ;xi? g) �! 	 ��(fk

+
i ;xi? g)

Y

i2�

Ui(x? )

Ui(x? )� T+ exp

h

ig
i

Z

dx
+ A �

a (x
+
;0;x? )t

a
i

: (72)

In the case ofnon-abelian interactions,these phase factors Ui(x? ) are known as

W ilson lines.W ilson linesresum m ultiple scatteringso� the external�eld,asone

can see by expanding the exponential.Thus,the physicalpicture ofhigh energy

scattering o� som e external�eld is that the initialstate evolves from � 1 to 0,

qThe m ain di�erence com pared to the usualperturbation theory isthat the integrations overx+

run only overhalfofthe realaxis,e.g.[� 1 ;0].In Fourierspace,thisim pliesthatthe m inuscom -

ponentofthe m om entum isnotconserved atthe vertices,and thatone getsenergy denom inators

instead ofdelta functions.
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m ultiply scatters during an in�nitesim ally short tim e o� the externalpotential,

and evolvesagain from 0 to + 1 to form the �nalstate,asillustrated in �gure 9.

In term soflight-cone wavefunctionsand ofW ilson lines,the high energy lim itof

Fig.9.Scattering o� an externalpotentialin the high energy lim it.

the transition am plitude reads

S
(1 )

��
=
X

�

Z hY

i2�

dk
+
i

4�k
+
i

d
2
xi?

i

	
y

��
(fk+i ;xi? g)

hY

i2�

Ui(xi? )

i

	 ��(fk
+
i ;xi? g):(73)

3.2. B FK L equation

Let us now derive the BFK L equation.O ur derivation is inspired from 15� � 19.

Considertheforwardscatteringo�an external�eld ofastate� whosesim plestFock

com ponentisa colorsingletquark-antiquark pair.Thus,the transition am plitude

can be written as

=

�
�
�	

(0)(x? ;y? )

�
�
�
2

tr
�
U (x? )U

y(y? )
�
: (74)

W e willnot need to specify m ore the light-cone wavefunction ofthe state under

consideration.Notethattheproductofthetwo W ilson linesistraced,becausethe

state � is color singlet.A crucialproperty ofthis transition am plitude is that it

iscom pletely independentofthe collision energy.However,aswe shallsee,a non

trivialenergy dependence arises in this am plitude because oflarge logarithm s in

loop corrections.

Consider now the 1-loop corrections to this am plitude depicted in �gure 10.

These 1-loop correctionsallinvolve one additionalgluon attached to the quark or

antiquark lines.In som e ofthe corrections,thatwe shallcallrealcorrections,the

gluon ispresentin the statethatgoesthrough the external�eld.In the othercor-

rections,thevirtualcorrections,thegluon isjusta uctuation in thewavefunction

ofthe initialor �nalstate.The calculation ofthese diagram s is straightforward

in the im pactparam eterrepresentation.O ne sim ply needsthe form ula forthe q�qg

vertex :

= 2gta
�� � k?

k2
?

; (75)
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+ h.c.

Fig.10.O ne-loop corrections to the scattering ofa dipole o� an external�eld.O nly halfofthe

virtualcorrections have been represented.

where�� isthe polarization vectorofthe gluon and k? itstransversem om entum ,

and itsexpression in im pactparam eterspace,

Z
d2k?

(2�)2
e
ik? � (x? � z? ) 2gta

�� � k?

k2
?

=
2ig

2�
t
a �� � (x? � z? )

(x? � z? )
2

: (76)

Arm ed with thesetools,itiseasy to obtain expressionssuch as

=

�
�
�	

(0)(x? ;y? )

�
�
�
2

tr
�
t
a
t
a
U (x? )U

y(y? )
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� � 2�s
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dk+

k+

Z
d2z?

(2�)2

(x? � z? )� (x? � z? )

(x? � z? )
2(x? � z? )

2
; (77)

and

=

�
�
�	

(0)(x? ;y? )

�
�
�
2

tr
�
t
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U (x? )U

y(y? )t
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�

� 4�s

Z
dk+
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Z
d2z?

(2�)2

(x? � z? )� (y? � z? )

(x? � z? )
2(y? � z? )

2
: (78)

W e �nd thatthe sum ofallthe virtualcorrectionsreads

�
Cf�s

�2

Z
dk+

k+

Z

d
2
z?

(x? � y? )
2

(x? � z? )
2(y? � z? )

2

�
�
�	

(0)(x? ;y? )

�
�
�
2

tr
�
U (x? )U

y(y? )
�
;

(79)

where Cf � tata = (N 2 � 1)=2N for SU(N).In this form ula,k+ is the longitu-

dinalm om entum ofthe gluon.As one can see,there is a logarithm ic divergence

in the integration over this variable.The lower bound should arguably be som e

non-perturbativehadronicscale �,and the upperbound m ustbe the longitudinal

m om entum p+ ofthe quark orantiquark thatem itted the photon.Hence we have

a log(p+ =�),which isa large factorin the lim itofhigh-energy (strictly speaking,

thehigh-energy lim itisillde�ned becauseofthesecorrections).Thecalculation of
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the realcorrectionsisa bitm oreinvolved.Forinstance,one has

=

�
�
�	

(0)(x? ;y? )

�
�
�
2

tr
�
t
a
U (x? )t

b
U
y(y? )

�

� 4�s

Z
dk+

k+

Z
d2z?

(2�)2
eUab(z? )

(x? � z? )� (x? � z? )

(x? � z? )
2(x? � z? )

2
; (80)

where eUab(z? ) is a W ilson line in the adjoint representation that represents the

eikonalphase factor associated to the gluon (z? is the im pact param eter ofthe

gluon).In orderto sim plify the realterm s,we need the following relation between

fundam entaland adjointW ilson lines,

t
a eUab(z? )= U (z? )t

b
U
y(z? ); (81)

and the Fierz identity obeyed by fundam entalSU(N)m atrices:

t
b
ijt

b
kl=

1

2
�il�jk �

1

2N
�ij�kl: (82)

Thanks to these identities, one can rewrite allthe realcorrections in term s of

the quantity S(x? ;y? ) � tr
�
U (x? )U

y(y? )
�
=N :Collecting allthe term s,and

sum m ing realand virtualcontributions,weobtain thefollowing expression forthe

1-loop transition am plitude

�
�sN

2Y

2�2

�
�
�	

(0)(x? ;y? )

�
�
�
2
Z

d
2
z?

(x? � y? )
2

(x? � z? )
2(y? � z? )

2

�

n

S(x? ;y? )� S(x? ;z? )S(z? ;y? )

o

; (83)

wherewe denote Y � ln(p+ =�).Thiscorrection to the transition am plitude isnot

sm allwhen �� 1s . Y ,which m eansthatn-loop contributionsshould beconsidered

in orderto resum allthepowers(�sY )
n.Here,wearejustgoing to adm itthatthis

n-loop calculation am ounts to exponentiating the 1-loop result.In other words,

eq.(83)issu�cientin orderto obtain the derivative@S=@Y ,

@S(x? ;y? )

@Y
= �

�sN c

2�2

Z

d
2
z?

(x? � y? )
2

(x? � z? )
2(y? � z? )

2

�

n

S(x? ;y? )� S(x? ;z? )S(z? ;y? )

o

: (84)

Itiscustom arytorewritethisequation in term sofT-m atrixelem ents,T (x? ;y? )�

1� S(x? ;y? ).TheBFK L equation
4 describestheregim ewhereT (x? ;y? )issm all,

so thatwecan neglectthe term sthatarequadraticin T .Itreads:

@T (x? ;y? )

@Y
=
�sN c

2�2

Z

d
2
z?

(x? � y? )
2

(x? � z? )
2(y? � z? )

2

�

n

T (x? ;z? )+ T (z? ;y? )� T (x? ;y? )

o

: (85)

O ne can verify easily thatT = 0 isa � xed pointofthisequation (the righthand

side vanishesifone setsT = 0),but thatthis �xed point is unstable (ifone sets
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T = � > 0,the righthand side ispositive).Since there are no other�xed points,

solutionsofthe BFK L have an unbounded growth in the high energy lim it(Y !

+ 1 ).This behavior however is not physical,because the unitarity ofscattering

am plitude im pliesthatT (x? ;y? )should notbecom e greaterthan unity.

3.3. B alitsky-K ovchegov equation

Thesolution to theaboveproblem wasin factalready contained in eq.(84).W hen

written in term sofT withoutassum ing thatT issm all,

@T (x? ;y? )

@Y
=
�sN c

2�2

Z

d
2
z?

(x? � y? )
2

(x? � z? )
2(y? � z? )

2

�

n

T (x? ;z? )+ T (z? ;y? )� T (x? ;y? )� T (x? ;z? )T (z? ;y? )

o

; (86)

ithasa non-linearterm thatcon�nesT to therange[0;1].Indeed,thepresenceof

this quadratic term m akesT = 1 a stable �xed pointofthe equation.Therefore,

thegenericbehaviorofsolutionsofeq.(86)isthatT startsatsm allvaluesatsm all

Y and asym ptotically reachesthevalueT = 1 in thehigh energy lim it.Eq.(86)is

known asthe Balitsky-K ovchegov equation17;18.

Theinteraction ofa colorsingletdipolewith an externalcolor�eld isa possible

description ofDIS,in a fram e in which the virtualphoton splits into a quark-

antiquark pairlongbeforeitcollideswith theproton (theexternalcolor�eld would

represent the proton target).Although it is legitim ate to treat the proton as a

frozen con�guration ofcolor�eld due to the brevity ofthe interaction,we do not

know whatthis�eld is.M oreover,sincethis�eld iscreated by thepartonsinsidethe

proton,thathaveacom plicated dynam ics,thiscolor�eld m ustbedi�erentforeach

collision,and should thereforebetreated asrandom .Therefore,in ordertoturn our

dipole scattering am plitude into an objectthatwe could use to com pute the DIS

cross-section athigh-energy,wem ustaverageoverallthepossiblecon�gurationsof

theexternal�eld.Letusdenoteby


� � �

�
thisaverage.Thee�ectofthisaverageon

theenergy dependenceoftheam plitudeissim ply taken into accountby taking the

averageofeq.(86).However,oneseesthattheevolution equation for


T
�
involves

in its right hand side the average ofa product oftwo T ’s,


T T

�
.Therefore,we

do nothave a closed equation anym ore.An evolution equation for


T T

�
could be

obtained by the sam e procedure,which would depend on yetanothernew object,

and so on.Attheend oftheday,onein factobtainsan in�nitehierarchy ofnested

equations,known asBalitsky’sequations18.

Itisonly ifone assum esthatthe averagesofproductsofam plitudesfactorize

into productsofaverages,

hT T i� hT ihT i ; (87)

that this hierarchy can be truncated into a closed equation which is identicalto

eq.(86){ theBK equation { with T replaced by


T
�
.Thisapproxim ation am ounts
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to drop certain correlationsam ong the target�elds,and isbelieved to be a good

approxim ation fora largenucleusin the lim itofa largenum berofcolors17.

3.4. G luon saturation and C olor G lass C ondensate

The problem encountered with the inde�nite growth ofthe solutionsofthe BFK L

can be understood in term s of the behavior of the gluon distribution at sm all

m om entum fraction x.Indeed,in theregim ewherethedipolescattering am plitude

T isstillsm all,itcan be calculated perturbatively,

T (x? ;y? )/ jx? � y? j
2
xG (x;jx? � y? j

� 2); (88)

where Y � ln(1=x).This form ula is an exam ple ofthe duality that exists in the

description ofscattering processesathigh energy.In the derivation ofthe BFK L

and BK equations,wehavetreated theproton targetasgiven onceforall,and the

energy dependencehasbeen obtained by applying a boostto thedipoleprojectile.

But,thanksto thefactthattransition am plitudesareLorentzinvariantquantities,

they can also be evaluated in a fram e where the dipole is �xed,and the boost

is applied to the proton.In this fram e,the energy dependence ofthe scattering

am plitude com esfrom the x dependence ofthe proton gluon distribution.

Thus,an exponentialbehavior ofT is equivalent to an increase ofthe gluon

distribution asa powerof1=x :

T � e
!Y  ! xG (x;Q 2)�

1

x!
: (89)

(This growth ofthe gluon distribution is due to gluon splittings.) However,the

gluon distribution cannotgrow atthispaceinde�nitely.Indeed,atsom epoint,the

occupation num berofthe gluonswillbecom e large and the recom bination oftwo

gluons{ notincluded in theBFK L equation { willbefavored.Thisphenom enon is

known asgluon saturation20.In thelinearregim e,described bytheBFK L equation,

Fig.11.G luon saturation :m erging ofthe gluons ladders initiated by two valence partons.The

proton target isat the top ofthe picture and the probe at the bottom .

each valence parton from the proton initiatesitsown gluon ladder(see �gure 11)

that evolves independently from the others.In the saturated regim e,these gluon
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ladderscan m erge,thereby reducingthegrowth ofthegluon distribution.Thee�ect

ofthese recom binationson the scattering am plitude is taken into accountby the

non-linearterm ofthe BK equation.

A sem iquantitative criterion for gluon saturation can be obtained20 by com -

paring the surfacedensity ofgluons,� � xG (x;Q2)=�R2,and thecross-section for

gluon recom bination,� � �s=Q
2.Saturation occurswhen 1 . ��,i.e.when

Q
2 � Q

2
s ; with Q

2
s �

�sxG (x;Q
2
s)

�R2
A

� A
1=3 1

x0:3
: (90)

The quantity Q s is known as the saturation m om entum .Its dependence on the

num ber ofnucleons A (in the case ofa nuclear target) com es from the fact that

xG (x;Q 2)scaleslike the volum e,while �R2 isan area.Itsx dependence isa phe-

nom enologicalparam eterization inspired by from �tsofHERA data.From eq.(90),

log(Q 2)

log(x -1)

Λ
QCD

Fig.12.Saturation dom ain in the x;Q 2 plane.

one can divide the x;Q 2 in two regions,asillustrated in �gure 12.The saturated

regim ecorrespondsto the dom ain oflow Q and low x.

Although theBK equationdescribestheevolutionofthedipolescatteringam pli-

tudeinto thesaturation regim e,thereisan equivalentdescription ofthisevolution

{ the ColorG lassCondensate { in which the centralrole isplayed by the target.

TheCG C description dividesthedegreesoffreedom in theproton into fastpartons

(large x) and slow partons (sm allx)21.The fastpartons are a�ected by tim e di-

lation,and do nothaveany signi�canttim e evolution during the briefduration of

thecollision;therefore,they aretreated asstaticobjectsthatcarry a colorsource.

Thesecolorsourcesproducea current,

J
� = �

�+
�(x� )�(x? ); (91)

written here for a projectile m oving in the + z direction.The function �(x? ) de-

scribes the distribution of color charge as a function of the im pact param eter.
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The slow partons,on the otherhand,have a non trivialdynam icsduring the col-

lision,and m ust be treated as gauge �elds.The only coupling between the fast

and slow partonsisa coupling A �J
� between the colorcurrentofthe fastpartons

and the gauge �elds,which allows the fast partons to radiate slower partons by

brem sstrahlung.Becausethecon�guration ofthefastpartonspriorto thecollision

is di�erent in every collision,the function �(x? ) m ust be a stochastic quantity,

forwhich onecan only specify a distribution W
Y
[�].O bservableslikecross-sections

m ustbeaveraged overallthepossiblecon�gurationsof� with thisdistribution.In

fact,in the CG C description,this averaging procedure isequivalentto the target

average ofthe scattering am plitude that was introduced in the discussion ofthe

BK equation,



� � �

�
�

Z
�
D �

�
W

Y
[�]� � � : (92)

A crucialpoint is that the distribution W
Y
[�]depends on Y ,the rapidity that

separateswhatisconsidered fastand slow.Becausesuch a separation isarbitrary,

physicalquantities cannot depend on it;one can derive from this requirem ent a

renorm alization group equation forW
Y
[�]{ known asthe JIM W LK equation22 {,

ofthe form :

@W
Y
[�]

@Y
= H [�]W

Y
[�]: (93)

TheJIM W LK Ham iltonian H [�]contains�rstand second derivativeswith respect

to the source�,

H [�]=

Z

x ?

�(x? )
�

��(x? )
+
1

2

Z

x ? ;y?

�(x? ;y? )
�2

��(x? )��(y? )
; (94)

where �(x? ) and �(x? ;y? ) are known functionals of�.In fact,the JIM W LK

equation isequivalenttothein�nitehierarchyofBalitsky’sequations{ofwhich the

BK is an approxim ation thatneglects som e correlations.In the CG C description

ofscattering processes,the energy dependence ofam plitudes arises from the Y

dependenceofthedistribution W
Y
[�].Forinstance,thedipolescatteringam plitude

would be written as

hT (x? ;y? )i=

Z

[D �]W
Y
[�]

�

1�
1

N c

tr(U (x? )U
y(y? ))

�

; (95)

where the W ilson line U is evaluated in the color �eld generated by the con�gu-

ration � ofthe colorsources.This form ula is very sim ilar{ atleastin spirit{ to

the standard collinear factorization in DIS.The functionalW
Y
[�]can be seen as

an extension oftheusualconceptofparton distribution,thatcontainsinform ation

about parton correlations beyond the m ere num ber ofpartons,while the square

bracketistheanalogueofthe\perturbativecross-section".Thisform ula isa Lead-

ing Logarithm (LL)factorization form ula in thesensethatitresum sallthepowers

(�sY )
n.M oreover,it also resum s allthe rescattering corrections,in (Q s=p? )

p,a

featurewhich isnotincluded in collinearfactorization.
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Eq.(93)predictstheenergy dependenceofthedistribution ofsources.However,

itm ustbe supplem ented by an initialcondition atsom e Y0.Aswith the DG LAP

equation,the initialcondition isnon-perturbative,and one m ustin generalm odel

itorguessitfrom experim entaldata.In thecaseoflargenuclei,oneoften usesthe

M cLerran-Venugopalan m odel,which assum esthatW
Y 0
[�]isa G aussian21;23;24 :

W
Y 0
[�]= exp

�

�

Z

d
2
x?

�(x? )�(x? )

2�2(x? )

�

: (96)

The idea behind this m odelis that the color charge per unit area,�(x? ),is the

sum ofthe colorchargesofthe partonsthatsitatapproxim ately the sam eim pact

param eter.In a large nucleus,this willbe the sum ofa large num ber ofrandom

charges;forN c = 3,thisleadsto a G aussian distribution for� plusa sm all(albeit

physically very relevant) contribution from the cubic Casim ir 24.The fact that

this G aussian has only correlations localin im pact param eter is a consequence

ofcon�nem ent:colorchargesseparated by m ore than the nucleon size cannotbe

correlated.TheM V m odelisgenerally used atam oderately sm allx,oftheorderof

10� 2.Iftheproblem underconsideration requiressm allervaluesofx,oneshould use

the BK orJIM W LK equations,with the M V distribution asthe initialcondition.

3.5. A nalogies with reaction-di�usion processes

There are interesting analogies between the evolution equations that govern the

energy dependenceofscattering am plitudein Q CD and sim plem odelsofreaction-

di� usion processes25.The sim plestsetting in which these correspondencescan be

seen istoconsiderthedipolescatteringam plitudeo�alargenucleus,and toassum e

translation and rotation invariancein im pactparam eterspace.Itisusefulto de�ne

itsFouriertransform as

N (Y;k? )� 2�

Z

d
2
x? e

ik? � x?
hT (0;x? )i

Y

x2
?

: (97)

(Note the factor1=x2
?
included in thisde�nition.)Itturnsoutthatforthisobject

N ,the BK equation hasa very sim ple non-linearterm ,

@N (Y;k? )

@Y
=
�sN c

�

h

�(� @L )N (Y;k? )� N
2(Y;k? )

i

: (98)

In thisequation,L � ln(k2? =k
2
0)and �()� 2 (1)�  ()�  (1� )with  (z)�

dln�(z)=dz.The function �() has poles at  = 0 and  = 1,and a m inim um

at  = 1=2.By expanding it up to quadratic order around its m inim um ,and by

de�ning new variables,

t� Y

z � L +
�sN c

2�
�
00(1=2)Y ; (99)

the BK equation sim pli�esinto

@tN = @
2
zN + N � N

2
; (100)
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known asthe Fisher-K olm ogorov-Petrov-Piscounov (FK PP)equation.This equa-

tion hasbeen extensively studied in the literature,because itisthe sim plestreal-

ization ofthe so-called reaction-di�usion processes.Itdescribesthe evolution ofa

num ber N ofobjects that live in one spatialdim ension.The di�usion term @2zN

describesthe factthatthese entitiescan hop from one location to neighboring lo-

cations.Thepositivelinearterm + N m eansthatan objectcan splitinto two,and

thenegativequadraticterm � N 2 thattwoobjectscan m ergeinto asingleone.O ne

can easily check thatthisequation hastwo �xed points,N = 0 which isunstable

and N = 1 which isstable.

An im portantproperty ofthisequation isthatitadm itsasym ptotic travelling

wavesas solutions.Letus assum e that the initialcondition N (t0;z) goesto 1 at

z ! � 1 and to 0 atz ! + 1 ,with an exponentialtailN (t0;z) �
z! + 1

exp(� �z).

Ifthe slopeofthe exponentialobeys� > 1,the solution atlatetim e dependsonly

on a single variable,

N (t;z) �
t! + 1

N (z� 2t�
3

2
ln(t)): (101)

W hen t! + 1 ,thelogarithm can beneglected in frontoftheterm linearin tim e,

and one has a travelling wave m oving at a constant velocity dz=dt = 2 without

deform ation (see�gure13).M oreover,thisvelocity isindependentofthedetailsof

N(t,z)

z

Fig.13.Travelling wavesolutionsoftheFK PP equation.R ed :initialcondition.M agenta :solution

atequally spaced tim es.

the initialcondition fora largeclassofinitialconditions.

G oing back to the dipolescattering am plitude,thisresultim pliesthe following

scaling behavioratlargeY :

hT (0;x? )i
Y
= T(Q s(Y )x? ); (102)

with a saturation scaleofthe form

Q
2
s(Y )= k

2
0 Y

� �
e
!Y

: (103)

(The exponentialcom es from the constant in the velocity ofthe travelling wave,

and the powerlaw correction com esfrom the subleading logarithm .)Thisscaling

property has an interesting phenom enologicalconsequence for the inclusive DIS
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Fig.14.Photon-proton totalcross-section m easured atH ER A ,displayed against� � Q 2=Q 2
s(Y ).

cross-section,thatonecan expressin term softheforward dipolescattering am pli-

tude thanksto the opticaltheorem :

��p(Y;Q
2)= �0

Z

d
2
x?

Z 1

0

dz
�
� (z;x? ;Q

2)
�
�2 hT (0;x? )i

Y
: (104)

In thisform ula, (z;x? ;Q
2)isthe light-conewavefunction fora photon ofvirtu-

ality Q 2 that splits into a quark-antiquark dipole ofsize x? ,the quark carrying

thefraction z ofthelongitudinalm om entum ofthephoton.Thiswavefunction can

be calculated in Q ED,and itsonly property thatwe need here isthatitdepends

only on the com bination [m 2 + Q 2z2(1 � z)2]x2
?
where m is the quark m ass.If

one neglects the quark m ass,then eq.(102) im plies a sim ple scaling for the �p

cross-section itself:

��p(Y;Q
2)= ��p(Q

2
=Q

2
s(Y )): (105)

Such a geom etricalscaling26 has been found in the DIS experim entalresultsr,as

shown in �gure14.A com m entisin orderhere;astheapproach based on collinear

factorization and theDG LAP equation succeedsatreproducing m uch oftheinclu-

sive DIS data,itcertainly also reproducesthisscaling thatispresentin the data.

However,this approach does not provide an explanation for the scaling.It arises

via som e�netuning oftheinitialcondition fortheDG LAP evolution.In contrast,

in theColorG lassCondensatedescription ofDIS,thisscaling isalm ostautom atic.

rIn addition to explaining geom etricalscaling,saturation inspired �ts ofD IS data are quite suc-

cessfulat sm allx.See 27.
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4. Lecture III :N ucleus-nucleus collisions in the C G C fram ew ork

4.1. Introduction

Up tonow,weonly considered DIS,in which apossibly saturated proton ornucleus

is probed by an elem entary objects { a virtualphoton that has uctuated into a

quark-antiquarkdipole.In such asituation,thescatteringam plitudecan bewritten

in closed form as a product ofW ilson lines,and its energy dependence can be

obtained either from Balitsky’s equations or from the JIM W LK evolution ofthe

distribution ofsourcesthatproducethecolor�eld oftheproton.Therearehowever

interesting problem sthatinvolve two densely occupied projectiles.The archetype

Fig.15.Typicalcontributions to gluon production in hadronic collisions.The dots denote the

color sources.Left:dilute regim e.R ight:saturated regim e.

ofsuch a situation is a high-energy nucleus-nucleus collision.In these collisions,

one ofthe m ain challengesisto calculate the m ultiplicity ofthe particles(gluons

atleading order)thatare produced atthe im pactofthe two nuclei.In the Color

G lassCondensate fram ework,one hasto couple the gauge �eldsto a currentthat

receivescontributionsfrom the colorsourcesofthe two projectiles,

J
� = �

�+
�(x� )�1(x? )+ �

��
�(x+ )�2(x? ): (106)

Thefactthattherearetwostrongsourcesleadstocom plicationsthataretwo-fold :

� thereisnoexplicitform ulathatgivesthem ultiplicity (orany otherobserv-

able)in term sofW ilson linesin the collision oftwo saturated projectiles,

� ifone isinterested by the particle spectrum atsom erapidity Y ,one m ust

evolve the two projectiles from their respective beam rapidity to Y .The

question ofthe factorization ofthe large logarithm s of1=x is now m uch

m orecom plicated than in DIS.

Thekind ofcom plicationsoneisfacing in thisproblem isillustrated in �gure15.In

the saturated regim e,reactionsinitiated by m ore than oneparton (colorsourcein

theCG C description)in each projectilebecom eim portant.M oreover,therecan be

sProton-nucleus collisions also belong to this category.Exam ples ofprocesses have been studied

in28.
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a superposition ofm any independentscatterings,thatwillappearasdisconnected

graphs.

4.2. P ower counting and bookkeeping

In thesaturated regim e,thecolordensity� (represented bydotsin �gure15)isnon-

perturbatively large � � g� 1.Thisisdue to the factthatthe occupation num ber,

proportionalto


��
�
,isoforder�� 1s in this regim e.Thus fora connected graph,

the orderin g isgiven by

1

g2
g
ng g

2n
L ; (107)

whereng isthenum berofproduced gluonsand nL
thenum berofloops.O necan see

thatthisform ula isindependentofthenum berofsources� attached to thegraph.

Indeed,sinceeach sourcebringsafactorg� 1 and isattached atavertex thatbrings

a factorg,each source countsasa factor1.Ifthe diagram underconsideration is

m adeofseveraldisconnected subgraphs,oneshould apply eq.(107)to each ofthem

separately.

Am ong allthe diagram sthatappearin the calculation ofparticle production,

a specialrole is played by the so-called vacuum diagram s { diagram s that have

ng = 0 externalgluons.They only connect sources of the two projectiles,and

are thuscontributionsto the vacuum -to-vacuum am plitude


0out

�
�0in

�
,hence their

nam e.The orderofconnected vacuum diagram sisg2(nL
� 1).An extrem ely useful

property is that the sum ofallthe vacuum diagram s (connected or not) is the

exponentialofthosethatareconnected (thatwedenoteiV [j]wherejistheexternal

currentdue to the colorsourcesofthe two projectiles)

X
�
allthe vacuum

diagram s

�

= exp

�
X �

connected

vacuum diagram s

��

� e
iV [j]

: (108)

Thereason whyvacuum diagram sareim portantin ourproblem isthatitispossible

towriteallthetim eordered productsof�elds{thatenterin thereduction form ulas

forgluon production am plitudes{ asderivativesofexp(iV [j])



0out

�
�TA(x1)� � � A(xn)

�
�0in

�
=

�

i�j(x1)
� � �

�

i�j(xn)
e
iV [j]

: (109)

Thanksto thisproperty,onecan write a very com pactform ula forthe probability

Pn ofproducing exactly n gluonsin the collision29� � 31,

Pn =
1

n!
D n

e
iV [j+ ]e

� iV
�
[j� ]

�
�
�
j+ = j� = j

; (110)
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wherethe operatorD isde�ned byt

8
>><

>>:

D �

Z

x;y

G
0
+ � (x;y)� x� y

�

�j+ (x)

�

�j� (y)
;

G
0
+ � (x;y)�

Z
d3p

(2�)32E p

e
ip� (x� y)

:

(111)

An im portantpointto keep in m ind abouteq.(110)isthatthe externalcurrents

m ustbe keptdistinctin the am plitude and com plex conjugate am plitude untilall

the derivatives contained in D have been taken.O nly then one is allowed to set

j+ and j� to the physicalvalue ofthe externalcurrent.The propagator G 0
+ � ,

thathasonly on-shellm om entum m odes,istheusualcutpropagatorthatappears

in Cutkosky’s cutting rules12;32.The operator D acts on cut vacuum graphs by

rem oving two sources (one on each side ofthe cut,i.e.a j+ and a j� ),and by

connectingthepointswherethey wereattached bythecutpropagatorG 0
+ � .In fact,

sincePn isobtained by acting n tim eswith theoperatorD ,itisthesum ofallthe

cutvacuum diagram sin which exactly n propagatorsarecut.Eq.(110)also m akes

obviousthe factthat the probabilities Pn do nothave a m eaningfulperturbative

expansion in thesaturated regim e,becausethesum iV [j]oftheconnected vacuum

diagram sstartsatthe orderg� 2.

By sum m ing eq.(110) from n = 0 to 1 while keeping j+ and j� distinct,

one obtains the sum ofallthe cut vacuum diagram s with the current j+ in the

am plitude and j� in the com plex conjugateam plitude to be

X
�

allthe cut

vacuum diagram s

�

= e
D
e
iV [j+ ]e

� iV
�
[j� ]

: (112)

W hen wesetj+ = j� ,thissum becom es
P

n
Pn,and thereforeitshould beequalto

1 becauseofunitarity.Eq.(110)isvery useful,becauseitallowsto replacein�nite

sets ofFeynm an diagram s by sim ple algebraic equations.Sim ilarly,the fact that

eq.(112) is 1 when j+ = j� corresponds to a cancellation ofan in�nite set of

graphsu,thatwould be very di�cultto see atthe levelofdiagram s.

4.3. Inclusive gluon spectrum

Eq.(110)leadsto com pactform ulasform om entsofthe distribution ofproduced

particles.The�rstm om ent{ the averagem ultiplicity { reads29

N =

1X

n= 0

n Pn = D

n

e
D
e
iV [j+ ]e

� iV
�
[j� ]

o

j+ = j� = j
: (113)

W ith the help ofeq.(112),this form ula tells us that N is given by the action of

the operatorD on the sum ofallthe cutvacuum diagram s.In plain english,this

tW e are a bit careless here with the Lorentz indices,polarization vectors,etc,because our m ain

goalis to highlight the generaltechniques for keeping track ofthe diagram s that contribute to

particle production in the saturated regim e.
uThiscancellation isclosely related to the A bram ovsky-G ribov-K anchelicancellation33.
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translatesinto :take a cut vacuum diagram (connected ornot),rem ove a source

on each sideofthecut,and puta cutpropagatorwherethesourceswereattached.

Depending on whetherthecutvacuum diagram onestartsfrom isconnected ornot,

onegetstwo di�erenttopologies,displayed in �gure16.Each ofthe blobsin these

Fig.16.The two topologies contributing to the average gluon m ultiplicity N .In each blob,one

m ustsum over allthe possible ways ofcutting the propagators.

diagram scan be any connected graph,and m ustbe cutin allthe possible waysv.

Thus,only connected graphscontributeto the m ultiplicity.

An im portant point is that,even though the perturbative expansion for the

Pn is not wellde�ned,the m ultiplicity (and m ore generally any m om ent ofthe

distribution Pn)can be organized in a sensible perturbative seriesw .The Leading

O rderisobtained by keeping only theleading ordervacuum graphs,i.e.thosethat

haveno loops:

N
L O

=
X

trees

X

cuts

tree

tree

: (114)

ThusN startsattheorderg� 2.In eq.(114),foreach treediagram ,onem ustsum

overallthe possible waysofcutting itslines.The sim plestway ofdoing thisisto

useCutkosky’srules:

� assign + or � labels to each vertex and source ofthe graph,in allthe

possibleways(thereare2n term sforagraphswith n verticesand sources).

A + vertex hasa coupling � ig and a � vertex hasa coupling + ig,

� thepropagatorsdepend on which typeoflabelstheyconnect.In m om entum

space,they read :

G
0
+ + (p)= i=(p2 + i�) (standard Feynm an propagator)

G
0
� � (p)= � i=(p2 � i�) (com plex conjugateofG0+ + (p))

G
0
+ � (p)= 2��(� p0)�(p2)

G
0
� + (p)= 2��(p0)�(p2): (115)

vN ote that by not perform ing the d3p integration contained in the explicit cut propagator,one

obtains the inclusive gluon spectrum dN =d3p instead ofthe integrated m ultiplicity.
w The fact that this is possible for N but not for the Pn ’s them selves is due to the fact that the

only graphs that contribute to N are connected.Thisisa consequence ofthe AG K cancellation.
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A quick analysisshowsthat,when onesetsj+ = j� ,sum m ing overthe� labelsat

each vertex producescom binationsofpropagators,

G
0
+ + (p)� G

0
+ � (p)= G

0

R
(p)

G
0
� + (p)� G

0
� � (p)= G

0

R
(p); (116)

where G 0
R
(p)isthe retarded propagatorx.Thus,fora given tree graph,doing the

sum over the cuts sim ply am ounts to replacing allits propagators by retarded

propagators.The last step is to perform the sum over allthe trees.It is a well

known result that the sum ofallthe tree diagram s that end at a point x is a

solution oftheclassicalequationsofm otion ofthe�eld theory underconsideration.

In ourcase,thissum isa color�eld A �(x)thatobeysthe Yang-M illsequations

[D �;F
�� ]= J

�
; (117)

where J� is the color current associated to the sources �1;2 that represent the

incom ing projectiles (see eq.(106)).The boundary conditions obeyed by A �(x)

depend on thenatureofthepropagatorsthatentered in thesum oftreediagram s.

W hen thesepropagatorsareallretarded,onegetsa retarded solution oftheYang-

M illsequations,thatvanishesin therem otepast,lim x0! � 1 A �(x)= 0.Theprecise

form ulaforthegluon spectrum in term softhissolution oftheYang-M illsequations

reads

dN
L O

dY d2p?
=

1

16�3

Z

d
4
xd

4
y e

ip� (x� y)
� x� y

X

�

�
�

�
�
�
� A �(x)A �(y): (118)

Note that,although the integrationsoverx and y look 4-dim ensional,they can be

rewritten as3-dim ensionalintegralsevaluated atx0 ! + 1 ,thanksto theidentity

Z

d
4
x e

ip� x
� x A �(x)= lim

x0! + 1

Z

d
3
x e

ip� x[@0 � iE p]A �(x): (119)

SolvingtheYang-M illsequationsisan easy problem in thecaseofasinglesource�,

butturnsoutto bevery challengingwhen therearetwosourcesm oving in opposite

directions.TheSchwingergauge,de�ned by theconstraintA � � x+ A � + x� A � =

0,is quite usefulbecause it alleviates the need to ensure that the current J� is

covariantly conservedy.In thisgauge,A + = 0 whereJ� 6= 0 and conversely,which

m akes this condition trivial.M oreover,in this gauge,one can �nd the value of

the gauge �eld on a tim e-like surface just above the light-cone (at a propertim e

� = 0+ ) sim ply by m atching the singularities across the light-cone.These initial

xIn m om entum space,G 0

R
(p)= i=(p2 + isign(p0)�).Therefore,in coordinate space,it ispropor-

tionalto �(x0 � y0),hence itsnam e.
yIn general gauges, one has to enforce the condition

ˆ

D �;J
�

˜

= 0 (this is a consequence of

Jacobi’s identity for com m utators).Because this relation involves a covariant derivative rather

than an ordinary derivative,the radiated �eld leads to m odi�cations ofthe currentitself.
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conditions34 can be written asz

A i(� = 0;x? )= A i
1(x? )+ A i

2(x? )

A �(� = 0;x? )= �
ig

2

�
A i
1(x? );A

i
2(x? )

�

A � = 0 (gaugecondition); (120)

where A � � �� 2(x� A + � x= A � ).In this form ula,A i
1(x? ) and A i

2(x? ) are the

gauge�eldscreated by each nucleusa below the light-cone:

A i
1 =

i

g
U1(x? )@

i
U
y

1(x? ) ; U1(x? )= T+ exp ig

Z

dx
+
T
a 1

r
2
?

�
a
1(x

+
;x? )

A i
2 =

i

g
U2(x? )@

i
U
y

2(x? ) ; U2(x? )= T� exp ig

Z

dx
�
T
a 1

r
2
?

�
a
2(x

�
;x? ):

(121)

Therefore,the problem of solving the Yang-M ills equations from x0 = � 1 to

x0 = + 1 isreduced to solving them in theforward light-conefrom a known initial

conditionb.

Since our problem is invariant under boosts in the z direction,one can com -

pletely elim inate the space-tim e rapidity � from the equationsofm otion (and the

initialconditionsin eq.(120)are also �-independent).Thus,in the forward light-

cone,one has to solve num erically36 equationsofm otion in tim e and two spatial

dim ensions,and then to evaluate eq.(118).The resultofthiscom putation isdis-

played in �gure17.In thiscom putation,theM V m odelwasused asthedistribution

ofthe sources �1 and �2.Therefore,the dependence ofthe spectrum on the m o-

m entum rapidity Y ofthe produced gluon cannotbe obtained in thiscalculation,

and only the k? dependenceisshown.Them ain e�ectofgluon recom binationson

thisspectrum isthatitreducesthe yield atlow transverse m om entum ,k? . Q s.

Indeed,in a �xed ordercalculation in perturbative Q CD,the spectrum would be-

haveask� 4
?
.In theCG C picture,thesingularity ofthespectrum atlow k? isonly

logarithm icc,and isthereforeintegrable.

4.4. Inclusive quark spectrum

A sim ilar study has also been perform ed for the initialproduction ofquarks in

nucleus-nucleuscollisions37.The starting pointisto constructforquarksan oper-

zA n interesting feature of the gauge �elds at early tim es after the collision { a phase recently

nam ed \glasm a" { is that the chrom o-electric and m agnetic �elds are purely longitudinal,while

they were transverse to the beam axisjustbefore the collision35.
aBecauseretarded solutionsarecausal,the�eld below thelight-conecannotdepend sim ultaneously

on �1 and �2.
bN ote that at � > 0,the Y M equations are the vacuum ones,since allthe sourcesare located on

the light-cone.
cIf the �nalFourier decom position is perform ed at a �nite tim e �,the spectrum is com pletely

regularwhen k? ! 0.
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Fig.17.The gluon spectrum atleading orderin the CG C fram ework.

atorD q thatplaysthe sam eroleasthe operatorD de�ned in eq.(111):

D q �

Z

x;y

S
0
+ � (x;y)=@x=@y

�

��+ (x)

�

��� (y)
; (122)

whereS0+ � (x;y)isthefreecutferm ionicpropagatorand where� isa G rassm anian

current that couples to the spinors.In term s ofthis operator,the probability of

producing n quarksisgiven by :

P
(q)
n =

1

n!
D n
q e

D
e
iV [j+ ;�+ ]e

� iV
�
[j� ;�� ]

�
�
�
j+ = j� = j

�+ = �� = 0

: (123)

The �rstthing to note isthatnow the connected vacuum diagram s,whose sum is

iV ,depend on both the sourcej and on thesource�.However,thelatterissetto

zero atthe end ofthe calculation,becausein the CG C oneassum esthatthe color

sourcesin thewavefunction oftheprojectilescoupleonly to thegluons.Therefore,

thesource� servesonly asan interm ediatebookkeeping device.Anotherim portant

pointin thisform ula isthe presence ofthe factorexp(D ).Thisfactorm eansthat

wearecalculating an inclusiveprobability,forproducing exactly n quarkspossibly

accom panied by an arbitrary num berofgluonsd.In practice,thisfactm eansthat

onem ustsum overallthepossiblewaysofcutting thegluonslinesin thediagram s

that contribute to quark production.From eq.(123),one obtains the following

form ula forthe averagenum berofproduced quarks

N q = D q e
D q e

D
e
iV [j+ ;�+ ]e

� iV
�
[j� ;�� ]

�
�
�
j+ = j� = j

�+ = �� = 0

: (124)

In thisform ula,the underlined factorsrepresentthe sum ofall(connected ornot)

the cutvacuum diagram sm ade ofquarksand gluons,with sourcesj+ ;�+ on one

dW ithoutthisfactor,wewould becalculating the probability ofproducing n quarksand 0 gluons.

N ote that in principle,we should also m odify our de�nition of the probability of producing n

gluons by a factor exp(D q).H owever,the quarks are a subleading correction com pared to the

gluons,and thischange would not a�ect the gluon spectrum atleading order.
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side ofthe cut,and sources j� ;�� on the other side.Acting on a term ofthis

sum with D q rem ovesa source �+ and a source �� ,and connectthe pointswhere

these sources were attached by a cut ferm ion propagator.Diagram m atically,this

corresponds to the two topologies displayed in �gure 18.Note however that the

Fig.18.Topologies corresponding to eq.(124).

topology thatappearson the leftof�gure 18 cannotexistbecause ithasa quark

line which is not closed onto itself(this is forbidden since we set the ferm ionic

sources�� to zero atthe end ofthiscalculation).Thus,we only have the second

fam ilyofdiagram s,thathaveatleastoneloop.Thism eansthattheaveragenum ber

ofquarksisoforderg0,com pared to thenum berofgluonswhich isoforderg� 2.

Theleading contribution to thequark m ultiplicity isobtained by including only

treediagram sin theblob.Thus,wehaveto sum allthegraphsthathaveonequark

loop (with an explicit cut on it) and any num ber ofgluonic trees attached to it,

and allthecutsthereof.Thesum ofallthegluonictreesand theircutshasalready

been encountered in the com putation ofthe gluon m ultiplicity :itisequalto the

retarded solution A �(x)oftheYang-M illsequationsthatvanish in therem otepast.

Therefore,the quark spectrum isgiven by

dN q

dY d2p?
=

1

16�3

Z

x;y

e
ip� x

u(p)
!

=@x S+ � (x;y)
 

=@y u(p)e� ip� y; (125)

whereS+ � isthecutquark propagatoron which theretarded classical�eld A � has

been resum m ed.Thisresum m ed propagatorcan beobtained asthesolution ofthe

equation

S��0(x;y)= S
0
��0(x;y)� ig

X

�= �

(� 1)�
Z

d
4
zS

0
��(x;z)A �(z)

�
S��0(z;y); (126)

where �;�0 = � (we need only the com bination � = + ;�0 = � in eq.(125),but

the fourterm sgetm ixed when one resum sthe background �eld).Itispossible to

decouplethese equationsby perform ing a \rotation" on the �;�0 indices38,

S��0 ! S �� �
X

�;�0= �

U��U��0S��0

(� 1)����0 ! � �� �
X

�= �

U��U��(� 1)
�

; (127)
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with U =
1
p
2

�
1 � 1

1 1

�

: (128)

Afterthisrotation,the propagatorm atrix becom estriangular,

S �� =

�
0 S

A

S
R
S

D

�

; � �� =

�
0 1

1 0

�

(129)

with S
R
and S

A
the resum m ed retarded and advanced propagators and where

S0
D
(p)= 2�=p�(p2).Them ain sim pli�cation com esfrom thefactthattheproductof

thefreem atrixpropagatorand of� isthesum ofadiagonaland anilpotentm atrix,

which m akesthe calculation ofitsn-th powervery easye.In particular,one �nds

thattheequationsthatlead to theretarded (and also theadvanced)propagatordo

notm ix with anything else,

S
R
(x;y)= S

0

R
(x;y)� ig

Z

d
4
zS

0

R
(x;z)A �(z)

�
S

R
(z;y); (131)

and thatthe resum m ed S
D
can be expressed in term sofS

R ;A
asf

S
D
= S

R
� S

0

R

� 1 � S
0

D
� S

0

A

� 1 � S
A
: (132)

At this point,one m ust invert the rotation done in eq.(127) in order to obtain

S+ � which isneeded in the form ula forthe quark spectrum .Thisgivesthe quark

spectrum in term sofretarded quantities,

dN q

dY d2p?
=

1

16�3

Z
d3q

(2�)32E q

�
�
�T

R
(p;q)

�
�
�
2

;

whereT
R
isthe \scattering part" ofthe retarded propagator,related to S

R
by

S
R
= S

0

R
+ S

0

R
� T

R
� S

0

R
: (134)

The last step is to write this object in term s ofretarded solutions ofthe Dirac

equation in the background �eld A �.Itiseasy to check that

T
R
(p;q)= lim

x0! + 1

Z

d
3
x e

ip� x
u
y(p) 

q
(x)

(i=@x � g=A (x)) 
q
(x)= 0 ;  

q
(x0;x) =

x0! � 1
v(q)eiq� x: (135)

In this form ula,u(p) and v(q) are the usualfree spinors.Note that the initial

condition fortheDiracequation isanegativeenergyspinor,and thattheprojection

perform ed atthe �naltim e iswith a positive energy spinor.In the vacuum ,there

would be no overlap between these spinors.However,since in our problem the

spinor travels on top ofa tim e-dependent background �eld,it acquires positive

energy m odeswhich m akeT
R
non zero.

eIndeed,with very form alnotations,the resum m ed m atrix propagator is

S = S
0

1
X

n= 0

(� igA )n
h

� S 0
in

:

fThe � sym boldenotes the convolution of2-pointfunctions:(A � B )(x;y)=
R

z
A (x;z)B (z;y).
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Fig.19.N um ericalresults on quark production from the CG C.Left:tim e evolution ofthe quark

yield.R ight:quark k? spectra fordi�erentm asses.

Thisform ulation ofquark production in the CG C fram ework hasbeen im ple-

m ented num erically,alsowith theM V m odelfortheaverageoverthecon�gurations

ofthecolorsources�1;2.Sim ilarlytowhathappened with thegluons,onecan obtain

analytically thevalueofthespinorsjustabovethelight-cone.Hence,thenum erical

resolution oftheDiracequation isonly needed in theforward light-cone.However,

there isa m ajordi�erence com pared to the gluonsatLO :even though the back-

ground color �eld does not depend on rapidity,this is not true ofthe solutions

ofDirac equationg.Indeed,the m om entum q in the initialcondition renders the

spinorsdependenton the space-tim e rapidity � (the boostinvariance ofthe back-

ground �eld im plies that the spinors depend only on the di�erence � � yq where

yq isthe rapidity ofthe m om entum q).Thisdi�erence m akesthe com putation of

the quark spectrum m uch m ore com putationally intensive relative to that ofthe

gluon spectrum ,because one has to keep the three dim ensions ofspace.Som e of

the resultsobtained are displayed in �gure 19.O n the leftplotisshown the tim e

dependence ofthe quark yield,for di�erent quark m asses (i.e.the yield obtained

by perform ing the projection in eq.(135) at a �nite tim e instead oftaking the

lim itx0 ! + 1 ).O ne can see thata good fraction ofthe quarksare produced at

� = 0,when the two nucleipassthrough each otherh and thatthenum berslightly

increasesin tim eafterwardsdueto thecolor�eld presentin theforward light-cone.

The rightpanelof�gure 19 showsthe k? dependence ofthe spectrum forvarious

quark m asses.As expected,the spectrum isharderforlargerquark m asses.Note

thatthetailofthecurvesisprobably a�ected by im portantlatticeartifactsdueto

a too coarselattice.

gThishasnothing to do with the factthatwe are considering ferm ions,butratherwith the quark

spectrum being a N LO quantity { thatinvolves a loop in the background ofthe classical�eld.
hIn the analogous Q ED problem ofe+ e� production in the high-energy collision oftwo electrical

charges,allthe electrons are produced at� = 0 and theirnum berdoesnotchange at� > 0.This

isbecause in Q ED ,the electro-m agnetic potentialin the forward light-cone isa pure gauge,that

could be m ade to vanish by a gauge transform ation.
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4.5. Loop corrections to the gluon spectrum

Thusfar,welim ited ourselvesto theleading ordercontribution forboth thegluons

and the quarks.However,we a prioriknow from �gures16 and 18 whatdiagram s

contribute to the gluon and quark m ultiplicities to allorders.There is therefore

a wellde�ned and system atic procedure to com pute corrections to the previous

results.Loop corrections to gluon production are very relevant for the following

reasons:

� They contain term s that are divergent due to unbounded integrals over

longitudinalm om enta,very sim ilarto the divergencesencountered in the

derivation oftheBK equation.O neshould verify whetherthesedivergences

can be absorbed in the distributionsW [�1]and W [�2]ofthecolorsources

ofeach projectile.Thisfactorization iscrucialforthe internalconsistency

ofthe CG C fram ework.

� Ithasbeen noted recently thatthe boostinvariantsolution A�(x)ofthe

Yang-M illsequationsisunstablei;rapidity dependentperturbationsto this

solution grow exponentially in tim e.Loop correctionsgeneratethiskind of

rapidity dependentperturbations.Trackingalltheseterm sand resum m ing

them isvery im portantin orderto getm eaningfulanswersfrom the CG C

regarding them om entum distribution oftheproduced gluons,and m ay be

relevantin the problem oftherm alization in heavy ion collisions.

Notethatthesetwo item saddressvery di�erentstagesofthecollision process.The

�rstrelatesto the incom ing wavefunctions(and assuch should be independentof

thesubsequentcollision),whilethesecond issueisaboutwhathappensin the�nal

stateafterthecollision.Therefore,weshould aim atwriting the1-loop corrections

in a way thatseparatesthe initialand �nalstateasclearly aspossible.

Let us start by listing the relevant diagram s :the 1-loop corrections to the

average m ultiplicity are shown in the diagram sof�gure 20.The topology on the

tree

1-loop

tree

Fig.20.1-loop diagram scontributing to the gluon spectrum .

leftisvery sim ilarto the one already encountered attree level,exceptthatone of

theblobshasnow a loop correction in it.Thetopology on therightisnew;butitis

in factsim ilarto whatwehad to evaluatein thecaseofthequark spectrum ,except

iThisinstability isvery sim ilarto the W eibelinstability that occurs in anisotropic plasm as39;40.
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that the ferm ionic cut propagator S+ � m ust be replaced by the cut propagator

G + � ofa gluon.TheNLO contribution to the gluon spectrum can be written as

dN
N L O

dY d2p?
=

1

16�3

Z

d
4
xd

4
y e

ip� (x� y)
� x� y

X

�

�
�
��

�
�

h

A �(x)�A�(y)+ �A�(x)A �(y)

+ G
��

+ � (x;y)

i

: (136)

The two term s ofthe �rstline are the contribution ofthe diagram on the left of

�gure 20 (the loop can be in eitherofthe two blobs),and the term on the second

line com es from the diagram on the right.The �eld �A that appearson the �rst

line is the 1-loop correction to A ;and it obeys the linearized equation ofm otion

forsm alluctuations.

Letusnow illustratehow onecan separatetheinitialstatefrom the�nalstate

in theterm thatcontainsG
��

+ � (x;y).First,by analogy with thecaseofthequarks,

wecan write
Z

d
4
xd

4
ye

ip� (x� y)
� x� y

X

�

�
�
��

�
� G

��

+ � (x;y)=
X

�;� 0

Z
d3q

(2�)32E q

�
�
�T

��
0

R
(p;q)

�
�
�
2

;

T ��
0

R
(p;q)� lim

x0! + 1

Z

d
3
x e

ip� x(@0x � iE p)�
�
� a

�

�0q
(x); (137)

where a
�

�0q
(x) is a sm alluctuation ofthe gauge �eld on top ofA �,with initial

condition �
�

�0
eiq� xwhen x0 ! � 1 .The equation ofm otion ofthis uctuation is

obtained by writing the Yang-M illsequationsforA + a and by linearizing itin a.

A centralform ula in orderto separatethe initialand �nalstatesisthe followingj

a(x)=

Z

�= 0+

d
3
y

h

a(0;y)� Ty

i

A (x); (138)

where(0;y)denotesa pointlocated on thelight-cone(� = 0)(y representsany set

ofthreecoordinatesthatm ap the light-cone.)In thisform ula,the classical�eld A

isconsidered asa functionalofitsinitialcondition A (0;y)on the light-cone.The

notation

h

a(0;y)� Ty

i

isa shorthand for

h

a(0;y)� Ty

i

� a(0;y)
�

�A (0;y)
+

h

(n � @y)a(0;y)

i
�

�(n � @y)A (0;y)
: (139)

(In thisform ula,the4-vectorn� isavectornorm alk tothelight-cone.)Theproofof

eq.(138)isstraightforwardl,butitsdiagram m aticinterpretationism oreinteresting.

Note�rstthatA �(x),seen asa functionalofitsinitialcondition on thelight-cone,

can alsoberepresented by treediagram s,asillustrated in theleftpanelof�gure21.

(Thiscan be seen from the G reen’sform ula forA (x).)The action ofthe operator

jTo avoid encum bering the equations with indices of various kinds,we are suppressing allthe

indices in this and the following form ula.
kn� dx� = 0 ifdx� isa sm alldisplacem ent on the light-cone atthe pointunder consideration.
lW ritetheG reen’sform ula thatexpressesA (x)in term softheinitialA (0;y),insertitin eq.(138),

and check that this leads to the G reen’s form ula that relates a(x)to itsinitialcondition a(0;y).
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A(x) a(x)

a(0,y)

Fig.21.Left:diagram m atic representation ofA asa function ofitsinitialcondition on the light-

cone (the open dots represent the initialA (0;y)).R ight :propagation ofa sm alluctuation on

top ofthe classical�eld.

de�ned in eq.(139)on theclassical�eld A (x)isto replaceoneoftheopen dotsin

�gure 21 by the uctuation a(0;y),represented by a �lled dot in the rightpanel

of�gure 21.The diagram one getsafterthis isnothing buta contribution to the

propagation ofa sm alluctuation over the classical�eld.Plugging eq.(138) in

eq.(137),thisquantity becom es

lim
x0= y0! + 1

Z

d
3
xd

3
y e

ip� (x� y)(@0x � iE p)(@
0
y + iE p)

X

�

�
�
��

�
�

�

Z

�= 0+

d
3
ud

3
v
X

�0

Z
d3q

(2�)32E q

hh

a�0q(0;u)� Tu

i

A �(x)

ihh

a
�
�0q(0;v)� Tv

i

A �(y)

i

:

(140)

Thebracketsarecrucialin thisform ula,in ordertolim itthescopeofthederivatives

contained in theoperatorsT u and T v.Notethat,ifitwerenotforthesebrackets,

the �rst line and the two A ’s ofthe second line would be nothing but the LO

gluon spectrum .Itturnsoutthat,afterone addsthe contribution ofthe �rstline

in eq.(136),the NLO correction to the spectrum can be written as

dN
N L O

dY d2p?
=

2

4

Z

�= 0+

d
3
u

h

�A (0;u)� Tu

i

+

Z

�= 0+

d
3
ud

3
v

h

�(u;v)� Tu T v

i
3

5
dN

L O

dY d2p?
;

(141)

wheretheLO spectrum isconsidered asa functionaloftheinitialclassical�eld on

the light-cone.In thisequation,�A (0;u)isthe value of�A on the light-cone,and

the 2-point�(u;v)isde�ned as

�(u;v)�
X

�0

Z
d3q

(2�)32E q

a�0q(0;u)a
�
�0q(0;v): (142)

Note that�A (0;u) and �(u;v) are in principle calculable analytically.Eq.(141)

realizesthe separation we were seeking ofthe initialand �nalstates.Indeed,the
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u u

v

Fig.22.Illustration ofeq.(141).The1-and 2-pointfunctionsbelow thelight-conearerespectively

�A (0;u)and �(u;v).

operatorin thesquarebracketdependsonly on whathappensbelow thelight-cone,

i.e.before the collision.O n the contrary,the LO spectrum seen asa functionalof

the initialclassical�eld A depends only on the �nalstate dynam ics.The other

bene�tofthisform ula isthatisexpressestheNLO correction asa perturbation of

theLO one;thisproperty { thatseem sgeneralizableto otherinclusiveobservables

{ suggeststhe universality ofthe initialstatedivergencesand theirfactorizability.

From eq.(141),itiseasy to see whatare the potentialsourcesofdivergences.

A �rstissue is thatthe coe�cients�A (0;u)and �(u;v)are in�nite.For�(u;v)

forinstance,the integration overthe longitudinalcom ponentofthe m om entum q

in eq.(142)diverges.A sim ilardivergenceoccursin theloop contained in �A (0;u).

The factthatthese divergencesarise in the �rstfactorofeq.(141)indicatesthat

they are related to the evolution ofthe initialprojectiles prior to the collision.

Thesedivergencescan be m om entarily regularized by introducing cuto�sY0;Y
0
0 in

rapidity around therapidity Y atwhich thespectrum iscalculated.Thus,�A (0;u)

and �(u;v)becom e�nitebutdepend on theseunphysicalcuto�s.Tobeconsistent,

thedistribution ofthesources�1 and �2 should beevolved from thebeam rapidities

to Y0 and Y
0
0 respectively.Thus,thecom pleteform ula fortheLO + NLO spectrum ,

including the averageoverthe sources,should be

dN
L O + N L O

dY d2p?
=

Z
�
D �1

��
D �2

�
W

Y beam �Y 0
[�1]W

Y beam + Y 0

0

[�2]

�

2

41+

Z

�= 0+

d
3
u

h

�A (0;u)� Tu

i

+

Z

�= 0+

d
3
ud

3
v

h

�(u;v)� Tu T v

i
3

5

Y0

Y 0

0
| {z }

dN
L O

dY d2p?
;

O
Y0
Y 0

0

[�1;�2] (143)

where the subscriptY 0
0 and superscriptY0 indicate that the m om entum integrals

contained in the brackethave cuto�s in rapidity.Recallthatthe LO spectrum in

the righthand side isa function ofA on the light-cone,which isitselfa function
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of�1;2.The factorizability ofthese divergencesin the initialstate isequivalentto

theindependenceofthepreviousform ulawith respectto theunphysicalY0 and Y
0
0.

LetusforinstancechangeY0 into Y0 + �Y 0.According to theJIM W LK equation,

the distribution of�1 ism odi�ed by

W
Y beam �Y 0

[�1] !

h

1+ �Y 0H [�1]

i

W
Y beam �Y 0

[�1]: (144)

Atthe sam etim e,the operatorin the righthand side variesby

O
Y0
Y 0

0

[�1;�2] ! O
Y0
Y 0

0

[�1;�2]+ �Y 0

@O
Y0
Y 0

0

[�1;�2]

@Y0
: (145)

Atthispoint,onecan verify thatthe term slinearm in �Y 0 cancelprovided that

@O
Y0
Y 0

0

[�1;�2]

@Y0
= H y[�1]: (146)

Sim ilarconsiderationson the Y 0
0 dependence giveanothercondition :

@O
Y0
Y 0

0

[�1;�2]

@Y 0
0

= � H y[�2]: (147)

Therefore,in order to check whether one can factorize these divergences in the

JIM W LK evolution ofthe incom ing sources,one m ust calculate the coe�cients

�A (0;u)and �(u;v){ oratleasttheir divergentpart{ and rem ap the operator

O
Y0
Y 0

0

[�1;�2]into the JIM W LK Ham iltonian.Although this program has not been

fully im plem ented yet,onecan already notethatthestructureofO
Y0
Y 0

0

[�1;�2]m akes

thisoutcom every plausible.

Eq.(141) also allows us to discuss the issue of the instability of the boost

invariantclassicalsolution.Theseinstabilitiesm anifestthem selvesin the factthat

the action ofT u on A (x)divergeswhen the tim e x0 goesto in�nity.Indeed,

T u A (x)�
�A (x)

�A (0;y)
(148)

isam easureofhow A (x)issensitivetoitsinitialcondition.Therefore,ifthesolution

A (x)isunstable,sm allperturbationsofitsinitialcondition lead to exponentially

growingchangesin thesolution.From thenum ericalstudy oftheseinstabilities(see

�gure23),onegets39

T u A (x)� e
p
��

; (149)

where � is ofthe order ofthe saturation m om entum .This m eans that,although

the 1-loop corrections are suppressed by a factor �s com pared to the LO ,som e

ofthese correctionsare enhanced by factorsthatgrow exponentially in tim e after

m N ote that, since we have only considered 1-loop corrections, this independence can only be

satis�ed forsm allvariations ofthe cuto�,atlinear orderin these variations.
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Fig.23.Tim e dependence ofsm alluctuations on top ofthe boostindependent classical�eld.

the collision.At �rst sight,one m ay expect a com plete breakdown ofthe CG C

description at

�m ax � Q
� 1
s ln

2

�
1

�s

�

; (150)

i.e.thetim eatwhich the1-loop correctionsbecom easlargeastheLO contribution.

The only way outofthisconclusion isto resum allthese enhanced correctionsin

thehopethattheresum m ed seriesisbetterbehaved when � ! + 1 .Letusassum e

forthe tim e being thatwe haveperform ed thisresum m ation,and thatthe sum of

these enhanced term sgeneralizeeq.(141)to read

dN resum m ed

dY d2p?
= Z[T u]

dN
L O
[A (0;u)]

dY d2p?
; (151)

where Z[T u ]is a certain functionalofthe operator T u .In the right hand side,

we have em phasized the fact that the LO spectrum is a functionalofthe initial

classical�eld on the light-cone.This form ula can be written in a m ore intuitive

way by perform ing a Fouriertransform ofZ[T u ],

Z[T u ]�

Z
�
D a(u)

�
e
i

R

� = 0+
d
3
u

�
a(u)� Tu

�
eZ[a(u)]: (152)

In this form ula,the functionalintegration [D a(u)]is in fact an integration over

two �elds :the uctuation a(u) itselfand its derivative norm alto the light-cone

(n � @u)a(u).Thanks to the fact that T u is the generator oftranslations ofthe

initialconditionson the light-cone,the exponentialin the previousform ula isthe

translation operator itself.Therefore,when this exponentialacts on a functional

ofthe initialclassical�eld A (0;u),it givesthe sam e functionalevaluated with a

shifted initialcondition A (0;u)+ a(u).Therefore,wecan write

dN resum m ed

dY d2p?
=

Z
�
D a(u)

�
eZ[a(u)]

dN
L O
[A (0;u)+ a(u)]

dY d2p?
: (153)
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W eseethatthee�ectoftheresum m ation issim ply toadd uctuationstotheinitial

conditionsofthe classical�eld,with a distribution thatdependson the detailsof

theresum m ationn.Itiseasy tounderstand why theseuctuationsarecrucialin the

presenceofinstabilities:despitethefactthattheyaresuppressed byan extrapower

of�s,theinstabilitiesm akethem grow and eventually becom easlargeastheLO .

O ne can also see thatthe resum m ation hasthe e�ectoflifting the tim e lim itation

ofeq.(150).Indeed,aftertheresum m ation,theuctuation a(u)hasentered in the

initialcondition forthefullYang-M illsequation,whosenon-linearitiespreventthe

solution from blowing up.A very im portantquestion iswhetherthese instabilities

fasten the localtherm alization ofthe system form ed in heavy ion collisions.

4.6. Sum m ary and outlook

Iftheinitialstatefactorization worksasexpected,and aftertheresum m ation ofthe

leading contributionsofthe instability,the form ula forthe gluon spectrum should

read

dN

dY d2p?
=

Z
�
D �1][D �2

�
W

Y beam �Y
[�1]W Y beam + Y

[�2]

�

Z
�
D a

�
eZ[a]

dN
L O
[A (0;u)+ a(u)]

dY d2p?
: (154)

Thisform ula resum sthe m ostsingularterm sateach orderin �s.Becauseoftheir

relation to the physics ofthe initialand �nalstate respectively,the distributions

W [�]generalize parton distributions,while eZ[a]plays a role sim ilar to that ofa

fragm entation functiono.

Notethat,even aftertheresum m ationsperform ed in theinitialand �nalstates

ofeq.(154),this form ula stillsu�ers from the usualproblem ofcollinear gluon

splitting in the �nalstate.This is not a serious concern in heavy ion collisions

though,becausecollinearsingularitiesoccuronlywhen onetakesthe� ! + 1 lim it,

and we do expect to have to switch to another description (like hydrodynam ics)

longbeforethisbecom esaproblem .In fact,theinitialcondition forhydrodynam ics

should bespeci�ed in term softheenergy-m om entum tensor,which isinfrared and

collinearsafe becauseitm easuresonly the ow ofenergy and m om entum .

A m oreim portantproblem ,thathasstillnotreceived a satisfactory answer,is

to understand how the initialparticle spectrum { orthe localenergy m om entum -

tensor{ becom eisotropic.Thisrequiresform ulating a kinetictheory oftheglasm a

which describes how particles em erge from the decaying classical�eld and their

subsequentinteractionsboth with the classical�eld and with otherparticles.Re-

cently,such a kineticequation hasbeen derived fora scalar�eld theory coupled to

nIn a recent work by one ofthe authors,using a com pletely di�erent approach,the spectrum of

initialuctuations was found to be G aussian41.
oN aturally,thisfunction hasnothing to do with a gluon fragm enting into a hadron.Instead,itis

related to how classical�elds becom e gluons.
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strong sources42.Extending thiswork to Q CD and exploring itsconsequences-in

particular,theapproach oftheparticle+ �eld system towardsequilibration rem ains

a challenging problem .
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