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A bstract

W edevelop theform alism discussed previously in hep-ph/0601209 and

hep-ph/0605246 to construct a kinetic theory that provides insight into

theearliest\G lasm a" stageofa high energy heavy ion collision.Particles

produced from the decay ofclassical�elds in the G lasm a obey a Boltz-

m ann equation whose novelfeatures include an inhom ogeneous source

term and new contributions to the collision term . W e discuss the power

counting associated with the di�erent term s in the Boltzm ann equation

and outlinethetransition from the�eld dom inated regim e to theparticle

dom inated regim e in high energy heavy ion collisions.

PreprintCERN-PH-TH/2007-106

1 Introduction

In two previous papers [1,2], we introduced a form alism to com pute m ulti-

particle production in �eld theoriescoupled to strong tim e-dependentexternal

sources.TheQ CD exam pleofsuch a �eld theory istheColorG lassCondensate

(CG C) [3{16]. For sim plicity,we considered a �3 theory;we believe however

that m ostofour results are ofgeneralvalidity and can be extended to gauge

theories[17].
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In thispaper,wewilladdressaproblem in m ulti-particleproduction thatwas

notconsidered in Refs.[1,2].Speci�cally,theapproach developed theredid not

include scattering processesthatareim portantforthe dynam icsofthe system

atlate tim es. These are the so called secularterm s which are ofhigherorder

in the coupling constant (loop corrections) and are accom panied by growing

powersoftim e [18{20].Thesecularcontributionsm ustbe resum m ed to obtain

sensible results. In a quantum �eld theory,this resum m ation is perform ed in

principle by solving the Dyson-Schwinger equations. In practice,the Dyson-

Schwinger equations are di�cult to solve. For a system of�elds coupled to

an ensem ble ofparticles,itiswellknown thatthe Dyson-Schwingerequations

can beapproxim ated by a Boltzm ann equation forthedistribution ofparticles.

The goalofthe presentpaperisto extend the approach ofRefs.[1,2]to derive

a kinetic equation that includes the late tim e contributions to m ulti-particle

production in �eld theorieswith strong externalsources.W e have in m ind the

dynam icsaftera heavy ion collision,where the classical�eld produced by the

colliding nucleiexpandsrapidly into thevacuum alongthebeam direction.O ur

approach m ay also be ofrelevance to descriptionsofthe decay ofthe in
aton

�eld and therm alization in the preheating and reheating phases ofthe early

universe{a nice review with relevant references can be found in Ref.[21]. In

both cases,asthe classical�eld evolves,the occupation num berdecreasesand

itism ore appropriate to describe the higherm om entum m odesofthe system

in term sofparticledegreesoffreedom .

Theconnectionsbetween theclassicalapproxim ation in �eld theory and ki-

neticequationsin thefram ework ofnuclearcollisionswerepreviously discussed

by M ueller and Son [22],and subsequently by Jeon [23]. They considered a

system of�eldsin thepresenceofan ensem bleofparticlesdescribed by a distri-

bution f.Perform ing a classicalapproxim ation in the path integraldescribing

the evolution ofthis system and a gradientexpansion in the obtained Dyson-

Schwingerequations,theseauthorsobtained a kineticequation forf.An obvi-

ousquestion arises:with whataccuracydoesthiskineticequation reproducethe

Boltzm ann equation onewould obtain withoutperform ing theclassicalapprox-

im ation? The authors ofRefs.[22,23]�nd that the kinetic equation obtained

from the classicalpath integralreproduces correctly the collision term in the

Boltzm ann equation toleadingpoweroff and (surprisingly)the�rstsubleading

term in f aswell.

W eshalladopta m oreab initio approach hereby considering a system that

doesnotcontain any particle degreesoffreedom initially,butwhere the �elds

arecoupled to a strong tim e-dependentexternalsource j.The externalsource

is assum ed to be a stochastic variable thatbelongs to an ensem ble ofcharges

speci�ed by a distribution W [j].Thisisthetypicalsetup in thedescription of

heavyion collisionsin theColorG lassCondensatefram eworkwhereW [j]repre-

sentsthedistribution ofcolorcharges.Becauseoftheexpansion ofthesystem ,

onem ay anticipatethatthesystem can bedescribed by �eld theory m ethodsat

earlytim esand by kinetictheoryand hydrodynam icsatlatertim es.Them atter

in thisregim ein heavy ion collisionshasinteresting properties;two noteworthy

possibilities are dynam ically generated topologicalcharge [24,25]and plasm a
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instabilitiespossibly leading to turbulentcolor�elds[26].Thism atterhasbeen

called an G lasm a [27,28]and understanding its dynam icalevolution holdsthe

key to a deeperunderstanding ofthestrongly interacting Q uark G luon Plasm a

(sQ G P)thatm ay be form ed atlatertim es[29].The

W ewilladdressheregeneralquestionsaboutthedynam icalevolution ofsuch

m atterin the sim plestpossiblecontextofa scalar(�3)�eld theory 1:

i. W hatisthekineticequation oneobtainsin �eld theoriescoupled tostrong

externalsources? K nowingtheanswertothisquestion isim portantforone

tohandlecorrectly thetransition region between a�eld theory description

and kinetictheory.Indeed,oneexpectsfrom theworkin Refs.[22,23]that

there exists a window in tim e where both approachescorrectly describe

the dynam ics 2. This suggests that the kinetic equation in the overlap

regim em ustknow aboutthecoupling ofsourcesto �eldsatearliertim es.

How isthism anifest,how im portantisthise�ectand how doesitgoaway

?

ii. W hat term s in the kinetic equation are im portant at di�erent stages of

theexpansion? Thepreviousquestion hintsthatwewillobtain a kinetic

equation thathasadditionalterm sabsentin theconventionalBoltzm ann

equation. W e would like to understand how this generalized Boltzm ann

equation convergesto the usualoneatlatetim es.

The paperisorganized asfollows. In section 2,we shallrem ind the reader

ofrelevantform ulaein thederivation [1]oftheaveragenum ber



n
�

ofproduced

particles.In section 3,we shallwrite down the Dyson-Schwingerequationsfor

the two-pointfunctionsin theorieswith tim e dependentstrong sources.These

provide the starting point for a derivation in section 4 ofthe corresponding

kinetic equation forthe G lasm a. W e observe thatthe coupling ofthe �eld to

an externalsource leads to an inhom ogeneous term in this kinetic equation.

In section 5,we discuss the propertiesofthe di�erent term s appearing in the

kinetic equation. Albeit the collision term in the kinetic equation looks iden-

ticalto the collision term in the usualBoltzm ann equation,it contains novel

contributionsto theselfenergy thatareof0-loop and 1-loop order.W ediscuss

the power counting for these di�erent contributions and assess their relative

contribution at di�erent stages ofthe tem poralevolution ofthe G lasm a. W e

concludewith a briefsum m ary and outlook em phasizing unresolved issues.An

appendix addresseshow the averaging overthe sourcesj in ourform alism can

bere-expressed in term softheusualensem bleaverageim plicitin thederivation

ofkinetic equations.

1Even the \sim ple" scalar theory is non-trivial. It willindeed contain very generalfea-

tures ofrelevance to the G lasm a albeit the latter willhave signi�cant (and very interesting)

additionalfeatures that are absent in the scalar case.
2Thishasto bethecaseifonewantsthe�nalresultto beindependentofthetim eatwhich

one switches between the two descriptions.

3



2 Ab initio com putation of



n

�

W econsiderthetheory ofa realscalar�eld � with cubic self-interactions,cou-

pled to an externaltim e dependentsource j(x). The Lagrangian ofthe m odel

is

L �
1

2
@��@

�
� �

1

2
m

2
�
2
�

g

3!
�
3 + j� : (1)

In [1],we system atically calculated particle production from these sources. In

theColorG lassCondensatefram eworkthatthistoy m odelm im ics,thecolliding

projectiles are represented by a statisticalensem ble of currents j. Physical

quantitiesareobtained by averaging overallpossiblerealizationsofthe j’s.In

thissection,weshalldiscussthecalculation oftheaveragenum berofproduced

particlesin a given con�guration ofj’s.

A generalform ula forthe averagenum ber



n
�

ofproduced particlesis




n
�

=

Z
d3p

(2�)32E p




0in
�
�a

y

out(p)aout(p)
�
�0in

�

: (2)

The num ber ofparticles produced with a certain m om entum p is de�ned as

the expectation value ofthe \out" num ber operator in the initialstate. This

form ula gives the num ber ofparticles at asym ptotic tim es,after the particles

havedecoupled 3.

A sim ple reduction form ula gives[30]




0in
�
�a

y

out(p)aout(p)
�
�0in

�

=
1

Z

Z

d
4
xd

4
y e

� ip� x
e
ip� y

� (�x + m
2)(� y + m

2)



0in
�
��(x)�(y)

�
�0in

�

; (3)

where Z is the wave function rem orm alization factor. The expectation value

in the right hand side ofthis equation has two im portant features : (i) the

vacuum state is the \in" vacuum state on both sides and,(ii) the two �elds

inside the correlatorare not tim e-ordered. The Schwinger-K eldysh form alism

[31,32]providestechniquesforcom puting thesetypesofcorrelators.

Theoperators� + m 2 am putatetheexternallegsofthe two-pointfunction

G � + (x;y)�



0in
�
��(x)�(y)

�
�0in

�

.De�ning

eG � + (x;y)�
(� x + m 2)(� y + m 2)

Z
G � + (x;y); (4)

wecan write the averagem ultiplicity as




n
�

=

Z
d3p

(2�)32E p

Z

d
4
xd

4
y e

� ip� x
e
ip� yeG � + (x;y): (5)

Introducing the variables

X �
x + y

2
; r� x � y ; (6)

3The\num berofparticles" atsom e interm ediate tim e,whilethe �eldsarestillinteracting,

isnota wellde�ned concept.
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wecan rewritethisform ula as

E p

d



n
�

d3p
=

1

16�3

Z

d
4
X eG � + (X ;p); (7)

where

eG � + (X ;p)�

Z

d
4
re

� ip� reG � +

�

X +
r

2
;X �

r

2

�

(8)

isthe W ignertransform of eG � + (x;y).

In the Schwinger{K eldysh form alism , the propagators G ��0(x;y), (�;�
0 =

+ ;� )can be expressed as

G ��0(x;y)=
�

i�j�(x)

�

i�j�0(y)
e
iV

S K
[j+ ;j� ]

�
�
�
j+ = j� = j

; (9)

where iV
S K
[j+ ;j� ] is the sum of all connected vacuum -vacuum diagram s.

W hen j+ = j� = j,iV
S K
[j;j]= 0 and the sum ofallvacuum -vacuum dia-

gram sisunity.

W orking outthe functionalderivatives,

G ��0(x;y)=

�
�iV

S K

i�j�(x)

�iV
S K

i�j�0(y)
+

�2iV
S K

i�j�(x)i�j�0(y)

�

j+ = j� = j

: (10)

AsiV
S K

isthe sum ofconnected vacuum -vacuum diagram s,any ofitsderiva-

+x xy y

Figure1:Diagram m aticrepresentation ofthedisconnected (left)and connected

(right)term sin eq.(10).The gray blobsdenote the rem nantsofG reen’sfunc-

tionsafterthe free propagatorsatthe endpointsaream putated.

tiveswith respectto j� isa connected G reen’sfunction.Therefore,G ��0 can be

decom posed as

G ��0(x;y)� G
c

��0(x;y)+ G
nc

��0(x;y): (11)

Theseare,respectively,the connected part

G
c

��0(x;y)�
�2iV

S K

i�j�(x)i�j�0(y)

�
�
�
�
j+ = j� = j

; (12)

and a disconnected partcorresponding to theproductoftheexpectation values

ofthe �eld atthe pointsx and y :

G
nc

��0(x;y)=



�(x)
�


�(y)
�

with



�(x)
�

=
�iV

S K

i�j� (x)

�
�
�
�
j+ = j� = j

: (13)
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Figure2:Exam pleofatreediagram contributingto the�eld expectation value.

Theblackdotsterm inatingbranchesofthetreerepresentinsertionsofthesource

j in the diagram on the right. The sum ofthese tree diagram sis represented

(left)by a line attached to a gray blob.

W hen j+ = j� = j,the expectation value ofthe �eld isthe sam eon the upper

and lowerbranchesofthe contour:



�+ (x)
�

=



�� (x)
�

. Thisexplainswhy we

om itted the + =� index in the expectation valueofthe �eld.

A typicaltree-levelcontribution to



�(x)
�

is shown in �gure 2. Note also

that



�(x)
�

vanishesifthe externalsourcej(x)iszero4.Attree level,because

j+ = j� = j,thesum overthe+ =� indicesin theSchwinger-K eldysh form alism

atallthe internalverticesofthe tree(including the sources)can be perform ed

by using the identities

G
0

+ + � G
0

+ � = G
0

R
; G

0

� + � G
0

� � = G
0

R
; (14)

where G
0

R
is the free retarded propagator5. W hen this sum is perform ed,all

propagatorsin thetreediagram can besim plyreplaced byretarded propagators.

Thisisequivalentto the statem entthat



�(x)
�

isthe retarded solution ofthe

classicalequation ofm otion,

(� + m
2)�(x)+

g

2
�
2(x)= j(x); (15)

with a vanishing boundary condition atx0 = � 1 .

Eq.(7)isthe com plete answerto the problem ofparticle production in the

e�ective theory described by the Lagrangian ofeq.(1). Ifone were able to

com pute eG (x;y)to allorders,thisform ula would contain everything oneneeds.

Therewould be no need fortoolssuch askinetic theory.

4W e assum e that the self-interactions ofthe �elds are such that there is no spontaneous

breakdown ofsym m etry when j = 0.
5In m om entum space,thispropagator reads G 0

R
(p)= i=(p2 � m2 + ip0�).
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However,evaluating eq.(7) to allorders is an unrealistic goal. W hat has

been im plem ented thus far is the evaluation ofeq.(7) at leading order (tree

level)to calculatethegluon yield in high-energy nucleus-nucleuscollisions[33{

38].In [1],an algorithm wassketched to com pute



n
�

atnext-to-leading order

(one loop)in term s ofthe retarded classical�eld and ofretarded 
uctuations

propagating in the classical�eld background.

In practice,one has to truncate the loop expansion. As we willdiscuss in

thenextsection,thecorrectway to perform practicalcalculationsiswithin the

fram ework ofthe Dyson{Schwingerequations.

3 D yson-Schw inger equations

The m ain problem with the loop expansion described in the previous section

is that,in general,truncations in eG (x;y) willlead to an incorrect large tim e

lim itofthe num berofproduced particles.Thiscan be traced to secularterm s

containingpowersofthetim ethatinvalidatetheperturbativeseriesin thelarge

tim elim it.Thiscan becured by appropriateresum m ation;thewellknown way

to do this is to solve Dyson-Schwinger equations [18{20]. In this section,we

shalldiscusstheDyson-Schwingerequationsobeyed by thetwo-pointfunctions

G ��0(x;y) ofthe Schwinger-K eldysh form alism . W e willsee that the presence

ofa disconnected contribution to these 2-point functions leads to interesting

featuresin the corresponding Dyson-Schwingerequations.

3.1 D yson-Schw inger equation for the connected part

ItisstraightforwardtowriteaDyson-Schwingerequation fortheconnected part

ofthe 2-pointfunction,G
c

��0,thatresum sself-energy corrections:

G
c
(x;y)= G

0
(x;y)+

Z

C

d
4
ud

4
v G

0
(x;u)

h

� i� (u;v)

i

G
c
(v;y); (16)

where � i� is a 1-particle irreducible connected6 self-energy,evaluated in the

presenceofexternalsources.W eshallnotwritehereexplicitly the� indicescar-

ried by thevariousobjects.Instead,wewritethetim eintegrationsasintegrals

overthe com pleteSchwinger-K eldysh contourC.

Itisconvenientto extractfrom thisself-energy a localpiece,by writing

� (u;v)� g� (u)�(u � v)+ � (u;v): (17)

Except for the background �eld,which is a genuine localcontribution to the

self-energy,thereisa certain arbitrarinessin thisseparation becauseitdepends

on the m om entum scale atwhich we resolvethe system .A contribution to the

self-energythatdoesnotchangesigni�cantly overspace-tim escaleson theorder

ofthe Com pton wavelength p� 1 can be treated as a m ean �eld at that scale.

6It is connected in order to have a connected 2-point function after the resum m ation and

itneeds to be 1PIto prevent double counting.
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= +

= +

Figure 3:Top:Diagram m atic representation ofthe Dyson-Schwingerequation

ofeq.(16).The largegray blob denotesthe 1-particleirreducible2-pointfunc-

tion � . Bottom : decom position ofthe 1PIself-energy � into a localpartg�

and a non-localpart� (denoted by a largelight-gray blob),following eq.(17).

Therefore,them ean �eld term � (u)willcontain theclassical�eld,and possibly

changesin the dispersion relation due to m edium e�ects 7.

The Dyson-Schwingerequation then becom es

G
c
(x;y) = G

0
(x;y)� ig

Z

C

d
4
u G

0
(x;u)� (u)G

c
(u;y)

+

Z

C

d
4
ud

4
v G

0
(x;u)

h

� i� (u;v)

i

G
c
(v;y): (18)

Using
�

� x + m
2
�

G
0
(x;y)= � i�

C
(x � y); (19)

where �
C
denotes the delta function on the closed tim e path8,we can rewrite

thisequation as

�

� x + m
2 + g� (x)

�

G
c
(x;y)= � i�

C
(x � y)�

Z

C

d
4
u � (x;u)G

c
(u;y): (20)

3.2 D yson-Schw inger equation for the disconnected part

W e also need a Dyson-Schwinger equation for the disconnected part of the

G reen’sfunction,

G
nc
(x;y)=




�(x)
�


�(y)
�

: (21)

Becausetheexpectation value



�
�

isa connected 1-pointfunction,itisnatural

to factorthe connected propagatoroutofit,by writing




�(x)
�

�

Z

C

d
4
u G

c
(x;u)S(u); (22)

7To allow forthispossibility,we denote the m ean �eld piece by a sym boldistinctfrom the

one used forthe classical�eld.
8�

C
(x � y)= 0 unless x0 and y0 are equaland lie on the sam e branch ofthe tim e path.
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whereS(u)isan \e�ectivesource" term 9.By construction,oneobtains

�

� x + m
2 + g� (x)

�


�(x)
�

= � iS(x)�

Z

C

d
4
u � (x;u)




�(u)
�

: (23)

M ultiplying both sidesby



�(y)
�

,oneobtains

�

� x + m
2+ g� (x)

�

G
nc
(x;y)= � iS(x)




�(y)
�

�

Z

C

d
4
u � (x;u)G

nc
(u;y):(24)

De�ning

� i�S (x;y)� S(x)S(y); (25)

wecan rewritethisequation as

�

� x+ m
2+ g� (x)

�

G
nc
(x;y)= �

Z

C

d
4
u

h

�
S (x;u)G

c
(u;y)+ � (x;u)G

nc
(u;y)

i

:

(26)

Adding eqs.(20) and (26),we obtain the Dyson-Schwinger equation for the

com pletetwo-pointfunction:

�

� x + m
2 + g� (x)

�

G (x;y)= � i�
C
(x � y)

�

Z

C

d
4
u

h

�
S (x;u)G

c
(u;y)+ � (x;u)G (u;y)

i

:(27)

Theonlyform aldi�erencebetweenthisDyson-Schwingerequationandtheequa-

tion one obtainsin the absence ofthe source j isthe term proportionalto � S

in the righthand side.

In principle,theresum m ationsperform ed by solving eqs.(20)and (26)(or,

equivalently,eqs.(20)and (27))would com pletely cure the problem ofsecular

term s.Such an approach hasbeen pursued num erically in [39],buthasnotbeen

attem pted yetin the contextofheavy ion collisionsin the CG C fram ework.

4 K inetic equation

TheDyson-Schwingerequationswewrotedown in theprevioussection contain

allthe necessary physics but their solution is likely too di�cult; they there-

fore by them selves do not provide any practicalinsight into the dynam ics of

high energy heavy ion collisions. O ne can sim plify the problem a step further

by transform ing the Dyson-Schwingerequations forthe 2-pointfunctions into

kinetic equations. However,aswe shalldiscussshortly,doing so requiresthat

certain assum ptionsbe satis�ed.

9In the classicallim it,one has S (x)= j(x)+
g

2
�2(x)(see section 5.2).
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4.1 Fields and particles

As is wellknown, the Boltzm ann kinetic equation describes the space{tim e

evolution ofparticle phase space densities. Therefore,to achieve a kinetic de-

scription,the form alism considered thusfarshould be extended to incorporate

an ensem bleofparticles.Thisissim ply doneby m odifying thefreepropagators

to add a term thatdependson thedistribution ofparticlesf(p).In m om entum

space,the m odi�ed propagatorsare10

G
0

+ + (p)�
i

p2 � m2 + i�
+ 2�f(p)�(p2 � m

2);

G
0

� � (p)�
� i

p2 � m2 � i�
+ 2�f(p)�(p2 � m

2);

G
0

� + (p)� 2�(�(p0)+ f(p))�(p2 � m
2);

G
0

+ � (p)� 2�(�(� p
0)+ f(p))�(p2 � m

2): (28)

These m odi�ed rules for the Schwinger{K eldysh propagators can be de-

rived [40]when the initialdensity m atrix thatdescribesthe ensem ble has the

form

� � exp

h

�

Z
d3p

(2�)32E p

�pE p a
y

in
(p)ain(p)

i

; (29)

where�p isam om entum dependentquantity.(Note:�p should notbeconfused

with the inverse tem perature.) Such a form forthe density m atrix isrequired

ifcorrelatorscom puted with thisdensity m atrix areto satisfy W ick’stheorem .

From thisform ofthe density m atrix,oneobtainsthe Schwinger-K eldysh rules

ofeqs.(28),with

f(p)=
1

e�p E p � 1
: (30)

The function f(p) in the propagators only represents the initialdistribution

ofparticlesin the system . Thusthe �eld theory de�ned by the Lagrangian of

eq.(1)and the propagatorsofeqs.(28)describesa system of�eldscoupled to

an externalsourcej and to an ensem bleofparticleswith an initialdistribution

f(p). The Feynm an rules then enable one to calculate the properties ofthis

system ata latertim e.

However,eqs.(28) do not lead to a wellbehaved perturbative expansion,

except when the function f(p) is the equilibrium Bose-Einstein distribution

in our m odelofbosonic �elds. In general,when f(p) is not a Bose-Einstein

distribution,the perturbative expansion based on eqs.(28) is plagued by the

previously m entioned pathologicalsecular term s which need to be resum m ed.

Thetim e-scaleatwhich resum m ation becom esnecessary isrelated to thetrans-

portm ean free path in the system ,nam ely,the tim e between two large angle

scatteringsundergone by a particle. Thisresum m ation m akesthe distribution

f(p)tim e{dependentre
ectingthechangesinduced by collisionson theparticle

10The propagators ofthe Schwinger-K eldysh form alism appropriate for calculating eq.(3)

are the sam e with f(p)= 0.
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phase space distribution. Under certain approxim ationsto be discussed later,

thistem poralevolution isgoverned by a Boltzm ann equation.

Theproblem form ulated in section 2 concerned a system thathasno ensem -

bleofparticlesattheinitialtim e(f(p)= 0 in eqs.(28)).At�rstsight,asf = 0

isa particularcaseoftheBose{Einstein distribution (with a vanishing tem per-

ature),seculardivergencesm ay appearto be absent.However,thisconclusion

isincorrectbecause ofthe presence ofexternalsourceswhich drive the system

outofequilibrium .Thusitisalso necessary to resum secularterm sin thiscase,

leading to changesin f(p). The generalized propagatorsin eq.(28)constitute

thenaturalfram ework to achievethis.Becausetheexternalsourceisboth tim e

and spacedependent,one hasm oregenerally

f(p) ! f(X ;p) (31)

in eqs.(28).

An im portantpointm ustbem adehereaboutthetreelevelexpectation val-

ues



�� (x)
�

in thisf-dependentextension ofourform alism .A crucialproperty

ofthe propagatorsin eqs.(28)is thatthey stillobey eqs.(14). The retarded

propagatoris therefore f-independent. Therefore,as long as loop corrections

arenotincluded,the�eld expectation value doesnotdepend on f and isiden-

ticalto theresultobtained from theretarded solution oftheclassicalequations

ofm otion. Hence,the contribution from the disconnected partofthe 2-point

function lead to an inhom ogeneous (f{independent) term in the Boltzm ann

equation.

4.2 G radient expansion

Theextension (28)ofthepropagatorsleadsto Dyson-Schwingerequationsthat

are form ally identicalto eqs.(20)and (26){ with allthe building blocksnow

constructed with f-dependent propagators. The �rst step in obtaining the

Boltzm ann equation isto rewrite allthe distributionsin term softheirW igner

transform s. Fora two-pointfunction F (x;y),itsW ignertransform ~F (X ;p)is

de�ned to be

~F (X ;p)�

Z

d
4
se

� ip� s
F

�

X +
s

2
;X �

s

2

�

: (32)

Thenextstep istoperform agradientexpansionwhereonlylongwavelength,

low m om entum m odes are retained. In particular,allterm s oforder two or

higherin @
X
areneglected.Asourgoalisto constructa kinetic theory forthe

G lasm a,wewilldiscussthevalidity ofthisgradientexpansion in thecontextof

heavy ion collisionsin theCG C fram ework.In thisfram ework [14{16],thecolor

sources �a(x? ) generating the color currents 11 are stochastic variables that

vary from event to event with a distribution W [�]. W hen calculating a given

physicalquantity,one�rstcom putesitforan arbitrary� and then averagesover

allpossible �’sin the ensem ble generated with the weightW [�]. Forexam ple,

11These color sourcesare the Q CD analogs ofthe sources j in our toy scalar theory.
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in the M cLerran-Venugopalan m odel[3{5],thedistribution W [�]isa G aussian

with

W [�]= exp

�

�

Z

d
2
x? d

2
y?

�(x? )�(y? )

2�2(x? ;y? )

�

; (33)

where

�
2(x? ;y? )�




�(x? )�(y? )
�

= �
2

A
(x? )�(x? � y? ): (34)

Here �2
A
(x? ) represents the density ofcolor charges at a spatialposition x?

in the nucleus.The typicalm om entum scale ofthe sources{thesaturation m o-

m entum squared Q 2
s atx? issim ply related to �2

A
.

Thedi�erencebetween oneparticularelem entoftheensem bleand theaver-

ageweighted byW [�]isillustrated in �gure4forthequadraticform �2.Because

x⊥

ρρ

x⊥

〈ρρ〉

Figure4:Left:�2 distribution foronecon�guration in theensem blerepresented

by the distribution W [�].Right:ensem ble averageof



�2
�

.

the�(x? )areuncorrelated atdi�erentpointsin thetransverseplaneofthenu-

cleus,a particularcon�guration of�’sleadsto a very rough density pro�le;in

contrast,the average sm oothly follows the W oods-Saxon density pro�le ofa

nucleus. Thisexam ple sim ply illustratesthatthe gradientsare uncontrollably

largefora given con�guration � rendering any gradientexpansion m eaningless.

O n the otherhand,itisperfectly legitim ate forensem bleaveraged quantities.

Thetypicalm om enta of\hard"particlesissetby thesaturation scalewhich

is oforder Q s � 1{2 G eV at RHIC energies;this scale m ay be higher at the

LHC.In contrast,the gradient@
X
foraveraged quantitieschangesappreciably

overdistancescalesoftheinversenuclearradiusgiven by � R� 1
A

� 40 M eV for

a large nucleus. The sm allm agnitude ofthis scale in the gradient expansion

relativeto thetypicalsaturation m om entum justi�esthegradientexpansion for

quantitiesthatareaveraged overthe ensem bleofcolorcharges.

Thecorresponding changesto theFeynm an rulesaredescribed in appendix

A. Here it is su�cient to note that the ensem ble average is obtained by con-

necting allthe externalsources j in the m anner speci�ed by the distribution

W [�].Forinstance,in theM V m odelW [�]isa G aussian,which im pliesthatall

thesourcesm ustbeconnected pairwise.Theobjects� S ,� and � thatappear

in the Dyson-Schwinger equations (20) and (26) m ust be thought ofas being

averaged overj.In Feynm an diagram s,wewillrepresenttheaverageoverj by

12



surrounding the diagram by a lightgray halo :

D


�(x)
�E

j
= : (35)

Thiscom pactnotation encom passesa very large num berofcontributions.For

instance,atleading order,onewould �rstapproxim ate



�(x)
�

asthesum ofall

thetreediagram s,an exam pleofwhich isrepresented in �gure2.Foreach such

treediagram ,thesourcesj(theblack dotsin �gure2)arereconnected pairwise

in allthe possible ways. A typicalreconnection ofthe sources,corresponding

to the topology of�gure2,isdisplayed in �gure5.Note thatthe \loop order"

=

Figure5:Exam pleofa treelevelcontribution to theaverageoverthesourcesj

ofthe �eld expectation value fora G aussian distribution ofsources.The links

in red representthe elem entary correlators



j(x)j(y)
�

.The sourceconnections

represented here are forsim plicity am ong nearestneighbors;allotherpairwise

topologiesarefeasible.

ofa given diagram is a m eaningfulconceptonly for diagram sbefore they are

averaged overj. Indeed,asone can see by com paring the �gures2 and 5,the

diagram beforethej-averagehas0 loopsand isoforderg� 1.Aftertheaverage

isperform ed,while ithasa largenum berof\loops" which do notcontain any

inform ation aboutthe orderin g ofthe diagram .

4.3 B oltzm ann equation

The�nalingredientin thederivation oftheBoltzm ann equation istheso-called

\quasi{particleansatz" which can be expressed as

G � + (X ;p)= (1+ f(X ;p))�(X ;p);

G + � (X ;p)= f(X ;p)�(X ;p); (36)

13



wherethe spectralfunction �(X ;p)is

�(X ;p)� G
R
(X ;p)� G

A
(X ;p)= G � + (X ;p)� G+ � (X ;p): (37)

The physicalassum ption here is that the interactions in the system are such

that the collisionalwidth ofthe dressed particles rem ains sm allcom pared to

theirenergy;the system ism adeup oflong-lived quasi{particles.

The Boltzm ann equation can now be obtained asfollows:

i. W rite a Dyson-Schwinger equation analogous to eq.(27),but with the

di�erentialoperator� + m 2 + g� acting on the variable y instead ofx,

and subtractitfrom eq.(27).

ii. Rewrite thisequation in term softhe W ignertransform ed quantitiesand

perform a gradientexpansion keeping only leading term sin @
X
.

iii. ReplacetheG reen’sfunctionswith thequasi-particleansatzand drop the

spectralfunction �(X ;p)which appearsasa factorin allthe term s.

Ifthe term sproportionalto � S were absentfrom eq.(27),the steps outlined

abovewould resultin the well-known Boltzm ann{Vlasov equation,

2p� @
X
f(X ;p)+ g@

X
� (X )� @pf(X ;p)=

= (1+ f(X ;p))� + � (X ;p)� f(X ;p)�� + (X ;p): (38)

Theextraterm wehavein theDyson{Schwingerequations,proportionalto� S ,

willm odifytheBoltzm ann{Vlasovequation.Twokeyfeaturesofthisnovelterm

willproveessentialin ourderivation.The�rstisthat� S (x;y)doesnotdepend

on whether the points x and y are on the upper or lower branch ofthe tim e

contour. This is because the expectation value ofthe �eld,for equalvalues

ofthe sources j+ and j� ,is the sam e on both branches ofthe contour. The

second feature isthatthe non-connected partofthe propagatorsdropsoutof

the spectralfunction,forthe sam ereason.Hence,

�(X ;p)= G � + (X ;p)� G+ � (X ;p)= G
c

� + (X ;p)� G
c

+ � (X ;p): (39)

Utilizing these two properties,we can perform the gradientexpansion forthis

additionalterm in the sam e way asperform ed forthe usualself-energy correc-

tion.Itm odi�esthe righthand side ofthe Boltzm ann equation by an additive

correction12 � S (X ;p). Therefore,our�nalexpression forthe kinetic equation

is

2p� @
X
f(X ;p)+ g@

X
� (X )� @pf(X ;p)=

= �
S (X ;p)+ (1+ f(X ;p))� + � (X ;p)� f(X ;p)�� + (X ;p):

(40)

12N otethatpriorto dropping thespectralfunction thatappearsin allterm s,wewould have

� S

+ �
(X ;p)G c

� +
(X ;p)� �S

� +
(X ;p)G c

+ �
(X ;p) = � S (X ;p)

h

G
c

� +
(X ;p)� G

c

+ �
(X ;p)

i

= � S (X ;p)�(X ;p):
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Thenovel\sourceterm "� S (X ;p)in thisequationisnon-zeroeveniftheparticle

distribution f(X ;p) is zero. It is therefore responsible for f = 0 not being a

�xed point ofthe above equation;the solution ofthis equation is non-zero at

later tim es even ifthe initialcondition had a vanishing particle distribution.

In the nextsection,we willdiscussfurthersigni�cantdi�erencesbetween this

kinetic equation and the conventionalBoltzm ann-Vlasov equation in eq.(38).

5 Properties ofthe G lasm a kinetic equation

Inthissection,weshalldiscussthevariousterm sin eq.(40)with em phasison the

di�erences between these and those appearing in the conventionalBoltzm ann

kinetic equation.

5.1 V lasov term

W e�rstconsidertheVlasov term (g@
X
� � @pf)in theBoltzm ann equation.W e

note thatin perform ing the averageofthe m ean �eld � (X ),overthe external

sources j,the various correlation functions



j(x1)� � � j(xn)
�

perm itted by the

distribution ofsourcesW [j]are nearly translation invariant. The dependence

ofthesecorrelatorson thebarycentricco{ordinateX � (x1+ � � � + xn)=n isvery

slow becauseitarisesfrom thedensity pro�leofthecollidingnuclei13.Therefore

the1-pointfunction � (X ),averaged overj,also hasa very slow dependenceon

itsargum entX ;itsFouriertransform with respectto X hasonly m odeswith

m om enta on the order ofthe inverse nuclear radius. As discussed previously,

thisscaleisvery sm allrelativeto the typicalm om entum ofthe particlesunder

consideration and itisthereforelegitim ateto approxim ateitasa Vlasov term .

As is wellknown,the e�ect ofthis term in the Boltzm ann equation is to

changethem om entum ofparticlesasthey m ovebetween regionswheretheex-

ternal�eld isdi�erent.Indeed,g@
X
� isthe force thatactson the particlesat

pointX and acceleratesthem towardsregionsoflowerpotential14. The m ean

�eld � includes not only the classical�eld directly produced by the external

sources,butalso possibly a contribution com ing from the particlesencoded in

f(X ;p).Such a m odi�cation m ay arisefrom a m odi�cation ofthe particledis-

persion relation dueto thecollectiveaction oftheotherparticles.Forinstance,

ifthe particles acquire a m edium m ass with a weak space-tim e dependence,

this m asscan be represented by a potentialin the Vlasov term ofthe kinetic

equation.

13The fact that this density pro�le is not a constant is the only e�ect in the problem that

breaks translation invariance.
14Fornon centralcollisions,theshapeoftheoverlap region between thetwo nucleiiselliptic;

one hasstrongergradients in the direction ofthe sm allaxisofthe ellipsisrelative to those in

the direction ofits large axis. The V lasov term therefore accelerates particles preferentially

in the direction ofthe sm allaxis ofthe overlap region. This leads eventually to elliptic 
ow

and to an anisotropy ofthe spectrum ofparticlesin m om entum space.Thise�ectisobtained

entirely within kinetic theory without any assum ption about the degree oftherm alization of

the system .
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5.2 Source term in the kinetic equation

Letusnow considerthee�ectofthesourceterm �
S (X ;p)in eq.(40),which can

be obtained asthe W ignertransform ofthe productS(x)S(y). An interesting

situation,relevantforheavy ion collisions,iswhen treediagram saredom inant

because the externalsource is strong (gj � 1). In this case,the expectation

value



�(x)
�

is dom inated by the retarded classical�eld �(x);the connected

partofthe 2-pointfunction,G
c
,is sim ply the propagatorofa 
uctuation on

top ofthe classical�eld,

(G
c
)
� 1

= � + m
2 + g� : (41)

O nethereforeim m ediately obtainsthefollowing expression15 forS(x):

S(x) =

h

� + m
2 + g�(x)

i

�(x)

= j(x)+
g

2
�
2(x): (42)

W e seeherethatthe e�ectivesourceS(x)receivestwo contributions:

i. the externalsourcej(x)itself.Thisterm isonly im portantifwe wantto

use the Boltzm ann equation in regionsofspace-tim e where the external

sourceisstillactive.In a heavy ion collision,thecolorsourcesarepresent

only on the light-cone ata propertim e � = 0. W e willnotconsiderthis

term further.

ii. A term quadratic in the classical�eld produced by the externalsource;

thisterm continuesto contribute afterthe externalsourceshavestopped

acting.

O nem ay representthise�ective sourcegraphically as

S(x)� = + : (43)

The second term has a fairly straightforward interpretation. W hen the term

quadraticin � in the classicalequation ofm otion

h

� + m
2

i

�(x)= j(x)�
g

2
�
2(x); (44)

is im portant,we see that the �eld is not a free �eld. Ifexpanded in particle

m odes,thenum berofparticlesin the �eld would changewith tim e.Therefore,

ifone switches between a description in term sofclassical�elds to the kinetic

15This isthe resultfora potentialg�3=3!. For an arbitrary potentialV (�),the expression

ofS (x)in thisapproxim ation would read

S (x)= j(x)� V0(�(x))+ �(x)V 00(�(x));

where the prim e denotes a derivative ofthe potentialwith respect to �.

16



equation at a stage where this non-linear term is stillsigni�cant,the source

term in the Boltzm ann equation m odi�es the num ber ofparticles in order to

takethise�ectinto account.

At tree level,the e�ective source S(x),and hence � S ,is independent of

thedistribution ofparticlesf.Asdiscussed previously,thisisa straightforward

consequenceofthefactthat,attreelevel,the1-pointfunction in theSchwinger-

K eldysh form alism can be rewritten entirely in term s ofretarded propagators

thatare f{independent. � S is therefore non-zero even iff = 0. In contrast,

theterm s� � � in ther.h.softheBoltzm ann equation depend on f and vanish

when f = 0 as expected for collision term s. � S is therefore a source term in

theBoltzm ann equation,becauseitdrivesf to a non-zero valueeven ifonehas

f = 0 initially.

W hen weperform theaverageoverjofthedisconnected productS(x)S(y),

wegetboth disconnected and connected sourceterm s,

D

S(x)S(y)

E

j
= + : (45)

depending on how the sources j are reconnected. In this picture,each light

shaded area is sim ply connected after the average overj hasbeen perform ed,

and allthesourcesjitcontainsarelinked in allthepossiblewaysthatpreserve

itsconnectedness.

The �rstterm in the r.h.s. ofeq.(45)correspondsto contributions where

weconnecttogetheronly j’sthatbelong to thesam efactorS,



S(x)
�

j




S(y)
�

j
.

O urpreviousrem ark abouttheaverageoverjofthe1-pointfunction � (X )also

applies here to



S(x)
�

j
: its Fourier transform only contains very soft m odes

ofthe orderofthe inverse ofthe nuclearradius. Itistherefore nearly zero for

thetypicalparticlem om entum p � Qs weareinterested in here.Thusonly the

connected term sin the average ofthe source term



S(x)S(y)
�

j
m atterin the

kinetic equation.

5.3 M agnitude of�eld insertions

The source term in eq.(45),aswellasthe otherterm sin the righthand side

oftheBoltzm ann equation,involveinsertionsoftheclassical�eld �(x).In this

subsection,wepresenta sim plepowercounting thatenablesusto estim atethe

m agnitude ofsuch insertions.To sim plify the discussion,we shallassum e that

the space{tim e coordinate X corresponds to su�ciently late tim es when the

externalsourcej iszero and itsin
uence isonly feltthrough the classical�eld

�(X )generated by the sourceatearliertim es.

Following the discussion after eq.(34),we assum e that there is hard m o-

m entum scale Q s in the problem {the saturation scale in heavy ion collisions.

Typicalparticle m om enta areoforderp � Qs.In ourtoy m odel,the coupling

constantg hasthe dim ension ofa m assin 4 dim ensions. To m im ic the power
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counting in Q CD,we willwrite itas

g � �Qs; (46)

where�,liketheQ CD coupling constant,isdim ensionless.W eassum ethatthe

coupling constant� � 1.

To estim ate the orderofm agnitude ofthe source term given in eq.(45),it

isnotsu�cientto know them agnitudeoftheclassical�eld.K inem aticalphase

space constraintscan alterthe naive powercounting. As these considerations

willapply equally to the collision term sin the Boltzm ann equation,itisworth

ourwhileto discussthe powercounting forthe sourceterm atlength here.

From eq.(25) and eq.(45),the naive power counting for the source term

would give

�
S (X ;p)=

�2Q 2
s

4

Z

d
4
se

ip� s
D

�
2(X +

s

2
)�2(X �

s

2
)

E

j

: (47)

W e willdem onstrate that eq.(47) vanishes when the m om entum carried by

the classical�eld � is nearly on shell. Rewriting this expression entirely in

m om entum spacein term softhe Fouriertransform e�(k)ofthe classical�eld,

�
S (X ;p)=

�2Q 2
s

4

Z

d
4
s

Z
d4k1

(2�)4
� � �

d4k4

(2�)4
e
ip� s

� e
� ik1� (X +

s

2
)
e
� ik2� (X +

s

2
)
e
� ik3� (X �s

2
)
e
� ik4� (X �s

2
)

D

e�(k1)e�(k2)e�(k3)e�(k4)

E

j
:

(48)

Forthesakeofsim plicity,letusassum ethattheaverageovertheexternalsource

j ofthe productoffour�eldsfactorizesinto productsofaveragesoftwo �elds

assuggested by the sourcedistribution in eq.(33).

D

e�(k1)e�(k2)e�(k3)e�(k4)

E

j
=

D

e�(k1)e�(k3)

E

j

D

e�(k2)e�(k4)

E

j
+ othercontractions:

(49)

Forillustrativepurposes,weconsideronlyoneofthepossiblecontractionscorre-

sponding to theconnected topology ofthesecond term in ther.h.s.ofeq.(45)).

Itisconvenientatthispointto denote

G
� +

cl
(x;y)� h�(x)�(y)i

j
; (50)

so thatonehas

D

e�(k1)e�(k3)

E

j
=

Z

d
4
Y e

i(k1+ k3)� YG
� +

cl

�

Y;
k1 � k3

2

�

: (51)

Thede�nition oftheobjectG
� +

cl
(x;y)isidenticalto theusualde�nition ofthe

� + com ponentofthe Schwinger-K eldysh propagators,except,asthe notation

suggests,itisconstructed from theclassicalsolution oftheequationsofm otion
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ratherthan from the full�eld operator. Inserting this de�nition into eq.(48)

and keeping only the lowestorder16 in the gradientsin X ,oneobtains

�
S (X ;p) =

�2Q 2
s

4

Z
d4k

(2�)4
G

� +

cl
(X ;k)G

� +

cl
(X ;p� k)

+ othercontractions: (52)

Notethatin thiscasethereisonly oneothercontraction,thatleadstothesam e

contribution,thereby transform ing theprefactor1=4 into a 1=2.Ifthetim eX 0

atwhich thisisevaluated islarge com pared to (Q s)
� 1,the classical�eld that

entersin the de�nition ofG
� +

cl
ism ostly on-shell,and one can write

G
� +

cl
(X ;k)� 2��(k2 � m

2)fcl(X ;k): (53)

By analogy with eq.28,the distribution fcl(X ;k)can be interpreted asrepre-

senting the \particle content" ofthe classical�eld.Aseq.(52)hasexactly the

structure ofa 2 ! 1 collision term with on-shellparticles ofequalm ass,it is

zero becauseofenergy-m om entum conservation.

Therefore,to correctly estim atethem agnitudeofthesourceterm �
S when

the classical�eld is weak, one needs to properly account for the slight o�-

shellnessofthe �eld Fourierm odes.From the equation ofm otion

� + m 2

Q 2
s

�
�

��

�

+
1

2

�
�

��

� 2

= 0 ; (54)

the o�-shellnessofthe classical�eld com esfrom itsself-interactions.The sim -

plestway to takethiso�-shellnessinto accountisto usetheequation ofm otion

in orderto write

e�(k)=
�Q s

2

1

k2 � m2

Z
d4q

(2�)4
e�(q)e�(k� q); (55)

and to replacesom e ofthe e�’sin eq.(48)by the aboverelation.Itissu�cient

to replace two e�’s in order to lift the kinem aticalconstraints that cam e from

the classical�eld having only nearly on-shellFourierm odes.Thissubstitution

isstraightforward.O neobtains,

�
S (X ;p)=

�
�2Q 2

s

4

� 2 Z
d4k

(2�)4

d4q

(2�)4

1

(k2 � m2)2

� G
� +

cl
(X ;q)G

� +

cl
(X ;k� q)G

� +

cl
(X ;p� k)+ othercontractions:

(56)

16At this order, this is equivalent to assum ing, from the translational invariance in the

transverse plane ofa large nucleus,that eq.(51) can be replaced by

D

e�(k1)e�(k3)

E

j
� (2�)4�(k1 + k3)G

� +

cl
(X ;k1):
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This contribution to the source term can be represented diagram m atically

as

�
S (X ;p)=

- +
- +

; (57)

wherethesolid linesrepresentordinary vacuum propagators(1=(k2 � m2))and

thewavy linesrepresentthecorrelation function G
� +

cl
.Itisinteresting to note

thatthiscontribution isidenticalin form to whatone would have obtained in

thecollision term oftheconventionalBoltzm ann equation,exceptthatherethe

G � + propagatorsarem adeup ofthe classical�elds.

W e are now in a position to estim ate the power counting ofcontributions

to thesourceterm .First,the orderofm agnitudeofthe denom inatorsk2 � m2

isQ 2
s because the m om entum transferk isoforderQ s (and isnotparticularly

closeto them assshell).Each G
� +

cl
containsa delta function.Two ofthem can

beused toperform forfreetheintegrationsovertheenergiesk0 and q0,whilethe

third providesthe value ofone angularintegration variable. W e �nally obtain

the estim ate

�
S (X ;p)�

Q 2
s

�2

�
ncl(X )

n�

� 2
fcl(X ;p)

f�
; (58)

where

ncl(X )�

Z
d3k

(2�)3
fcl(X ;k); (59)

f� � �� 2,n� � Q3s�
� 2 and ncl(X )isthespatialdensity ofparticlescorrespond-

ing to the classical�eld.The expressionsf� and n� correspond respectively to

them axim alvaluesoffcland nclcan haveatearlytim es. Q � 1
s ).Theargum ent

p cannotbespeci�ed exactly (in fact,eq.(58)isan oversim pli�ed version ofthe

actualform ula for � S ),but it is a m om entum whose com ponents are ofthe

sam eorderofm agnitudeasthoseofp,them om entum oftheproduced particle.

Thisisan im portantpoint,becauseastim eincreases,thesupportoffclshrinks

in the pz direction because ofthe longitudinalexpansion ofthe system ,thus

m aking fcl(X ;p) decrease as well(while in the center ofits support,it would

stay constant).

Even ifeq.(56) is not valid (say,ifthe average over j were to generate

connections am ong the �elds that are not pairwise),the estim ate of� S one

obtainsfrom ithasa m uch widerrangeofvalidity.(Eq.(58)isvalid even in the

saturated regim e.) W ealso notethatas� S isan inhom ogeneousterm existing

even when f = 0,its m agnitude depends only on the tim e dependence ofthe

classical�eld �(x)through fcl and ncl.

5.4 C ollision term s

Theestim ateofthevariouscontributionstothecollision term follow veryclosely

thatofthe source term .Letusstartby listing the term swe need to estim ate.

Because ofthe presence ofthe background �eld and ofthe average over the
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externalsourcej,� � + (X ;p)can contain topologiesthatwould notexistin the

vacuum . In fact,� � + (X ;p) can contain term s that have 0,1 and 2 loops17

before the average over the externalsource is perform ed. W e willdenote by

C0[f];C1[f]and C2[f]theirrespectivecontributionsto the collision term .

Letusstartwith C0[f].Diagram m atically,itcorrespondsto

C0[f]=
- +
- +

=
- +
- +

: (60)

Note that this represents only one ofthe diagram sthat can possibly enter in

C0[f].From theexperiencegained in theestim ateofthem agnitudeof� S (X ;p),

we can readily see that there m ust be at least four insertions ofthe classical

�eld forsuch a contribution to be kinem atically viable when the classical�eld

becom esweak and hasonly nearm ass-shellFourierm odes.Thesecond equality

showsone exam ple ofthe topology one obtains after the average overj. The

corresponding expression reads

C0[f]=

�
�2Q 2

s

4

� 2 Z
d4k

(2�)4

d4q

(2�)4

1

(k2 � m2)2

� G
� +

(X ;q)G
� +

cl
(X ;k� q)G

� +

cl
(X ;p� k)+ othercontractions:

(61)

The only di�erence between thisexpression and thatof� S in eq.(56)isthat

oneofthe correlatorsG
� +

cl
isnow replaced by18

G
� +

(X ;p)= 2��(p2 � m
2)f(X ;p); (62)

that involves the distribution f(X ;p) rather than the classical distribution

fcl(X ;p). From this analogy,we can estim ate the m agnitude ofC0[f]directly

from thatof� S in eq.(58),by substituting onefactorfclornclby respectively

f or n. Here n is the spatialdensity de�ned from f in the sam e way as in

eq.(59).W e obtain

C0[f]�
Q 2
s

�2

h�
ncl(X )

n�

� 2
f(X ;p)

f�
�
ncl(X )

n�

n(X )

n�

fcl(X ;p)

f�

i

: (63)

Sim ilarly,C1[f]correspondsto diagram softhe type

C1[f]=
- +
- +

=
- +
- +

; (64)

17N aturally,there are also term s with an even larger num ber ofloops,but these are sup-

pressed ifthe particle occupation num ber isf � �� 2.
18This form ula for the correlator G � + is only valid as long as the occupation num ber

f(X ;p)islarge com pared to one. Its fullexpression contains �(p0)+ f(X ;p).
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and the corresponding expression reads

C1[f]=

�
�2Q 2

s

4

� 2 Z
d4k

(2�)4

d4q

(2�)4

1

(k2 � m2)2

� G
� +

(X ;q)G
� +

cl
(X ;k� q)G

� +
(X ;p� k)+ othercontractions:

(65)

Herewereplacetwo outofthreecorrelatorsG
� +

cl
by G

� +
;thepowercounting

forthisdiagram isthen

C1[f]�
Q 2
s

�2

h
ncl(X )

n�

n(X )

n�

f(X ;p)

f�
�

�
n(X )

n�

� 2
fcl(X ;p)

f�

i

: (66)

Finally,forthe 2-loop contribution to the collision term ,wehave

C2[f]=
- +
- +

=
- +
- +

; (67)

C2[f]=

�
�2Q 2

s

4

� 2 Z
d4k

(2�)4

d4q

(2�)4

1

(k2 � m2)2

� G
� +

(X ;q)G
� +

(X ;k� q)G
� +

(X ;p� k)+ othercontractions;

(68)

and

C2[f]�
Q 2
s

�2

�
n(X )

n�

� 2
f(X ;p)

f�
: (69)

5.5 D iscussion

Following thepowercounting in equations(58),(63),(66)and (69),wearenow

in a position to discussqualitatively therelativem agnitudeofthevariousterm s

at di�erent stages ofthe evolution ofthe system . An im portant facet ofthe

tem poralevolution isthatthefunctionsfcland nclaredeterm ined onceand for

allfrom the classical�eld �(x) itself. They do notreceive any feedback from

theparticledistributionsordensities,denoted by f and n respectively,thatare

created in theevolution by thesourceterm �
S .Thetim edependenceofncl(X )

isdriven by theexpansion ofthesystem ;thereforeattim eslargerthan (Q s)
� 1,

onehas
ncl(X )

n�
�

1

Q s�
: (70)

This reduction ofthe classicalparticle density ncl with tim e happens because

the support in m om entum space ofthe corresponding phase-space density fcl

shrinks.Ata given space-tim elocation X (speci�ed by thespace-tim erapidity
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�),only particleswith a m atching m om entum rapidity y = � can stay fora long

tim e.Therefore,insideitssupport,fcl rem ainsconstantsatisfying

fcl(y � �)

f�
� 1 : (71)

Notethatattim essm allerthan (Q s)
� 1,fcl=f

� and ncl(X )=n� arealso both of

order1 becausethe classical�eld iscom pletely saturated.

However,in allthe estim atesofthe previoussubsection,fcl isevaluated at

som e arbitrary location X and m om entum p. Therefore,p willeventually fall

outsideofthesupportoffcl,and fclwilldecreasequickly
19 afterthathappens.

For fcl,which com esentirely from the classical�eld �,the only tim e-scale in

the problem is1=Q s and thuswe expectfcl to startdecreasing attim eslarger

than 1=Q s.

Atearly tim es,� ! 0,the system doesnothave particlesyetand we have

f = n = 0.O bviously,in thisregim e,only the sourceterm �
S isim portantin

the righthand side ofthe Boltzm ann equation. The corresponding physics is

thata population ofparticles,described by the occupation num berf,isbuilt

up from the decay ofthe classical�eld. However,these particles are stilltoo

few to have collisionsata signi�cantrate. Eq.(58)tells usthat� S
�

Q
2

s

�2
in

thisregim e.

Asa rough estim ate,ifwe integrate thissource term in the range 0 � � �

Q � 1
s ,we�nd thattheoccupation num berforparticlesofm om entum p � Qs at

a tim e � � Q� 1s is

f(� = Q� 1s )

f�
� 1 : (72)

Atthistim e,allthecom ponentsofthem om enta oftheseparticlesaretypically

oforderQ s.Therefore,wealso have

n(� = Q� 1s )

n�
� 1 : (73)

Attim esaround(Q s)
� 1 alltheterm sin therightsideoftheBoltzm ann equation

areofequalm agnitude.Indeed,in thisregim e,term swith an arbitrarily large

num berofloopscontribute equally to the collision term when f � f�. There

would therefore be an equally large C3[f];C4[f];etc... In practice,this m eans

thatoneshould startusing the Boltzm ann equation only atlatertim es.

At later tim es,� � Q� 1s ,collisionsam ong the particles becom e im portant

and theirqualitativee�ectisto broaden them om entum distribution ofthepar-

ticles represented by f,thereby counteracting the e�ect ofthe expansion20 of

the system . Thanksto these collisions,f(X ;p)fallsata lesserrate com pared

to fcl(X ;p)(which isnota�ected by collisions),which eventually leadsto the

19The precise tim e dependence ofthisfalldependson the pz dependence offcl.To take an

extrem e case,there would be no fallatalliffcl isindependent ofpz.
20In the absence ofcollisions,f would be a�ected by the system expansion in a sim ilarway

to fcl,and its supportwould shrink like �� 1 in the pz direction.
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dom inanceofC2[f]overalltheotherterm sin the righthand sideofthe Boltz-

m ann equation. W hen thisoccurs,ourBoltzm ann equation isidenticalto the

usualone.Thedetailed m echanism softhistransition between theclassical�eld

dom inated regim eand thekineticregim ewillbediscussed in a futurework.In

particular,it willbe interesting to com pare,for the Q CD case,the tem poral

evolution ofthekineticequation fortheglasm a with the\bottom up" scenario

oftherm alization [41].

6 Sum m ary and O utlook

In thiswork,we developed the form alism ofRefs.[1,2]forparticle production

in the presence ofstrong sourcesto constructa kinetic theory relevantforthe

early \glasm a" stage ofa heavy ion collision. In particular,we considered for

sim plicity,thedynam icsofa�3 theoryin thepresenceofstrongsources.M uch of

ourdiscussion howeveriscom pletely generaland could in principlebeextended

todescribethedynam icsofgauge�eldsexplodingintothevacuum afteraheavy

ion collision. W e showed that the relevant kinetic equation for the particle

distributions f has the structure ofa Boltzm ann equation with an additional

inhom ogeneous(f-independent)sourceterm denotingparticlecreation from the

decay ofthe classical�eld.The collision term sin the Boltzm ann equation also

have novelfeatures. In addition to the usualcontribution from the two loop

selfenergy,there are 0-loop and 1-loop contributions that a�ect the particle

phase space distributions. W e outlined the power counting that controls the

m agnitudeofthecontributionsofthesourceterm and thecollision term s.The

tem poralevolution ofthesecontributionswasdiscussed only brie
y and willbe

discussed in detailelsewhere.

Thereareseveralunresolved issuesthatshould beaddressed in futurework.

Prim arily,we would like to understand precisely how the derivation here plays

out in the Q CD case. In Refs.[42{45],it was shown that instabilities ofthe

W eibeltype [46{51]can spoilthe bottom up scenario oftherm alization. Such

an instability is also seen in the CG C fram ework in the explosive growth of

sm all
uctuationsabouttheclassicalbackground �eld [52{54]and hasanatural

interpretation as quantum 
uctuations about the classicalbackground �elds

on the light cone [55]. A num ericalstudy ofinstabilities in a �eld+ particle

fram ework hasbeen perform ed [56]butwewould liketo betterunderstand how

the e�ects ofsuch instabilities m anifestthem selves in the kinetic equation for

the glasm a.Itwould be especially interesting to uncoverwhetherK olm ogorov

turbulent spectra [57]arise as a consequence ofthese instabilities [58,59]and

whetherthisphenom enon of\turbulenttherm alization" can beaccom m odated

in ourkinetic fram ework.
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A A verage over the sources

W e have seen that it is crucialfor the validity ofthe gradient expansion to

considerquantities averaged overthe source j coupled to the �elds. W e shall

discussbrie
y herehow thisaveragecan be accounted forin ourform alism .

Let us start from the generating functional for G reen’s functions of the

Schwinger-K eldysh form alism 21 Zj[�], for a given con�guration j ofthe ex-

ternalsource.W e de�ne itin such a way thatthe n-pointG reen’sfunctionsis

obtained by di�erentiating n tim eswith respectto �,and then by setting the

auxiliary source� to zero.From whatwehavesaid in section 2,thisgenerating

functionalisrelated to the sum ofallthe vacuum -vacuum diagram sby :

Zj[�]= e
iV

S K
[j+ �]

; (74)

wherewe haveagain used a com pactnotation com pared to eq.(9).W e do not

use a boldface letter for the externalsource j,in orderto em phasize the fact

thatitisidenticalon both branchesofthe closed tim e path.

From this object,itisvery easy to constructthe generating functionalfor

G reen’s functions that are averaged over som e ensem ble ofexternalsources,

with a distribution W [j],as:

Z[�]=

Z
�

D j
�

W [j]eiVS K
[j+ �]

: (75)

In orderto see how this average overj can be accounted for in the Feynm an

rules,itisusefulto writethe generating functionalfora �xed j asfollows:

e
iV

S K
[j+ �]= exp

�

i

Z

C

d
4
xV

�
�

��(x)

� �

� exp

�

�
1

2

Z

C

d
4
xd

4
y(j(x)+ �(x))G

0
(x;y)(j(y)+ �(y))

�

;(76)

whereV isthesum ofalltheinteraction term sin thetheory underconsideration

(i.e.alltheterm softheLagrangian density thatareofdegree� 3 in the�eld).

In thisform ula,G
0
(x;y)denotesthefreepropagatorin theSchwinger-K eldysh

21In order to keep the notations com pact,we denote by a boldface letter � the pair � �
(�+ ;�� ),where the � indicesreferto the Schwinger-K eldysh closed tim e path.
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form alism (as opposed to the fullpropagator de�ned in eq.(9)). It is now

convenientto writethesecond exponentialin ther.h.s.ofeq.(76)astheaction

ofa translation operatoron a functionalthatdoesnotdepend on j,

exp

�

�
1

2

Z

C

d
4
xd

4
y (j(x)+ �(x))G

0
(x;y)(j(y)+ �(y))

�

=

= exp

�

i

Z

C

d
4
zj(z)

�

��(z)

�

exp

�

�
1

2

Z

C

d
4
xd

4
y �(x)G

0
(x;y)�(y)

�

:

(77)

Byinsertingthisform ulain eq.(76),and then in eq.(75),weobtain thefollowing

expression :

Z[�]=

�Z
�

D j
�

W [j]e
i

R

C
d
4
z j(z) �

�� (z)

�

� exp

�

i

Z

C

d
4
xV

�
�

��(x)

� �

exp

�

�
1

2

Z

C

d
4
xd

4
y �(x)G

0
(x;y)�(y)

�

:

(78)

The term son the second line arenothing butthe generating functionalforthe

sam e theory without any externalsource (since it does not depend on j). As

we can see,the e�ect ofthe average over the externalsource j is to bring a

prefactorwhich isa certain functionalofthe operator�=��. Such a term can

be interpreted as additionalcouplings am ong the �elds,since one can always

write:

�Z
�

D j
�

W [j]e
i

R

C
d
4
zj(z) �

�� (z)

�

� exp

�

i

Z

C

d
4
x U

�
�

��(x)

��

: (79)

W hatthisderivation m akesobviousisthat,forcalculating averaged quantities

over the ensem ble ofexternalsources j,one can forget the externalsources

altogether,and include additionalvertices to the theory22, as prescribed by

eq.(79). Note thatthisisequivalentto calculating a quantity in an arbitrary

j,and then reconnecting allthe j’sam ong them selvesin allthe possible ways

perm itted by ln(W [j]).
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