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A bstract

W edevelop the form alism discussed previously in hep-h/0601209 and
hepph/0605246 to construct a kinetic theory that provides insight into
the earliest \G lasm a" stage of a high energy heavy ion collision. Particles
produced from the decay of classical elds in the G lJasm a obey a Boltz-
m ann equation whose novel features include an inhom ogeneous source
term and new contributions to the collision term . W e discuss the power
counting associated w ith the di erent temm s In the Boltzm ann eguation
and outline the transition from the eld dom nated regin e to the particle
dom nated regim e in high energy heavy ion collisions.
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1 Introduction

In two previous papers [1,2], we Introduced a form alisn to com pute m ulti-
particle production in eld theories coupled to strong tin edependent extermal
sources. TheQCD exam ple of such a eld theory isthe ColorG lass C ondensate
(CGC) [3{16]. For sin plicity, we considered a 3 theory; we belisve how ever
that m ost of our results are of general validity and can be extended to gauge
theordes [17].
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In thispaper,wew illaddressa problem in m ulti-particle production thatwas
not considered in Refs. [1,2]. Speci cally, the approach developed there did not
include scattering processes that are in portant for the dynam ics of the system
at late tin es. These are the s0 called secular temm s which are of higher order
in the coupling constant (loop corrections) and are accom panied by grow ing
powers of tin e [18{20]. T he secular contributions m ust be resum m ed to obtain
sensible results. Tn a quantum eld theory, this resum m ation is perform ed in
principle by solving the D yson-Schw inger equations. In practice, the D yson—
Schw inger equations are di cult to solve. For a system of elds coupled to
an ensam ble of particles, it is well known that the D yson-Schw inger equations
can be approxin ated by a Boltzm ann equation for the distribution of particles.
T he goal of the present paper is to extend the approach ofRefs. [1,2] to derive
a kinetic equation that includes the late tim e contributions to m ultiparticle
production In el theories w ith strong extemal sources. W e have in m ind the
dynam ics after a heavy ion collision, where the classical eld produced by the
colliding nucleiexpands rapidly into the vacuum along the beam direction. O ur
approach m ay also be of relevance to descriptions of the decay of the In aton

eld and them alization in the preheating and reheating phases of the early
universe{a nice review with relevant references can be found in Ref. 21]. In
both cases, as the classical eld evolves, the occupation num ber decreases and
it is m ore appropriate to describe the higher m om entum m odes of the system
in temm s of particle degrees of freedom .

T he connections betw een the classical approxim ation in eld theory and ki-
netic equations in the fram ew ork of nuclear collisions w ere previously discussed
by M ueller and Son [22], and subsequently by Jeon [23]. They considered a
system of elds in the presence of an ensem ble of particles described by a distri-
bution f. Perform ing a classical approxin ation in the path integraldescribing
the evolution of this system and a gradient expansion in the obtained D yson—
Schw inger equations, these authors obtained a kinetic equation for £ . An obvi-
ousquestion arises: w ith w hat accuracy does this kinetic equation reproduce the
Boltzm ann egquation one would obtain w ithout perform ing the classical approx—
In ation? The authors of Refs. [22,23] nd that the kinetic equation obtained
from the classical path integral reproduces correctly the collision term in the
Boltzm ann equation to leading power of f and (surprisingly) the rstsubleading
term In £ aswell

W e shalladopt a m ore ab initio approach here by considering a system that
does not contain any particle degrees of freedom initially, but where the elds
are coupled to a strong tin edependent external source j. T he extemal source
is assum ed to be a stochastic variable that belongs to an ensem ble of charges
gpeci ed by a distrbution W [j]. This is the typical set up in the description of
heavy ion collisions in the C olor G lass C ondensate fram ew ork where W [j]repre—
sents the distrdbution of color charges. B ecause of the expansion of the system ,
onem ay anticipate that the system can be described by eld theory m ethods at
early tin es and by kinetic theory and hydrodynam icsat later tin es. Them atter
in this regin e in heavy ion collisions has Interesting properties; tw o notew orthy
possbilities are dynam ically generated topological charge [24,25] and plasna



Instabilities possibly leading to turbulent color elds [26]. Thism atter has been
called an G lasm a [27,28] and understanding its dynam ical evolution holds the
key to a deeper understanding of the strongly interacting Q uark G luon P laan a
(VGP) thatm ay be form ed at later tines [29]. The

W ew illaddresshere generalquestions about the dynam icalevolition of such
m atter in the sin plest possible context of a scalar ( °) eHd theory *:

i. W hat is the kinetic equation one obtainsin eld theories coupled to strong
extemalsources? K now ing the answ er to thisquestion is in portant for one
to handle correctly the transition region between a eld theory description
and kinetic theory. Indeed, one expects from thework in R efs. [22 ,23]that
there exists a window In tim e where both approaches correctly describe
the dynam ics 2. This suggests that the kinetic equation in the overlap
regin e m ust know about the coupling of sources to elds at earlier tim es.

How isthism anifest, how in portant is thise ect and how does it go away
?

ii. W hat tem s in the kinetic equation are Im portant at di erent stages of
the expansion? T he previousquestion hints that we w ill obtain a kinetic
equation that has additional term s absent in the conventionalB oltzm ann
equation. W e would like to understand how this generalized Boltzm ann
equation converges to the usualone at late tim es.

T he paper is organized as follow s. In section 2, we shall rem ind the reader
of relevant form ulae in the derivation [1]ofthe averagenumber n ofproduced
particles. In section 3, we shall w rite down the D yson-Schw inger equations for
the twopoint functions in theories w ith tin e dependent strong sources. T hese
provide the starting point for a derivation in section 4 of the corresponding
kinetic equation for the G lasn a. W e observe that the coupling of the eld to
an extemal source leads to an inhom ogeneous term in this kinetic equation.
In section 5, we discuss the properties of the di erent termm s appearing in the
kinetic equation. A Ibeit the collision term in the kinetic equation looks iden-
tical to the collision term in the usual Boltzm ann equation, it contains novel
contributions to the self energy that are of 0-loop and 1-loop order. W e discuss
the power counting for these di erent contributions and assess their relative
contrbution at di erent stages of the tem poral evolution of the G lasma. W e
conclide w ith a brief sum m ary and outlook em phasizing unresolved issues. An
appendix addresses how the averaging over the sources j in our form alisn can
be re-expressed in term s of the usualensam ble average in plicit in the derivation
of kinetic equations.

lEven the \sim ple" scalar theory is non-trivial. It will indeed contain very general fea—
tures of relevance to the G lasm a albeit the latter w ill have signi cant (and very interesting)
additional features that are absent in the scalar case.

2T hishas to be the case ifone wants the nalresult to be independent of the tim e at w hich
one sw itches betw een the two descriptions.



2 Ab initio com putation of n

W e consider the theory ofa realscalar eld w ith cubic self-interactions, cou—
pled to an extemal tin e dependent source j(x). T he Lagrangian of the m odel
is

1l 22 93
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In [1], we system atically calculated particle production from these sources. In
the C olor G lass C ondensate fram ew ork that this toy m odelm in ics, the colliding
pro gctiles are represented by a statistical ensem ble of currents j. Physical
quantities are obtained by averaging over all possble realizations of the j’s. In
this section, we shalldiscuss the calculation of the average num ber of produced
particles in a given con guration of j’s.

A general form ula for the average num ber n of produced particles is

Z d3p , .
n = m Oin alur (Placue (@) O : (2)

T he num ber of particles produced with a certain mom entum p is de ned as
the expectation value of the \out" num ber operator in the initial state. This
form ula gives the num ber of particles at asym ptotic tim es, after the particles
have decoupled °.

A sin ple reduction form ula gives [30]

1 . .
Oin agut(p)aout(p) O = E d4xd4ye ®oRP Y

(x+m?)( y+m?) 0 (X) ) 0n ; (3)

where Z is the wave function rem om alization factor. The expectation value
in the right hand side of this equation has two in portant features : (i) the
vacuum state is the \in" vacuum state on both sides and, (ii) the two elds
inside the correlator are not tim eordered. The Schw ingerK eldysh form aliam
[31,32]provides techniques for com puting these types of correlators.

The operators + m ? am putate the external legs of the tw o-point fiinction
G + (x;v) O (X)) (v) Oy, .De ning

(x+m?)( y+m?)

& . (xjy) 7 G . (xiy); (4)
we can write the average m ultiplicity as
: d3p : 4 4 ip xip vy,
n = m d*xd'y e TP Y® | (x3y): (5)
Introducing the variables
X+2 Yir x Vi (6)

3T he \num ber of particles" at som e interm ediate tim e, w hile the elds are still interacting,
isnot a wellde ned concept.



we can rew rite this form ula as

Z
dn 1 a
Ep%:l63 d'X & , (X ;p); (7)
w here Z
4 o r r r
& , X ;p) d're & | x+§;x > (8)
is the W igner transform of & , (x;y).
In the Schw inger{K eldysh form alism , the propagators G o(x;y), ( ;° =
+; ) can be expressed as
G o(xiy)= —— €' sx A ; ©)
1 Jx)1i Joly) =3 =3

where iV_, [J, ;] ] is the sum of all connected vacuum vacuum diagram s.
When j, = j = 3j,1V,, [J;j]= 0 and the sum of all vacuum vacuum dia—
gram s is unity.

W orking out the fiinctional derivatives,

v, iV, 24y

G o ; — . - - - + - - 'SK' M 10
Geiy) 13&)1 Joly) 1 3&)L Joly) o)

k=3 =3
As iV, , isthe sum of connected vacuum -vacuum diagram s, any of its deriva—
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Figure 1: D iagram m atic representation of the disconnected (left) and connected
(right) termm s In eg. (10). T he gray blobs denote the rem nants of G reen’s func—
tions after the free propagators at the endpoints are am putated.

tivesw ith respect to j isa connected G reen’s finction. T herefore,G o can be
decom posed as
G o(x;y) Gox;v)+ GUGx;y): (11)

T hese are, respectively, the connected part
2
Vv
G ox;y) T i (12)
1361 Joly) 5 _y —5

and a disconnected part corresponding to the product of the expectation values
ofthe ed at thepointsx and y :

G"Sx;y)= (x) (y) with x) = —— : (13)



Figure 2: Exam ple of a tree diagram contributing to the eld expectation value.
T heblack dots term inating branches of the tree represent insertions of the source
Jj In the diagram on the right. The sum of these tree diagram s is represented
(keft) by a line attached to a gray blob.

W hen 4. = j = j, the expectation value of the el is the sam e on the upper
and lower branches of the contour: ., (x) = (x) . Thisexplainswhy we
om itted the + = index in the expectation value of the eld.

A typical treelevel contribution to  (x) is shown in gure 2. Note also
that (x) wvanishes if the external source j(x) is zero® . At tree level, because
3 = Jj = j,thesum overthe+= indicesin the Schw ngerK eldysh form alism
at all the intermal vertices of the tree (including the sources) can be perform ed
by using the identities

Gy, G, =6? ; 6’ G° =6?2; (14)
where G g is the free retarded propagator’. W hen this sum is perform ed, all
propagators in the tree diagram can be sin ply replaced by retarded propagators.
This is equivalent to the statem ent that (x) is the retarded solution of the
classical equation ofm otion,

Cem?) G0+ 2 T = ) (15)
w ith a vanishing boundary condition atxp = 1 .

Eqg. (7) is the com plete answer to the problem of particle production in the
e ective theory described by the Lagrangian of eg. (1). If one were able to
com pute & (x;y) to allorders, this form ula would contain everything one needs.
T here would be no need for tools such as kinetic theory.

4W e assum e that the self-interactions of the elds are such that there is no spontaneous
breakdown of symm etry when j= 0.

5In m om entum space, this propagator reads G S (p) = i=(p?

m? + ip® ).



However, evaluating eg. (7) to all orders is an unrealistic goal. W hat has
been Im plem ented thus far is the evaluation of eq. (7) at leading order (tree
level) to calculate the gluon yield in high-energy nucleusnucleus collisions [33{
38]. In [1], an algorithm was sketched to com pute n at nextto-leading order
(one loop) in temm s of the retarded classical eld and of retarded uctuations
propagating in the classical eld background.

In practice, one has to truncate the loop expansion. A s we w ill discuss in
the next section, the correct way to perform practical calculations isw ithin the
fram ew ork of the D yson {Schw inger equations.

3 D yson-Schw inger equations

Themain problem with the loop expansion described in the previous section
is that, In general, truncations in & (x;y) will lead to an incorrect large tim e
Iim it of the num ber of produced particles. T his can be traced to secular temm s
containing pow ers of the tim e that invalidate the perturbative series in the large
tin e 1im it. T his can be cured by appropriate resum m ation ; the wellknow n way
to do this is to solve D yson-Schw inger equations [18{20]. In this section, we
shalldiscuss the D yson-Schw inger equations obeyed by the two-point functions
G o(x;y) of the Schw ngerK eldysh form alisn . W e w i1l see that the presence
of a disconnected contribution to these 2-point fiinctions leads to interesting
features in the corresponding D yson-Schw inger equations.

3.1 D yson-Schw inger equation for the connected part

Tt is straightforw ard to w rite a D yson-Schw inger equation for the connected part
of the 2-point fiinction, G € ¢, that resum s selfenergy corrections :
Z h i
G xjy)= G (xiy)+  dlud'vG’(xu) i @iv)GSviy)i  (16)
C
where i isa l-particle irreduchble connected selfenergy, evaluated in the
presence of external sources. W e shallnotw rite here explicitly the  indicescar-
ried by the various ob fcts. Instead, we w rite the tin e integrations as integrals
over the com plete Schw ingerK eldysh contour C.
It is convenient to extract from this selfenergy a localpiece, by w riting

(u;v) g () (u wv)+ (u;v) : (17)

E xcept for the background eld, which is a genuine local contribution to the
selfenergy, there is a certain arbitrariness In this separation because it depends
on them om entum scale at which we resolve the system . A contribution to the
selfenergy that doesnot change signi cantly over space-tin e scaleson the order
of the Com pton wavelength p ' can be treated as a mean el at that scale.

® Tt is connected in order to have a connected 2-point function after the resum m ation and
it needs to be 1P I to prevent double counting.
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Figure 3: Top: D iagram m atic representation of the D yson-Schw inger equation
of eg. (16). T he large gray blob denotes the 1-particle irreducible 2-point func—
tion . Bottom : decom position of the 1P I selfenergy  Into a localpart g

and a non-localpart (denoted by a large Iightgray blob), follow Ing eg. (17).

T herefore, themean eld term  (u) willcontain the classical eld, and possbly
changes in the dispersion relation due to m edim e ects ’.
T he D yson-Schw Inger equation then becom es

zZ
G x;y) = Go%x;y) dig d'uc®x;u) @G ;)
z h i
+  d*udive %x;u) i (u;v) G Svry): (18)
C
U sing
«+m?G6o%x;y)= i(x  y); (19)

w here denotes the delta function on the closed tin e path8 , We can rew rite

C

this equation as

c+ml+g ®)G(x;y)= i.(x y) d*u  (x;u)G “u;y):  (20)

‘ C
3.2 D yson-Schw inger equation for the disconnected part

W e also need a D yson-Schw Inger equation for the disconnected part of the
G reen’s function,

G xiy)=  (x)  (y) : (21)
B ecause the expectation value is a connected 1-point function, it is natural
to factor the connected propagator out of it, by w riting
Z
(%) d*u G °(x;u)s ) ; (22)

c

TTo allow for this possibility, we denote them ean eld piece by a sym boldistinct from the
one used for the classical eld.
8 o (x y)= 0 unless ¥ and yo are equaland lie on the sam e branch of the tim e path.



where S (u) is an \e ective source"tenn9.By construction, one obtains
Z
ctmitg (x) ) = 8K du xuw o @ o ((23)
c

M ultiplying both sidesby  (y) , one obtains

V4
(tmitg (x) G xy)= IS (X) (¥) du  (x;u)G "C(usy) : (24)
C
De ning
1°&®y) SE&E)S(Y); (25)
we can rew rite this equation as
Z h i
+m+g (x) G (x5y) = d'u P (x;u)G Cuiy)+ (x;u)G "Cusy)

C
(26)

Adding egs. (20) and (26), we obtain the D yson-Schw inger equation for the
com plete twopoint function:

C

«tmitg ®X)G(xy)= i (x y)
Z h i

d'u P (x;u)G Sy + (X6 (Upy) :(27)

C

Theonly form aldi erence betw een thisD yson-Schw inger equation and the equa—
tion one obtains in the absence of the source j is the term proportionalto  °
in the right hand side.

In principle, the resum m ations perform ed by solving egs. (20) and (26) (or,
equivalently, egs. (20) and (27)) would com pletely cure the problem of secular
term s. Such an approach hasbeen pursued num erically In [39], but hasnotbeen
attem pted yet in the context of heavy ion collisions in the CG C fram ework.

4 K inetic equation

T he D yson-Schw inger equations we w rote down in the previous section contain
all the necessary physics but their solution is lkely too di cult; they there—
fore by them selves do not provide any practical insight into the dynam ics of
high energy heavy ion collisions. O ne can sin plify the problem a step further
by transform ing the D yson-Schw inger equations for the 2-point fiinctions into
kinetic equations. However, as we shall discuss shortly, doing so requires that
certain assum ptions be satis ed.

°In the classical lim it, one has S (x) = J(x)+ % 2(x) (see section 5.2).



4.1 Fields and particles

A s is well known, the Boltzm ann kinetic equation describes the space{tim e
evolution of particle phase space densities. T herefore, to achieve a kinetic de—
scription, the form alism considered thus far should be extended to Incorporate
an ensem ble of particles. T his is sin ply done by m odifying the free propagators
to add a term that depends on the distribution of particles f (p). In m om entum

space, them odi ed propagators are!®

60 p) S t2fp) @ m);
P me+ 1
" ) ————<+2fp@) E n’);
P m i
e 2B+ EfE) E m);
G ® 2 (( H+fE) & mn): (28)

These modi ed rules for the Schw inger{K eldysh propagators can be de-
rived [40]when the initial density m atrix that describes the ensem ble has the
fom n 2 i

d3
P B, al ®lanp) ; (29)

=P 2 F2E,

where , isamomentum dependentquantity. (Note: , should notbe confused
w ith the Inverse tem perature.) Such a form for the density m atrix is required
if correlators com puted w ith this density m atrix are to satisfy W ick’s theorem .
From this form of the density m atrix, one obtains the Schw ingerX eldysh rules
of egs. (28), w ith
1

fp)= —5— (30)
The function f (p) In the propagators only represents the initial distribution
of particles in the system . Thus the eld theory de ned by the Lagrangian of
eg. (1) and the propagators of egs. (28) describes a system of elds coupled to
an external source j and to an ensem ble of particles w ith an initialdistribution
f(p). The Feynm an rules then enable one to calculate the properties of this
system ata later time.

However, egs. (28) do not lead to a well behaved perturbative expansion,
except when the function f (p) is the equilibbrium BoseE instein distribution
in our m odel of bosonic elds. In general, when f (p) is not a BoseE instein
distrdbution, the perturbative expansion based on egs. (28) is plagued by the
previously m entioned pathological secular term s which need to be resumm ed.
T he tin escale at w hich resum m ation becom es necessary is related to the trans—
port m ean free path in the system , nam ely, the tin e between two large angle
scatterings undergone by a particle. T his resum m ation m akes the distribution
f (p) tin e{dependent re ecting the changes induced by collisions on the particle

10T he propagators of the Schw ingerK eldysh form alism appropriate for calculating eq. (3)
are the samewith f(p)= 0.

10



phase space distribution. Under certain approxin ations to be discussed later,
this tem poral evolution is governed by a B oltzm ann equation.

T he problem form ulated in section 2 concermed a system thathasno ensem -
bl ofparticlesat the initialtime (£ (p) = 0 in egs. (28)). At wrstsight,asf = 0
is a particular case of the Bose{E Instein distrbution (w ith a vanishing tem per-
ature), secular divergences m ay appear to be absent. H ow ever, this conclision
is incorrect because of the presence of extermal sources w hich drive the system
out of equilibbrium . T hus it is also necessary to resum secular term s in this case,
leading to changes in f (p). T he generalized propagators in eg. (28) constitute
the natural fram ew ork to achieve this. B ecause the extermal source isboth tin e
and space dependent, one hasm ore generally

fte) ! £X;p) (31)

in egs. (28).
An in portant pointm ust be m ade here about the tree level expectation val-
ues (x) 1In this fdependent extension of our form alism . A crucial property

of the propagators in egs. (28) is that they still obey egs. (14). The retarded
propagator is therefore f-ndependent. T herefore, as long as loop corrections
are not included, the eld expectation value does not depend on £ and is den-
tical to the result obtained from the retarded solution of the classical equations
of m otion. Hence, the contrbution from the disconnected part of the 2-point
function lead to an inhom ogeneous (f {independent) term in the Boltzm ann
equation.

4.2 G radient expansion

T he extension (28) of the propagators leads to D yson-Schw inger equations that
are form ally dentical to egs. (20) and (26) { with all the buiding blocks now
constructed w ith f-dependent propagators. The rst step in obtaining the
Boltzm ann equation is to rew rite all the distributions in term s of their W igner
transform s. For a two-point function F (x;y), its W Igner transform F (X ;p) is
de ned to be
Z
4 ip s S S
F (X ;p) d’se ® °F X+§;X > : (32)

T he next step is to perform a gradient expansion w here only long wavelength,
low momentum m odes are retained. In particular, all tem s of order two or
higher in @, are neglected. A sour goalis to construct a kinetic theory for the
G lasm a, we w ill discuss the validity of this gradient expansion in the context of
heavy ion collisions in the CG C fram ew ork. In this fram ew ork [14{16], the color
sources 2 (x, ) generating the color currents ' are stochastic variables that
vary from event to event w ith a distrbbution W [ ]. W hen calculating a given
physicalquantity, one rstcom putes it foran arbitrary and then averagesover
allpossible ’s in the ensem ble generated with the weight W [ ]. For exam ple,

1T hese color sources are the Q CD analogs of the sources j in our toy scalar theory.

11



in the M cLerran-Venugopalan m odel [3{5], the distrbbution W [ ]isa G aussian
w ith 7

W= exp P, dly, —2) We) (33)
T2 2(%s5y,)
w here
2 (%2 7y, ) (x2) (vo) = 2(x2) (x2 v ) (34)
Here “ (x, ) represents the density of color charges at a spatial position x

A
in the nucleus. The typicalm om entum scale of the sources{the saturation m o—
mentum squared Qg atx, issinply related to f .

T he di erence betw een one particular elem ent of the ensem ble and the aver—
ageweighted by W [ ]isillustrated in gure 4 forthe quadratic form 2. Because

[pp0

Xn Xg

Figure 4: Left: 2 distrdbution forone con guration in the ensem ble represented
by the distribution W [ 1. R ight: ensem ble average of 2

the (x; )areuncorrelated atdi erent points in the transverse plane of the nu-
cleus, a particular con guration of ’s leads to a very rough density pro le; in
contrast, the average an oothly follow s the W oods-Saxon density pro le of a
nucleus. This exam ple sin ply illustrates that the gradients are uncontrollably
large for a given con guration rendering any gradient expansion m eaningless.
O n the other hand, it is perfectly legitin ate for ensem ble averaged quantities.

T he typicalm om enta of \hard" particles is set by the saturation scale which
is of order Q ¢ 1{2 GeV at RHIC energies; this scale m ay be higher at the
LHC .In contrast, the gradient @, for averaged quantities changes appreciably
over distance scales of the inverse nuclear radius given by R, . 40M eV for
a large nucleus. The an allm agnitude of this scale In the gradient expansion
relative to the typical saturation m om entum justi es the gradient expansion for
quantities that are averaged over the ensam ble of color charges.

T he corresponding changes to the Feynm an rules are described in appendix
A . Here it is su cient to note that the ensam ble average is obtained by con-
necting all the external sources j in the m anner speci ed by the distribution
W [ ]. For instance,in theM V modelW [ ]isa G aussian,which in plies thatall
the sourcesm ust be connected pairw ise. Theobfcts °, and thatappear
in the D yson-Schw Inger equations (20) and (26) m ust be thought of as being
averaged over j. In Feynm an diagram s, we w ill represent the average over j by

12



surrounding the diagram by a light gray halo :

®) = | (35)

T his com pact notation encom passes a very large num ber of contributions. For
instance, at leading order, one would rst approxinate (x) asthesum ofall
the tree diagram s, an exam ple of which is represented In gure 2. For each such
tree diagram , the sources j (the black dots in gure 2) are reconnected pairw ise
in all the possible ways. A typical reconnection of the sources, corresponding
to the topology of gure 2, isdigplayed In  gure 5. Note that the \loop order"

Figure 5: Exam ple of a tree level contrlbution to the average over the sources j
of the eld expectation value for a G aussian distrbution of sources. T he links
in red represent the elem entary correlators j(x)j(y) . The source connections
represented here are for sin plicity am ong nearest neighbors; all other pairw ise
topologies are feasible.

of a given diagram is a m eaningful concept only for diagram s before they are
averaged over j. Indeed, as one can see by com paring the gures 2 and 5, the
diagram before the j-average has 0 loops and is of orderg !. A fter the average
is perform ed, w hile it has a Jarge num ber of \loops" which do not contain any
inform ation about the order in g of the diagram .

4.3 Boltzm ann equation

The nalingredient in the derivation of the Boltzm ann equation is the so-called
\quasi{particle ansatz" which can be expressed as

G , X,;p)= 1+ £X;p)) X;p);
G, X;,;p)==1fX;p) X;p); (36)
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w here the spectral function (X ;p) is
Xip) G, Xip) G, Xip)=G . X,;p) G+ XKip): (37)

T he physical assum ption here is that the interactions in the system are such
that the collisional w idth of the dressed particles rem ains sm all com pared to
their energy; the systam ism ade up of long-lived quasi{particles.

T he Boltzm ann equation can now be obtained as follow s:

i. W rite a D yson-Schw inger equation analogous to eg. (27), but with the
di erential operator + m 2+ g acting on the variabl y instead of x,
and subtract it from eq. (27).

ii. Rewrite this equation in term s of the W igner transform ed quantities and
perform a gradient expansion keeping only leading term s in @, .

iii. Replace the G reen’s functions w ith the quasiparticle ansatz and drop the
spectral function (X ;p) which appears as a factor in all the temm s.

If the term s proportionalto ° were absent from eg. (27), the steps outlined
above would result in the wellknown Boltzm ann{V lasov equation,

2p REX;p)+aol X) &LXip)=
= 1+ £fXip)) + Xjp) fXip) + X;p): (38)

S

T he extra term we have In the D yson {Schw Inger equations, proportional to ,
w illm odify the Boltzm ann{V lasov equation. T wo key features of thisnovelterm
w il prove essential in ourderivation. The rstisthat ° (x;y)doesnotdepend
on whether the points x and y are on the upper or lower branch of the tine
contour. This is because the expectation value of the eld, for equal values
of the sources 3, and j , is the sam e on both branches of the contour. The
second feature is that the non-connected part of the propagators drops out of
the spectral function, for the sam e reason. Hence,

Xip)=G . Xip) G. K;p)=G°, X;p) G X;p): (39)

U tilizing these two properties, we can perform the gradient expansion for this

additional term In the sam e way as perform ed for the usual selfenergy correc—

tion. Tt m odi es the right hand side of the Boltzm ann equation by an additive

correction'®  ® (X ;p). Therefore, our nalexpression fr the kinetic equation

is

2p LGEX;p)+ gl (X)) L£Xip)=
= *X;p+ 1+ fXp)) + Kip) fXip) +Xjp):

(40)

12N ote that prior to dropping the spectral function that appears in alltermm s, we would have
DowpeS, (ip) L Pt (up) = Sep6S, eGP )]

= S Xip) KXjp):
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Thenovel\sourceterm " ° (X ;p) In thisequation isnon-zero even if the particle
distribution f (X ;p) is zero. It is therefore responsible for £ = 0 not being a
xed point of the above equation; the solution of this equation is non-zero at
Jater tim es even if the initial condition had a vanishing particle distrdbution.
In the next section, we w ill discuss further signi cant di erences between this
kinetic equation and the conventional B oltzm ann-V lasov equation In eg. (38).

5 Properties of the G lasm a kinetic equation

In this section ,w e shalldiscuss the various term s in eq. (40) w ith em phasison the
di erences between these and those appearing in the conventional B oltzm ann
kinetic equation.

5.1 V lasov temrm

W e rst consider the V lasov term (9@, &) In the Boltzm ann equation. W e
note that In perform ing the average of themean eld (X ), over the external
sources j, the various correlation functions 7j(xi) n Jjpem itted by the
distribution of sources W [j] are nearly translation invariant. T he dependence
of these correlators on the barycentric co{ordinate X (% + n =X is very
slow because it arises from the density pro le of the colliding nuclki® . T herefore
the 1point function (X ), averaged over j, also hasa very slow dependence on
its argum ent X ; its Fourder transform w ith respect to X has only m odes w ith
m om enta on the order of the inverse nuclear radius. A s discussed previously,
this scale is very sm all relative to the typicalm om entum of the particles under
consideration and it is therefore legitin ate to approxin ate it asa V Jasov tem .
As iswell known, the e ect of this term In the Boltzm ann equation is to
change the m om entum of particles as they m ove betw een regions w here the ex—
temal eld isdi erent. Indeed, g@, is the force that acts on the particles at
point X and accelerates them towards regions of lower potential'* . The m ean
eld includes not only the classical eld directly produced by the extemal
sources, but also possbly a contribution com ing from the particles encoded in
f (X ;p). Such a modi cation m ay arise from a m odi cation of the particle dis-
persion relation due to the collective action of the other particles. For instance,
if the particles acquire a m edium m ass with a weak space-tin e dependence,
this m ass can be represented by a potential in the V Jasov term of the kinetic
equation.

13T he fact that this density pro le is not a constant is the only e ect in the problem that
breaks translation invariance.

14For non centralcollisions, the shape of the overlap region betw een the tw o nuclei is elliptic;
one has stronger gradients in the direction of the sm all axis of the ellipsis relative to those in
the direction of its large axis. The V lasov term therefore accelerates particles preferentially
in the direction of the sm all axis of the overlap region. T his leads eventually to elliptic ow
and to an anisotropy of the spectrum of particles in m om entum space. This e ect is obtained
entirely w ithin kinetic theory w ithout any assum ption about the degree of them alization of
the system .
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5.2 Source term in the kinetic equation

Letusnow considerthee ectofthe sourceterm ° (X ;p) in eg. (40),which can
be obtained as the W igner transform of the product S (x)S (y). An interesting
situation, relevant for heavy ion collisions, is when tree diagram s are dom inant
because the extemal source is strong (g3j 1). In this case, the expectation
value (x) is dom inated by the retarded classical eldd (x); the connected
part of the 2-point fiinction, G ©, is sin ply the propagator of a uctuation on
top of the classical eld,

G '= +m?+g : (41)

O ne therefore inm ediately obtains the Hlow ing expression® for S (x) :

h i
S (x) = +m2+g (x) (%)
- &)+ % 2 (x) (42)

W e see here that the e ective source S (X)) receives two contributions :

i. the extermal source j(x) itself. This term is only In portant f we want to
use the Boltzm ann equation In regions of spacetin e where the extermal
source is stillactive. Tn a heavy jon collision, the color sources are present
only on the light-cone at a proper tine = 0. W e will not consider this
term further.

ii. A temm quadratic in the classical eld produced by the external source;
this term continues to contribute after the external sources have stopped
acting.

Onem ay represent this e ective source graphically as

S (x) —®:—o+{: (43)

The second term has a fairly straightforward interpretation. W hen the temm
quadratic in  in the classical equation ofm otion
h i

+ m (x)= j(x) g 2

> (x); (44)

is In portant, we see that the eld isnota free eld. If expanded in particle
m odes, the num ber of particles in the eld would change w ith tin e. T herefore,
if one sw itches between a description in term s of classical elds to the kinetic

15T his is the result for a potentialg >=3!. For an arbitrary potentialV ( ), the expression
of S (x) in this approxim ation would read

Sx)=3x) VO N+ &P (x);

w here the prim e denotes a derivative of the potential w ith respect to
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equation at a stage where this non-linear term is still signi cant, the source
term in the Boltzm ann equation m odi es the num ber of particles in order to
take this e ect into account.

At tree level, the e ective source S (x), and hence ¢, is independent of
the distribbution of particles £ . A sdiscussed previously, this is a straightforw ard
consequence of the fact that, at tree level, the 1-point function in the Schw inger—
K eldysh form alisn can be rew ritten entirely In term s of retarded propagators
that are f {independent. ° is therefore non—zero even if £ = 0. In contrast,
the tem s in the rh s of the Boltzm ann equation depend on £ and vanish
when £ = 0 as expected for collision term s. ° is therefore a source term in
the B oltzm ann equation, because it drives £ to a non—zero value even if one has
f = 0 initially.

W hen we perform the average over j of the disconnected product S (x)S (y),
we get both disconnected and connected source tem s,

5 ®)S(y) = { >_ + _< >_ : (45)
’

depending on how the sources j are reconnected. In this picture, each light
shaded area is sin ply connected after the average over j has been perform ed,
and all the sources j it contains are linked in all the possible ways that preserve
its connectedness.

The rsttemm In the rh.s. of eg. (45) corresponds to contributions w here
w e connect together only j’s that belong to the sam e factor S, S (x) 5 S (y) .
O ur previous rem ark about the average over j of the 1-point function (X )also
applies here to S (x) S its Fourder transform only contains very soft m odes
of the order of the Inverse of the nuclear radius. Tt is therefore nearly zero for
the typicalparticlemomentum p Qg we are interested in here. Thusonly the
connected temm s in the average of the source term S (x)S (y) ;m atter n the
kinetic equation.

D

5.3 M agnitude of eld insertions

The source term In eg. (45), as well as the other termm s In the right hand side

of the Boltzm ann eguation, involre insertions of the classical eld (x). In this

subsection, we present a sin ple pow er counting that enables us to estin ate the

m agnitude of such insertions. To sin plify the discussion, we shall assum e that

the space{tin e coordinate X corresponds to su ciently late tim es when the

extemal source j is zero and its in uence is only felt through the classical eld
(X ) generated by the source at earlier tin es.

Follow iIng the discussion after eg. (34), we assum e that there is hard m o—
mentum scale Qs In the problem {the saturation scale in heavy ion collisions.
T ypical particle m om enta are of order p Qs . In our toy m odel, the coupling
constant g has the din ension of a m ass in 4 din ensions. To m in ic the power
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counting in QCD ,we w ill write it as
g Qs (46)

where ,lketheQCD coupling constant, isdim ensionless. W e assum e that the
coupling constant 1.

To estin ate the order of m agnitude of the source term given In eg. (45), it
isnot su cient to know them agnitude of the classical eld. K inem atical phase
Space constraints can alter the naive power counting. A s these considerations
willapply equally to the collision termm s In the Boltzm ann equation, it is worth
our w hile to discuss the pow er counting for the source term at length here.

From eg. (25) and eq. (45), the naive power counting for the source tem
would give
Z D E

2~ 2

. S S
95 dlse® ¢ T+ 2)2%x 2y (47)
4 2 27

S (X p)=

W e will dem onstrate that eg. (47) vanishes when the m om entum carried by
the clhssical eld  is nearly on shell. Rewriting this expression entirely in
m om entum space In term s of the Fourder transform ©€(k) of the classical ed,

Z Z

2 2 4 4
02” , 7 d'ky kg
S (X ;p)= d*s e® °
W= = 2r @)
D BE

el XH)g de XH)g dke X 3)g ke X ) C(k1)C(ky)Cks)C(ky) .
J
(48)

For the sake of sin plicity, let us assum e that the average over the extemalsource
j of the product of four elds factorizes into products of averages of two elds
as suggested by the source distribution in eq. (33).
D E D E D E
Ck1)®k2)®(ks)®ky) = ©S(k1)®ks)  ©(k2)®(ky) + other contractions :
J J J (49 )
For illustrative purposes, w e consider only one of the possible contractions corre—

sponding to the connected topology of the second term in the rh.s. ofeg. (45)).
Tt is convenient at this point to denote

G, xiy) h &) ¥ (50)
so that one has
D E zZ . Kk
Sk)®ks) = Ay eI G T v ——— Gb
J

T he de nition of the obct G cf (x;y) is dentical to the usualde nition of the
+ com ponent of the Schw ingerK eldysh propagators, except, as the notation
suggests, it is constructed from the classical solution of the equations of m otion
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rather than from the full eld operator. Inserting this de nition into eg. (48)
and keeping only the lowest order '® in the gradients in X , one obtains

Z
‘0z d'k
4 2 1
+ other contractions : (52)

fXp) =

G, Xik)G, Xip k)

N ote that in this case there is only one other contraction, that leads to the sam e
contribution, thereby transform ing the prefactor 1=4 into a 1=2. Ifthe tine X °
at which this is evaluated is Jarge com pared to (Qs) ', the classical eld that
enters In the de nition of G Cf ism ostly on-shell, and one can w rite

G ®k) 2 (B m’)fal;k): (53)

By analogy with eg. 28, the distrbbution £.;(X ;k) can be Interpreted as repre-
senting the \particle content" of the classical eld. A s eg. (52) has exactly the
structure of a 2 ! 1 collision term w ith on-shell particles of equalm ass, it is
zero because of energy-m om entum conservation.

T herefore, to correctly estim ate the m agnitude of the source term ° when
the classical eld is weak, one neads to properly account for the slight o -
shellness of the eld Fourder m odes. From the equation ofm otion

(54)

+
[N
Il
o

~

the o —shellness of the classical eld com es from its self-interactions. T he sin —
plest way to take this o —shellness into account is to use the equation ofm otion
in order to write

z 4
Qs 1 d'g o

R A 2

@€k a); (55)

and to replace som e of the ©’s In eg. (48) by the above relation. It is su cient
to replace two ©’s In order to lift the kinem atical constraints that cam e from
the classical eld having only nearly on-shell Fourier m odes. T his substitution
is straightforward. O ne obtains,

Z
oy - 2902 2% g%k diq 1
& 1 Creree my
G, X;a)G, Kk aqG, X;p k)+ othercontractions :

(56)

18A t this order, this is equivalent to assum ing, from the translational invariance in the
transverse plane of a large nucleus, that eq. (51) can be replaced by

(T ) @ F e+ ka6 ) (k) s
J
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T his contribbution to the source term can be represented diagram m atically
as

; (57)

w here the solid Jines represent ordinary vacuum propagators (1=(k® m?)) and
the wavy lines represent the correlation fuinction G cf . It is interesting to note
that this contribution is identical In form to what one would have obtained in
the collision term of the conventionalB oltzm ann equation, except that here the
G " propagators arem ade up of the classical elds.
W e are now in a position to estim ate the power counting of contributions
to the source tem . F irst, the order of m agnitude of the denom inators k? m?
isQ g because the m om entum transfer k is of order Q 3 (and is not particularly
close to them ass shell). Each G cf contains a delta function. Two of them can
be used to perform for free the integrations over the energiesk® and ¢° , while the
third provides the value of one angular integration variable. W e nally obtain
the estin ate
02 naX) *£aX B)

wip) = = - (58)
w here 7
d’k o
ne(X ) PR falX k) ; (59)
f 2,n 02 2 and nq (X ) is the spatialdensity of particles correspond-—

ing to the classical eld. The expressionsf and n correspond respectively to
them axin alvaluesoff.;and ncy can haveatearly tines . Qg 1). The argum ent
P cannot be speci ed exactly (in fact, eq. (58) is an oversin pli ed version of the
actual formula for ° ), but it is a m om entum whose com ponents are of the
sam e order of m agnitude as those ofp, them om entum of the produced particle.
T his isan in portant point, because as tin e increases, the support of f.; shrinks
in the p, direction because of the longitudinal expansion of the system , thus
m aking £ (X ;P) decrease as well (while in the center of its support, it would
stay constant).

Even if eg. (56) is not valld (say, if the average over j were to generate
connections am ong the elds that are not paiw ise), the estinate of ° one
obtains from it hasam uch w ider range of valdity. (Eq. (58) isvalid even in the
saturated regin e.) W e also note thatas ° isan inhom ogeneous term existing
even when £ = 0, its m agnitude depends only on the tin e dependence of the
classical ed (x) through f.; and ng;.

5.4 Collision term s

T he estin ate of the various contributions to the collision term follow very closely
that of the source term . Let us start by listing the term s we need to estim ate.
Because of the presence of the background eld and of the average over the
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extemal source j, + (X ;p) can contain topologies that would not exist In the
vacuum . In fact, + (X ;p) can contain temm s that have 0, 1 and 2 ]oops17
before the average over the external source is perform ed. W e w ill denote by
Co[f 1;C1 [ 1and C; [f ] their respective contributions to the collision tem .

Let us start w ith Cp [£ ]. D Jagram m atically, it corresponds to

N ote that this represents only one of the diagram s that can possibly enter in
Co[f ]. From the experience gained in the estin ate of them agnitudeof * (X ;p),
we can readily see that there m ust be at least four insertions of the classical

eld for such a contrdbution to be kinem atically viable when the classical eld
becom esweak and hasonly nearm assshellFourierm odes. T he second equality
show s one exam ple of the topology one obtains after the average over j. The
corresponding expression reads

Z
et 28 Ak da 1
0 4 2 ¥ (@2 Pk m?)
G "(X;a)G, Kk aG, K;p k)+ othercontractions :

(61)

The only di erence between this expression and that of ° In eg. (56) is that
one of the correlators G ;" is now replaced by'®

G "®mp=2 & nHEX;p); (62)

that involves the distrdbbution f (X ;p) rather than the classical distribution
foa(X ;p). From this analogy, we can estin ate the m agnitude of Cy [£ ] directly
from thatof ° In eg. (58),by substituting one factor £.; or n.; by respectively
f orn. Here n is the spatial density de ned from f in the same way as in
eg. (59). W e obtain

1N aturally, there are also temm s w ith an even larger num ber of loops, but these are sup—
pressed if the particle occupation num ber is £ 2.

18T his formula for the correlator G * is only valid as long as the occupation num ber
f(X ;p) is Jarge com pared to one. Its full expression contains () + £ (X ;p).
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and the corresponding expression reads

Z
St e di -
' 4 2 ¥ (@2 )Pk m?)
G " (X ;) G Cf Xk G X ;o k)+ other contractions :

(65)

Here we replace two out of three correlators G Cf by G ' ;the power counting
for this diagram is then

(66)
(67)
Z
cpp. _9f 7 d% dla 1
2R Ty 2 ) (2 )P (k2 m?)
G "X;a)6 "®;k qG "TX;p k)+ othercontractions ;
(68)
and )
02 nX) “fX;p
CE] =2 = (69)

5.5 D iscussion

Follow Ing the pow er counting in equations (58), (63), (66) and (69),we are now
in a position to discuss qualitatively the relative m agnitude of the various term s
at di erent stages of the evolution of the system . An In portant facet of the
tem poralevolution is that the fiinctions f£.; and n¢; are determ ined once and for
all from the clhssical eld (x) itself. They do not receive any feedback from

the particle distributions or densities, denoted by £ and n respectively, that are
created in the evolution by the sourceterm  ° . T he tin e dependence ofn¢1(X )
is driven by the expansion of the system ; therefore at tin es larger than Q) ',

one has
Ne1 (X ) 1

n Qs
T his reduction of the classical particle density nq; w ith tin e happens because

the support In m om entum space of the corresponding phase-space density fci
shrinks. At a given space-tim e location X (speci ed by the space-tin e rapidity

(70)
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), only particlesw ith a m atchingm om entum rapidity y=  can stay fora long
tin e. T herefore, Inside its support, f.; rem ains constant satisfying

faly )

f 1: (71)

Note that at tines sm aller than Q) ', fo=f and na (X )=n are also both of
order 1 because the classical eld is com pletely saturated.

However, In all the estim ates of the previous subsection, f.; is evaluated at
som e arbitrary location X and m om entum p. T herefore, p w ill eventually fall
outside of the support of f.1, and f.; w illdecrease quickly*® after that happens.
For f.1, which com es entirely from the classical eldd , the only tin escale in
the problem is 1=Q ¢ and thus we expect f.; to start decreasing at tim es larger
than 1=Q 4.

Atearly tines, ! 0, the system does not have particles yet and we have
f = n= 0.0bviously, in this regin ¢, only the source term  ° is in portant in
the right hand side of the Boltzm ann equation. T he corresponding physics is
that a population of particles, described by the occupation num ber £, is built
up from the decay of the classical eld. However, these particles are still too
few to have collisions at a signi cant rate. Eqg. (58) tells us that ° QE n
this regin e.

A s a rough estin ate, if we integrate this source term in the range 0
Qs 1,we nd that the occupation num ber for particles ofmom entum p Qg at
atime Q s

1: (72)

At this tim e, all the com ponents of the m om enta of these particles are typically
of order Q 5. T herefore, we also have

1: (73)

Attinesaround (Qs) ! allthe tem s i the right side of the B oltzm ann equation
are of equalm agnitude. Indeed, in this regin e, term s w ith an arbitrarily large
num ber of loops contribute equally to the collision term when £ f . There
would therefore be an equally large Cs[f [;C4 [£ J; etc... In practice, this m eans
that one should start using the Boltzm ann equation only at lJater tim es.

At later times, o} 1, collisions am ong the particles becom e in portant
and their qualitative e ect is to broaden them om entum distribution of the par—
ticles represented by f, thereby counteracting the e ect of the expansion?® of
the systam . T hanks to these collisions, £ (X ;P) f2lls at a lesser rate com pared
to fo1(X ;p) (which isnot a ected by collisions), which eventually leads to the

19T he precise tin e dependence of this falldepends on the p, dependence of f.;. To take an
extrem e case, there would be no fallat all if f.; is independent of p, .

201n the absence of collisions, f would be a ected by the system expansion in a sin ilarway
to f.1, and its support would shrink like I in the p, direction.
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dom inance of C; [f ] over all the other term s in the right hand side of the Boltz—
m ann equation. W hen this occurs, our Boltzm ann equation is identical to the
usualone. T he detailed m echanism s of this transition betw een the classical eld
dom Inated regin e and the kinetic regim e w ill be discussed In a future work. In
particular, it will be interesting to com pare, for the QCD case, the tem poral
evolution of the kinetic equation for the glasm a w ith the \bottom up" scenario
of themm alization [41].

6 Summ ary and O utlook

In this work, we developed the form alism of Refs. [1,2] for particle production
in the presence of strong sources to construct a kinetic theory relevant for the
early \glaam a" stage of a heavy ion collision. In particular, we considered for
sin plicity, thedynam icsofa * theory in the presence of strong sources. M uch of
our discussion how ever is com pletely generaland could In principle be extended
to describe thedynam ics ofgauge elds exploding into the vacuum after a heavy
jon collision. W e showed that the relevant kinetic equation for the particle
distributions £ has the structure of a Boltzm ann equation w ith an additional
inhom ogeneous (£ -independent) source term denoting particle creation from the
decay of the classical eld. T he collision term s in the Boltzm ann equation also
have novel features. In addition to the usual contribution from the two loop
self energy, there are 0-loop and 1-loop contributions that a ect the particle
phase space distributions. W e outlined the power counting that controls the
m agnitude of the contributions of the source term and the collision term s. T he
tem poralevolution of these contributions was discussed only brie v and w illbe
discussed in detail elsew here.

T here are severalunresolved issues that should be addressed in fiture work.
Prin arily, we would like to understand precisely how the derivation here plays
out in the QCD case. In Refs. [42{45], it was shown that instabilities of the
W ebel type [46{51]can spoil the bottom up scenario of them alization. Such
an instability is also seen in the CGC fram ework in the explosive grow th of
an all uctuations about the classicalbackground eld [52{54]and hasa natural
interpretation as quantum uctuations about the classical background elds
on the light cone [55]. A num erical study of instabilities n a eld+ particle
fram ew ork has been perform ed [56 ]but we would like to better understand how
the e ects of such instabilities m anifest them selves in the kinetic equation for
the glaam a. Tt would be especially interesting to uncover w hether K olm ogorov
turbulent spectra [57] arise as a consequence of these instabilities [58,59] and
w hether this phenom enon of \turbulent them alization" can be accom m odated
in our kinetic fram ework.
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A A verage over the sources

W e have seen that it is crucial for the valdity of the gradient expansion to
consider quantities averaged over the source j coupled to the elds. W e shall
discuss brie y here how this average can be accounted for in our form aliam .
Let us start from the generating functional for G reen’s functions of the
Schw ingerK edysh form alism ' Z ;[ ], for a given con guration j of the ex-
ternal source. W e de ne it in such a way that the npoint G reen’s functions is
obtained by di erentiating n tim es w ith respect to , and then by setting the
auxiliary source to zero. From whatwe have said in section 2, this generating
functional is related to the sum of all the vacuum vacuum diagram sby :

z50 1= &Vsx U 15 (74)

w here we have again used a com pact notation com pared to eg. (9). W e do not
use a boldface letter for the extemal source j, In order to em phasize the fact
that it is dentical on both branches of the closed tin e path.

From this objct, it is very easy to construct the generating functional for
G reen’s functions that are averaged over som e enseam ble of extermal sources,
w ith a distrdbution W [j], as :

z[ 1= D W [§1eVsex U 1, (75)

In order to see how this average over j can be accounted for in the Feynm an
rules, it is useful to w rite the generating functional fora xed j as follows :
Z
eVer Ut - exp i d*xVv
7 C
d'xd'y (3x)+  x))G (x;y)(Gly)+  (v)) 5(76)
c

(%)

&=p

NI

whereV isthe sum ofallthe interaction termm s in the theory under consideration
(1e. allthe tem s of the Lagrangian density that are ofdegree 3 In the eld).
In this ormul, G % (x ;v ) denotes the free propagator in the Schw iIngerX eldysh

21 In order to keep the notations com pact, we denote by a boldface letter the pair
(+; ),where the indices refer to the Schw ingerX eldysh closed tim e path.
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form alisn  (as opposed to the full propagator de ned in eg. (9)). It is now
convenient to w rite the second exponential in the rh.s. ofeg. (76) as the action
of a translation operator on a functional that does not depend on j,

Z

&p

N

d'xd'y )+ @6 ery)GW)+ (v) =
Cy, V4

. 4 . 1 4 4 0
=exp i dzjz) exp - dxdy &X)G (x;y) (v)
c z) 2 ¢

(77)

By nserting this form ula in eq. (76),and then in eg. (75),weobtain the follow ing
expression :

Zl 1= Di W [leed =it —m
Z ]_Z
exp i d*xv —— exp — d'xd'y x)Gx;y) (v)
C (X) 2 C
(78)

T he term s on the second line are nothing but the generating fiinctional for the

sam e theory w ithout any extermal source (since it does not depend on j). As

we can see, the e ect of the average over the extemal source j is to bring a

prefactor which is a certain functional of the operator = . Such a tertm can

be interpreted as additional couplings am ong the elds, since one can always
write :

Z Z
. o if.dbz(z)—— . 4
Dj W [jle’e (z) exp 1 d'xU
c (%)

(79)

W hat this derivation m akes obvious is that, for calculating averaged quantities
over the ensam ble of extemal sources j, one can forget the external sources
altogether, and inclide additional vertices to the theory??, as prescribed by
eg. (79). Note that this is equivalent to calculating a quantity in an arbitrary
j, and then reconnecting all the j’s am ong them selves in all the possble ways
pem itted by In(W [J]).
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