IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

907

The ROD Crate DAQ software framework of the
ATLAS Data Acquisition System

S. Gameiro, G. Crone, R. Ferrari, D. Francis, B. Gorini, M. Gruwe, M. Joos, G. Lehmann, L. Mapelli,
A. Misiejuk, E. Pasqualucci, J. Petersen, R. Spiwoks, L. Tremblet, G. Unel, W. Vandelli, and Y. Yasu

Abstract—In the ATLAS experiment at the LHC, the ROD Crate
DAQ provides a complete software framework to implement data
acquisition functionality at the boundary between the detector
specific electronics and the common part of the data acquisition
system. Based on a plugin mechanism, it allows selecting and
using common services (like data output and data monitoring
channels) and developing software to control and acquire data
from detector specific modules providing the infrastructure for
control, monitoring and calibration. Including also event building
functionality, the ROD Crate DAQ is intended to be the main data
acquisition tool for the first phase of detector commissioning. This
paper presents the design, functionality and performance of the
ROD Crate DAQ and its usage in the ATLAS data acquisition
system and during detector tests.

Index Terms—Data acquisition, detector commissioning, soft-
ware design, VMEbus.

I. INTRODUCTION

TLAS [1] is one of the five experiments at the Large

Hadron Collider accelerator at CERN. The data rate from
the whole detector after Level 1 trigger rejection is about 150
Gbyte/s which are distributed across 1600 readout links each
with a maximum possible throughput of 160 Mbyte/s and
a fragment rate of 100 kHz. The ATLAS Trigger and Data
Acquisition system (TDAQ) consists of a High Level Trigger
(HLT) which performs event selection reducing the event rate
by a factor of 300 and a dataflow system that transports data
from the detector readout to the HLT system and selected events
to mass storage.

Within TDAQ, the ReadOut Driver (ROD) is a sub-detector
specific front-end element [2]. It is located, in the event data
flow, after the first level of online event selection, between
the front-end electronics and the ReadOut System (ROS), as

Manuscript received June 17, 2005; revised December 2, 2005.

S. Gameiro, D. Francis, B. Gorini, M. Gruwe, M. Joos, G. Lehmann, L.
Mapelli, J. Petersen, R. Spiwoks and L. Tremblet are with CERN, CH 1211
Geneva 23, Switzerland.

G. Crone is with the Department of Physics & Astronomy, University College
London, London WCIE 6BT, U.K.

R. Ferrari and W. Vandelli are with the Universita di Pavia and LN.F.N., Pavia
IT-27100, Italy.

A. Misiejuk is with Royal Holloway, Department of Physics, University of
London, Surrey TW20 0EX, U.K.

E. Pasqualucci is with the Universita di Roma I “La Sapienza” and LN.F.N.,
Rome IT-00185, Italy.

G. Unel is with the Department of Physics & Astronomy University of Cali-
fornia, Irvine, CA 92697-4575 USA.

Y. Yasu is with the High Energy Accelerator Research Organization, Ibaraki
305-0801, Japan.

Digital Object Identifier 10.1109/TNS.2006.873001

| DETECTORS |

v 4y

| Front-end Electronics |
Front-end Links

00 . . Readout Drivers
DDDD

Readout Links

R R
O . O : Readout System
S S |
‘ Level 2 Trigger ‘ ‘ Event Building |

Fig. 1. Simplified diagram of the TDAQ chain.

illustrated in Fig. 1. The ROD receives data from one or more
front-end links and sends data over the readout links to the
ROS.

The ROD Crate DAQ (RCD) was developed due to the need
of subdetectors for common data acquisition functionality at the
level of the ROD crate, for single or multiple ROD crates, in lab-
oratory setups, at the assembly of detectors, at test beams, and at
the ATLAS experiment during commissioning and production.

The ROD system covers all RODs and other functional ele-
ments at the same hierarchical level in the event data flow be-
tween the front-end electronics and the ROS; those elements
are grouped in crates. The crates contain ROD crate modules
which can be: RODs, other modules, e.g., for controlling the
front-end electronics or the trigger system, and one or more
ROD crate processors. In ATLAS, ROD crates are custom 6U or
9U VMEO64x [3] crates, each one housing a single board com-
puter running under the Linux operating system (OS), acting as
the ROD Crate Controller (RCC).

RCD comprises all the software to operate one or more ROD
crates. It provides the functionality for configuration and con-
trol, data readout, ROD emulation, monitoring, calibration and
event building across multiple ROD crates.

RCD is based on existing ROS software originally developed
to meet the requirements of the main dataflow at the level of the
ROS: to buffer fragments which are input via standard ATLAS
readout links and provide fragments on request from the Level2
trigger and Event Building systems. An analysis of the ROS
framework indicated that this could be generalised to the de-
tector specific level of the ROD crates thereby extending the

0018-9499/$20.00 © 2006 IEEE

908

Commands

Sampled data

Emulated ROD fragments

To monitoring system
To DAQ system or to disk

Fig. 2. ROD emulation use case.

domain of ATLAS DAQ for which common software support is
provided.

II. RCD USE CASES
This chapter describes the RCD use cases [4].

A. Module Control

The RCD is used to control one or more modules in a ROD
crate. Controlling a module consists in communicating with
it, passing relevant information at each of the TDAQ system
state transitions (see Section III-C). An example of modules
that use RCD only for controlling are trigger modules (see Sec-
tion III-D). All of the other use cases presented in this chapter
include the RCD control functionality.

B. ROD Emulation

In this case, the RCD is used to read non formatted data from
one or several modules, and to build ROD fragments, which can
be later sent to the TDAQ system. This is typically used when a
detector ROD is not available, and allows testing a detector with
simpler electronics. Fig. 2 illustrates this use case.

C. ROD Data Readout

This is the main use case for the first phase of detector com-
missioning, when the RCD is the DAQ tool available for de-
tector readout. The RCD reads ROD fragments from one or
several ROD modules via VMEDbus, and builds ROS fragments
which can be either stored locally or sent out via a TCP connec-
tion to a data driven event builder, as described in Section II-E.

D. ROD Monitoring

This is the typical use case for the RCD during the ATLAS
production phase. The ROD modules are fully controlled by the
RCC, but the modules themselves manage the primary data flow,
sending events to a ROS through a readout link, as shown in
Fig. 3. In this case, the RCD acquires sampled fragments from
RODs for monitoring purposes, sending them to the monitoring
system or the histogramming service (see Section III-D). The
RCD should also be able to detect errors signalled by the ROD
modules and perform operational monitoring.

E. Data Driven Event Building

When acting as data driven event builder (REB), the RCD
receives ROS fragments coming from VMEDbus crates or ROSs

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

Data from detector

Commands

To monitoring system
or histogram service

To DAQ system

Fig. 3. ROD monitoring use case.

Data from detector Data from detector

Event fragments

Fig. 4. Data driven event builder use case.

via Ethernet TCP connections, and builds full events (Fig. 4).
This is mostly needed during the detector commissioning, when
the full TDAQ system and in particular the High Level Trigger
is not yet available.

III. RCD ARCHITECTURE

The RCD software is based on a C++ common application
framework originally developed for the ROS and referred to
as IOManager (IOM). The framework loads specific plugins to
customize its behaviour for the different RCD deployment sce-
narios.

This chapter describes the RCD architecture, focusing on the
thread and plugin structure.

A. Threads structure

The RCD has the structure of a single, multi-threaded process
based on Linux POSIX threads as illustrated in Fig. 5. The
trigger thread is activated on the occurrence of an event which
may be external or internal to the RCD. It builds a request which
describes actions to be performed by the RCD in response to the
event, e.g., reading out a number of data sources, and then writes
this request to a queue. A request handler thread processes the
requests: reads an element from the request queue and executes
it. It typically consists in extracting fragments from the data
sources, and assembling these into a larger fragment, which is
written to an output device. Several request handlers may work
in parallel thereby achieving a better CPU utilization.

GAMEIRO et al.: THE ROD CRATE DAQ SOFTWARE FRAMEWORK OF THE ATLAS DATA ACQUISITION SYSTEM 909

User Action Scheduler
Run Control
" Interrupt Handler

Commands &

Messages Request Handlers

II internal
randp W buffer

——,
. Sequential R/O

Sequential Input Handler

O = Process

< =DAQ threads
wlli = Control threads
O = Scheduler

Request Queue

Fig. 5. Thread diagram of the RCD application.

The framework provides a number of optional threads. The
Sequential Input Handler thread supervises the input of data
fragments from several ROD modules, based either on polling
of registers in the RODs or VMEDbus interrupts. The data frag-
ments are read into a set of internal memory buffers, one per
ROD, from where they can be accessed (randomly) via the re-
quest handlers. The User Action Scheduler thread allows acti-
vation of user written handlers when a defined time slice (per
handler) has expired. Similarly, when a VMEbus interrupt oc-
curs, the Interrupt Handler thread activates a user written han-
dler identified by a VMEDbus interrupt vector.

In addition to the threads related to the data flow, there are
control threads which communicate with external controller ap-
plications for configuration, error handling and statistics.

The strategy for thread execution is based on ‘poll and yield’:
a thread polls on a resource, executes until the resource is ex-
hausted and then yields, i.e., gives the CPU back to the OS. This
approach minimises the number of thread context switches and
the time for one context switch. The RCD is not a hard real time
application in the sense that it does not have to react to external
events (such as VMEbus interrupts) in a guaranteed time. Rather
the design aims at maximising the data throughput.

B. Plugin Mechanism

The application framework implements the common core
functionality of the system: interface with the run control
commands, error handling and recovery, activity scheduling,
configuration management, and event selection and sampling,
among others. The application relies on specific plugins for the
implementation of the different I/O protocols.

All the plugins are loaded by the application at run time (dy-
namic loading) and do not need to be linked to the main appli-
cation. This allows users to add new plugins without having to
modify the application binary.

Fig. 6 shows a diagram with the four different types of plu-
gins: configuration, trigger, module and output. The configura-
tion plugin is the first one to be loaded, and it informs the ap-
plication about the other plugins. For each of the four types of
plugins, an abstract base class defines an API that needs to be
implemented for every specific instance. A more detailed de-
scription of each plugin is now presented.

1) Configuration: The standard way of configuring the RCD
is via a configuration database. The database is based on a

ASClII files
config

Database
config

|| Datadriven i JOM application ettt
é trigger i - | E: Tile”RFOD !
' ' Thread listening to run E ! H
| =8 trol cmd: £
H Network 58 D ?‘?:r;(;dcigt:ning to errors U): :
i trigger ol from plugins (can run = : !
: H o error recovery algorithms) o : - |
E _ H c *Basic configuration I: Q, Liquid :
: : Q management -g : A ROD | !
! =3 +Activity scheduling o rgon !
! Emulated E 2 +Event selection/sampling = : I/F :
' trigger ; \W/ [——— i
e, Output Plugins ______________

1 1

My yi 7

i | Data Flow File TCP. i

1| System connection | !

' utput Output output i

1 1

Fig. 6. Plugin diagram of the IOM application.

core schema which includes the definitions of all the classes
of the system. A modular structure allows creation of new
sub-schemas with user defined classes, which may use other
classes from the core schema, and can be included in the user’s
database. An alternative way of configuring the RCD is via
simple ASCII files, more suitable for development/debugging
phases.

2) Trigger: The trigger plugins implements the functionality
of the trigger thread, see Section III-A. The RCD software pro-
vides several trigger plugins characterised by the type of trigger
source which may be external or internal to the application:
arrival of a message on a network; input of data fragments in
the internal buffer via sequential data channels, see Fig. 5 (data
driven trigger); internal generation of the trigger (emulation). In
addition the user may develop trigger plugins driven by detector
specific trigger hardware, e.g., VMEbus modules.

3) Module: A module describes a hardware or software com-
ponent that is controlled by the framework. It can perform any
appropriate action associated with a state transition; the base
class associated with a module is called ReadoutModule, and it
includes virtual methods for each of the state transitions. Typical
actions include reading the configuration database, initializing
the hardware modules or publishing statistics.

A module may be associated with the readout of data. In that
case, one or more data channels are defined within the module,
with virtual methods for requesting, retrieving and deleting frag-
ments. A specialised implementation of a data channel was pro-
vided for RCD deployments, which include virtual methods for
polling on a data source and retrieving data (ROD fragments),
sequentially.

4) Output: As explained in Section III-A, a request handler
writes the event fragments to an output device. This function-
ality is implemented via an output plugin. The RCD software
provides several plugins associated with the type of output de-
vice, e.g., network (DataFlow System Output) or local disk. In
addition the user may develop specific output plugins although
this should be an exception.

910

F

[Initial]—»{ Loaded
o

Configure Unconfigure

Ready
Start

Resume
Pause

Fig. 7. Simplified diagram of the controller’s State Transitions.

Stop

C. Supervision System and Graphical User Interface

The TDAQ Supervision System is in charge of performing the
initialization and shutdown of TDAQ firmware and software,
distributing commands to TDAQ elements, synchronizing op-
erations between them, and performing error handling [5]. The
building block of the Supervision is the Controller. The super-
vision will generally contain a number of controllers organized
in a hierarchical tree.

In order to regulate the control activity, a state machine model
was introduced in the controller’s core: a controller always has
a state, reflecting the possible states of the TDAQ system. The
states and transitions of all controllers in the tree are synchro-
nized. Each state has a defined set of authorized transitions that
bring the system into a new state, as shown in Fig. 7.

An Interactive Graphical User Interface (IGUI) [6] allows the
user to control the operation of the RCD and to obtain status
and error information. The IGUI interfaces to the supervision
system, the Information Service [7] and the Message Reporting
System [8] which are standard components of the TDAQ Online
System. The same IGUI is used throughout ATLAS from small
test systems to the final production system.

D. Monitoring, histogramming and calibration.

The RCD allows to transport monitoring data, in the form
of event fragments or histograms, from modules in the ROD
crate to either the Event Monitoring Service [9], a framework
for developing detector specific event monitoring software or
to the Histogramming Service [9] which provides facilities for
receiving and displaying histograms.

Some detectors perform calibration at the level of the ROD
crate when access to a full event is not required. In this context
the triggering of the readout of the calibration data is impor-
tant. In ATLAS, standard trigger modules have been developed
[10]-[12] with software support in RCD. For calibration, the
trigger modules are programmed to run in local, detector spe-
cific mode allowing to take data independently of other detec-
tors.

IV. RCD DEPLOYMENT

This chapter deals with aspects of recent deployments and de-
velopments of RCD: its usage during the 2004 Combined Test

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

Beam, enhancements of the functionality and its role in the de-
tector commissioning phase.

A. 2004 Combined Test Beam

In the 2004 Combined Test Beam, a slice of the ATLAS
detector was assembled with the objective of integrating and
testing all the components of the experiment under real condi-
tions. Elements from nine different types of detectors, including
the inner detector, calorimeter and external muon chambers,
were installed in a beam line and exposed to different kinds of
particle beams.

The detector readout electronics was connected to a scaled-
down version of the final ATLAS DAQ system, which was op-
erated in realistic data taking conditions (24 hours a day 7 days
a week) for about six months.

The readout electronics for the various detectors was mostly
available in early prototyping versions, sometimes with limited
functionality; hence the RCD software had to be used for dif-
ferent tasks.

¢ All the detectors but one controlled and configured their
modules via the RCD.

e Some detectors used the ROD emulation functionality to
read non-formatted data from different types of modules,
combine it and build formatted fragments, as the final ROD
modules were not available at the time.

* More than half of the detectors had real ROD modules and
some performed data readout with the RCD.

* All the detectors but one used the RCD monitoring func-
tionality.

RCD was also used to control and configure the VMEbus
modules (see Section III-D) used to interface the readout elec-
tronics with the first-level trigger, to handle incoming timing and
trigger signals and to provide feedback on busy conditions.

B. RCD enhancements and performance measurements.

After the 2004 Combined Test Beam, the usage of the RCD
was analysed in detail, and a number of changes were performed
in order to simplify the API and add some functionalities [13].

To test the new software, and while the final RODs of the
detectors were not available, a test bed was set up to emulate
the behaviour of a ROD. It consists of a VMEbus memory
module plus a VMEbus interrupt module [14], which reproduce
the three main ROD functionalities: memory, registers and
interrupt capability. The memory is filled with ROD fragments
to emulate the ROD data source. The trigger to read the ROD
fragments is provided by the VMEDbus interrupt module, which
can be used in either polled or interrupt driven mode.

When doing polled data read out, a register in the VMEDbus in-
terrupt module is read for the presence of a “data available” bit.
This bit is set via a NIM pulse which runs at a given frequency.
When the bit is set, a fragment is read from the memory. When
using interrupts, every time a fragment is available (given again
by a NIM pulse), the VMEDbus interrupt module issues an inter-
rupt, and a fragment is retrieved from the memory.

Fig. 8 shows the performance measurements done for such a
test system running with two readout modules, each one of them
with two data channels. The measurements were performed for

GAMEIRO et al.: THE ROD CRATE DAQ SOFTWARE FRAMEWORK OF THE ATLAS DATA ACQUISITION SYSTEM 911

2500
Polling event overhead = 25 ps

2000 | Interrupt event overhead =97 ps
2
« 1500
o
i
@ 1000
£ ——Polling
&

500 —=— |nterrupts
0
0 2000 4000 6000 8000
ROD fragment size (bytes)

Fig. 8. Performance measurements of a ROD crate test system running four
data channels.

2500
Polling event overhead = 25 ps

2000 Interrupt event overhead = 144 ps
M
=3
= 1500
f=
[
>
w
@ 1000
£
= —— Polling

500 —=— Interrupts
0
0 2000 4000 6000 8000
ROD fragment size (bytes)

Fig. 9. Performance measurements with a ROD emulator connected to an RCD
event building system.

both polling and interrupt modes, to compare the event overhead
and in general the ROD fragment transfer time.

The total transfer rate measured in this system, using single
cycles to read from the VMEbus memory, is 3.6 Mbyte/s, which
is close to the maximum rate that can be achieved in this system.

In polled mode the event overhead is about 25 us and in in-
terrupt mode 100 ps. In both cases the event overhead is small
compared to the typical transfer of a 1 kbyte fragment across
VMEDbus which is the performance requirement of RCD.

One of the enhancements to the RCD framework was the ca-
pability of acting as an event builder (see Section II-E). To val-
idate the new event building software, a PC running an RCD
event builder was added to the test system described above. Full
events are built out of the ROS fragments received from the
VMEDbus crate. The network link between the ROD crate and the
RCD event builder is a Fast Ethernet connection (100 Mbit/s).
The performance measurements can be viewed in Fig. 9.

The performance is comparable to that shown in Fig. 8, which
shows that adding an RCD event builder has a small impact on
the performance of the system.

C. Detector Commissioning

The commissioning of detectors in ATLAS has already
started and will last until 2007. Within this context, RCD will
be the main tool concerning the data acquisition functionality.

The usage of the RCD will be similar to that of last year’s
test beam, with the ROD emulation modules gradually being
replaced by the final detector RODs. Whenever a larger part of
a detector or several detectors will have to be read out, requiring
more than one ROD crate, multi-crate event building will be
used to acquire combined data.

V. CONCLUSION

The ROS software framework, originally developed to meet
the dataflow requirements at the level of the common readout
system in the ATLAS DAQ (see Fig. 1), has been extended
to the detector specific domain, largely based on VMEDbus, be-
tween the front-end electronics and the readout system. Due to
the modular design of the ROS software, and in particular the
technique of using plugins, new functionalities could be added
so as to meet the additional requirements of RCD.

A first version of RCD was tested in the ATLAS Combined
Test Beam of 2004 and the requirements were met both in
terms of functionality and performance. Based on the feedback
from the test beam, RCD was further developed mainly to add
the event building capability and to improve the handling of
VMEDbus modules. The RCD software will be an important data
acquisition tool for use in test beds, for detector commissioning
and as a component of the final ATLAS DAQ for detector
control, monitoring and calibration.

ACKNOWLEDGMENT

The authors would like to thank the ATLAS TDAQ commu-
nity for their contributions to the work presented in this paper.

REFERENCES

[1] ATLAS experiment, [Online]. Available: http://en.wikipedia.org/wiki/

ATLAS_experiment.

ROD Crate DAQ Task Force, [Online]. Available: https://edms.cern.ch/

document/344713/1, Data Acquisition for the ATLAS Read-out Driver

Crate (ROD Crate DAQ) - Definition.

[3] VMEbus International Trade Association, [Online]. Available: www.

vita.com.

G. Crone, S. Gameiro, B. Gorini, M. Joos, E. Pasqualucci, and J. Pe-

tersen, ROD Crate DAQ User’s Guide [Online]. Available: http://edms.

cern.ch/document/577958/1.

[51 A. Kazarov, G. Lehmann, D. Liko, S. Wheeler, and H. Zobernig,
ATLAS TDAQ: Controller Requirements [Online]. Available:
http://edms.cern.ch/document/431663/2.1.

[6] S. Camara, Design of the Integrated Graphical User Interface of Atlas

DAQ/EF Prototype-1 [Online]. Available: http://atddoc.cern.ch/Atlas/

Notes/144/Note144-1.html.

Information Service, [Online]. Available: http://atddoc.cern.ch/Atlas/

DagSoft/components/is/Welcome.html.

Message Reporting Service, [Online]. Available: http://atddoc.cern.ch/

Atlas/DaqSoft/components/mrs/Welcome.html.

M. Barczyk, Online Monitoring software framework in the ATLAS

experiment [Online]. Available: http://doc.cern.ch//archive/electronic/

cern/others/atlnot/Note/daq/daq-2003-005.pdf.

[10] P. Farthouat and P. Gallno, TTC-VMEbus Interface [Online]. Avail-
able: http://ttc.web.cern.ch/TTC/TTCviSoec.pdf.

[11] P.Farthouat, P. Gallno, G. Schuler, and R. Spiwoks, Local Trigger pro-
cessor [Online]. Available: http://ific.uv.es/tical/rod/docs_vme_dag/
Itp-spec-v6.pdf.

[12] Per Gallno, ATLAS ROD Busy Module MKII [Online]. Available:

https://edms.cern.ch/file/456631/4/ROD_BUSY_MKII_manual_27.

pdf.

G Crone, B Gorini, M Joos, E Pasqualucci, J Petersen, and W. Vandeli,

Extensions of the IOManager architecture for ROD Crate DAQ [On-

line]. Available: http://edms.cern.ch/document/554806/1.

“Creative Electronic Systems S.A.” RCB 8047 CORBO VME

Read-Out Control Board, User’s Manual, Switzerland, Aug. 1993.

[2

—

[4

=

[7

—

[8

—

[9

—

[13

[14

