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In this series of three lectures, w e discuss severalaspects of high energy scattering am ong
hadrons in Q uantum Chrom odynam ics.T he rstlecture isdevoted to a description of the
parton m odel, B Jorken scaling and the scaling violations due to the evolution of parton
distributions w ith the transverse resolution scale. T he second lecture describes parton
evolution at sm allm om entum fraction x, the phenom enon of gluon saturation and the
Color G lass Condensate (CGC ). In the third lecture, we present the application of the
CGC to the study of high energy hadronic collisions, w ith em phasis on nucleus-nucleus
collisions. In particular, we provide the outline of a proof of high energy factorization
for inclusive gluon production.
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1. Introduction

Quantum Chrom odynam ics (Q CD ) isvery successfulatdescribing hadronic scatter—
ings involving very largem om entum transfers.A crucialelem ent in these successes is
the asym ptotic freedom ofQ CD !, that renders the coupling weaker as them om en—
tum transfer scale increases, thereby m aking perturbation theory m ore and m ore
accurate. T he other in portant property of QCD when com paring key theoretical
predictions to experin entalm easurem ents is the factorization of the short distance
physics which can be com puted reliably in perturbation theory from the long dis—
tance strong coupling physics related to con nem ent. T he latter are organized into
non-perturbative parton distributions, that depend on the scales of tin e and trans—
verse space at which the hadron is resolved in the process under consideration. In
fact,Q CD notonly enables one to com pute the perturbative hard cross-section,but
also predicts the scale dependence of the parton distrbutions. A generic issue in
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Fig.1l. G eneric hard process in the scattering of two hadrons. Left: Leading O rder. R ight: N ext-
to-Leading O rder correction involving gluon radiation in the initial state.

the application of perturbative Q CD to the study of hadronic scatterings is the oc-
currence of logarithm ic corrections in higher orders of the perturbative expansion.
T hese logarithm s can be large enough to com pensate the extra coupling constant

s they com e accom panied w ith, thus voiding the naive, xed order, application
of perturbation theory. C onsider for Instance a generic gluon-gluon fision process,
as illustrated on the left of gure 1, producing a nalstate ofmomentum P .The
two glions have longitudinalm om entum fractions %1, given by

Mo,
X1 = '19?5@ ; 1)
gq
where M - Pf + P2 (P? P P isthe mvariantm ass ofthe nalstate) and

Y n(@P*=P )=2.0n the right of gure 1 is represented a radiative correction
to this process, where a gluon is em itted from one of the incom ing lines. R oughly

speaking, such a correction is accom panied by a factor

Z Z
dz M d%ks

. ?; (2)

X1
where z isthem om entum fraction of the gluon before the splitting,and k, itstrans-
verse m om entum . Such corrections produce logarithm s, log(l=x;) and logM - ),
that respectively becom e large when x; is smallor when M , is large com pared
to typical hadronic m ass scales. T hese logarithm s tell us that parton distributions
must depend on the m om entum fraction x and on a transverse resolition scale
M - , that are set by the process under consideration. In the linear regin €, there
are \factorization theorem s" { k-factorization ¢ in the rst case and collinear fac—
torization ® in the second case { that tellus that the logarithm s are universaland
can be system atically absorbed in the de nition ofparton distrdoutions® . The x de-
pendence that results from resumm ing the logarithm s of 1=x is taken into account
by the BFKL equation *. Sim ilarly, the dependence on the transverse resolution
scaleM » isaccounted for by the DG LAP equation °.

W e use the denom ination \linear" here to distinguish it from the saturation regim e discussed
later that is characterized by non-linear evolution equations.
®T he Jatter is currently m ore rigorously established than the form er.



T he application of Q CD is a lot less straightforw ard for scattering at very large
center of m ass energy, and m oderate m om entum transfers. T his kinem atics in fact
dom inates the bulk of the crosssection at collider energies. A striking exam ple of
this kinem atics is encountered in Heavy Ion Collisions (H IC ), when one attem pts
to calculate the m ultiplicity of produced particles. T here, despite the very large
center of m ass energy®, typicalm om entum transfers are sm alf, of the order of a
few G €Vsatmost. In this kinem atics, two phenom ena that becom e dom inant are

G luon saturation : the linear evolution equations (DGLAP or BFKL)
for the parton distributions Im plicitly assum e that the parton densities in
the hadron are sm alland that the only in portant processes are splittings.
However, at low values of x, the gluon density m ay becom e so large that
gluon recom binations are an in portant e ect.

M ultiple scatterings : processes involving m ore than one parton from a
given pro gctile becom e sizeable.

It is highly non trivial that this dom inant regin e of hadronic interactions is
am enable to a controlled perturbative treatm ent w ithin Q CD , and the realization
of this possibility is a m a pr theoretical advance in the last decade. The goal of
these three lectures is to present the fram ework In which such calculations can be
carried out.

In the wst lecture, we will review key aspects of the parton m odel. O ur re—
curring exam ple w ill be the D eep Inelastic Scattering (D IS) process of scattering
a high energy electron at high m om entum transfers o a proton. Beginning w ith
the Inclusive D IS cross—section, we w ill arrive at the parton m odel ( rstly in its
m ost naive Incamation, and then within QCD ), and subsequently at the DGLAP
evolution equations that control the scaling violations m easured experin entally.

In the second lecture, w e w ill address the evolution of the parton m odel to an all
values of the m om entum fraction x and the saturation of the gluon distribution.
A frer illustrating the trem endous sin pli cation of high energy scattering in the
eikonal 1im it, we w il derive the BFK L equation and its non-linear extension, the
BK equation. W e then discuss how these evolution equations arise in the Color
G lass Condensate e ective theory.W e conclide the lecture w ith a discussion of the
close analogy betw een the energy dependence of scattering am plitudes in Q CD and
the tem poral evolution of reaction-di usion processes in statisticalm echanics.

The third lecture is devoted to the study of nucleusnucleus collisions at high
energy. O urm ain focus is the study of buk particle production in these reactions
within the CGC fram ework. A fter an exposition of the power counting rules in
the saturated regin e, we explain how to keep track of the in nite sets of diagram s

“AtRHIC ,center ofm ass energies range up to P 's= 200G eV /nucleon; the LHC w illcollide nuclei

atTs= 55 TeV /nucleon. o
dFor instance, in a collision at~ s= 200 G €V betw een gold nucleiatRH IC ,99% ofthem ultiplicity
com es from hadrons whose p, isbelow 2 GeV.



that contribute to the inclusive gluon spectrum . Speci cally, we dem onstrate how

these can be resumm ed at leading and nextto-Jleading order by solving classical
equations of m otion for the gauge elds T he inclusive quark spectrum is discussed
aswell. W e conclude the lecture w ith a discussion of the inclusive gluon spectrum

at next=to-leading order and outline a proof of high energy factorization in this
context. U nderstanding this factorization m ay hold the key to understanding early
themm alization In heavy ion collisions. Som e recent progress in this direction is
brie y discussed.

2. Lecture I : Parton m odel, B jorken scaling, scaling violations

In this lecture, we w illbegin w ith the sim ple parton m odel and develop the conven—
tional O perator P roduct Expansion (OPE ) approach and the associated DGLAP

evolution equations. To keep thingsas sin ple aspossible, we w illuse D eep Inelastic
Scattering to illustrate the ideas in this lecture.

2.1 . K inem atics of D IS

P 0

Fig. 2. K inem atical variables in the D eep Inelastic Scattering process. k and P are known from
the experin ental setup, and k° is obtained by m easuring the de ected lepton.

T he basic dea of D esp Inelastic Scattering (D IS) is to use a well understood
lepton probe (that does not Involve strong interactions) to study a hadron. The
Interaction is via the exchange of a virtualphoton®.Variants of this reaction involve
the exchange ofaW  or Z ° boson which becom e increasingly in portant at large
mom entum transfers. The kinem atics of D IS is characterized by a few Lorentz
Invariants (see gure 2 for the notations), traditionally de ned as

P g
s (P + k)
sz (P+q)2:m§+2 + & ; (3)

€If the virtuality of the photon is sm all (in photo-production reactions for instance), the assertion
that the photon is a \well known probe that does not involve strong interactions" is not valid
anym ore. Indeed, the photon m ay uctuate, for instance, intoa m eson.



wherem  is the nucleon m ass (assum ing that the target isa proton) and M , the
nvariant m ass of the hadronic nal state. Because the exchanged photon is space—
like, one usually introduces Q ? o > 0,and also x Q?=2 .Note that since
MX2 mi,wemusthaveo x 1 { the value x = 1 being reached only in the
case w here the proton is scattered elastically.

T he sin plest cross—section one can m easure in a D IS experim ent is the total
Inclusive electron+ proton cross-section, w here one sum s over all possible hadronic

nalstates :

Od e N X Eod e N!le X (4)
Bk’ Bk’
states X
T he partial cross-section associated to a given nalstate X can be written as

z D E
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EO e N!'e X _ X 2 Ul P+k kO P ; 5
3k’ 26 m2) o ) D MLT )

N

where d ]Jdenotes the Invariant phase-space elem ent forthe nalstateX andM

X X

is the corresponding transition am plitude. T he \gpin" sym bol denotes an average
over all spin polarizations of the initial state and a sum over those In the nal
state. T he transition am plitude is decom posed Into an electrom agnetic part and a
hadronic m atrix elem ent as

M, == u®) uk) X J ONP@) : (6)

X q2

In thisequation J isthehadron electrom agnetic current that couples to the photon,
and N (P ) denotesa state containing a nucleon ofm om entum P .
Squaring this am plitude and collecting all the factors, the inclusive D IS cross—
section can be expressed as
od e 1 e?

= —4 L W ; 7
Bk’ 323 m?)gt o

w here the leptonic tensor (neglecting the electron m ass) is

L 1K) uk)@k) uk’ i
=2k +xkx® g x B: (8)
and W { the hadronic tensor { isde ned as
Z
X

4 W d

states X

2 )Y ®+q B )

N @®E)JY0)x X J (O)N (P)

spin

= dlye Y N(@)IVy)T (0N (P) : 9)

spin

The second equality is obtained using the com plete basis of hadronic states X .
T hus, the hadronic tensor is the Fourder transform of the expectation value of the
product of tw o currents in the nucleon state.An In portant point is that this ob fct



cannot be calculated by perturbative m ethods. T his rank—2 tensor can be expressed
sin ply In temm s of two independent structure fiinctions as a consequence of

C onservation of the electrom agnetic current : W =qWw =0
Parity and tin exeversalsymmetry :W = W

E lectrom agnetic currents conserve parity : the Levi€ ivita tensor
cannot appear’ in the tensorialdecom position of W

W hen one works out these constraints, the m ost general tensor one can construct
from P ;g andg ©reads:
aq F, P g P g
2 + P d 2 2

q P g a q
whereF ;, are the two structure functions? . A s scalars, they only depend on Lorentz
nvariants, nam ely, the variables x and Q 2. The inclusive D IS cross-section in the
rest fram e of the proton can be expressed In tem s of F'; ;; as

W o= F

; (10)

deN gm . 2 ms
= — 2F, sin® =+ —LF, cof = ; (11)
dE d dm E?sin®( =2) 2 2

where represents the solid angle of the scattered electron and E 0 its energy.

2.2. Experim ental facts

Two m apr experin ental results from SLAC ' in the late 1960’s played a crucial
role in the developm ent of the parton m odel. The lft plot of gure 3 show s the

Fp, vs. Fy for Q* =20 GeV?

0.7 9 . . .

T T

SLAC A
eor 1 ?‘;HH
051 i 151 ﬁ 4
04 E ¥
02} b 05T < Fx % s, b
01 { E . } e

0 . L L I L N

! ! ! i 0 1
0 01 02 03 04 05 06 07 08 09 le-04 0.001 0.01 0.1 1

z @

Fig.3.SLAC resultson D IS.

m easured values of F, (x;0 2) as a function of x. Even though the data covers
a signi cant range i Q ?, all the data points seem to line up on a shgle curve,
indicating that F, depends very little on Q% in this regin e. T his property is now

£T his property is not true in D IS reactions involving the exchange of a w eak current;an additional
structure function F3 is needed in this case.
9T he structure function F, di ers slightly from the W 5 de ned in ® :Fo = W 2=m§ .



known as B Pprken scaling &. In the right plot of gure 3, one sees a com parison of
F, with the com bination® F F, 2xFi.Although there are few data points for
F, ,onecan see that it is signi cantly lower than F; and close to zero .Asweshall
see shortly, these two experim ental facts already tell us a ot about the intemal
structure of the proton.

2.3. N aive parton m odel

In ordertogeta st insight Into the inner structure of the proton, it is interesting to
com pare the D IS cross-section in eg. (11) and thee cross-section (also expressed
in the rest fram e of the m uon),

n #
d 2. (1 m 2
SR G R R (12)
dE'd  4m E’sn- 2 2

Note that, since this reaction is elastic, the corresponding x variable is equal to
1, hence the delta function in the prefactor. T he com parison of this form ula w ith
eg. (11),and in particular its angular dependence, is suggestive of the proton being
com posed of point like ferm ions { nam ed partonsby Feynm an { o which thevirtual
photon scatters. If the constituent struck by the photon carries the m om entum pc,
this com parison suggests that

Q2
29 p

2F1 Fy (1 x) with x¢ (13)

A ssum Ing that this parton carries the fraction x, of them om entum of the proton,
ie.p. = %, P, the relation betw een the variables x and x. is X, = x=x, .T herefore,
weget :
2F1  Fy x, x x): (14)
In other words, the kinem atical variable x m easured from the scattering angle of
the electron would be equal to the fraction of m om entum carried by the struck
constituent. N ote that B jprken scaling appears quite naturally in this picture.
Having gained intuition into whatm ay constitute a proton, we shallnow com —
pute the hadronic tensor W for the D IS reaction on a free ferm ion i carrying
the fraction x, of the proton m om entum . Because we ignore interactions for the
tin e being, this calculation (in contrast to that for a proton target) can be done in

hFL , the longitudinal structure function, describes the inclusive cross-section betw een the proton
and a longitudinally polarized proton.

From current algebra, it was predicted thatF, = 2xF; ;this relation isknown as the C allan-G ross
relation 7.



closed form .W e obtain,

Z
d4p0
4w, Tk ®)2 ) xPp+q p)
x. PJY0)p’ p’J (0)x, P oin
qq 2% P g P q
=2 &? + P P
X (x x )& g 7 P g I a7

w here e; is the electric charge of the parton under consideration.Let usnow assum e
that in a proton there are f; (x, )Jdx, partons of type iwith a m om entum fraction
between x, and x, + dx, , and that the photon scatters incoherently o each of
then .W e would thus have

W = EOf(x (15)
(The factor x, In the denom lnator isa \ ux factor".) At this point, we can sin ply

read the values of F'1 ;»,

11X,
F,= > eifi(x) ; Fo= 2xF;: (16)
1

W e thus see that the tw o experin ental observations of i) B jprken scaling and ii) the
C allan-6 ross relation are autom atically realized in this naive picture of the proton3.
D egpite its success, thism odel is quite puzzling, because it assum es that partons
are free Inside the proton { while the rather large m ass of the proton suggests
a strong binding of these constituents inside the proton. O ur task for the rest
of this lecture is to study DIS In a quantum eld theory of strong interactions,
thereby tuming the naive parton m odel into a system atic description of hadronic
reactions. B efore w e proceed further, let us describbe in qualitative tem s (see 10 for
instance) what a proton constituted of ferm ionic constituents bound by interactions
nvoling the exchange ofgauge bosonsm ay look lke.In the left panelof gure4 are
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Fig. 4. Cartoons of the valence partons of a proton, and their interactions and uctuations. Left:
proton at low energy.R ight: proton at high energy.

represented the three valence partons (quarks) of the proton. T hese quarks interact

im particular,F, = 0 in thism odelis intim ately related to the spin 1=2 structure of the scattered
partons. Scalar partons, for instance, would give F; = 0, at variance w ith experin ental results.



by gluon exchanges,and can also uctuate Into states that contain additionalglions
(and also quark-antiquark pairs). These uctuations can exist at any space-tin e
scale an aller than the proton size (1 ferm i). (In this picture, one should think of
the horizontal axis as the tim e axis.) W hen one probes the proton In a scattering
experin ent, the probe (eg. the virtual photon in D IS) is characterized by certain
resolutions in tin e and in transverse coordinate. T he shaded area in the picture
is m eant to represent the tim e resolution of the probe : any uctuation which is
shorter lived than this resolution cannot be seen by the probe, because it appears
and dies out too quickly.

In the right panelof gure 4, the sam e proton is represented after a boost, while
the probe has not changed. Them ain di erence is that all the intermal tim e scales
are Lorentz dilated. A s a consequence, the interactions am ong the quarksnow take
place over tin esm uch larger than the resolution of the probe. T he probe therefore
sees only free constituents. M oreover, this tin e dilation allow s m ore uctuations
to be resolved by the probe; thus, a high energy proton appears to contain m ore
gluons than a proton at low energy® .

2.4. B jorken scaling from free eld theory

W e will now derive B jprken scaling and the Callan-G ross relation from quantum
eld theory. W e will consider a theory nvolving ferm ions (quarks) and bosons
(gluons),but shallat rst consider the free eld theory lim it by neglecting all their
interactions. W e will consider a kinem atical regim e in D IS that involves a large
valie of the m om entum transfer Q 2 and of the center of m ass energy = s of the
collision, while the value of x is kept constant. T his Iim it is known as the B jprken
I it.
To appreciate strong interaction physics in the B jprken Iim it, consider a fram e
In which the 4-m om entum of the photon can be w ritten as
1 9—
g =—(;0;0; Z+m?Q?): (17)
N

From the com binations of the com ponents of g

0
+
q q—p_i — ! +1
2 m
0
q q—péi m, x ! constant; (18)

and becauseq y =gy + gy’ q, ¥y , the Integration overy in W is
dom nated by

y 0 ;v m, x) *: (19)

quu'ma]en‘dy, if the energy of the proton is xed, there are m ore gluons at lower values of the
m om entum fraction x, .
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T herefore, the Invariant separation betw een the pointsatw hich the two currentsare
evaliated isy?  2y'y 1=0° ! 0.Noting that in eq. (9) the product of the two
currents can be replaced by their com m utator, and recalling that expectation valies
of com m utators vanish ©r space-like separations,we also see thaty?>  0.Thus, the
B jorken lim it corresponds to a tin e-like separation between the two currents, w ith
the Invariant separation y? going to zero, as illustrated n  gure 5. It is in portant

Fig.5.Region ofy that dom inates in the B jorken lim it.

to note that in this 1in it, although the invariant y? goes to zero, the com ponents of
y do not necessarily becom e sn all. T his w ill have in portant ram i cations when
we apply the O perator P roduct E xpansion to W

For our forthcom ing discussion, consider the forward C om pton am plitude T
Z

4T i dfve Y N@®)T WY ()T (0))N (P) : (20)

spin
:/p p\i
Fig.6.Forward Com pton am plitude. W e have also represented a cut contributing to W

Tt di ers from W by the fact that the two currents are tin eordered, and as
illustrated in gure 6, one can recover W from its in agihary part,

W =2mImT : (21)

At xed Q?%, T is analytic in the variable , except for two cuts on the real
axis that startat = Q°=2.The cut at positive corresponds to the threshod
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(P + g m? above which the D IS reaction becom es possble, and the cut at
negative can be inferred from the fact that T  isunchanged under the exchange
($ ;9% qg).Itisalo possble to decom pose the tensor T  in term s of two
structure functions Ty, :

T P p
aq 2 b g T q
o P g o

(22)

and the D IS structure functions F'; » can be expressed in tem s of the discontinuity
of T;;; across the cuts.

W e now rem ind the reader of som e basic results about the O perator P roduct
Expansion (OPE) 1?2, Consider a correlator A (0)B(y) (x1) n [X, where A
and B are two localoperators (possbly com posite) and the ’sareunspeci ed eld
operators. In the limity ! 0, this obfct is usually singular, because products
of operators evaluated at the sam e point are illde ned. The O PE states that the
nature of these singularities is a property of the operators A and B, and is not
in uenced by the nature and localization of the (x;)’s. T his singular behavior can
be expressed as

AQOBY) = Ci(y)0:(0); (23)

where the C;(y) are num bers (known as the W ilson coe cients) that contain the
singulary dependence and the O ;(0) are local operators that have the sam e quan—
tum num bersas the product A B .T hisexpansion { known astheOPE { can then be
used to obtain the lm ity ! 0 ofany correlator containing the productA (0)B (y).
Ifd(©;);d@ )and d(B) are the respective m ass din ensions of the operators O ; ;A
and B, a sin ple din ensional argum ent tells us that

Ci(y) ! Oj{fl(ol) da) dB) (up to logarithm s) : (24)
Here yj= P vy vy .) From this relation, we see that the operators O ; having the
Jowestdin ension lead to them ost sihgularbehaviorin thelim ity ! 0.Thus,only
a am all num ber of operators are relevant in the analysis of this lin it and one can
Ignore the higher din ensional operators.

Things are however a bit m ore com plicated In the case of D IS, because only
the invariant y* goes to zero, while the com ponents y do not go to zero. The
local operators that m ay appear in the OPE of T (JY(y)J (0)) can be classi ed
according to the representation of the Lorentz group to which they belong. Let us
denote them O_; °,wheres isthe \spin" of the operator (the num ber of Lorentz
indices it carries), and the index i labels the various operators having the sam e
Lorentz structure. The OPE can be written as :

X .
CS*  (y)Og; °(0): (25)
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Because they depend only on the 4-vectory , the W ilson coe cients m ust be of
the form !

ct o y) vy, CEsi V) (26)

whereCg (v?) depends only on the invariant y° . Sin ilarly, the expectation value of

the operatorsO ' * in the proton state can only depend on the proton m om entum
P ,and the leading part in the B jprken lim it id"
D E
N(P)Os;1i *(0)N (P) =P POsyi 7 (27)
spin

where the Og; are som e non-perturbative m atrix elem ents.

Let us now denote by ds;; the m ass din ension of the operator O S;li °.Then,
the dim ension ofCS;i(y2 )is6+ s ds;i, which m eans that it scales Ike

Cs;i(y2 ) i <y2)(ds;i s 6)=2 . (28)

Because the individual com ponents of y do not go to zero, it is this scaling alone
that detem ines the behavior of the hadronic tensor in the B jprken Iim it. C ontrary
to the standard O PE , the scaling depends on the di erence betw een the din ension
ofthe operatorand its spin,called itstwist ;s ds;i s, rather than itsdim ension
alone.The B prken lim it of D IS isdom inated by the operators that have the lowest
possble twist. A s we shall see, there is an in nity of these lowest tw ist operators,
because the dim ension can be com pensated by the spin of the operator. If we go
back to the structure functions T1 ,, we can w rite

X X
T, (x;0%)=  x* ° Osii Drpa@?)  (r=1;2); (29)

s i

wherea; = 0 and a, = 1.The di erence by one power of x (at xed Q ?) between
T; and T, com es from their respectivede nitionsfrom T  thatdi erby one power
of the proton m om entum P . Eq. (29) gives the structure functions T;;; as a serdes
of term s, each ofwhich has factorized x and Q * dependences. (T he functions D risii
(r= 1;2) are related to the Fourder transform ofCg (y2 ),and thus can only depend
on the nvariant Q ?).M oreover, for din ensional reasons, the fiinctions D ris;i must
scale like Q %* ¢ dsi | Therefore, it follow s that B Pprken scaling arises from tw ist 2
operators. It is In portant to keep in m ind that in eg. (29), the functions D 5, are
in principle calculable In perturbation theory and do not depend on the nature of
the target, while the O, ’'sarenon perturbativem atrix elem ents that depend on
the target. T hus, the O PE approach In our present In plam entation cannot provide
quantitative results beyond sin ple scaling law s.

1T here could also be tem s where one or m ore pairs y iy J are replaced by y?g i 3, but such
termm s are less singulars in the B prken lim it.
™ Here also, there could be term s where a pair P iP 3 is replaced bymi g t J,but they too

lead to subleading contributions in the B jorken lim it.
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Tt is easy to check that T; iseven in x while T, is odd; this m eans that only
even values of the spin s can appear In the sum In egq. (29).W e shallnow rew rite
this equation In a m ore com pact form to see what it tells us about the structure
functions F1;, . W riting

X X o S ar

2 a s 2 s a
T, = t(s;Q7)x™ "= t(siQ7) — i (30)
even s even s Q
we get (for s even)

1 @2 ° =2 g

t(s;0%)= — = — T (0% ; (31)
21 2

c

whereC isa an allcircle around the origin in the com plex plane (see gure 7).This

[ b
T )

Fig. 7. Contour in the com plex plane, and its deformm ation to pick up the contribution of the
cuts.

contour can then be deform ed and w rapped around the cuts along the realaxis, as
ustrated in the gure 7.Because the structure function F, is the discontinuity of
T, across the cut, we can w rite
Z
2 2 dx s a 2
Gt (s;Q°) = — — X TTF(x;07): (32)
0 X
T herefore,we see that the O PE gives the x-m om ents of the D IS structure functions.
In order to go further and calculate the perturbative W ilson coe cientsD ,;i,
wemust now dentify the tw ist 2 operators thatm ay contribute to D IS. In a theory
of ferm ions and gauge bosons, we can construct two kinds of tw ist 2 operators :

Oy e frer R
Os;lg s Ffl@z sQF =9 ; (33)
w here the brackets £ g denote a symm etrization of the indices s and a

subtraction of the traced termm son those indices. To com pute theW ilson coe cients,
the sin plest m ethod is to exploit the fact that they are ndependent of the target.
T herefore, we can take as the \target" an elem entary ob gct, lke a quark or a
gluon, for which everything can be com puted in closed form (including the Og; ).
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Consider rsta quark state as the target, ofa given avorf and spin .At lowest
order, one has

£; Ogpo “f; = gecu (P)Fiu (PP 2 °p
f; Ogy °£; =20: (34)
A veraging over the spin, and com paring with P * POg; ,Weget
Os;fo £ = ffo H Os;g £ =0: (35)

On the other hand, we have already calculated directly the hadronic tensor for a
single quark. By com puting the m om ents of the corresponding Fi;,, we get the
t (s;Q2) for s even :

1 2
t(s;0%)= —et ; t(s;0%)= —é&: (36)

From this, the bare W ilson coe cients for the operators involving quarks are

1 2
Disr Q%)= —€f ; Dops@?)= —¢f : (37)
By repeating the sam e steps w ith a vector boson state, those involving only ghions
are

Disg@Q?)=D2gg@?)=10; (38)

if the vector bosons are assum ed to be electrically neutral.

G oing back to a nucleon target, we cannot com putethe O, .However,wecan
hidem om entarily our gnorance by de ning functions f¢ (x) and £¢ (x) (respectively
the quark and antiquark distributions) such that"

Z d h i
X s .
— x° fr(x)+ £ (x) = WOgedi (39)
0 X
(Thesum f¢ (x)+ f¢ (x) isknown as the singlet quark distrdbution of avorf.) T hus,
the OPE formulas for F; and F; on a nuclon in tem s of these quark distributions

are
1 X h i
Fi(x)= - ef fr(x)+ fr(x) ;  Fa(x)= 2xF;(x): (40)
f

W e see that these form ulas have the required properties: (i) B prken scaling and
(1) the C allan-G ross relation.

D espite the fact that the OPE in a free theory of quarks and glions leads to a
result which is em barrassingly sin ilar to them uch sim pler calculation w e perform ed
in the naive parton m odel, this exercise has taught us several In portant things :

"D IS w ith exchange of a photon cannot disentangle the quarks from the antiquarks. In order to
do that, one could scatter a neutrino o the target, so that the interaction proceeds via a weak
charged current.
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W e can derive an operator de nition of the parton distributions £ (x) (al-
beit it is not calculable perturbatively)

B jorken scaling can be derived from rst principles in a eld theory of
free quarks and gluons. This was a puzzle preQ CD because clearly these
partons are constituents of a strongly bound state.

T he puzzle could be resolved if the eld theory of strong Interactions be-
cam e a free theory n the linitQ? ! + 1 ,a property known as asym ptotic
freedom .

A s shown by G ross, Politzer and W ilczek In 1973, non-A belian gauge theories w ith
a reasonable num ber of ferm ionic elds (eg.QCD with 6 avors of quarks) are
asym ptotically free’! and were therefore a natural candidate ©r being the right
theory of the strong interactions.

2.5. Scaling violations

A ITthough it was interesting to see that a free quantum eld theory reproduces the
B pprken scaling, this fact alone does not tellm uch about the detailed nature of the
strong interactions at the level of quarks and glions. M uch m ore interesting are
the violations of this scaling that arise from these interactions and it is the detailed
com parison of these to experim ents that played a crucialrole in establishing Q CD
as the theory of the strong interactions.

The e ect of Interactions can be evaluated perturbatively in the fram ework of
the O PE, thanks to renom alization group equations. In the previous discussion,
we In plicitly assum ed that there is no scale dependence n themoments Oy of
the quark distribution functions. But this is not entirely true; when interactions
are taken into account, they depend on a renom alization scale 2. The parton
distrdbutions becom e scale dependent as well. How ever, since F,, are observable
quantities that can be extracted from a cross—section, they cannot depend on any
renom alization scale. Thus, theremust also bea 2 dependence in the W ilson co—
e cients, that exactly com pensates the 2 dependence originating from the O si -
By din ensionalanalysis, the W ilson coe cients have an overallpower ofQ ? setby
their din ension (see the discussion follow Ing eg. (29)), m ultiplied by a din ension—
less finction that can only depend on the ratio Q 2= ?.By com paring the Callan-
Sym anzk equations'? ©or T w ith those for the expectation values Oy , the
renom alization group equation’? obeyed by the W ilson coe cients is ©

Q @Q + (g)@g ij s;ji(g) D ris;j Q= 3;9)=0; (41)
where (g) isthe beta function,and ;41 (g) is the m atrix of anom alous din ensions

for the operators of spin s (it is not diagonal because operators w ith identical
quantum num bers can m ix through renomm alization).

°W e have used the fact that the electrom agnetic currents are conserved and therefore have a
vanishing anom alousdin ension.N ote also that w e have exploited the fact that for tw ist 2 operators
D r;s; depends only on Q 2= ?,s0 that we can replace @ by Q e .
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In order to solve these equations, let us rst ntroduce the running coupling
g(Q ;g) such that
Z

g(Q 1) ng
n@=0o)= : (42)
5 (@)
Note that this isequivalent to Q @, §(Q ;9)= (@Q(Q ;g)) and §(Qo;g) = g; In other

words,J(Q ;g) isthevalueat the scaleQ ofthe coupling whosevalue at the scaleQ g
is g. T he usefuilness of the running coupling stem s from the fact that any function
that dependson Q and g only through the com bination G(Q ;g) obeys the equation

Q@ + (@& F@Q;9))=0: (43)

It is convenient to express the W ilson coe cients at the scale Q from those at the
scale Qg as
h Q dM = i

D,pil@= i9)= DrpyQo= JQ;g)) e Joo ¥ G ) s (44)
In QCD ,which is asym ptotically free, we can approxin ate the anom alous din en—
sions and running coupling at one loop by

g 2
s#3@) = TA5) i TQig= ———— : (45)
olh(©@= ,.,)

(The A ;5 (s) are obtained from a l-loop perturbative calculation.) In this case, the

scale dependence of the W ilson coe clents can be expressed in closed form as
2 3

n@=,.,) 0

Dys;iQ= ;9)= Dyrs;5Qo0= iGQ ;94 T
i
From this form ula, we can w rite the m om ents of the structure functions,
2 3
Z 4 2
€ n@= 5 ) 0
—x*Fi1(x;07)= —4 =

0o X e 2 Qo= .., )

S Mgl ;0 (47)
Qo
fi

(and a sin ilar form ula forF, ).W e see that w e can preserve the relationship betw een
F1 and the quark distributions, eq. (40),provided thatw e let the quark distributions

becom e scale dependent In such a way that their m om ents read
2 3

Z : g 2

' sh 2 2l X 4 n@Q= QCD) o e

— x° fr(x;0° )+ £ (x;0°) .

0 X . n@Qo= .., )

1

S Mgl o H(48)
£i
By also calculating the scale dependence of Fy, one could verify that the Callan—
Grossrelation F, (x;Q0 %) = 2xF; (x;Q?) ispreserved at the 1-loop order. It is crucial
to note that, although we do not know how to com pute the expectation valies
o S;iiQ at the starting scale Q o, QCD predicts how the quark distribution varies
0
when one changes the scale Q .W e also see that, in addition to a dependence on Q 2,
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the singlet quark distribution now depends on the expectation value of operators
that Involve only gluons (when the index i= g in the previous form ula).

T he scale dependence of the parton distributions can also be reform ulated in
the m ore fam iliar form of the DG LAP eguations. In order to do this, one should
also introduce a gluon distrdbution £y, also de ned by itsm om ents,

Z . % 2 LY\ (5)3

n = 0
—xsfg(x;Q2) 4 M
X

S5 tgui (49)
i n(Qo= QCD) oo

0
gi
T hen one can check that the derivatives of the m om ents of the parton distributions
w ith respect to the scale Q ? are given by
@f,(s;0%) T (Q;9)

? @Q; = SR (5i07) (50)
where we have used the shorthands £  f¢ + £ ; £, £f5.In order to tum this
equation into an equation for the parton distributions them selves, one can use
Z Z

1 gx . L gy
—X — A=y (y); (51)
0 X X Y
that relates the product of the m om ents of two functions to the m om ent of a
particular convolution of these functions. U sing this result, and de ning splitting
function P from theirm om ents,
Z

— x°Pyj(x) 4 2A5(s) ; (52)
0 X

A (s)f (s)=

it is easy to derive the DG LAP equation’,

A2 N |
2@fj_@<z’2Q )= g ;Qzlg) ) d;ijj_(XZY)fj(y;Q2) ; (53)
that resum s powers of 5 log(Q “=0 S ). This equation for the parton distrbutions
has a probabilistic interpretation :the splitting fiinction §2Pji (z)In(Q?) can be seen
as the probability that a parton j splits into tw o partons separated by at leastQ *
(so that a processw ith a transverse scale Q w ill see tw o partons),one of them being
a parton i that carries the fraction z of the m om entum of the original parton.

At 1-loop, the coe cients A i5(s) in the anom alous dim ensions are
2

8 9
S =
Agg(s)=i<34i l l +X }5+N_f
2 2 12 s(s 1) (s+1)(s+2) w23 6 ;
Ays (s) = L = + 2
42 s+ 2 s(s+ 1)(s+ 2)
Brg(s)= — L
32 s+1 s(s 1)
8 9
Aggo(s)= i< 2 + 4XS ! ££0 7 (54)
6 2 s(s+ 1) ;
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where N ¢ is the num ber of avors of quarks.On can n%te that, since Aﬁf (s) is a-
vor independent, the non-singlet” Iinear com binations ( arOg; with . ar = 0)
are eigenvectors of them atrix ofanom alousdin ensions, w ith an ejgenvaluePA £ (S).
T hese linear com binationsdo notm ix w ith the rem aining tw o operators, ¢ Osit

and O g4, through renom alization.By exam ining these anom alous dim ensions for
s= 1,we can see that the eigenvalue for the non-singlet quark operators is vanish—
ing :A¢r(s= 1)= 0.Going back to the eg. (50), this In plies that

8 9
<Z2i1 x h i=
oz & A e (x;07%) + £ (x;07) , =0 (55)

f

for any linear com bination such that P ¢ ar = 0.Thisrelation i plies for instance
that the num ber of u + U quarksm inus the num ber ofd + d quarksdoes not depend
on the scale Q ,which isdue to the fact that the splittings g ! dg produce quarks
of all avors in equal num bers (if one neglects the quark m asses). An interesting
relation can also be obtained for s= 2.For thism om ent, the m atrix of anom alous
din ensions in the singlet sector,

Aer(2) Agg(2) _ 1
Nngf(2)Agg(2) 2

Z O

(56)

£
2

H

H|Z

NIV
~

has a vanishing eigenvalue, which m eans thatEg linear com bination of the avor
singlet operators is not renom alized 10,4+ £ 0, .This leads also to a sum

rule
8 2 39
Q <2 X h i =
dxx4  fr(x;0%)+ £ (x;07) + £5(x;0°)° =0 (57)

2 .
@o2: | . ;

whose physical interpretation is the conservation of the total m om entum of the
proton { which therefore cannot depend on the resolution scale Q . (C ollinear split—
tings, that are responsible for the Q dependence of the num ber of partons, do not
alter their totalm om entum .)

W e have seen that Q CD can be used to calculate the value of the W ilson coe -
cients aswell as the scale dependence of the non-perturbative parton distrdbutions.
In practice, when one com pares D IS data w ith theoretical predictions, one needs
only to adjust the value of the parton distrbutions at a relatively low initial scale
Q g ,and then oneusesthe DG LA P evolution equations in order to obtain theirvalie
at a higher Q . This program has now been im plem ented to three loops (NNLO ),
and has been very successful in explaining the inclusive D IS data. T he agreem ent
between QCD and the D IS m easuram ents is illustrated In  gure 8 (see for instance
13 form ore details).

PH ere, the word \singlet" refers to the avor of the quarks.
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Fig. 8.Com parison of them easured F, with QCD  ts.

3. Lecture II :Parton evolution at sm all x and gluon saturation

In the st kcture, we introduced the parton m odel and the evolution of parton
distrbutionsw ith the transverse resolution scale Q 2 { and the corresponding resum —
m ation of the powers of ¢ 1g(Q?).W e now tum to the logarithm s of 1=x. These
logarithm s are expected to be the dom inant e ect In processes w here the collision
energy ~ s ismuch larger than the typical transverse m om entum scale involved in
the process, and m ay lead to gluon saturation at very smallx.

3.1. E ikonal scattering

Before going to the m ain sub fct of this lecture, let us m ake a detour through an
In portant result conceming the high energy lin it of the scattering am plitude of
som e state 0 an external eld.O urderivation here follow s ** . C onsider the generic
S-m atrix elem ent

= UL ; 1) & ; (58)

S out in
for the transition from a state to a state where
h 2 i
ULl 1)=T, exp i d'®xLine( nx)) ; (59)

is the evolution operator from t= 1 tot= +1 . (T, denotes an ordering in
the light-cone tim e x* .) The Interaction Lagrangian L. contains both the self-
Interactions of the elds and their interactions w ith the extemal eld.Now apply
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a boost in the z direction to all the particles contained in the states and .
Fom ally, this can be done by m ultiplying the states by exp( i!'K *), where ! is
the rapidity of the boost and K 3 the generator of Iongitudinal boosts. O ur goal is
tocomputethelimit ! ! +1 ofthe transition am plitude,

s im n et UMD 1 MET 4 (60)
T he behavior of scattering am plitudes In this lin it is easy to understand. T he tin e
spent by the incom ing particles In the region where the external eld is acting goes
to zero as the Inverse of the collision energy E . If the coupling to the extermal eld
waspurely scalar, thiswould In ply that the scattering am plitude itself goes to zero
asE !.However, n the case of a vector coupling, the longitudinal com ponent of
the current Increasesas E ,which com pensates the decrease in the interaction tin e,
thereby leading to a nite (non—zero and non In nite) high energy lin it.

For this reason, let us assum e that the coupling of the elds to the extemal
potential is of the form gA (x)J (x) where J is a vector current built from the
elem entary elds of the theory under consideration. In order to sim plify the discus—
sion, we also assum e that the extermal potential is non—zero only in a nite range
nx",x" 2 [ L;+L] (this is to avod com plications w ith long range interactions).
T he action ofK > on states and operators is

1 g 3 1 1
e "fal @t =ale'd e ‘g ja,)
: 3
e ™ p 4= (€Epip) m
1K 3 1K 3 1 1
et pxe M = pe Txex ixp); (61)

nam ely, it m ultiplies the + com ponent of m om enta by €' and their m inus com —
ponent by e ', while keeping the transverse com ponents unchanged. T he external
potential A (x) isuna ected by K 2, and the com ponents of J (x) are changed as

ollow s:

| : | i |
il'K JI(X)S il K — Jl(e Ax+ ;e x ,'X?)
g 3 TR 3 | | 1
K xe Y = 'T (e 'x"jelx jx5)
3 : 3
il K + (x)e ilK ° _ e! J+ (e !X+ ;e!x %o )

Because K ® does not m odify the ordering in x* , we can w rite
Z
3

el 1)e Y5 =T, expi A*x Lo ® e Xy (62)

ei! K

In addition, we can gplit the evolution operator into three factors
UH+1; 1 )=U@H1;+L)WUHL; LU L; 1) (63)

so that only the factor in the m ddle contains the external eld. In order to deal
with the st and last factor after the boost, it is su clent to change variables
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e 'x" ! xt,e'x ! x .Thisladsto

i &KX U1 j+L)e UK

'+l

Im MK

'+l

U0(+1 ,'O)

U(L; 1) "  =Ue0; 1); (64)

where Uy is the same as U, but with the selfinteractions only. For the factor

U (@L; L),thechange ofvariablse'x ! x givesus
h 2 i
. ilK ilK . 2
ljmle UMH+L; L)e =T, exp Ig d'x, ;) xX:) ; (65)
1oy
8 Z
3 (x2) d<" A (x";0;x2 ) ;
w ith Z (66)
7 (%2 ) dx J7(0;x jx2):

Only the m inus com ponent of the extermal vector potential m atters, because this
is the com ponent that couples to the Iongitudinal current J* which is enhanced
by the boost. T herefore, the high energy lin it of the transition am plitude can be
w ritten as
h 2 i
s = L U(+1 0T, exp ig  (x2) (%) Up0; 1) w @  (67)

X2

This 1im it is known as the eikonal lim it. Tt is In portant to keep in m ind that this
form ula is the exact answer for the high-energy Iim it; no perturbative expansion
has been m ade yet, and the form ula still contains the self-interactions of the elds
of the theory to allorders. A rem arkable feature of eq. (67) is that it separates the
selfinteractions of the elds and their interactions w ith the external potential in
three di erent factors, a property which is strongly suggestive of the factorization
between the long and short distance physics in high energy hadronic interactions.

In order to use eg. (67) In practice, it is necessary to m ake an expansion in the
self-interactions of the elds, by Introducing com plete sets of states between the
three factors,

st = n Uo(+1;0) &
; h 2 i
n Ty exp ig (X2) X2) @ mwUo(O; 1) wm : (68)

X2

T he factor F in i UO; 1) i isthe Fock expansion of the initial state.
Tt re ects the fact that the state prepared at x* = 1 may have uctuated
into another state before it Interacts w ith the extemalpotential. T here is also a
sim ilar expansion for the nal state. A ssum ing that we have perform ed the Fock
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expansion to the desired order?, one needs to evaluate m atrix elem ents such as
h 2 i
n €Xp ig a®2 ) % (x2) @ ot (69)

W e have reinstated color indices in this form ula, since we have applicationsto Q CD
n m ind. In order to calculate this m atrix elem ent, the st step is to express the
operator ¢ (x, ) In tem s of creation and annihilation operators of the particles
that can couple to the external potential. For instance, the contribution that com es
from the quarks ar%d antiquarks is given by
+ 2 2 n
F(xp )= € 4dpp+ ?210?)2 ?2%)2 B, (0" ip; ibn (P g, i3 T )Ox
df, (0" ip, i (B ja, ji)e P2 T F 1 (70)

(T he quarks com e w ith a positive sign and the antiquarks w ith a negative sign.)

T he contribution of the gluons would be sin ilar, but the color m atrix would be

replaced by an elem ent of the ad pint representation. From this formula, we see

that in eg. (69), the states and must have the sam e particle content, because
each annihilation operator in 2 is Inm ediately followed by a creation operator
that creates a particle of the sam e nature. The + com ponent of the m om enta of
the particles in and must also be identical. The only di erence between the
states and is in the transverse m om enta and in the color of their particles.
In order to recover the ekonal lin it in a m ore fam iliar form , one should go to

In pact param eter representation by perform ing a Fourier transform ation of all the

transverse m om enta in the interm ediate states and , by de ning the light<cone
w avefunction

Z
Yo &k
——e FE ¥ U0 1)

; 7
5 pe in (71)

(k! ;%42 g)

i2
Then, from the explicit form of 2, it is easy to check that the only e ect of the
extemalpotential is to m ultiply the function by a phase factor for each particle

in the interm ediate state :

Y
(fk{ ix g) ! (ki ;%2 9)  Uilxz)
i
h 2 i
Ui(x,) T.exp ig, dx' A, x ;0;x; ) : (72)

In the case of non-abelian Interactions, these phase factors U;(x, ) are known as
W ilson lines.W ilson lines resum multiple scatterings o the external eld, as one
can see by expanding the exponential. T hus, the physical picture of high energy
scattering o som e external eld is that the initial state evolves from 1 to O,

9T hem ain di erence com pared to the usual perturbation theory is that the integrations over x*
run only over half of the realaxis,eg.[ 1 ;0]. In Fourier space, this in plies that the m inus com —
ponent of the m om entum is not conserved at the vertices, and that one gets energy denom inators
instead of delta functions.
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multiply scatters during an in nitesin ally short tine o the extemal potential,
and evolves again from 0 to +1 to form the nalstate, as illustrated In  gure 9.
In temm s of light-cone wavefunctions and of W ilson lines, the high energy lin it of

Fig. 9. Scattering o an external potential in the high energy lim it.

the transition am plitude reads
x 2 hy dk? i hy i
i 2 y + o, + o, .
4—+d X 37 (fk{ %2 9) Ui(xi2) (fky %32 g) :(73)
i2 : 2

3.2. BFKL equation

Let us now derive the BFK L equation. O ur derivation is nspired from !> 19,
Consider the forward scatteringo an extemal eld ofa state whose sin plest Fock
com ponent is a color singlet quark-antiquark pair. T hus, the transition am plitude
can be written as

2
= D%,5y,) U & WUY(y,) : (74)

W e will not need to specify m ore the lightcone wavefunction of the state under
consideration.N ote that the product of the two W ilson lines is traced, because the
state  is color singlet. A crucial property of this transition am plitude is that it
is com pletely independent of the collision energy. H owever, as we shall see, a non
trivial energy dependence arises In this am plitude because of large logarithm s in
loop corrections.

Consider now the 1-loop corrections to this am plitude depicted In  gure 10.
T hese 1-loop corrections all involve one additional glion attached to the quark or
antiquark lines. In som e of the corrections, that we shall call real corrections, the
gluon is present in the state that goes through the external eld. In the other cor-
rections, the virtual corrections, the gluon is just a uctuation in the wavefunction
of the initial or nal state. The calculation of these diagram s is straightforward
in the in pact param eter representation. O ne sin ply needs the form ula for the qqg
vertex :

; (75)
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- d

Fig. 10. O ne-loop corrections to the scattering of a dipole o an extermal eld. O nly half of the
virtual corrections have been represented.

w here is the polarization vector of the glion and k., its transverse m om entum ,
and its expression in In pact param eter space,

Z k ng X Z
d2k’) 3 i ?
? e]K? (% Z7 ) 2gta ° # : ( 76)

2 P K2 2 2 2z, P

Am ed with these tools, it is easy to obtain expressions such as

2
@ = Ok, 5y, ) tr PEU (x0 UY (Y, )
Z 2
5 dk* d“z, (x» Zo) (% zZ,) 77)
okt 2 2 z: P (x, zo R
and
. 2
g. = Ok, iy, ) tr U (x, UV (y, )
2 b ( ) )
Z, (X9 Z7 Y Z7
—_— : 78
fe 2 P (x: z3 )Py, 2z7)? 78

W e nd that the sum of all the virtual corrections reads

Z .,z
Cf s dk d229 (X? Y?

2 k* e z2 Py, zZ2 P

)2 2
Oz, 5v,) tr U, Uy, ) ;

(79)

where C; £t = (N? 1)=2N for SU (). In this omul, k' is the longitu-
dinalm om entum of the glion. A s one can see, there is a logarithm ic divergence
in the Integration over this variable. The lower bound should arguably be som e
non-perturbative hadronic scale , and the upper bound m ust be the longitudinal
mom entum p" of the quark or antiquark that em itted the photon. H ence we have
a log(p" = ), which is a large factor in the Iim it of high-energy (strictly speaking,
the high-energy lim it is illde ned because of these corrections). T he calculation of
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the real corrections is a bit m ore involved . For instance, one has

2
= Oz, v, ) fr PU . PUY(yY,)
7

Z
dk* - d’z; (ke z2) (6 z2)

Yo 3 e T Y, R

(80)

where &, (z, ) isa W ilson line In the ad pint representation that represents the
eikonal phase factor associated to the gluon (z. is the in pact param eter of the
gluon). In order to sim plify the real term s, we need the follow ing relation betw een
fundam entaland ad pint W ilson lines,

P8ap(z2 )= U (2, )€UV (27 ) ; (81)

and the Fierz dentity obeyed by fiindam ental SU (N ) m atrices :

tki)jnkzl: é i1 jk % ij
Thanks to these identities, one can rewrite all the real corrections in tem s of
the quantity S (- ;y, ) tr U(x, JUY(y, ) &N :Collecting all the tem s, and
sum m Ing realand virtual contributions, we obtain the follow Ing expression for the
1-loop transition am plitude

kl: (82)

SNZY g 2 2 (x: v,V
22 G2 772 ) dz (x> z2 Py, z2)?
n o
S(x2 iy, ) S (X2iz2)8(225y,) (83)
where we denote Y In(p" = ). This correction to the transition am plitude is not

smallwhen 1. Y ,which m eans that n-loop contributions should be considered
n order to resum allthe powers ( ;Y )" .Here,we are just going to adm it that this
n-loop calculation am ounts to exponentiating the 1-loop result. In other words,
eg. (83) is su cient in order to obtain the derivative @S =QY ,

{4 2
@s (x- ivo ) sN e 2 (x> Vo)
= d Zo
@y 22 (x> z7 (¥, 22 )?
n ]
S(x25yY,) S(x2;2:)8(z2;y,) : (84)

It is custom ary to rew rite this equation in termm sofT -m atrix elem ents, T (X ;y, )
1 S(x-;y,).TheBFKL equation? describes the regin ewhere T (x5 7Y, )isamall,
so that we can neglect the temm s that are quadratic in T . Tt reads :

z
@T (x» 1Y~ ) _ sN ¢ dZZ (x- Y- )2
ey 22 e z0 Ply, 2o )
n O
T (X222 )+ T (225Y,) TXe5;y,) @ (85)

One can verify easily that T = 0 isa xed point of this equation (the right hand
side vanishes if one sets T = 0), but that this xed point is unstable (if one sets
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T = > 0,the right hand side is positive). Since there are no other xed points,
solutions of the BFK L have an unbounded grow th in the high energy lin it (Y !
+1 ). This behavior however is not physical, because the unitarity of scattering
am plitude in plies that T (x; ;y. ) should not becom e greater than unity.

3.3. B alitsky-K ovchegov equation

T he solution to the above problem was in fact already contained in eq. (84).W hen
written in term s of T w ithout assum ing that T is am all,

z 2
@T (x- Yo ): sN ¢ dzz (x- Vo)
@y 22 e z2 Py, 22 P
n (@]
T (X252 )+ T(225y,) TXeiy,) T (X2;2:)T(225y,) ;i (86)

it has a non-linear term that con nesT to the range [0;1]. Indeed, the presence of
this quadratic term makes T = 1 a stable xed point of the equation. T herefore,
the generic behavior of solutions ofeg. (86) isthat T startsat an allvaliesat an all
Y and asym ptotically reaches the value T = 1 in the high energy 1m it. Eq. (86) is
know n as the Balitsky-K ovchegov equation!’8 .

T he interaction ofa color singlet dipole w ith an externalcolor eld isa possible
description of DIS, in a frame In which the virtual photon splits into a quark—
antiquark pair long before it collides w ith the proton (the extermalcolor eld would
represent the proton target). A Ithough it is legitin ate to treat the proton as a
frozen con guration of color eld due to the brevity of the Interaction, we do not
know whatthis eld is.M oreover, since this el iscreated by the partons inside the
proton, that have a com plicated dynam ics, this color eld m ustbedi erent for each
collision, and should therefore be treated as random . T herefore, in order to tum our
dipole scattering am plitude into an ob fct that we could use to com pute the D IS
cross-section at high-energy, wem ust average over all the possible con gurations of
the external eld.Letusdenote by this average.T he e ect of this average on
the energy dependence of the am plitude is sin ply taken into account by taking the
average of . (86). H ow ever, one sees that the evolution equation for T involves
in its right hand side the average of a product of two T’s, TT . Therefore, we
do not have a closed equation anym ore.An evolution equation for TT could be
obtained by the sam e procedure, which would depend on yet another new ob fct,
and so on.At the end of the day, one in fact obtains an in nite hierarchy of nested
equations, known as Balitsky’s equations'® .

It is only if one assum es that the averages of products of am plitudes factorize
into products of averages,

T Ti HIihri; (87)

that this hierarchy can be truncated into a closed equation which is dentical to
eg.(86) { theBK equation { with T replaced by T .Thisapproxin ation am ounts
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to drop certain correlations am ong the target elds, and is believed to be a good
approxin ation for a large nucleus in the lin it of a Jarge num ber of colors'’ .

3.4. G luon saturation and Color G lass C ondensate

T he problem encountered w ith the inde nite grow th of the solutions of the BFK L

can be understood In tem s of the behavior of the gluon distrbution at anall
m om entum fraction x. Indeed, in the regim e w here the dipole scattering am plitude
T is still am all, it can be calculated perturbatively,

T (x:7y,)/ Ko ¥, T %G &iK: v,3°); (88)

where Y In(1=x). This form ula is an exam ple of the duality that exists in the
description of scattering processes at high energy. In the derivation of the BFK L
and BK eguations, we have treated the proton target as given once for all, and the
energy dependence has been obtained by applying a boost to the djpole pro gctile.
But, thanks to the fact that transition am plitudes are Lorentz invariant quantities,
they can also be evaluated In a fram e where the dipole is xed, and the boost
is applied to the proton. In this fram e, the energy dependence of the scattering
am plitude com es from the x dependence of the proton ghion distribution.

Thus, an exponential behavior of T is equivalent to an increase of the glion
distrdbution as a power of 1=x :

| 1
T e’ ! xG (x;0°%) — : (89)

1

(T his grow th of the gluon distrbution is due to gluon splittings.) H owever, the
gluon distribution cannot grow at this pace inde nitely. Indeed, at som e point, the
occupation num ber of the gluons w ill becom e large and the recom bination of two
gluons { not included in the BFK L. equation { willbe favored. T his phenom enon is
known as gluon saturation®® . In the linear regin e, described by the BFK L equation,

Z &
8 %ﬁmumum
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Fig.1ll.G luon saturation :m erging of the gluons ladders initiated by two valence partons. T he
proton target is at the top of the picture and the probe at the bottom .

each valence parton from the proton initiates its own glion ladder (see gure 11)
that evolves ndependently from the others. In the saturated regin e, these glion
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ladders can m erge, thereby reducing the grow th of the gluon distrbbution.Thee ect
of these recom binations on the scattering am plitude is taken into account by the
non-linear term of the BK egquation.

A sem iquantitative criterion for gluon saturation can be obtained?® by com —

paring the surface density of gluons, xG (x;0%)= R?,and the cross-section for
gluon recom bination, <=0 “.Saturation occurswhen 1 . , le.when
2
2 2 . 2 sXG (x;073) 1.5 1
Q Q s ;. W ith Q s TS A E . (90)

The quantity Q¢ is known as the saturation m om entum . Tts dependence on the
num ber of nucleons A (in the case of a nuclear target) com es from the fact that
xG (x;0?) scales Ike the volum e, while R? isan area. Its x dependence is a phe-
nom enologicalparam eterization ngpired by from tsof HERA data.From eg. (90),

logx) }

> 10g(Q?

Fig.12. Saturation dom ain in the x;0Q 2 plane.

one can divide the x;02 in two regions, as illustrated In  gure 12. T he saturated
regin e corresponds to the dom ain of low Q and low x.

A Yhough the BK equation describes the evolution of the dipole scattering am pli-
tude Into the saturation regin e, there is an equivalent description of this evolution
{ the Color G lJass Condensate { in which the central role is played by the target.
The CG C description divides the degrees of freedom in the proton into fast partons
(large x) and slow partons (small x)?!. The fast partons are a ected by tin e di-
lation, and do not have any signi cant tim e evolution during the brief duration of
the collision ; therefore, they are treated as static ob gcts that carry a color source.
T hese color sources produce a current,

I o=t ) ) (1)

w ritten here for a profctile m oving in the + z direction. The function (x, ) de-
scribes the distrbution of color charge as a function of the in pact param eter.
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The slow partons, on the other hand, have a non trivial dynam ics during the col-
lision, and m ust be treated as gauge elds. The only coupling between the fast
and slow partons isa coupling A J between the color current of the fast partons
and the gauge elds, which allow s the fast partons to radiate slower partons by
brem sstrahlung. B ecause the con guration of the fast partons prior to the collision
is di erent in every collision, the function (x, ) must be a stochastic quantity,
for which one can only specify a distribution W , [ ]. O bservables ke cross-sections
m ust be averaged over all the possible con gurationsof with thisdistrbution. In
fact, in the CGC description, this averaging procedure is equivalent to the target
average of the scattering am plitude that was introduced in the discussion of the

BK equation,
Z

D W, [] : (92)

A crucial point is that the distrdbution W, [ ] depends on Y , the rapidity that
separates what is considered fast and slow . Because such a separation is arbitrary,
physical quantities cannot depend on it; one can derive from this requirem ent a

renom alization group equation forW , [ ]{ known asthe JM W LK equation®® {,
of the form
@w, [ 1]
——=H[ IW : 93
ay [ Iw, [] (93)

TheJIM W LK Ham iltonian H [ ]Jcontains rst and second derivatives w ith respect
to the source ,

2

2 Y, )/ 94
S R~ S T G R v ©4)

N

where (x,) and (x»;y, ) are known functionals of . In fact, the JIM W LK
equation isequivalent to the in nite hierarchy ofBalitsky’s equations { ofwhich the
BK is an approxin ation that neglects som e correlations. In the CG C description
of scattering processes, the energy dependence of am plitudes arises from the Y

dependence of the distrdbution W , [ ].For instance, the dipole scattering am plitude
would be written as

1
W (k- ;y,)i= D Jw,[ ] 1 N—‘tI(U 2 WUy, )) (95)

where the W ilson line U is evaluated in the color eld generated by the con gu-
ration  of the color sources. T his form ula is very sin ilar { at least in spirit { to
the standard collinear factorization in D IS. The functionalW , [ ] can be seen as
an extension of the usual concept of parton distrdbution, that contains inform ation
about parton correlations beyond the m ere num ber of partons, while the square
bracket is the analogue of the \perturbative cross-section".T his form ula isa Lead-
ing Logarithm (LL) factorization form ula in the sense that it resum s all the powers
( Y )" .M oreover, it also resum s all the rescattering corrections, in (Q s=p; ¥, a
feature which is not inclided in collinear factorization.
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Eq. (93) predicts the energy dependence of the distrbution of sources. H ow ever,
it m ust be supplem ented by an initial condition at some Yp.Aswith the DGLAP
equation, the initial condition is non-perturbative, and one m ust in generalm odel
it or guess it from experin entaldata. In the case of large nucli, one often uses the

M cLerran-Venugopalan m odel, which assum es that W v [ lisa Gaussin?li3i24 .
Z
(x2) (x2)
W, [ 1= exp dzx?m : (96)

The idea behind this m odel is that the color charge per unit area, (x; ), is the
sum of the color charges of the partons that sit at approxin ately the sam e in pact
param eter. In a large nucleus, this will be the sum of a lJarge num ber of random

charges; for N, = 3, this leads to a G aussian distribution for plusa small (albeit
physically very relevant) contribution from the cubic Casin ir 2. The fact that
this G aussian has only correlations local in in pact param eter is a consequence
of con nem ent : color charges separated by m ore than the nucleon size cannot be
correlated.TheM V m odelisgenerally used at a m oderately sm allx, of the order of
10 ?.TIftheproblem under consideration requires sm aller values of x , one should use
the BK orJIM W LK equations, w ith the M V distrlbution as the initial condition.

3.5. Analogies with reaction-di usion processes

T here are Interesting analogies between the evolution equations that govem the
energy dependence of scattering am plitude In Q CD and sin ple m odels of reaction—
di usion processe$®. The sin plest settihg in which these correspondences can be
seen is to consider the dipole scattering am plitude o a large nucleus, and to assum e
translation and rotation invariance In in pact param eter space. It is useful to de ne

its Fourier transform as
Z

N (Y;k.) 2 Fx, ek * —

X3

(97)

(N ote the factor l=x§ included in this de nition.) Tt tums out that for this ob fct
N ,the BK equation has a very sin ple non-linear tem ,

h i
O ) Mot ok ) N2k ) (98)
Che

In thisequation,L. In(kZ=ki)and ( ) 2 (1) () (1 ywith (z)
dIn (z)=dz.The function ( ) haspolsat = 0Oand = 1,and a mininum
at = 1=2.By expanding it up to quadratic order around its m ininum , and by
de ning new variables,

t Y

z L+ % Pa=2)y ; (99)

the BK equation sin pli es into

N = @N + N N?; (100)
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known as the FisherX oln ogorov-P etrov-P iscounov (FK PP ) equation. T his equa—
tion has been extensively studied in the literature, because it is the sin plest real-
ization of the so—called reaction-di usion processes. It describes the evolution of a
num ber N of ob Fcts that live In one spatial dim ension. T he di usion tem @fN
describes the fact that these entities can hop from one location to neighboring lo—
cations. T he positive linear term + N m eans that an ob fct can split into two, and
the negative quadratic term N ? that tw o ob fcts can m erge into a single one.O ne
can easily check that this equation hastwo xed points,N = 0 which is unstable
and N = 1 which is stable.

An in portant property of this equation is that it adm its asym ptotic travelling
waves as solutions. Let us assum e that the initial condition N (ty;z) goes to 1 at

z ! 1 andtoOatz! +1 ,with an exponential tailN (ty;z) D exp( z).
z! +

If the slope of the exponential obeys > 1, the solution at late tim e depends only
on a single variable,

N (t;z) N (z 2t ;]n(t)) : (101)

t +1

W hen t! +1 ,the logarithm can be neglected in front of the term linear in tim e,
and one has a travelling wave m oving at a constant velocity dz=dt = 2 without
deform ation (see gure 13).M oreover, this velocity is independent of the details of

Fig.13.Travelling wave solutions ofthe FK PP equation.R ed :initialcondition .M agenta :solition
at equally spaced tim es.

N(t,2) f

the initial condition for a large class of initial conditions.
G oing back to the dipole scattering am plitude, this result in plies the follow ing
scaling behavior at large Y

Ir (0ix- )i = TQs(Y )% ) (102)
w ith a saturation scale of the form
Qi(Y)=kiy €7 : (103)

(T he exponential com es from the constant in the velocity of the travelling wave,
and the power law correction com es from the subleading logarithm .) T his scaling
property has an interesting phenom enological consequence for the inclisive D IS
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Fig.14.Photon-proton total cross-section m easured at HERA , displayed against 02=0 g (Y ).

cross-section, that one can express in tem s of the forw ard dipole scattering am pli-
tude thanks to the optical theorem

zZ Z .
2 .
p(Y;0%) = o d®xs  dz (zix; ;Q7) THT (O5x0 )i : (104)

In this ormula, (z;x» ;Q?) is the light-cone wave finction ©r a photon of virtu-
ality Q¢ that splits into a quark-antiquark dipole of size x, , the quark carrying
the fraction z of the Iongitidinalm om entum of the photon. T his w avefiinction can
be calculated in QED , and its only property that we need here is that it depends
only on the combination fm? + Q?z*(1 z)*k2 wherem is the quark mass. If
one neglcts the quark m ass, then eg. (102) In plies a sin ple scaling for the p
cross-section itself :

L (Y;0%) = L0Q"=0Z(Y)): (105)

Such a geom etrical scaling®® has been fund in the D IS experin ental results’, as
shown In gure 14.A comm ent is in order here; as the approach based on collinear
factorization and the DG LA P eguation succeeds at reproducing m uch of the inclu-
sive D IS data, it certainly also reproduces this scaling that is present in the data.
H ow ever, this approach does not provide an explanation for the scaling. It arises
via som e ne tuning of the initial condition for the DG LAP evolution. In contrast,
in the Color G lass C ondensate description ofD IS, this scaling is aln ost autom atic.

In addition to explaining geom etrical scaling, saturation inspired ts ofD IS data are quite suc—
cessfulat sm allx. See ?7.
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4. Lecture IIT : N ucleusnucleus collisions in the CG C fram ew ork
4.1 . Introduction

Up tonow ,we only considered D IS, In which a possbly saturated proton or nucleus
is probed by an elem entary ob fct® { a virtual photon that has uctuated into a
quark-antiquark dipole. In such a situation, the scattering am plitude can be w ritten
In closed form as a product of W ilson lines, and its energy dependence can be
obtained either from Balitsky’s equations or from the JIM W LK evolution of the
distribution of sources that produce the color eld of the proton.T here are how ever
Interesting problem s that involve two densely occupied profctiles. T he archetype

Fig. 15. Typical contributions to gluon production in hadronic collisions. T he dots denote the
color sources. Left: dilute regin e. R ight: saturated regin e.

of such a situation is a high-energy nuclusnucleus collision. In these collisions,
one of the m ain challenges is to calculate the m ultiplicity of the particles (glions
at leading order) that are produced at the in pact of the two nuclei. In the Color
G lass Condensate fram ew ork, one has to couple the gauge elds to a current that
receives contributions from the color sources of the two pro fctiles,

J = 7 (x) 1)+ () 2(x2): (106)
T he fact that there are tw o strong sources leads to com plications that are two-fold :

there isno explicit form ula that gives them ultiplicity (or any other observ—
able) In term s of W ilson lines in the collision of two saturated pro gctiles,
if one is interested by the particle spectrum at som e rapidity Y , onem ust
evolve the two profctiles from their respective beam rapidity to Y . The
question of the factorization of the large logarithm s of 1=x is now much
m ore com plicated than in D IS.

T he kind of com plications one is facing in thisproblem is illustrated in gure 15.In
the saturated regin e, reactions initiated by m ore than one parton (color source in
the CG C description) in each pro fctile becom e in portant.M oreover, there can be

SP roton-nucleus collisions also belong to this category. E xam ples of processes have been studied
28
n“®.



34

a superposition of m any independent scatterings, that w ill appear as disconnected
graphs.

4.2. Power counting and bookkeeping

In the saturated regin e, the colordensity  (represented by dotsin gure 15) isnon—
perturbatively large g '.This is due to the fact that the occupation num ber,
proportional to ,isof order _! i this regim e. Thus for a connected graph,

S

the order in g is given by
FI I (107)

w hereny is the num ber of produced glionsand n; the num ber of loops. O ne can see
that this form ula is lndependent of the num ber of sources  attached to the graph.
Indeed, since each source bringsa factorg ! and is attached at a vertex that brings
a factor g, each source counts as a factor 1. If the diagram under consideration is
m ade of severaldisconnected subgraphs, one should apply eq. (107) to each of them
separately.

Am ong all the diagram s that appear in the calculation of particle production,
a special role is played by the socalled vacuum diagram s { diagram s that have
ng = 0 external gluons. They only connect sources of the two proZfctiles, and
are thus contributions to the vacuum -to-vacuum am plitude Ogyt Oi , hence their
nam e. T he order of connected vacuum diagram s is g°®1 1), An extrem ely usefill
property is that the sum of all the vacuum diagram s (connected or not) is the
exponentialof those that are connected (thatwedenote iV [j]where j is the external
current due to the color sources of the two pro fctiles)

X all the vacuum X connected W 5]
oV 3

. = exp .
diagram s vacuum diagram s

(108)
T he reason why vacuum diagram sare in portant in our problem isthat it ispossble
to w rite all the tim e ordered productsof elds { thatenter in the reduction form ulas
for glion production am plitudes { as derivatives of exp (iV []])

Oout TA (x1) AROy = — — eV Ul (109)
1 J) i J&)

T hanks to this property, one can w rite a very com pact form ula for the probability

P, of producihg exactly n gluons in the collision?® 31,

P, = iDneiV[I]e v g1 , i (110)
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w here the operator D isde ned by*
Z

8
2D G) &®y) « , , ;
< ey i) W)
. 2 a11)
p .
e ; ip x vy)
v ) @ P2E,

An in portant point to keep in m ind about eg. (110) is that the extemal currents
m ust be kept distinct in the am plitude and com plex conjigate am plitude until all
the derivatives contained in D have been taken. Only then one is allowed to set
J and j to the physical value of the extemal current. T he propagator GE ,
that has only on-shellm om entum m odes, is the usual cut propagator that appears
in Cutkosky'’s cutting rules'??. The operator D acts on cut vacuum graphs by
rem oving two sources (one on each side of the cut, ie.a 3, and a j ), and by
connecting the pointsw here they w ere attached by the cut propagatorG ? .In fact,
since P, is obtained by acting n tin es w ith the operator D , it is the sum ofallthe
cut vacuum diagram s in which exactly n propagatorsare cut.Eq. (110) also m akes
obvious the fact that the probabilities P,, do not have a m eaningfiil perturbative
expansion In the saturated regin e, because the sum iV [j] of the connected vacuum
diagram s starts at the orderg 2.

By summ ing eg. (110) from n = 0 to 1 while keeping j, and j distinct,
one obtains the sum of all the cut vacuum diagram s w ith the current j, in the
am plitude and j in the com plex conjigate am plitude to be

i allthe cut = & eVhle W DI (112)
vacuum diagram s
W henwesetj, = j ,thissum becomes  P,,and therefore it should be equalto
1 because of unitarity. Eq. (110) is very useful, because it allow s to replace in nite
sets of Feynm an diagram s by sin ple algebraic equations. Sin ilarly, the fact that
eg. (112) is 1 when 3. = j corresponds to a cancellation of an iIn nite set of
graphs’, that would be very di cult to see at the level of diagram s.

4 .3. Inclusive gluon spectrum

Eqg. (110) leads to com pact form ulas for m om ents of the distribution of produced
particles. The rstmoment { the average m ultiplicity { reads?’
b n o
N = n P, D & &VBlg ¥ O] : (113)
o 3o=3 =7
W ith the help of eg. (112), this form ula tells us that N is given by the action of
the operator D on the sum of all the cut vacuum diagram s. In plain english, this

W e are a bit careless here w ith the Lorentz indices, polarization vectors, etc, because our m ain
goal is to highlight the general technigques for keeping track of the diagram s that contribute to
particle production in the saturated regim e.

UT his cancellation is closely related to the A bram ovsky-G ribov-K ancheli cancellation®3 .
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translates into : take a cut vacuum diagram (connected or not), rem ove a source
on each side of the cut, and put a cut propagator w here the sources w ere attached.
D epending on w hether the cut vacuum diagram one starts from is connected ornot,
one gets two di erent topologies, displayed In gure 16.Each of the blobs in these

=t TF

Fig. 16. The two topologies contributing to the average gluon m ultiplicity N . In each blob, one
must sum over all the possible ways of cutting the propagators.

diagram s can be any connected graph, and m ust be cut In all the possible ways’.
T hus, only connected graphs contribute to the m ultiplicity.

An Important point is that, even though the perturbative expansion for the
P, is not well de ned, the multiplicity (and m ore generally any m om ent of the
distribution P, ) can be organized In a sensible perturbative series” . T he Leading
O rder is obtained by keeping only the leading order vacuum graphs, ie. those that
have no loops :

(114)

trees cuts

ThusN starts at the orderg 2. eg. (114), or each tree diagram , one m ust sum
over all the possible ways of cutting its lines. T he sin plest way of doing this is to
use Cutkosky’s rules :

assign + or labels to each vertex and source of the graph, in all the
possible ways (there are 2" tem s for a graphsw ith n vertices and sources).
A + vertex hasa coupling igand a vertex hasa coupling + ig,

the propagatorsdepend on w hich type of labels they connect. In m om entum
space, they read :

GE+ (p) = i:(p2 + 1) (standard Feynm an propagator)

G° (p)= i=P" i)  (complex conjigate ofG), (p))

G2 =2 (P &)

c.=2 @) ©): (115)

YN ote that by not perform ing the d®p integration contained in the explicit cut propagator, one
obtains the inclusive gluon spectrum dN_q‘Pp instead of the integrated m ultiplicity.

" The fact that this is possible for N but not for the Pn ’s them selves is due to the fact that the
only graphs that contribute to N are connected. T his is a consequence of the AG K cancellation .
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A quick analysis show s that, when one sets j, = j ,summ ing over the labelsat
each vertex produces com binations of propagators,

Gl,® G! (=GP
G°, ) G =G/ ; (116)

w here GS (p) is the retarded propagator®. T hus, for a given tree graph, doing the
sum over the cuts sin ply am ounts to replacing all its propagators by retarded
propagators. The last step is to perform the sum over all the trees. It is a well
known result that the sum of all the tree diagram s that end at a point x is a
solution of the classicalequations ofm otion of the eld theory under consideration.
In our case, this sum isa color ed A (x) that obeys the Yang-M ills equations

D F 1=J ; (117)

where J is the color current associated to the sources 1, that represent the
ncom Ing profctiles (see eg. (106)). The boundary conditions obeyed by A (x)
depend on the nature of the propagators that entered in the sum of tree diagram s.
W hen these propagators are all retarded, one gets a retarded solution of the Yang—
M illsequations, that vanishes in therem otepast,limy,; 1 A (x)= 0.Theprecise
form ula for the gluon spectrum in term sof this solution of the Yang-M ills equations
reads
_ 7 %
diNd;;? = 161 > dixdlye® "V, A ®A (y): (118)

N ote that, although the integrations over x and y look 4-din ensional, they can be
rew ritten as 3-din ensional ntegrals evaluated at xy ! + 1 , thanks to the dentity
Z Z
d'xe® * A ()= m_ Pxe® *Ry ELA (x): (119)
Soling the Yang-M ills equations is an easy problem in the case ofa single source ,
but tums out to be very challenging w hen there are two sourcesm oving in opposite
directions. T he Schw inger gauge, de ned by the constraint A x*A +x A =
0, is quite usefill because it alleviates the neaed to ensure that the current J is
covariantly conserved? . In thisgauge,A* = OwhereJ 6 0 and conversely, w hich
m akes this condition trivial. M oreover, in this gauge, one can nd the value of
the gauge eld on a tim e-like surface jast above the light-cone (at a proper tin e
= () sin ply by m atching the singularities across the light-cone. T hese nitial

*In m om entum space, Gg (p) = i:(p2 + isign(pp) ). T herefore, in coordinate space, it is propor—
tionalto (x° yO ), hence its nam e.
YIn general gauges, one has to enforce the condition [D ;J ] = 0 (this is a consequence of

Jacobi’s identity for com m utators). Because this relation involves a covariant derivative rather
than an ordinary derivative, the radiated eld leads to m odi cations of the current itself.
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conditions®® can be w ritten as

AM( = 0% )= AT(x; )+ A(X,)

A ( =0;x)= % AT(x2);A5(Xs)

A =0 (gauge condition) ; (120)
where A 2(x At x" A ).Inthjsﬁ)nnu]a,Ai(x?)andAé(x?)arethe
gauge elds created by each nucleus® below the J:'ght@orzle :

Al = ;LUJ.(x? @UY (%2 ) ; Ui(x, )= T, exp ig dx+TaZ T ix0 )
. Z )
A%=§U2(x? )@iUg(x?) ; Uy,(x,)=T expig dx Ta% Sx %o )
. (121)
T herefore, the problem of solving the YangM ills equations from xo = 1 to

Xp = + 1 isreduced to solving them in the forward Iightcone from a known initial
condition® .

Since our problem is invariant under boosts in the z direction, one can com —
pletely elim inate the spacetim e rapidity from the equations ofm otion (and the
initial conditions In eq. (120) are also —independent). T hus, In the forward light-
cone, one has to solve num erically®® equations of m otion in tin e and two spatial
din ensions, and then to evaluate eg. (118). T he result of this com putation is dis—
played In gurel1l7.In thiscom putation, theM V m odelwasused as the distribbution
of the sources 1 and ;. T herefore, the dependence of the spectrum on the m o—
mentum rapdity Y of the produced glion cannot be obtained in this calculation,
and only the k; dependence is shown.Them ain e ect of gluon recom binations on
this gpectrum is that it reduces the yield at low transversemomentum ,k; . Q.
Indeed, n a xed order calculation in perturbative Q CD , the spectrum would be-
have ask, ‘. IntheCGC picture, the sihqularity of the spectrum at low k, isonly
Jogarithm ic®, and is therefore integrable.

4 4. Inclusive quark spectrum

A sin ilar study has also been perform ed for the initial production of quarks in
nuclkusnuclkus collisions’” . T he starting point is to construct for quarks an oper—

“An interesting feature of the gauge elds at early tim es after the collision { a phase recently
nam ed \glasm a" { is that the chrom o-electric and m agnetic elds are purely longitudinal, while
they were transverse to the beam axis just before the collision3® .

@B ecause retarded solutionsare causal, the eld below the light-cone cannotdepend sin ultaneously
on 1 and 3.

bPNote thatat > 0,the YM egquations are the vacuum ones, since all the sources are located on
the light-cone.

CIf the nal Fourier decom position is perform ed at a nite tine , the spectrum is com pletely
regular when k, ! O.
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Fig.17.The gluon spectrum at leading order in the CG C fram ew ork.

ator D 4 that plays the sam e role as the operator D de ned in eg. (111) :
Z
D sV (x;y) @8, —mm— ; (122)
oy T L T

w here Sf (x;y) is the free cut ferm ionic propagatorand where isa G rassm anian
current that couples to the spinors. In tem s of this operator, the probability of
producing n quarks is given by :

P@o Zpn P VBile W BT (123)
J+ J J
N 0

The st thing to note is that now the connected vacuum diagram s, whose sum is
iV , depend on both the source j and on the source .However, the latter is set to
zero at the end of the calculation, because in the CG C one assum es that the color
sources In the wavefiinction of the pro gctiles couple only to the gluons. T herefore,
the source servesonly asan intemm ediate bookkeeping device. A nother in portant
point In this form ula is the presence of the factor exp(D ). T his factor m eans that
we are calculating an inclusive probability, for producing exactly n quarks possibly
accom panied by an arbitrary num ber of glions’ . In practice, this fact m eans that
onemust sum over all the possible ways of cutting the glhions lines in the diagram s
that contribute to quark production. From eg. (123), one obtains the follow ing
form ula for the average num ber of produced quarks

Ng=Dgq o VUil ® G 1 . (124)

J+ J

3
0

In this form ula, the underlined factors represent the sum of all (connected or not)
the cut vacuum diagram s m ade of quarks and glions, w ith sources j, ; . on one

dW ithout this factor, we would be calculating the probability of producing n quarks and 0 gluions.
N ote that in principle, we should also m odify our de nition of the probability of producing n
gluons by a factor exp(D ¢ ). However, the quarks are a subleading correction com pared to the
gluons, and this change would not a ect the gluon spectrum at leading order.
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side of the cut, and sources j ; on the other side. Acting on a term of this
sum with D4 rem oves a source , and a source , and connect the points w here
these sources were attached by a cut ferm ion propagator. D jagram m atically, this
corresponds to the two topologies displayed in  gure 18. Note however that the

<+ =t

Fig. 18. Topologies corresponding to eq. (124).

topology that appears on the left of gure 18 cannot exist because it has a quark
Iine which is not closed onto itself (this is forbidden since we set the fermm ionic
sources to zero at the end of this calculation). T hus, we only have the second
fam ily ofdiagram s, that have at least one loop.T hism eans that the average num ber
of quarks is of order ¢° , com pared to the num ber of glions which is of orderg 2.
T he leading contrdbbution to the quark m ultiplicity is obtained by including only
tree diagram s in the blob. T hus,we have to sum all the graphs that have one quark
loop (with an explicit cut on it) and any num ber of gluonic trees attached to it,
and all the cuts thereof. T he sum of all the gluonic trees and their cuts has already
been encountered in the com putation of the gluon m ultiplicity : it is equal to the
retarded solution A (x) ofthe Yang-M ills equations that vanish in the rem ote past.
T herefore, the quark spectrum is given by
dN 1 2 -
de;;? = o3 Xryeip TU(p) &, S, (xjy) &, ule * ; (125)

where S, isthe cut quark propagator on which the retarded classical ed A has
been resumm ed. T his resum m ed propagator can be obtained as the solution of the
equation

X
S ox;y)= 8% (x;y) g (1) d'zs” (x;2)A (2) S o(z;y);  (126)

where ;0= (we need only the combination = +;°%= in eq. (125), but

the four term s get m ixed when one resum s the background eld). It is possible to
decouple these equations by perform ing a \rotation" on the ;° indices’®,

S o ! S U U oS o

(1) o ! Uu U (1) ; (127)
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. 1 1 1
w ith U= p= : (128)
2 1 1

A frer this rotation, the propagator m atrix becom es triangular,

s = 03, ; = 01 (129)

S, S, 10
with S, and S, the resummed retarded and advanced propagators and where
Sf )= 2 p (F).Themain sin pli cation com es from the fact that the product of
the freem atrix propagatorand of isthe sum ofa diagonaland a nilpotentm atrix,
which m akes the calculation of its n—th power very easy®. In particular, one nds
that the equations that lead to the retarded (and also the advanced ) propagatordo

notm ix with anything else,
Z

S. (x;y)= 8" (x;y) 1ig d'zS’(x;z)A (z) S, (ziy); (131)

and that the resummed S, can be expressed In tem sof S, , as’
s, &' ¢ g ' 5: (132)

D R

S

At this point, one m ust invert the rotation done in eg. (127) in order to obtain
S; which is needed In the form ula for the quark spectrum . T his gives the quark
spectrum In tem s of retarded quantities,
— Z
dN 1 d’q 2

= T, (p;9)
dy d?p, 16 3 (2 P2E,

where T, is the \scattering part" of the retarded propagator, related to S, by

S, =sl+s? 1T g (134)

R R
The last step is to write this obfct in tem s of retarded solutions of the D irac

equation in the background eld A . It iseasy to check that
Z

T, (p;a)= Iim dPx e® *uY (p)

x0! +1

(&, gEEX)) ,x)=0; x";x) = v(g)e? *: (135)

q
x01 1

(x)

q

q

In this formula, u(p) and v(g) are the usual free spinors. Note that the initial
condition for the D irac equation is a negative energy spinor, and that the pro fction
perform ed at the naltin e isw ith a positive energy spinor. In the vacuum , there
would be no overlap between these spinors. However, sihce In our problem the
spinor travels on top of a tim edependent background eld, it acquires positive
energy m odes which m ake T, non zero.

€Indeed, w ith very form alnotations, the resum m ed m atrix propagator is

szsoi( ng)“[ so]n :
n=0

fThe symboldenotes the convolution of 2-point functions: (& B )(x;y) =fz A (x;2)B (z;V).
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Fig.19.Num erical results on quark production from the CG C . Left: tin e evolution of the quark
yvield.R ight: quark k, spectra for di erent m asses.

T his form ulation of quark production in the CGC fram ework has been in ple-
m ented num erically, also w ith theM V m odel for the average over the con gurations
ofthe color sources 1 .Sin ilarly to whathappened w ith the gluons, one can obtain
analytically the value of the spinors jist above the lIight<cone. H ence, the num erical
resolution of the D irac equation is only needed in the forward light-<cone. H ow ever,
there is a m a pr di erence com pared to the gluons at LO : even though the back—
ground color eld does not depend on rapidity, this is not true of the solutions
of D frac equationd . Indeed, the m om entum g in the initial condition renders the
spinors dependent on the spacetin e rapidity  (the boost Invariance of the back—
ground eld in plies that the spinors depend only on the di erence Yq Where
Yq is the rapidity of them om entum q). This di erence m akes the com putation of
the quark spectrum much m ore com putationally Intensive relative to that of the
gluon spectrum , because one has to keep the three din ensions of space. Som e of
the results obtained are displayed In  gure 19.0n the lft pot is shown the tin e
dependence of the quark yield, for di erent quark m asses (ie. the yield obtained
by perform ing the profction in eg. (135) at a nite tin e instead of taking the
Imitxy ! +1 ).0necan see that a good fraction of the quarks are produced at
= 0,when the two nuclkipass through each othef and that the num ber slightly
ncreases In tim e afterw ardsdue to the color eld present in the forward Iight-cone.
T he right panel of gure 19 show s the k; dependence of the spectrum for various
quark m asses. A s expected, the spectrum is harder for lJarger quark m asses. N ote
that the tail of the curves is probably a ected by in portant lattice artifacts due to
a too coarse lattice.

9T his has nothing to do w ith the fact that we are considering ferm ions, but rather w ith the quark
spectrum being a NLO quantity { that involves a loop in the background of the classical eld.
"In the analogous Q ED problem ofe' e production in the high-energy collision of two electrical
charges, all the electrons are produced at = 0 and their num ber does not change at > 0.This
is because in Q ED , the electro-m agnetic potential in the forward light-cone is a pure gauge, that
could bem ade to vanish by a gauge transform ation.
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4.5. Loop corrections to the ghion spectrum

T hus far, we 1im ited ourselves to the leading order contrbution for both the glions
and the quarks. However, we a priori know from gures 16 and 18 what diagram s
contribute to the gluon and quark m ultiplicities to all orders. T here is therefore
a well de ned and system atic procedure to com pute corrections to the previous
results. Loop corrections to glion production are very relevant for the follow ing
reasons:

They contain tem s that are divergent due to unbounded integrals over
longitudinalm om enta, very sin ilar to the divergences encountered in the
derivation of the BK equation.O ne should verify w hether these d ivergences
can be absorbed in the distribbutionsW [ ; Jand W [ , ] of the color sources
of each profctile. T his factorization is crucial for the intemal consistency
ofthe CGC fram ework.

Tt has been noted recently that the boost nvariant solution A (x) of the
Yang-M ills equations is unstabl’; rapidity dependent perturbations to this
solution grow exponentially in tin e. Loop corrections generate this kind of
rapidity dependent perturbations. T racking all these term s and resum m ing
them is very im portant in order to get m eaningful answers from the CGC
regarding the m om entum distrbution of the produced ghions, and m ay be
relevant in the problem of themm alization in heavy ion collisions.

N ote that these two item s address very di erent stages of the collision process. T he
rst relates to the incom Ing wavefunctions (and as such should be independent of
the subsequent collision ), w hile the second issue is about w hat happens in the nal
state after the collision. T herefore, we should aim at w riting the 1-loop corrections
n a way that separates the initialand nalstate as clearly as possible.
Let us start by listing the relevant diagram s : the 1-loop corrections to the
average m ultiplicity are shown in the diagram s of gure 20. T he topology on the

e tree Dy
o R o w?w L,

“ Y "
Fig. 20. 1-loop diagram s contributing to the gluon spectrum .

lft is very sim ilar to the one already encountered at tree level, except that one of
the blobshasnow a loop correction in it. T he topology on the right isnew ; but it is
in fact sin flar to what we had to evaluate in the case of the quark spectrum , except

iT his instability is very sim ilar to the W eibel instability that occurs in anisotropic plasm as®® 40,
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that the ferm ionic cut propagator S, must be replaced by the cut propagator
G, ofagluon. T%le NLO contribution to the gluon spectrum can be w ritten as
— h

dN 1 : X
NLO  _ d4xd4yelp (x y) %y A (x) A (y)+ L?.s- (x)A (y)

dy d?p, 16 3
+G, (xjy) : (136)

The two term s of the st line are the contribution of the diagram on the left of
gure 20 (the loop can be in either of the two blobs), and the term on the second
line com es from the diagram on the right. The eld A that appears on the rst
line is the 1-loop correction to A ; and it obeys the linearized equation of m otion
for an all uctuations.
Let us now illustrate how one can separate the initial state from the nalstate
in the tetm thatcontainsG, (x;y).F irst,by analogy w ith the case of the quarks,
we can write

Z Z
X X a3 2
. q 0
dtxgtye® &= V) G X;y) = — T ; ;
y v + &Xiy) @ pm, Piq)
7 ;
0 . 3 ip x50 .
I, (pia) ]Ifll d'x e @, 1iEp) aoq(X); (137)
xg !

where a o (x) isa snall uctuation of the gauge eld on top of A , with nitial
condition e *when xq ! 1 . The equation of m otion of this uctuation is
obtained by w riting the Yang-M ills equations for A + a and by linearizing it in a.
A central form ula in order to separate the initialand nal states is the ©llow ing’

Z h i
a(x)= Py a;y) T ARX); (138)
=0+
where (0;y ) denotes a point located on the light-cone ( = 0) (v representsany set

of three coordinates that m ap the light-cone.) In this form ula, the classical eld A
is consjdepfed asa ﬁmgt‘]onal of its Initial condition A (0;y ) on the light-cone. T he
notation a(0;y) T, isa shorthand for
h i h i
a(0;y) a;y)————+ )a0yy) —————— ¢ (139)
v A (0y) § (n @A (0;y)

(In this form ula, the 4«ectorn isa vector nom a¥ to the light-cone.) T he proofof
eq. (138) is straightforw ard!, but itsdiagram m atic nterpretation ism ore nteresting.
Note rstthatA (x),seen asa functionalof its initial condition on the light-cone,
can also be represented by tree diagram s, as illustrated in the left panelof gqure 21.
(This can be seen from the G reen’s formula for A (x).) T he action of the operator

ITo avoid encum bering the equations w ith indices of various kinds, we are suppressing all the
indices in this and the follow ing form ula.

Xn dx = 0 ifdx isa smalldisplacem ent on the light-cone at the point under consideration .

W rite the G reen’s form ula that expressesA (x) in temm sof the initialA (0;y ), Insert it in eq. (138),
and check that this leads to the G reen’s form ula that relates a (x) to its initial condition a(0;y ).
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AX) a()

a(y)

Fig.21.Left :diagram m atic representation of A as a function of its initial condition on the light-
cone (the open dots represent the initial A (0;y)). R ight : propagation of a sm all uctuation on
top of the classical eld.

de ned in eg. (139) on the classical eld A (x) is to replace one of the open dots in

gure 21 by the uctuation a(0;y), represented by a lled dot in the right panel

of gure 21.The diagram one gets after this is nothing but a contribution to the

propagation of a anall uctuation over the classical eld. P lugging eg. (138) in

eg. (137), this quantity becom es
Z

) X
Iin d’xd’y & * Vie) iE; )@+ iEp)
Xg=Yyo! +1
Z , L X Z $q Db i ihh i i
d’ud’v 0 m aoOmu) T A (x) aoq(O;v) T A (y)

-0+
(140)

T he bracketsare crucial in this form ula, In order to lin it the scope of the derivatives
contained in the operators T, and T .Note that, if it were not for these brackets,
the rst line and the two A ’s of the second line would be nothing but the LO

gluon spectrum . Tt tums out that, after one adds the contrbution of the rst line

n eg. (136),the NLO correction to the spectrum can be w ritten as
3
— Z h i 2 h i =
dNNLO _ 4 3 . 3 3 . 5 dN
—_— = d’u A O;u) T + d’ud’v (u;v) TuTy _—
dy d?p, dy d’p,
=0+ =0+

Lo .
’

(141)

where the LO spectrum is considered as a functional of the initial classical eld on

the Iightcone. In this equation, A (0;u) is the value of A on the light<cone, and

the 2-point (u;v) isde ned as
X Z d3q

P e— V) : 142
(2 P2Eq 0iv) (142)

(u;v) a oq (0;u)a o

q (

Note that A (O;u) and (u;v) are In principle calculable analytically. Eq. (141)
realizes the separation we were seeking of the initial and nal states. Indeed, the
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Fig.22.ustration ofeg. (141). T he 1-and 2-point functions below the light-cone are respectively
A (O;u)and (u;v).

operator in the square bracket depends only on what happens below the light-cone,
ie. before the collision. O n the contrary, the LO spectrum seen as a functional of
the initial classical eld A depends only on the nal state dynam ics. T he other
bene t of this form ula is that is expresses the NLO correction as a perturbation of
the LO one; this property { that seem s generalizable to other inclusive observables
{ suggests the universality of the initial state divergences and their factorizability.

From eg. (141), it is easy to see what are the potential sources of divergences.
A rst issue is that the coe cients A (O;u) and (u;v) are in nite. For (u;v)
for instance, the integration over the longitudinal com ponent of the m om entum g
in eq. (142) diverges.A sin ilar divergence occurs in the loop contained in A (0;u).
T he fact that these divergences arise In the st factor of eg. (141) Indicates that
they are related to the evolution of the initial profctiles prior to the collision.
T hese divergences can be m om entarily reqularized by introducing cuto s Yy ;YOO n
rapidity around the rapidity Y atwhich the spectrum iscalculated.Thus, A (O;u)
and (u;v)become nitebutdepend on these unphysicalcuto s.To be consistent,
the distrbbution of the sources ; and , should be evolved from the beam rapidities
to Yy and YOO respectively. T hus, the com plete form ula for the LO + NLO spectrum ,
Including the average over the sources, should be

— yA
Tioinre . 1D, W (1 W [2]
dY d2p? Ypeam Y O Ypeam * Yoo
2 3
Z h iz h =
41+ Su A ©Ou) T + udv @;v) T,T, O WMo
’ 14 u v deij ’
= O+ =0 v 0
| {
055015 2] (143)
YOo 1rs 2

w here the subscript YOO and superscript Yy indicate that the m om entum integrals
contained in the bracket have cuto s in rapidity. Recall that the LO spectrum in
the right hand side is a function of A on the light-cone, which is itself a function
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of 1;.The factorizability of these divergences In the initial state is equivalent to
the independence of the previous form ula w ith respect to the unphysicalYy and YOO.
Let us for instance change Yy into Yo+ Y ¢.A ccording to the JIM W LK equation,
the distribution of ; ism odi ed by

h i

Ybeam Yo[l] ' 1+ YOH[l]WYbeam Yo[l]: (144)

At the sam e tim e, the operator in the right hand side varies by

@OYOO[ 17 2]
Y
0% 15 21 ! 0% 17 21+ Yo —21——

Y Y ey, (145)

At this point, one can verify that the term s linear®™ in Y ¢ cancel provided that
@O izo[ 17 2]

=HY : 146
v, [1] ( )

Sin ilar considerations on the YO0 dependence give another condition :
Qo §SO [1; 2]

- HL0 (147)
0

T herefore, In order to check whether one can factorize these divergences in the
JIMW LK evolution of the incom ing sources, one must calculate the coe cients

A (O;u) and (u;v) { or at least their divergent part { and rem ap the operator
Oiso[ 1; 2] Into the JIM W LK Ham iltonian. A Ithough this program has not been
fully in plem ented yet, one can already note that the structure of O 520 [1; 2]makes
this outcom e very plausble.

Eqg. (141) also allow s us to discuss the issue of the instability of the boost
nvariant classical solution. T hese instabilities m anifest them selves in the fact that
the action of T, on A (x) diverges w hen the tin e xg goes to In nity. Indeed,

A (x)
T.A (x) —— (148)
A (0jy)
isam easureofhow A (x) is sensitive to its initialcondition . T herefore, if the solution
A (x) is unstable, am all perturbations of its initial condition lead to exponentially
grow Ing changes in the solution.From the num ericalstiudy of these instabilities (see
gure 23),0ne gets39

TLA (x) e ; (149)

where is of the order of the saturation m om entum . T his m eans that, although
the 1-Joop corrections are suppressed by a factor ¢ com pared to the LO, some
of these corrections are enhanced by factors that grow exponentially in tin e after

™ N ote that, since we have only considered 1-loop corrections, this independence can only be
satis ed for sm all variations of the cuto , at linear order in these variations.
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Fig.23.T Im e dependence of sm all uctuations on top of the boost independent classical eld.

the collision. At st sight, one m ay expect a com plete breakdown of the CGC
description at

max  Q.TI* — (150)

ie.the tin eatwhich the 1-Joop correctionsbecom e as large asthe LO contribution.
The only way out of this conclusion is to resum all these enhanced corrections in
the hope that the resum m ed series isbetterbehaved when ! +1 .Letusassume
for the tin e being that we have perform ed this resum m ation, and that the sum of
these enhanced term s generalize eq. (141) to read

AN resumm ed dN_LO A (O;u)]

=7 ; 151
¥ i, e (151)

where Z [T, ] is a certain functional of the operator T, . In the right hand side,
we have em phasized the fact that the LO spectrum is a functional of the initial
clhssical eld on the light-cone. This form ula can be written In a m ore intuitive
way by perform ing a Fourder transform ofZ [T, ],
Z
2Ty ] Daf) e/ -0 @ 2 T epy), (152)

In this form ula, the functional integration D a(u)] is in fact an integration over
two elds :the uctuation a(u) itself and its derivative nom al to the light-cone
(n @)a(). Thanks to the fact that T, is the generator of transhtions of the
initial conditions on the light-cone, the exponential In the previous form ula is the
translation operator itself. T herefore, when this exponential acts on a functional
of the mnitial classical eld A (0;u), it gives the sam e fiinctional evaluated with a
shifted initial condition A (O;u)+ a(u). T herefore, we can w rite
AN o dN,, B (O;u)+ a)]

&Y o, = Da(u) Fla()] &Y o, : (153)
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W e see that thee ect of the resum m ation issin ply to add uctuations to the initial
conditions of the classical eld, with a distribution that depends on the details of
the resum m ation” . Tt is easy to understand why these uctuationsare crucialin the
presence of instabilities :degpite the fact that they are suppressed by an extra pow er
of g, the Instabilities m ake them grow and eventually becom e as large as the LO .
O ne can also see that the resum m ation has the e ect of lifting the tin e lin itation
ofeg. (150). Indeed, after the resum m ation, the uctuation a(u ) hasentered In the
initial condition for the full Yang-M ills equation, w hose non-linearities prevent the
solution from blow Ing up.A very In portant question is whether these instabilities
fasten the local them alization of the system fom ed in heavy ion collisions.

46. Summ ary and outlook

If the initial state factorization w orks as expected , and after the resum m ation of the
leading contributions of the instability, the form ula for the gluon spectrum should

read
— Z

dN
= D 11D

_— W
o, Z [l

cv 2]

Ybeam Ypean

dN,, B (O;u)+a@)]

Da #[a
al dy d°p,

(154)

T his form ula resum s the m ost singular term s at each order in 4. Because of their
relation to the physics of the initial and nal state respectively, the distrbutions
W [ ]generalize parton distrdbutions, while £a] plays a role sin flar to that of a
fragm entation function®.

N ote that, even after the resum m ations perform ed in the initialand nalstates
of eq. (154), this formula still su ers from the usual problem of collinear gluon
splitting in the nal state. This is not a serious concem in heavy ion collisions
though ,because collinear singularitiesoccuronly when onetakesthe ! +1 Iimit,
and we do expect to have to switch to another description (like hydrodynam ics)
long before this becom es a problem . In fact, the initial condition for hydrodynam ics
should be speci ed In tem s of the energy-m om entum tensor, w hich is infrared and
collinear safe because it m easures only the ow of energy and m om entum .

A m ore in portant problem , that has still not received a satisfactory answer, is
to understand how the initial particle spectrum { or the local energy m om entum —
tensor { becom e isotropic. T his requires form ulating a kinetic theory of the glaam a
which describes how particles em erge from the decaying classical eld and their
subsequent interactions both w ith the classical eld and w ith other particles. R e-
cently, such a kinetic equation has been derived for a scalar eld theory coupled to

"In a recent work by one of the authors, using a com pletely di erent approach, the spectrum of
initial uctuations was found to be G aussian®® .

°N aturally, this function has nothing to do w ith a gluon fragm enting into a hadron. Instead, it is
related to how classical elds becom e gluons.
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strong sources 42 . Extending this work to Q CD and exploring its consequences- in
particular, the approach of the particle+ eld system towards equilbration rem ains
a challenging problem .
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