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A bstract

W e consider two sets of issues in this paper. The rsthasto do w ith m oduli stabilization, existence of
\area codes" [1]and the possibility of getting a non-supersym m etric dS m Inin um w ithout the addition
of D 3-branes as n KKLT for type IT ux com pacti cations. The second has to do with the \Inverse
Problem " [2] and \Fake Superpotentials" [3] for extrem al (non)supersym m etric black holes in type IT
com pacti cations. W e use (orientifold of) a \Swiss Cheese" CalabiYau [4] expressed as a degree-18
hypersurface n W CP “[1;1;1;6;9]11n the \large-volum e-scenario" Im it [5]. Them ain result of our paper
is that we show that by including non-perturbative ° and instanton corrections in the K ahler potential
and superpotential [6], it m ay be possible to obtain a largevolum e non-supersym m etric dS m inin um
without the addition of antiD 3 branes a Ja KKLT . The chosen Calabi¥Yau has been of relevance also
from the point of other studies ofK ahlerm oduli stabilization via nonperturbative instanton contributions
[7] and non-supersym m etric AdS vacua (and their subsequent dS-uplifts) using ( °)° corrections to the
K ahler potential [5, 8,9, 101].
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1 Introduction

F lux com pacti cations have been extensively studied from the point of view ofm odulistabilization (See [11]
and references therein). T hough, generically only the com plex structure m oduli get stabilized by tuming
on uxes and one needs to consider non-perturbative m oduli stabilization for the Kahler m oduli[l12]. In

the context of type II com pacti cations, it is naturally interesting to look for exam ples wherein it m ay be
possible to stabilize the com plex structure m oduli (and the axion-dilaton m odulus) at di erent points of
the m oduli space that are nitely separated, for the sam e value of the uxes. T his phenom enon is referred

to as \area codes" that leads to form ation of dom ain walls. A nother extrem ely in portant issue related to
m oduli stabilization is the problem of getting a non-supersym m etric de Sitter vacuum in string theory. T he
KK LT scenario which even though does precisely that, has the problem of addition of an uplift term to
the the potential, corresponding to addition of D 3-branes, that can not be cast nto an N = 1 SUGRA

form alisn . Tt would be interesting to be able to get a de Sitter vacuum w ithout the addition of such D 3-
branes. T he Large Volum e Scenarios’ study initiated in [5]provides a hope for the sam e. Further, there isa
close connection between ux vacua and black-hole attractors. It has been shown that extrem alblack holes
exhibit an interesting phenom enon —the attractor m echanism [13]. In the sam e, them oduliare \attracted"

to some xed values determ ined by the charges of the black hole, Independent of the asym ptotic values
of the m oduli. Supersym m etric black holes at the attractor point, correspond to m inin izing the central
charge and the e ective black hole potential, w hereas nonsupersym m etric attractors [14], at the attractor
point, correspond to m inim izing only the potential and not the central charge. T he latter have recently
been (re)discussed [15]in the literature.

In thispaper, we try to addressall the issues of the previousparagraph by exploring di erent perturbative
and non-perturbative (in 0 and instanton contributions) aspects of (non)supersymm etric ux vacua and
black holes in the context of type IT com pacti cations on (orientifold) of com pact C alabiY au’s ofa pro fpctive
variety with multiple singular conifold loci In their m oduli space. T he com pact CalbiYau we work w ith
is of the \Swiss cheese" type. The paper is planned as follows. In section 2, based on [16], we perform
a detailed analysis of the periods of the Calbi¥Yau threesfold considered in this paper, working out their
form s In the sym plectic basis for points away and close to the two singular conifold loci. The results of
section 2 get used in the subsequent section (3). W e then discuss, In section 3, stabilization of the com plex
structure m oduli including the axion-dilaton m odulis by extrem izing the ux superpotential for points near
and close to the two conifold loci, arguing the existence of \area codes" and dom ain walls. In section
4,we show that by the inclusion of non-perturbative “corrections to the K ahler potential that survive
orientifolding and instanton contributions to the superpotential, one can, analogous to [5], get a large—
volum e non-supersym m etric dS vacuum without the addition of D 3-branes. W e consider this to be them ost
signi cant result of this paper. In section 5, we explicitly solve the \inverse problem " using the techniques
of [2]. In section 6, using the techniques of [3]we show the existence ofm ultiple superpotentials (including
therefore \fake superpotentials"). Section 7 has the conclusions.

2 TheM oduli Space Scan and the Periods

In this section, based on results n [16], we look at di erent regions in the m oduli space of a tw o-param eter
CalabiYau three ©ld of a propctive variety expressed as a hypersurface n a weighted com plex pro gctive
gpace, and w rite out the explicit expressions for the periods. T he explicit expressions, though cum bersom e,
w illbe extrem ely usefiilw hen studying com plex structurem oduli stabilization and existence of \area codes"
in section 3, solving explicitly the \inverse problem " in section 4 and show ing explicitly the existence of \fake
superpotentials" in section 5 in the context of non-supersym m etric black hole attractors. M ore precisely,



based on [16], we will consider the periods of the \Sw iss cheese" 3 CalabiYau threeld obtained as a
resolution of the degree-18 hypersurface m W C P 4 [1;1;1;6;9]:
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Sin ilar to the explanation given in [17], it is understood that only two com plex structure m oduli  and
are retained in (1) which are invariant under the group G of footnote 3, setting the other invariant com plex
structure m oduli appearing at a higher order (due to Invariance under G ) at their values at the origin.

De ning (3¢ 2 )%
and are given as under:
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W e w ill be considering the follow ing sectors in the ( ; ) m oduli space:
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T he fundam ental period $ o, obtained by directly Integrating the holom orphic three-form over the
\fundam ental cycle" (See [16]), is given by:
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whereU () 3F o ( 5;17;27;1;1;%);theothercomponentsoftheperjodvectorareg'men by:
$i=8%0( 1 ; * )where ezl_si;i= 1;2;3;4;5.
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T he fundam ental period is given by :
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’The term \Sw iss cheese" (See [4]) is used to denote those CalabiYau’s whose volum e can be written as: V. = ( ° +

P
P isthevolum eofthebigdivisorand § arethevolim esofthe n'? 1 (corresponding

ep ls )% ( j6 B by js)% ::i;, where
to the (1 ,hl;1 1)-signature of the Hessian) an alldivisors. T he big divisor govems the size of the Sw iss cheese and the sn all
divisors control the size of the holes of the sam e Sw iss cheese.

“This is .nduced by the group action: (x1;x2;X3;x4;Xs; ; ) ! ( 2lxy; ®2xy; ®¥xs; ®ixy; o%s; 2 ;  °® )where
a=A1+A,+ A3+ 6As+ 925 and (A1;A,;A3;A4;A5) are related to the coe cients of them ost general degree-18 polynom ial
N (X1 ;X2 ;X3;X4;Xs) nvariantunder G = Zs  Z1s (Zs : (0;1;3;2;0;0);21s : (1; 1;0;0;0)). Them irror to p = x1° + x3° +
xég + X+ xé = 0, according to the G reene-P lesser construction, is given by fp= 0g=G . The G invariant polynom ial is given
by:Ag ilxi+ A?xfxgxgxﬁ + Agxfxgx§X5 + Agxi}xgxé&} + Agxixgxg + Agx%s + Agxég + Agxés + Ang + Agxg;someofthe
deform ations can be rede ned away by suitable autom orphism s.



In plying that around a suitable = gand = g:
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where P13 are given in appendix A .
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whereM ;1,3 are given in appendix A .
Near the coniod ocus: ®+ =1
T he periods are given by:
$i=Cyg( i Mn(®+ L)+ £i( ; ); (8)
where C;= (1;1; 2;1;0;0),9( ; )=2—i($1 So) a( b+ 1) near °+ 1 Owherea isa

constant and f; are analytic in  and . The analytic functions near the conifold locus are given by:
1 X

iar | r
f3a+ = 7 e 3 sin =3 5 )a=0;1; = 0;1;2: %)
r=1,5
De ning x ( 64 1), one can show that:
r 2 (+1), i k+E)
 ® 31+k+ RPN 5 + 3 ( )k( k + %))2 4 L
L= . . e (x + 1)y "6 (10)
k=om=0 (k+1) k+ ¢) &+ g)( 1 —=))’m !
°T he threevaluesof correspond to the three solutionsto (1)U “0( )+ 3¢ 12U ) 32 3 +1) U% )+ U ()=
0; the W ronskian of the three solutions is given by: zzzle * sj.nz( ) (1 3) l—theso]mjonsarehenceJjneary independent

exceptwhen 2 7



O ne can hence see that:
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where N ;23 are given in appendix A .

3

Near ° = 1; Large

From asym ptotic analysis of the coe cients, one can argue:
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linearly independent even for 2 Z°.
Foramnall , 7
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r 2isin( ( + ) ( + ) ( + 2) ’
where the contour goes around the In ( ) < 0 axis. To deform the contour to a contour ° going
around the Im ( ) > 0 axis, one sees that onecan do so for = 0 butnot for = 1;2. For the latter,
onemodiesU ( )by adding a function which does not contribute to the poles and has sin ple zeros
at integers as follow s:
N izsin( ( + %))
U ()t u () U () ecs ; EF (); (14)
sin( )
w here
£9( )= 0;
£ ()= @ e® W)y
)= e® W ()+ @ e w () (15)

O ne can then deform the contour to the contour ° to evaluate the periods. T his isdone in appendix
A.

®The W ronskian of these three solutions is given by (227'13 S y s 0; 22.



Expanding about = ! ! ,and a large = g, one gets the follow ing per:iodS'
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where x  ( 1.

The equations (A 10) and (16) willget used to arrive at (20) and nally (22) and (23).
T he P icard-Fuchs basis of periods evaluated above can be transform ed to a sym plectic basis as under
(See [16]):

0 1 0 1
Fo $So
F
=%20=M§$2; (17)
B X B S$;
B B
@ xtA € s, A
X 2 Sy
w here 0 1
110 0 00
BE1 33 2 10
B
B O 11 1 00
M = : 1
§100000 (18)
€@ 1. 00 1 0 0A
2 00 211

In the next section, we use inform ation about the periods evaluated in this section, in looking for \area
codes".

3 Extrem ization of the Superpotential and E xistence of \A rea C odes"

In this section, we argue the existence of area codes, ie., points In the m oduli space close to and away from
the two singular conifold loci that are nitely separated where for the sam e Jarge values (and hence not
necessarily integral) of RR and NS-NS uxes, one can extrem ize the (com plex structure and axion-dilaton)
superpotential (for di erent valies of the com plex structure and axion-dilaton m oduli)’.

T he axion-dilaton m odulus 1gets stabilized (from D W c.5. = 0, W 5. being the G ukovVafaW itten
com plex structure superpotential (F'3 H3)~ = (2 )2 O(f h) , B %nd H 3 being respectively
the NSNS anéi RR threefform eld strengths,and are given by: F3 = (2 P o 2 1 (£5 o+ fa03 2) and
Hy= (2 P ° a—l(ha at har3 a); a; %,a= 1;2;3, form an integral cohom ology basis) at a value given
by:

fT: 0

B hT : 0

where f and h are the uxes corresponding to the NSNS and RR  uxes; it is understood that the com plex
structure m oduli appearing In (19) are already xed from D ;W = 0; i= 1;2.

; (19)

"For techniques in special geom etry relevant to this work, see [18] for a recent review ; see [19] for m oduli-stablization
calculations as well.
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N ear the coniod locus: ° = 1; Large

T he period vector in the sym plectic basis, is given by:
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T he treelevel K ahler potential is given by:

K = In( i( ) In iV ; (1)
|
. . 0 13
where the sym plectic metric = 1 0 . Near x = 0, one can evaluate @K ; and QW 5. —
3
this is done in appendix B .
Using (20) = (21) and (B1)~B5), one gets the follow Ing (near x = 0; o= 0):
|
DyWes: Inx A7+ Bix+ CixInx+ Dq( o)+ B8x+ C(fxlnx+ D(f( o) = 0: (22)
Sin ilarly,
D Wes: Ag+ Box+ CoxInx+ Doy 0)+ Bdx + CIxInx + D I( 0)= 0: (23)
Near °+ =1
Neary 64 l=0andaanall = 8,onecan follow a sin ilar analysis as (20 — (23) and arrive
at sin ilar equations:
|
DyWcs: Iy As+ Bsy+ Caylhy+Ds( o)+ Bly+ Clylny+D3(  §) =0;
D oWes: Ag+ Bgy+ Caylny+ Dyl %)+ Bly+ Clymy+ D¢ %)= 0: (24)

Points away from both conifold loci

Tt can be shown, again follow iIng an analysis sin ilar to the one carried out in (20) — (24), that one gets
the follow ing set of equations from extrem ization of the com plex-structure m oduli superpotential:

A+ B; + Ci +Boi +C0i = 0; (25)

w here i indexes the di erent regions In them oduli space away from the two conifold loci, as discussed
In section 2 earlier.



T herefore, to sum m arize,

Near = ! :
Ap+Bi(1 ! M)+ C(1 !Y)lm(y ! P)+Di(; 0)
+BY(1 D)+ Cl(  D)In( 1)+ DY(1  o)=0;
Ap+Bp(1 ! ')+ C(1 !')n(1 ! ')+D2(1 o)
+Bo( 1 N+ C31 NIn(1 1)+ DY 0) =, 0;

fi; 1 !ina 0] hi; 1 !'71 0l
1= P 1 5 ;
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As+ Ba( 5+ D+ C( 5+ 2 DIn(S+ 5, 1)+ D3 o2+ BI( 5+ 1)
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As+Bs(3 )+ Cs(3 B3 O+Cs )= 0;
Ag+ Be( 3 80),,+ Cel 3 83)+#Bg( 3 N+cds H=0;
_ TIEi5 35 03]) “hii 3531
o T Lohal r§=ohiA§O '

6
ﬁ <1:
A7+ Bo(a O+ Ci(s I+BIU s OO+ Ca  P=0;
A7+ B7(a )+ Cila SD>+#+B9< s D+l a =05
s = ;[fi/' 47 4 1 ;[hi; a; al

Loha® > oha® '

(26)

w here on deleting the In term sin  one gets the form of ~in (26). G ven that the Euler characteristic of the
elliptically— bered CalabiYau fourfold to which, according to the Sen’s construction [20], the orientifold
of the CalabiYau threefold of (1) corresponds to, will be very large®, and further assum ing the absence
of D 3-branes, this would in ply that one is allowed to take a large value of £ : +h, and hence the uxes -
therefore, sin ilar to the philosophy of [2], we would disregard the integrality of uxes. W ithout doing the
num erics, we w ill now give a plausibility argum ent about the existence of solution to any one of the four
sets of equations in (26). A s one can drop X as com pared to xInx for x = 0, the equations in (26) pair o
either as:

8See [71- (CYy) = 6552 where the CYy fortheW CP 4 [1;1;1;6;9Hm odel, is the resolution of a W elerstrass over a three—
fold B with D4 and E¢ singularities along two sections, w ith the threefold a C P'- bration over C P ? with the two divisors
contributing to the instanton superpotentiala la W itten being sections thereof.



N ear either of the two conifold loci:

A+ (Bj_COS i+ B(i)sjn j_) i]n i+ Ci 5+ Cf i= O,‘
ai + (blCOS i+ bSSJn j_) i]n i+ & it C’g i= O; (27)
or

Away from both the conifold loci:

A;j+ B; i+ Cyi 1+ BE it CfiZ 0;
0;

K’i+ Bi i+ Ci i+ BS i+ CfiZ (28)
where ;; ; correspond to the m agnitude and phase of the extrem um values of either 'Y oor
64 1,and ji; ; aredi erent (functions of) extrem um valuesof ; near and away, respectively,

from the two conifold loci, and both sets are understood to be \close to zero" each.
From thepointofview ofpracticalcalculations, let us rew rite, eg., (27) as the equivalent four real equations:

Aj+ Bjoos ; iIn ;1 + Biosjn ;in 1+ CiRe( 1)+ CEIm (1)= 0;
0

ﬁi-i' éiCOS ;1 in 5+ ﬁisjn i in 5+ @iRe( i)+ @(i)lm( ;)= 0;

i+ joos 3iln s+ §sin s iIn s+ #sRe( )+ #°Im ( 5)= 0;

e + f;icos iilt’l i+ inSjn iilt’l i+ #eiRe( i)+ #EEIm (1)= : (29)

In (26), by \close to zero", what we would be adm itting are, eg., i;j;j e’ 7 10 ° inplying that
iIn ;10 2 . Let us choose them odulidndependent constants In (29), after suitable rationalization, to be
7 0O (1), the coe cients of the ;In j;—term s to be 7 102 and the coe cients ofRe( ;)and Im ( ;) to be
10°. On sim ilar Ines, or (28), we could take themodulito be e® and them oduli-ndependent and

m odulidependent constants to be 7 0 (1) and  10° respectively. Now , the constants appearing in (29)
(and therefore (26)) are cubic .n the uxes (m ore precisely, they are of the type h?f in obvious notations),
which for (1) woul be 10° (See [7]). In otherw ords, for the sam e choice 0fthe NSNS and RR  uxes—-12 in
num ber-onegets 6 or 9 or 12 com plex (inhom ogenous [in ; Jalgebraic/transcendetal) constraints (com ing
from (26)) on the 6 or 9 or 12 extrem um valies of the com plex structuremoduli ( ;; i; i; 1= 1;2;3;4)
nitely separated from each other in the m oduli space. In principle, as long as one keeps £1: h  xed,
one should be able to tune the uxes fi;h;; i= 0;:::;5 to be able to solve these equations. T herefore, the
expected estim ates of the values of the constants and the m oduli tuned by the algebraicgeom etric inputs
of the periods in the di erent regions of the m oduli space as discussed in section 2, are reasonable in plying
the possibility of existence of \area codes", and the interpolating dom ain walls [21]. O £ course, com plete
num erical calculations, which w illbe quite involved , w ill be needed to see explicitly everything working out.

4 N on-supersym m etric dS m inim um via N on-perturbative % and In-
stanton C orrections

In this section, using the results of [6], we show that after inclusion of non-perturbative “corrections to the
K ahler potential, in addition to the perturbative ° corrections of [8], as wellas the non-perturbative nstan—
ton contributions to the superpotential, it m ay be possible to obtain a large volum e non-supersym m etric dS
m Ininum (analogous to [5] for the non-supersym m etric AdS m inin um ) without the addition of D 3-branes —
see also [9].



Let us begin w ith a summ ary of the inclusion of perturbative “corrections to the K ahler potential in
type IIB string theory com pacti ed on CalabiYau threefolds with NSNS and RR uxes tumed on, as
discussed .0 [8]. The ( )  corrections contributing to the K ahler m oduli space m etric are contained in

z
P (3)
A% ge? R+ (@ P+ (9 32110

+ (962 0 ; (30)

w here
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the second term in (31) being the ten-din ensionalgeneralization of the eight-din ensional E uler density, and

. (31)
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2 2
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+ y( P e °T)y+ ( )( © © P

h i
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2
+ 45 termm s obtained by antisym m etrization w x:t: (ij); kl); m n); (q); (32)
and 1
Q m RIJRKDL/INRMINJ 2RIKKLRKMLNRMILIIQ : (33)

T he perturbative w orld-sheet corrections to the hyperm ultiplet m oduli space of C alabi¥Y au three-fold com —
pacti cations of type II theories are captured by the prepotential:

X @x bx ©
x )

i
F(X)=§ abcTJr ; (34)
where the ( %)°-corrections are contained in ( 0)3(CY7§)(3), ake being the classical C Y3 intersection
num bers. Substituting (34) n K = In X iFi+ X iFi gives:
i
K= In %(za 22V )= 2S)+ 4 - (35)

Truncation of N = 2 to N = 1, mplying reduction of the quatemionic geom etry to K ahler geom etry,
corresponds to a K ahlerm etric w hich becom esm anifest in K ahler coordinates: T® = %ga+ ve; = l+ie O,
the hat denoting the E instein’s fram e in which, e.g.,\?a =e?0 % 2eeVVE vV being the K ahlerm oduli, and

the K ahler potential is given by:
y4

A 1
K= In( ( )) 2InV+ = e In i ~ ; (36)
2 CYs
substituting which into theN = 1 potentialv = & gD W D W 331 ¥ (onesum soverallthem oduli),
one gets:




the hats being indicative of the Einstein fram e — in our subsequent discussion, we w ill drop the hats for
notational convenience. T he structure of the ‘~corrected potential show s that the no-scale structure is no
longer preserved due to explicit dependence of V. on V and the W F term is not cancelled. Tn what follow s,
wewillbe settihg 2 %= 1.

The type IIB CalkbiYau orientifods containing O 3/0 7-planes considered involve m odding out by
( ) where N = 1 supersymm etry requires to be a holom orphic and isom etric involution: Jg)=
J; ()= .W ritihg thecom plexi ed Kahlerform B ,+iJ =t ! = B!, +iv ! where(!,;! )fom
canonicalbases for (H 2 (CYs3;Z);H f (CY3;2)),the subscript indicative ofbeing odd under ,one seesthat
in the Jarge volum e 1m it of C Y3= , contributions from larget = v are exponentially suppressed, however
the contributions from t* = B, are not. Note that it is understood that a indexes the real subspace of
real dim ensionality 't = 2; the com plexi ed Kahler m oduli correspond to H ' (CY3) with com plex
din ensionality h'? = 2 or equivalently realdin ensionality equalto 4. So, even though G2 = & B (for
real & and B and com plex ) is com plex, the num ber of G®*’s is Indexed by a which runs over the real
subspace h'™ (C Y3)? Asshown in [6], based on the R 4~correction to theD = 10 type IIB supergravity action
[227and the m odular com pletion of N = 2 quatemionic geom etry by summ ation over all SL (2;Z ) in ages
of world sheet corrections as discussed In [23], the non-perturbative largesvolum e corrections that survive
the process of orientifolding of type IIB theories (to yield N = 1) to the K ahler potential isgiven by (in the
Einstein’s fram e):

X ( )
K = In( i ) 2V + — —
2m n2z2-00) 2123 + n 3
U #
X . X ( 3 G=* G*%) a
4 n fcos n+m )}%7 mkaG H (40)
2H, Cys;z) mm2z?=0p) GDZF +n ]

R
where n® are the genus0 G opakum arVafa invariants for the curve and k, = ly,,and G% = & B,

the realRR two—form potentialC, = C,!?® and the real NSNS twoform potential B, = B, ! 2. A s pointed
outn [6], In (40), one should probably sum over the orbits of the discrete subgroup to which the symm etry
group SL (2;Z ) reduces. Ttsm ore natural to w rite out the K ahler potential and the superpotential in term s

°Tom ake the dea m ore explicit, the involution underwhich the NSNS two-form B, and theRR two-form C, are odd can
be In plem ented as ollow s. Let z;;z; ;1= 1;2;3 be the com plex coordinates and the action of bede nedas: z1 $ zp;z3 ! z3;
9

in tem s of the x; guring In the de ning hypersurface in equation (1) on page 2, one could take z1;, = Xxl 2 etc. in thexs & 0

5

coordinate patch. O ne can construct the follow ing bases ! ' ) of real two—fom s of H % even/odd under the nvolition
X
19V =f dz'rdZ” dZf A dzl)pidzt A dzt dZi A dzlyg £l ) g;
X X
POV = £ idz' ~dz’ + dZ° ~dzh); idzt Adzlg £V g (38)

This in plies that KT (CYs) = h' (CYs) = 2 —the two add up to give 4 which is the real din ensionality of H 2 (C Y3) for the
given Swiss Cheese CalabiYau.Asan example, et uswritedown B, 2 R as

B, = Bl2dzl ~dz” + B23dz2 ~dz’ + B3ldz3 ~dz' + B21dz2 ~dzt + B32dz3 ~dz” + B13dz1 ~dz®
+B,,dz" ~ dz' + B,,dz” ~ dz’ + B,ydz’ A dz’: (39)
Now, using (38), one sees that by assuming B, = B,; = By, = b ,and By; = B,, = jb2,'B33 = 0, one can write
P ntiton

S I O B TR | ay ()
B,=b!! '+ ! gl

a=1

10



oftheN = 1 coordinates ;G* and T where

1
T zzle 0 vv o (~ > ) G GP GP); (41)

2( )
where ~ being de ned via C 4 (the RR fourfom potential)= ~ » ;» 2 H f (CY3;72).
Bgsed onpthe action for the ERch:dean D 3-brane world volum e (denoted by 4) action

iTps ,e g By+F + Tpz & " e, the nonperturbative superpotential com ing from a D 3-
brane w rapping a divisor 2 H 4 Ys= ;Z) such that the unit arithm etic genus condition of W itten [24]is
satis ed, w ill be proportional to (See [6])

R R R
eE e (B2+J'J)2 i (Ca CZAB2+%C0B§: eﬂ L ej_n T ; (42)
where Cppy4 are the RR potentials. The prefactor m ultiplying (42) is assum eto factorize into a function
ofthe N = 1 coordinates ;G* and a function of the other m oduli. Based on appropriate transform ation
properties of the superpotential under the shift symmetry and s SL (2;Z):

i) , @ + b
i ! ;
lc +d, | |
C2 \ a b C2 .
By ’ c d Bo !
a
(c + d)
c GagP
T 1T 4+ -7 .
2 (c +d)

) B! B+ 2 n%;
Ge! G* 2 It
T ! T 2 niGP+ 22 _n*n®; (43)

the non-perturbative instanton-corrected superpotentialwas shown in [6]to be:

Z
X G ) .
W = Gy~ + L)em T (44)
CYs . fEC )
w here the theta function is given as:
X 1 m a
n (G)= e e fims (45)
ma
In (45), m? = C®®m m;Cap = apy = O corresponding to that T = T o (for sin plicity) that is

Invariant under (43).
Now , for (1),as shown in [7], there are two divisors w hich when uplifted to an elliptically— bered C alabi-

2
Yau, have a unit arithm etic genus ([24]): 1 @,V = %; 2 @,V = %. In (41), 1= ~ i1 and
2=~ 1z.
To set the notations, the m etric corresponding to the K ahler potential in (40), w illbe given as:
0 1
B @, K @,e.K @,6:K @,68:2K
Be,e K @,6,K @€,8:K @,@:K §
Gpp =B ; (406)
@ @Gl@lK @Gl@zK @Gl@GlK @GI@G2K A

@20 K (@20 ,K (@g2052K @520@5:2K

11



where A 12,612, W e have taken the involution to be such that h'' = 2. From theKahlr potential
given in (40), one can show that the corresponding K ahler m etric of (46) is given by:

GAB
0 3op 2op 1
1 1 +L(1 1) 1 (1 )2 2) ie TZ " 1 17Z( ) ie T2 7 1 1Z( )
E 4 g 27 1 .Y 18 v? 144 Y2 6 2v?2 6 2v2
B 30 3
E 1 (1 (2 2 ;3p22+ip22 e TP T a0y e TP o710
B 144 Y2 4 52 ¥ 8 v? 6 2v2 6 2v2 .
E 30p 3 0p !
ikie 7Z 1 17 () kie 72 0 2 27 ()
% 6L~EY2 6L~§Y2 k]_Xl klkZXl
s 2P T2 s P2 8
2€ 695;2 12 () 2€ 695;2 22 () kikoX k§X1
(47)
w here
X X
Z () Anm e ( )sin(nkdb+ mkc);
c mn
3
X ( 7
Y Vst o .
mn2z2—0p) CDZI +n 3
|
B !
X 0 X ( ) G* G*%) a
4 n 3 ws (n+m )gg—— mkyG ;
2H,CYsz) mme2zi=p) (2DZF +n 3
P P ERE
% c nmm2z2-00)€ 2 R+ m ﬂﬁnmmkc( )ﬂcos(nk:b+ m k)
1
Y
P P 30, .
+j c mmn2z2=0;0) * Ntm _:]An,m;nkc( )sin (nk b+ mkic)ﬁ-
Y2 ’
(n+m )Q(c
Anm e ( m (48)
T he inverse m etric is given as:
0 s 1
I N R N CHD 0
1
., B Gh)yre Gty G ) 0
CTTE G1)6 G 1)ec L K g “9)
Q (k? k 2)X1 (kik3 kX1 &
0 0 k, 1
(k1k3 k 3)X1 (k? k 2)X1

w here the non—zero elem ents are given in appendix C .
Now ,analogous to [5], we willwork in the lJarge volum e lin it: V !

2
1,‘]_ ]DV,‘ 2 Vi.mthjs]jmjt,

the Inverse m etric (49) sin pli es to (we will not be careful about the m agnitudes of the num erical factors

n the follow ing):

0 P— 5 _— 1
V. InV V3V 1XX2V 0
B 2
2 4 . <
B vimv V3 XY 0
1 B kiX2
G B . } 2 ’ (50)
B iX Inv XV 3 1 ko
Q X2 k1Xo ki kX1 (ki kX1 A
0 0 k2
(kik3 kX &k kDX,
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w here X X
X5 T+ m 3j{nm;nkc( )ﬁcos(nk:b+ mkwx):
C m n2%z2=(0;0)

1

Refer to [5] for discussion on the m inus sign in the G * ' . Having extrem ized the superpotentialw ri.
the com plex structure m oduliand the axion-dilaton m odulus, the N = 1 potentialw ill be given by :
" ( )

X
v =& G ! B @AW np@gWhp+ G ! P B (@aK )@ W ppW + cx:
0 AEm e 1 4
X 1 X 1
+ @ G ' PPeK @K 3R T+ G ') @ Kew® KewH npF 5 (51)
AB= Ga ; 2cis:

w here the total superpotential W is the sum of the com plex structure m oduli G ukovVafaW itten super—
potential W 5. and the non-perturbative superpotential W ,p, arising because of instantons (obtained by
w rapping of D 3Jbranes around the divisors w ith com plexi ed volumes 1 and ;).

Now , using:

.22 X
e W= —"""/7 (6 )eJn T in € ;
£C 0 2
2 " !
X i . . ) 26 GP
GeaW = — : ))emaG "™ T im.n  in 5 2 3 @ G+ (@ ghe 2 G : )) i (52)

n

In the largevolum e lim it, one form s tables 1, 2 and 3.
O ne therefore sees from table 1 that thedom nanttem In (G ' BB @AW pp@ W npis (G 1)1 1R W 57,
given by:
e 2
Y l]nvez !y nt (7G) o 2n'Im (T1),
yene £C ()
From table2we see thatthedom inantterm in (G * *P® (@K )@ W ppW is(G 1) 2@ K @ ,W oW +cxy,
which gives:

(53)

. a a G° g?) G2 (G
W e InV a5 in P ~+ 2 pap—2—2F 1.

. + cc: (54)
vne £C )

Note, from table 3, the dom nant and the (sub) sub-dom inant term s In (G * *B @K @gK jg,gjyen
respectﬁey}kl)y G')yz2® ,KFy fand G )R, KF+ (G 1) 2@,@,K + cx: 3 F are actually
1 3 3 3 3 3
(Inv )2 (Inv )2 (Inv) (Inv )2 (Inv )2 (Inv )2

v+ ) v+ 7 W 32 v vzt Ty E

3
2

. \ 1
ofthe form : 1 $+0 3% W F and

+0 V—l?, W ¥ respectively and the -independent tem s together cancel the \-3" in (50). This is jist a

1

%ederiiatjon of the lJast term In (37). O ne notes that there are addii:ionaltenn sofO 7 that one gets from

G 1P KT+ G 1P R K F+ (G 1) CT6K @K # F,which isgiven by:

! P P 3 2
2

W F 3K+ k2 ¢ nm222=00)€ ? Anm e ()sin(nkdb+ mkx)
3

2 2 P P 3,
Y, ki k3 @ moni2z2-(00)€ Z 1+ m ﬂﬁnomo:ﬂkco( Y3cos(n%k b+ m %k )
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which one sees can ke either positive or negative.
To summ arize, from (52) — (55), one gets the follow ing potential:

!
c 2

P m?, map?nl, n' g %00
pP— ma € 29s gs 29s
Y Inv
2 1,2
21’11+2e (n®) . 2.
v \ FCO N3
’ 1y L1 cd g2 @® e® 1 caiGP 6P
+V]:X2 ;1(((5); e Ut T T Ty e ) o
! P P 3 i 2
jvf 3kZ + k2 ¢ nm222200)€ 2Anmme( )sin(nkdb+ mko) 3 3
P P 3 V3
2

V3 k? k3
1 2 @ mon%2z2-(0,0)€

(56)

On com paring (56) with the analysis of [5], one sees that for generic values of the m oduli ;Ga;kl;2
and O (1) W cs:y and nt = 1, analogous to [5], the second term dom inates; the third term is a new tem .
However, as in KK LT scenarios (See [12]), W .. << 1; we would henceforth assum e that the uxes and
com plex structure m oduli have been so ne tuned/ xed that W W np:. Further, from studies related to
study of axionic slow roll in ation in Swiss C heese m odels [27] it becom es necessary to take nl>2.wWe
assum e that the fiindam entakdom ainvalued I ’s satisfy: =~ << 1!°. This in plies that the rst tem in
(56) =4 1W npj2 —a positive de nite term and denoted henceforth by Vi, is the m ost dom inant. Hence, ifa
m Ininum exists, it w illbe positive. To evaluate the extrem um of the potential, one sees that:

QeaV1 |
2 e gs gs s
P v N ) % ( 3 m
4—— n mk®———————sin(nkb+ mkx) =0
iz e F( ()
H, CYsz) mmn222=(0,0) 21730 + n 3 )
, nkb+ mkec=N ;
aO 1 1 aO bo 1 a b
p — ﬁ m aob n n laobob o P ﬁ m abanl n 1apb"b :
. V InVe 2 * 9Is * 29s ma €& %9 ss 29s n'm?@ n' labbb
@ Vidkormke=N el : 2 ’ - o
v FC ()3 Js I
(57)

Now ,given the O (1) triple-intersection num bers and super sub-P lanckian N SN S axions, we see that poten—
tialV: gets autom atjcaJJy extrem ized for D 1-nstanton numbersm ¢ >> 1. Note that if the NSNS axions
get stabilized as per 21— m? , ol q{ij} = 0, satisfying @xV = 0, thiswould in ply that the NSNS axions get
stabilized at a ratJonal num ber, and In particular, a value which is not a rationalm ultiple of , the same
being in con ictwith the requirem ent nk b+ mkxc= N . It tumsout that the bcusnkdb+ mkxc= N for
P ij<< and Fj<< corregpondsto a atsaddle pointw ith the NSNS axions providing a at direction
—See [271].
Analogous to [5], for alldirections in them odu]ispéacewjrh O(1l)W¢s.and away from DsW o= D W =

0 = BV = @rV = 0, theO (v2) contribution of . 20 1) D WD W dom nates over (56),

a -

! << 1 isequivalent to ¥ j<< M, ie., NSNS axions are

0 1f one puts in appropriate powers of the Planck mass M ,, b
super sub-P lanckian.
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ensuring that that there must exist a m ininum , and given the positive de niteness of the potential V1,

this willbe a dS m ininum . There has been no need to add any D 3-branes as in KK LT to generate a dS

vacuum . A Iso, Interestingly, one can show that the condition nkdb+ mkc= N gurantees that the slow roll
param eters \ " and \ " are much an aller than one for slow roll n ation begihning from the saddle point
and proceeding along an NS-N S axionic at direction towards the nearest dS m ininum (See [27]).

5 The \Inverse Problem " for Extrem al B lack H oles

W e now sw itch gears and address two issues in this and the subsequent sections, related to supersym m etric
and non-supersym m etric black hole attractors' . In this section, using the technijues discussed in 2], we
explicitly solve the \Inverse problem " for extrem alblack holes In type IT com pacti cations on (them irror of)
(1) —given a point in them odulispace, to nd the charges (p';qr) that would satisfy @;Vgy = 0,V being
the black-hole potential. In the next section, we address the issue of existence of \fake superpotentials" in
the sam e context.

W ewillnow summ arize the \inverse problem " asdiscussed in [2]). ConsiderD = 4;N = 2 supergravity
coupled to ny vector m ultiplets In the absence of higher dervative term s. T he black-hole potential can be
written as [141]:

1 K 1 Y L
Veg = E(ql Nixp ) (ImN) (@ Np); (58)
where the (ny + 1) (ny + 1) symm etric com plex m atrix, N 15, the vector m ultiplet m oduli space m etric,

isde ned as:
2iTm (Fx )X ¥ Im (Fqp )X ©

Im (FMN)XMXN

Ny Fo+t ; (59)

X 1;F; being the sym plectic sectionsand Fry  @;Fy = @sF:. Theblack-hole potential (58) can be rew ritten
(See [2]) as:

1 i i
VBH=5PIIm<NIJ>PJ EPI@ NIJpJ>+5PI<qI N ;P ): (60)
T he variation of (60) w rt. P! gives:
Pl= i mN)")Y (@ Ny (61)

which when substituted back into (60), gives (58). From (61), one gets:

p'=ReP’);

g =ReM yP7): (62)

Extrem izing Vg gives:
P'PY@Im N1;)+ iP @N1; PY@Ns)p’ = 0; (63)

which using (62) yieds:
@Q;Im PN ;P7)= 0: (64)

Sin ilar to what was done in section 3, one uses the sam iclassical approxin ation and disregards the inte-
grality of the electric and m agnetic charges taking them to be large.

T he inverse problem is not straight forward to de ne as all sets of charges (p';qr) which are related to
each other by an Sp(2ny + 2;Z )“transform ation, correspond to the sam e point in them oduli space. This is

'see [18] for a nice review of special geom etry relevant to sections 5 and 6.
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because the Vg ) (and @;Vpy ) Is (are) sym plectic nvariants. Further, @;Vgy = 0 give 2ny real equations
in 2ny + 2 realvariables (p';qr). To x these two problam s, one looks at critical values of Vg in a xed
gaugeW = w 2 C . In otherwords,
Z
W= "H =qiX' pFr=X"(@ Nuyp )=w; (65)

which using (62), gives:
XI1Im Wy )PY = w: (66)

T hus, the Inverse problem boilsdown to solving:

p'=Re(P');q=ReNP’);
QPIN;PY )= 0; X 'NsP7 = dw: (67)

O ne solves or P 's from the last two equations in (67) and substitutes the result into the rst two equations
of (67).

W ew illnow solve the Jast two equationsof (67) for (1). A san exam ple, wew ork w ith points in them oduli
space close to one of the two conifold loci: ® = 1. W e need to work out the m atrix Fry so that one can
work out them atrix N 15 . From the symm etry of F'15 w xri&t. I and J, one sees that the constants appearing
In (16) must satisfy som e constraints (which m ust be bome out by actual num erical com putations). To
sum m arize, near x = 0 and using (A 10)—16):

Bor C1 Bo1 Co C1 Cy
For=Fi0, Inx—+ — = +—) Bpo=0; —=—3

B31 C3 B41+ B42(]IIX+ 1) C4 C3 C4

Ba, Co Bo1 Co C, Cy
Foo=Fz , Inx—+ — = +— ) Bp=0;—=—7

B31 C3 B51+ B52(]IIX+ 1) C5 C3 C5

B, Cp B Ca C, Cy

Fio=Fo , —+ = + =) —=—": (68)

B4 C_4 Bg + B52(1I’1X+ 1) Cs Cy Cs

In (68), the constants A ;;B ;5;Cy are related to the constants A ;B ;j;Cy via m atrix elem ents of M of (18).
T herefore, one gets the follow Ing form ofF1y:

0 1
Banw 4 S0 &1 Co
B Cs Cs Cs Cs c
_ C1 C1 Czo
FIJ - @ Cs Ca Ca A (69)
Co Co Co
Cs Ca Cs

U sing (69), one can evaluate X Im (F1y )X Y —this is done in appendix D .
U sing (69), (C1) - (C2), one gets:

N =
1
(1) (2) (1) (2) (1) (2)
apo + Iyg x + Iyg xInx + o ( 0) aor+ by'x+ by'xInx + oy ( 0) a2t Iy, x+ byyxInx + coo O)8
(1) (2) (1) (2) (1) (2) .
a01+b01x+ bOleI’lX-l- o1 ( 0) a11+bllx+ bllX]IlX-l- 11 ( 0) aio+ b12X+ blZX]IlX-F c12( O)A'
(1) (2) (1) (2) (1) (2)
apz + by, x + Iy xInx + o ( 0) amxt byx+ byxInx+ cio 0) aszxt+ byx+ byxInx+ ¢ 0)
(70)
;(2 . .
T he constants ajj ;b;ll() ( );c]m are constrained by relations, eg.,
Fr=NpX7; (71)
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which,eg., forI= Owould mply:

apoA 3+ aplhg+ apphAs= Ay

(1) (1) (1)
apoB 31+ IygAsz+ ap1Bar + Agly  + appBs1+ by, As= B

(2) (2) (2)
bOOA3+ ap1Bao + b01A4+ ap2B sy + A5b02 =0

apoC3+ oAz + ap1Ca+ Co1Ag+ ageCs+ CopAs= Co: (72)

So, substituting (70) Into the last two equations of (67), one gets:

)+ 2p%p Y + 2p %P 20

h i
&P ™NPY)=0) Inx PR+ @YY+ B2V o, +2p'P%B%) = 0;

@ NP )=0) @+ @)y + P?Payu+ 2P oy + 2P P %qy, + 2P P ey, = 0; (73)

and X 'Im (N5 )PY = iw in plies:
J J (1) J (1) J (2)5J J
Ar(arg aw)P” + xBrnilay ag)P b APY ]+ xojf/AIP" ]+ xInxA1b ;P" ]+ ( 0)A1c P ]
+ 0)Cr@s aw )P’ cyAP’ ]+ xnxBranP’l= 2w
or
2
I(x;x;xlnx;x]nx; 07 O)PI= W (74)
I=0

Using (74), we elim nate P2 from (73) to get:

@O+ @+ POPT=

2P+ L@rP+ pPPl= (75)

T he equations (75) can be solved and yield four solutions which are:

0 1 ' P_— P_—
P = p + 2 1 1 2+ Y X
2 2 5,1 12
P_
Plo pr;
= —pTl
2 |
0 1 ' P_— P_—
P~ = - — 21 12t Y X
2 2 51 12
P
1 X
P = =3
2 |
. 1 ' P pP_—
P = 2 1 1 2 Y X
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1 pP— pP—

P = - Lo 12 Yy X
2 2 1 12
o
1 X
Pl= p— (76)
2
w here
X " l'# " | 4
2 2
22 1+ 2 211 2+ 1 21 12 + 1 1 2% 2 21+ 1 2
n '!#
2 2 2 2 "3 ;
271 1+ 1 27 1t 1 2 2 2 1 2+t 1 7
| |
Y 2.2 2 4 4 4 2 : (77
27 1 12 1 2%t 2 1 2 1+t 1 2 *+ 2 12 1 11 2+ 17 2 ;(77)
and
n |
X1 Y+ 2 21 21+ 1 2 + 1 2 1+t 1 2
\d U #
£ o 2 2
+5 2% 1 2121 2+%4 2 1 21+t 1.2+ 2 41 21 411 2% 17 2
(78)

O ne can show that one does get P ! X 1 as one of the solutions — this corresponds to a supersym m etric
black hole, and the other solutions correspond to non-supersym m etric black holes.

6 \Fake Superpotentials"

In this section, using the results of [3], we show the existence of \fake superpotentials" corresponding to
black-hole solutions for type IT com pacti cation on (1).

Asargued in [3], dS—curved dom ain wall solutions in gauged supergravity and non-extrem al black hole
solutions In M axw elkE nstein theory have the sam e e ective action. In the context ofdom ain wall solutions,
if there existsa W (zi;zi) 2R :Vpy ( Domain WallPotential) = W 24 %gij@iw @jW , 7t being com plex
scalar elds, then the solution to the second-order equations for dom ain walls, can also bo? derived from the
ollow Ing rstorder ow equations: U %= & (W ; (z1)°= & %gij@jw , where 1+ eW2U2

Now , spherically sym m etric, charged, static and asym ptotically at black hole solutions of E instein—

4

M axwell theory coupled to com plex scalar eHds have the form : dz? = &V Eld + e V) S ___gr?

sinh* (cr)

2

+—S——(d %+ sin® d ?) ,where the non-extrem ality param eter c gets related to the positive cosm ological

sinh? (cr)
constant > 0 fordom ain walls. For non-constant scalar elds,only forc= 0 that corresponds to extrem al
black holes, one can writedown rstorder ow equationsin temsofaW (z4zY) 2R :U%=  &w ; (z4)°=
2V gij@jw ; and the potential Vi g W 2+ 4gPew @sW can be com pared w ith the N = 2 supergravity
black-hole potential Vgy = % J + g¥D:ZD ;2 by dentifying W ¥ 4. For non-supersym m etric theories
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or supersym m etric theories w here the black-hole constraint equation adm its m ultiple solutions which m ay
happen because severalW sm ay correspond to the sam eVyy ofwhich only one choice of W would correspond
to the true central charge, one hence taks about \fake superpotential' or \fake supersymm etry" —a W
@;W = 0 would correspond to a stable nonBPS black hole. De ning V ey (zi;zi);W W (zi;zi),
one sees that V (x*  Uj;zhzl) = PP @W ()W (x),wheregyy = 1 and gy; = 0. This illustrates the
fact that one gets the sam e potential V (x) for all vectors @a W w ith the sam e nom . In other words, W
and W de ned via: @ W = RAB (z;z)@g W correspond to the sam eV provided: RTgR = g.

ForN = 2 supergravity, theblack hole potentialVgy = 0TM Q whereQ = (p ;9 )isan Sp(@ny,+ 2;2 )-
valued vector (ny being the num ber of vector m ultiplets) an'd M 2 Sp(2ny + 2) isgiven by:

A B
M = ; 7
c D 7 (79)
w here
A ReN (ImN)!
B ImN ReN (ImN )!ReN
C (ImN)!?
D= AT= (ImN ')y ®ReN ) : (80)
De ningM :M = IM where
!
D C
M ;
B A
!
0 1n +1
I v (81)
1nv+1 0
The central charge 2 = ez (g X p F ),a sym plectic nvariant is expressed as a sym plectic dot product
of Q and covariantly holom orphic sections: V eKT X ;F )= (L ;M M =N L ),and hencecan be
w ritten as
7z7=Q'IV=L g M p: (82)
Now , the black-hole potential Vg g = 0™ 0 (being a sym plectic invariant) is invariant under:
Q! sQ;
sT™M s=M : (83)

AsS isa symplecticmatrix, STI = IS ! ,which when substituted in (83) yiels:
S;M ]= 0: (84)

In other words, if there exists a constant sym plectic matrix S : [S;M ] = 0, then there exists a fake
superpotential 9 T ST IV whose critical points, if they exist, describe non-supersym m etric black holes.
W e now construct an explicit form of S . For concreteness, we work at the point in the m oduli space for

(1): 3= 1and large nearx= 0and = ;.G ven the form ofN ;7 in (73), one sees that:
1 _

(1)N (_2) (1) (2) (1) (2) 1
aoo+boox+booxlnx+ o ( 0) 801+bOlX+bOlX]nX+ &1 ( 0) a02+}502x+ bOZX]IlX-F o2 ( 0)8

1 2 1 2 1 2
&gy + bél)x+ bél)x]nx+ e ( 0) a1+ bil)x+ bil)xlnx+ e ( 0) an+ biz)x+ biz)xlnx+ e ( 0) K 7

(1) (2) (1) (2) (1) 2
a2 + By x + By, xInx + epa ( 0) &+ BLyx+ ByxInx+ e 0) axt Brx+ béz)xlnx+ &9 ( 0)

(85)
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which as expected is sym m etric (and hence so willReN and (Im N ) 1). One can therefore w rite
|

M ; (86)

X Ut
whereVT = v; XT = X and U;V;X are3 3 matrices constructed from ReN and (ImN ) ! . W ritihg
S = ; (87)

(A ;B;C;D are3 3 matrices) and given that S 2 Sp(6), In plying:
| | | |

at ¢t 0 13 A B 0 13 @8)
BT DT 15 0 c D 13 0 !
which in tum in plies the ollow Ing m atrix equations:
aAfc+cta = 0;
B'D + DTB = 0;
ATD+ctB= 15;
BIc+DpTa = 15: (89)
Now, [S;M ]= 0 inplies:
i |
AU+ BX AV BUT UA+VC UB+ VD ©0)
cu+Dbpx cv pul — xaA UuTc xB UTD

T he system of equations (89) can be satis ed, eg., by the follow Ing choice of A ;B ;C;D :
B=C=0;D= @ '): (91)

To sin plify m atters further, let us assum e that A 2 O (3) Im plying that (A 1Y = A . Then (90) would
mply:

AV 1= 0;

A;X 1= 0;

B ;Ul=0;

A;U]= 0: (92)
For points near the conifold locus = ! 1 ; = o,ushg (A10)~«16) and (69) and dropping the m oduli-

dependent term s in (20), one can show :

ImN ' ReN )y = 0K = 1;2
ImN * =0;K = 1;2
OK
(ImN )pg + ReN )o; ImN ' (ReN ), = 0;K = 1;2 (93)
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T his is equivalent to saying that the rst two and the last equations in (92) can be satis ed by:

0 1
1 0 0

A=8B0 1 0 %: (94)
0o 0 1

The form ofA chosen In (94) also satis es the third equation in (92) —sin ilar solutions were also considered
in [3]. Hence,

0 1
1 0 0 0 0 O©
§O 1 0 0 0 O
B0 0 10 0 O
530001ooé (93)
€0 0 0 o0 1 oA
o0 0 0 0 1

W e therefore see that the non-supersym m etric black-hole corresponding to the fake superpotentialQ T sT 1V,
S being given by (95), corresponds to the change of sign of two of the three electric and m agetic charges
as com pared to a supersymm etric black hole. The symm etry properties of the elem ents of M  and hence
M may m ake it generically possible to nd a constant S like the one In (95) for two-param ater C alabi¥ au
com pacti cations.

7 Conclusion

W e looked at several aspects of com plex structure m oduli stabilization and inclusion, In the large volum e
Iin it, of perturbative and specially non-perturbative ’corrections and instanton contributions in theK ahler
potential and superpotential in the context of K ahler m oduli, for a two-param eter \Sw iss cheese" Calabi-
Yau threefold of a proctive variety expressed as a (resolution of a) hypersurface In a com plex weighted
pro Ective space, w ith m utliple conifold lociin itsm odulispace. A sregardsN = 1 type IIB com pacti cations
on orientifold of the aforem entioned C alabiY au,we argued the existence of (extended) \area codes" w herein
for the sam e values of the RR and NSNS uxes, one is able to stabilize the com plex structure and axion-—
dilaton m oduliat points away from and close to the two singular conifold loci. Tt would be nice to explicitly
work out the num erics and nd the set of uxes corresponding to the aforem entioned area codes (whose
existence we argued), as well as the ow of the m oduli corresponding to the dom ain walls arising as a
consequence of such area codes. Further, In the lJarge volum e lin it of the orientifold, we show thatw ith the
inclusion of non-perturbative ’corrections that survive the orfentifoding alongw ith the nonperturbative
contributions from instantons, it is possible to get a non-supersym m etric dS m inin um w ithout the inclusion
of antiD 3 branes. It would interesting to investigate the e ect of string loop corrections in the context of
orientifolds of com pact C alabiY au of the type considered in thiswork (See [25]). A s regards supersym m etric
and non-supersym m etric black-hole attractors n N = 2 type II com pacti cations on the sam e Calabi¥Yau
threefold, we explicitly solve the \inverse problem " of determ ining the electric and m agnetic charges of an
extrem alblack hole given the extrem um values of the m oduli. In the sam e context, we also show explicitly
the existence of \fake superpotentials" as a consequence of non-unique superpotentials for the sam e black-
hole potential corresponding to reversal of signs of som e of the electric and m agnetic charges. T here m ay
be interesting connection between the existence of such fake superpotentials and works like [26 12

2AM thanks S M athur for bringing [26] to our attention.
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A Periods

In this appendix,we 1 in the details relevant to evaluation of periods in di erent portions of the com plex
structure m oduli space of section 2.

j °3j< 1; large
T he expressions for P » 3 relevant to (4) In section 2 are given as under:

0 P, P, n 1
A o0
R m=0 n=04*m m " I8n+6m
B P4 P, i 35m+128n)0A m
B e 3 —
B m=20 n=0 m " 18n+ 6m
% Pl Pl 21 ( 35m +128n) 0 m
% m=0 n=0¢ ° Am;n T8n+ 6m
Py B P, P i ( 35m +128n) 0 m Al)
% m=20 n:Oe 3 m " 18n+ 6m
% Pl Pl 4i ( 35m +128n) 0 n
% m=0 n=0¢ ° Am;n T8n+ 6m
= Pl Pl 5i ( 35m + 128n) o n A
_ _~e ) N -0
m=0 n=0 m m~ 18n+ 6m
0
0 1
P P m 1
1 1 m
B m=0 n= OAm;n (1)8n+6m
% P, P, a m M 1 i( 35m+126n) 35m+128n
% m=0 n=0%mmn e e 9
B P P R i 35m+128n)
5 1 1 m gl ( 35m +128n)
B m=0 n=0Bmmn TEmren €
P % P, P, 0 Mol i ( 35m+128n) 35m+128n (A2)
% m=0 n= oAm;n é8n+6m e
B P 1 P, n 1 4 35m+128n)
% m=0 n=08mnm 18n+ m ©
@ A

P P m 1 5i ( 35m +128n)
1 1 A Do g5
m=0 n=0 m m 18n+ 6m
0
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and

o
lav]

1 P (8n+6m ) T
m=0 n=10 m m 18n+6m+1
1
n

P (18n+ 6m ) m i ( 35m +128n) 35m+128n
=0 —0Amn mWe
P 1 (18n+ om ) m 2i ( 35m +128n) 35m+128n)
n
A

las]

oy}

:oAm ;ﬂWe

P3

las]

1 (18n+ ém ) § i ( 35m +128n) 35m+128n
n:OAm mW

v
2 Br g BR ogpo
Il
o

(18n+ 6m ) 4i ( 35m +128n) 35m +128n)
—0hn mme

Il
o

(C2UNUN/UNUN.UN.VN.VN.VN.VS.S.Ve.Ve VY.V

oy}

1

n

P (18n+6m) m i 3sm+1zen)
nzOAm;ﬂWe 9

0

Il
o

The coe clents A 5 appearing In (A 1)—(A 3) are given by:

(18n + 6m )!( 3 ) (34p)len+om
On + 3m )!(6n + 2m )!(n!)3m 1glén+ 6m

A n

T he equatlons (A1)+A3) willbe used in obtaining (25) and the third set of equations in (26).

]7]< 1
T he expressions forM 1 53 relevant to (7) in section are given as under:

0 P Py Py 2 6k+T m 1
r=1,5 k=0 m=0kmxr 0 0
. - ,
E P Py Py A 6k+r m %Jﬂ%
B r=15 k=0 m=08kmgx 0 0 €
% P P 1 P 1 6k+ 1 m 41 (k+€) 4i m
B rzlpk; k:OP o= E)Akm;f 0 be 3 3
M1 B 1 6k+ i x ;
B A r me3
B r=1,5 k=0 m—O kmxr o . or
B P P, P A 6kir m 2i (1;+€)+ 213m N
8 =15 k=0 m=08kmpx 0 0¢ . X
P P P 4t (k+€) 4i m ir
1 1 6k+r m + +izx
r=1;5 k=0 m—OAkm;f 0 o€ 3 3 3
0 P P P 1
1 1 6k+r 1 m
r=1,5 k=0 m:OAk,m ;r(6k+ r) 0 0
B P P P 2t (k+%) 2i m
B 1 1 k+r 1 m —— 6, 2im
B =15 k=0 m=0Bkmz(6k+ 1) g pe v T
4i (k+ = .
BT Pl P A a(6k ) ST om e
B r=35 k= mp0fikmi r) T e
M2 B P, P 6k+r1 m 1 it
E A (6k + r) Skrrl om 15
% r=15 k=0 m=0%km 0 0 i
P P P 2kt g) 2im ir
1 1 6k+r 1 m + 4+ L
€ =15 k-0 m-0Bkmx(6k+T)g NCHE ERE
P P P 4t (k+€) 4i m ir
1 1 6k+r 1 4 "
=15 k=0 m=0Bkmz(Ok+ 1), te = ER
and
0 P P 1 P 1 A 6k+r m 1 1
r=15 k=0 m=0%km xM o 0
B P P P 21 (k+6) 2i m
B 1 1 6k+r m 1 +
B =15 k=0 m=0RkmzM g o € 3 3
B P P, Py 2 bk+r m 1 - “: 6, 413m
B r=1p k=0, m=g7kn P LU 0
Ms B 1 1 6k+ 1 :
B A m r m
B r=15 k=0 m=0%kmpr 0 o
2i (k+ = . .
B P P, Py A ektr m 1 %) 6’+213m v ix
@ r=15 k=0 m=0%km P LU 0 e X
P P P 4t (k+€) 4i m ir
1 1 6k+r m 1 +
=15 k=0 m=0Rkmal o o € = 5 T3

23



In equations (A 4)—A6), the coe cilents A i, » are given by:

k2 l+k+ Z+m l(}H%)+2j“‘ m+k+ £ )2
2 iar | ()3 s e 3 5T (=) k+ %)
kmx ©° SIn —= Mkt E
3 (@ ==—=)rm!

T he equations (A 4)—-A 6) willbe used in obtaining (25) and the fourth set of equations in (26).

Near the coniod ocus: °+ =1
T he expressions or N 1 » 3 relevant for evaluation of (11) in section 2, are given as under:

(@)

P P, i(k+ E)
=15 k=0Bx0xe

1
P Pl A i(k+ £)
r=15 5 k=02k0xS °’
P 12
14
A

B
B
B
5 .
i (k+ =
3 =15 k=08k0x€ ¢
N, B P P, i k+sk)
B 15 k-oBxkpz® 3
B P P 1 i (k+7F)
% r=1;5 k=0Ak}OrTe‘ 3 .
=) P, i (3k+3E)

o
=

P P 1 v i(k+ E)
B =15 keo&+ gRypre — 3
B P P i(k+ E)
1 r 6
§ Przl;Sszo(k+ ZAxpxe
1 - z
R re15 ook + EA g e KFE
N, B P P, . i k+5L)
% r=15 k=0(k+ E)Akior'fe 3
B P P 1 v i(k+7%)
g =15 k=0&+ Z)Axoxe 3 &
TP P, . i (3k+3L)
=15 k=oK+ gRAyxpre 3
and
0 P P 1 2i . ikt £) 1
B 15 k-0@xape®  Axpxk+ g)e
% P P 1 A % A k+ r i (k3+€)
% B 15 _o@xaxe k05 z)e
1 ; z
3 =15 k=0@Bxaxr Axpzk+ Z)e e+ 3
N3 B P P 1 21 . i k+5%)
5 15 k-0Bxaz€3  Axppkt g)e S
B P P 41 . i(k+7%)
Eﬁ =15 keo@xaxes Axoxrk+ 2)e 3 &
P P i (3k+3%)
1 1 Gkr3g)
=15 k-0@xar Axprk+ g)e 3
Thecoe cientsA 4, » guring In (A7)~A9) are given by:
r 2i ((+1) i(k+ E)
N 3 1+ k+ 6+me 3 + 5 ( )k( ( 4 %))2 , r
km Kt L sm  —
(k+ 1) k+ Z) k+ I)( (1 “55)Pm! 3
Near °= 1; Large

T he expressions for $ g;...5 relevant for evaluation of (16) in section 2, are given as under:

d + 1 372 0 0 by L
(15 0 2.( L Lr ) :

24



Aop (1) 20( b+ 1P 1F A—°61< 1Y 20( )y ¥
P 1 5 7 11
where Agp e (g) (Pland Aog = 7713 (2) (F)
Z
9 d ) 1 5. ¢
(i1)$ 1 OF(( )) (+E)( +€)
P3
21 +1 | 1y +1 12 1 2y +1
2(+1)2131n( ) e ( 1) + 1 ) 21 ) +
+eBi ( 1)+1
h
Rog ( D@g+ In( *N+i(( y+20¢ 'hoaric 124 (0 1)ng
A06"1< D@+ In( )+ 4 (0 D+20( Ly 4rfc 1ty 4 (0 1
whereAg 1 2 (1)+ (2)+ (2)andA; 3 2(1) 2+ ()+ ()
7
d 1
(ii1) $ 2 LR A -
P3
2i +1 2i | ) 1y +1 ) 2 ) 2y +1
D) 2isin( ) 2e ( 1) + e ( ) + ( )
( 1)+1 |( |1)+l ( 1)+l
Rog '( 'Yy 20 1) @o+In( Cyn+2i 2 y+ L rhy+ ¥
Aq.
20 DI 1)+ —= 1 th)y 2 17 @i+ I °))
2i 2( 1)+ ! ( I 12y 2( 1)°In( 1)
Z
(iv) $ 3 O%(( N7 +%>< +g) ° el
p§ h 1 1 1 2 2 li
+ | | + | | +
AT 1) 21 ( ) T2 )
Roo (1) 20( 'hy+ 12 12y @g+ i +In( %))
+( LIn¢ 1) 20 rYHme v+ rPc v me 2y
Bod (4@ ar( r1@a?( 122 @ieio+ (6
+(  1Pm( 1) 20 UEPy¥me ot hHy+rfFc 1 FPme 2
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2 1 5 6 i
(v) S, B0 DT g Ce
p§ h 2 1 1 1 2 2 li
1 + 11 | + | | +
D) ¢ ( L)frerre by 212 )
Roo (1) 20( UhHy+ 120 12y @g+ i +In( %))
2i (- D+ ( DLIn( L)+ ' rHme o vty 217 v ) m( 1 ?)
BOL (@ o rTRe i 12R @iedio+in( 5
2i (- 1F+ (1P L)+ ' vEyPme vty 217 1 2)2m( 1?2
(A14)
Z
, d 5 1 5. ¢
(vi) $ 5 0 DT CE o) Ce
p§ h 2 1 21 1 1 2 2 li
1 + 1 11 | + | | +
T = ( 1)*t+e ( ) Pl 13 )
Rog 2( L)+ 1(  Ihy+ i 1?7y @g+ i+ In( %))
+4i (1) 2( LIn( 1) 21! 'Y+ v rihyme vty i )m(e 2
BOL o0 aPs (0 UTPe a0 1R @itdo+ (6
4i (0 1F 2(  1PWm( 1) 21! ( Py eorc v ryYme vty
+ 12 122N 12y (A 15)

B Com plex Structure Superpotential E xtrem ization

In this appendix, the details pertaining to evaluation of the covariant derivative of the com plex structure
superpotential n (22), are given.
Onecan see from (21):
Inx A1Bap BipAs+ ApBsy; AsBo

<K 7 B1
@ X B1)

w here

K 21 Im (AOA3+ AAg4+ A2A5)+ (B01A3+ ApB31+ A1Bgy1+ B11Ag+ AyBsp + B21A5)X

+ (A1B42+ Bi2A4s+ AoBso + B22A5)X1I1X+ (AOC3+ CoA3+ A1Cg+ C{A4+ ACs + C2A5)( O) :
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At the extram um values of the com plex structure m oduli (x; 0)s

£T:
TRt "
1
—P5— fo Ag+ Bpoix+ Cof 0) + £f1 A{+ B1i1x+ BigxInx+ Cq( 0)
( i:ohiAi)
+f2 Ays+ Boix+ B22X1I1X+ Cz( O) +f3 (A3+ Biix+ Cg( 0) 4
+f4 Ag+ Bpx+ B42X:|IIX+ C4( O) +f5 A5+ B51X+ B52X]I1X+ Cl( O)
1
1 p=——— hoBox+ Cof 0))+ hi(Biix+ BioxInx + Cq( 0))
( j_:ohiAi)
+hy(B21x + BoaxxInx + Cof 0))+ h3(@As3+ Bax+ Cs( 0)) '
+h4(A4+ Bgyx+ B42X1I1X+ C4( O))+ h5(A5+ Bgix+ B52X]DX+ C]_( 0))
(B3)
Hence,
"w P5 !
hy [£i7x;( )] ha( 5-pLfiAs) hiixi( 0)]
@XW crs: Inx B f]_ L Pl5 0 + =0 PlSl - >
“ohiAg ( i:ohip'li)
P !
hy, [F35%;( o)1 Do LofRs) hix;( o)
+Byy P5 + P5 5
ohiAg ( ZohiAy) '
P !
hy, [F35%;( o)1 hoC LofRs) hix;( o)
+Bgy fau P5 + P5 5
ohiAs ( ZohiAy) .
P !
hs [f1;%; hs (3o fAs5) hix;( o)l
+Bsy f5 : [Pl5 ( O)]+ - 0551 - > ; (B4)
i:ohiAi ( i:ohiAi)
where
[£i7x;( 0)] fo@o+ Boix+ Cof o)+ f1(A1+ Brix+ BroxInx+ Cy( 0))
+f2(A2+ Boix + B22X]I1X+ Col 0)+ f3(A3+ B31x+ C3( 0))
+f4(A4+ Bgyx+ B42X]DX+ C4( 0))+ f5(A5+ Bgix+ B52X]I1X+ C]_( 0));
1 (x; 0)
hirx;( 0)1=hoBo1x+ Col o+ hi(A1+ Buix+ BoxInx + Cqf 0))
+hy(Boa1x+ BopxInx+ Cof o))+ h3B31x+ Cs( 0))
+h4(B41X+ B42X]I1X+ C4( 0))+ h5(A5+ Bsix + B52X]DX+ C]_( O))
ht o (x; 0)  (x=0; = o) : (B5)

C Inverse M etric C om ponents

T he com ponents of the Inverse of them etric (46), relevant to aln ost all equations in section 4 starting from
(49) are given as under:
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X X
X Anm e )sin(nkdb+ mkx):

C (nm)222=(0,0)

D Ingredients for Evaluation of N 5

In this appendix we 1lin the details relevant to evaluation of X 1Im (Fry )X Y to arrive at (70).
F irst, using (69), one arrives at;
" i
1 i Bonx Co Bon

Co
Im For) X "= — + — — — (As3+ B3ix+ Cs( )
01 > Bs C, Bs Cs 3 31 3 0
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Cq C1 C2 C2
+ — — (A4+ Bgix+ B42X]DX+ C4( 0)) + C_ — (A5+ Bgix+ B52X]DX+ C5( 0)) H
3 3 3 3
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mEx = = LSl alimaxe o )
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11 2 C3 C3 3 31 3 0
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(C1)

T his hence yields

X' Frox? = ®9)%Im (Foo)+ (X 1)°Im (F11)+ (X ?)°Im (F2)
+2x°X 1Im (Fo1)+ 2X °X *Im (Foz) + 2x'1x 2Im (F1p)
Bor Co Bor Co
- + -

i 2

= A5+ 2A3B3x+ 2A3C3( )

> 3 3531 33 0 B, Cs B, Cs
!

2 C: Ca
+ A4+ 2A4B41X+ 2A4B42X]DX+ 2A4C4( 0) — —_—
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2 C, C2
+ A5+ 2A5B51X+ 2A5B52X]DX+ 2A5C5( 0) — —_—
Cqg Cg
| |
C: Cy
+ A3A4+ [A3Bs+ AyB3i K+ AzBypxInx+ [A3Cs+ AgC3 0) o .
3 3
| |
C, C»
+ A3As5+ [A3Bsi+ AsB3i K+ AzBgyxInx+ [A3Cs+ AsCz( 0) o .
T Ty
C, C»
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4 4
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