
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006 995

Configuring the LHCb Readout Network Using a
Database

Lana Abadie

Abstract—The LHCb readout system is composed of hundreds
of electronics boards, an event-building network based on Gigabit
Ethernet switches and an online processing farm. The Experiment
Control System (ECS) configures the system from the Online Con-
figuration database. This database contains device parameters,
the hierarchical structure and the connectivity information of the
system. In addition the switches in the event-building network
require routing tables that have to be generated according to the
connectivity. We apply the Entity Relationship model to represent
the connectivity of the system. SQL code builds the routing tables
using the information contained in the Configuration database.

Index Terms—DAQ network, database, routing table.

I. INTRODUCTION

THE LHCb experiment [1], [2] is one of the four experi-
ments at the CERN Large Hadron Collider (LHC). The

LHC, currently under construction, will accelerate two beams
of protons in opposite directions close to the speed of light,
reaching an energy of 7 teraelectronvolts (TeV), the highest en-
ergy ever observed in a laboratory. The LHCb experiment is sit-
uated at one of the places around the LHC ring where the beams
collide. For more information, please see [3]. The LHCb de-
tector is designed to exploit the large number of b-hadrons pro-
duced at the LHC in order to make precision studies of CP asym-
metries and of rare decays in the B-meson systems. The Online
Data Acquisition (DAQ) system collects data from the front-end
electronics and transfers them to a CPU farm for the execution of
the software trigger algorithms. There are two kinds of traffic in-
termixed corresponding to the data for Level-1 trigger (L1) and
for the high level trigger (HLT). Details about the DAQ system
can be found in [4].

The DAQ as shown in Fig. 1 is composed of the following:
• about 300 front-end electronics boards (FEs) containing

diskless embedded PCs the size of a credit-card (Creditcard
PCs);

• about 20 switches to reduce the number of links (multi-
plexing layer);

• about 100 SubFarms to process data—a SubFarm is com-
posed of a SubFarm Controller (SFC)—and about 20 disk-
less PCs (SubFarm Nodes);

• a readout network to interconnect the data sources (FEs)
and the SubFarms.

The monitoring, configuration and operation of all the exper-
imental equipment will be handled by the Experiment Control
System (ECS) [5]. All configurable information required for the

Manuscript received June 27, 2005; revised March 6, 2006, 2005.
The author is with the CERN, CH-1211 Geneva 23, Switzerland and also with

GET/INT, 91011 Evry cedex, France (e-mail: lana.abadie@cern.ch).
Digital Object Identifier 10.1109/TNS.2006.873309

control of the equipment is stored in the Configuration database
[6].

In this paper, we focus on an effective way to configure the
LHCb Online Data Acquisition (DAQ) network using this data-
base.

II. CONFIGURATION OF THE DAQ: METHODOLOGY

A. Objectives and Requirements

The behavior of any networking device in a DAQ system has
to be predictable to control and manage the routing of data. It is
also necessary to keep track of all routing tables and configura-
tion files to enable the system to recover after a crash and also
to analyze the cause of the failure afterwards.

To satisfy these requirements, we need to configure the
routing table for each switch of the DAQ network and reduce
the use of the switch “automatic” or “self-management” routing
mode (this feature allows the router to choose the routing of
data).

The FE boards and the subfarm nodes are diskless. Disk-
less means they boot via the network—in our case using ether-
boot [7]—and they use a network file system (NFS) [8] tree in-
stalled on a remote server (not visible in Fig. 1) to mount their
root filesystem. This remote server is located on a Controls PC.
Using NFS means that you cannot use a true dynamic IP ad-
dress but you need a fixed IP address. This IP address will be
assigned using the dynamic host configuration protocol (DHCP)
[9] which is based on a configuration file (DHCP configuration
file). Etherboot will send a dhcp request to ask for an IP ad-
dress. The FE boards and subfarm nodes will be identified by
their MAC (Ethernet) address. We need to generate the DHCP
configuration file to allow the FE boards and the Subfarm nodes
to get their IP address and their filename for the boot image. This
filename corresponds to the location of their rootfile system, in
the NFS server. See the Appendix I for an example of a DHCP
configuration file. We also need to generate other configuration
files, for the Domain Name System DNS [10] for instance. Thus
configuring our DAQ network consists of the following:

• generating routing tables for each switch of the DAQ, i.e.,
the switches in the readout network and in the subfarms;

• generating configuration files.
In the next sections we will focus on generating routing tables.

B. Use of a Database

To satisfy the previous requirements, we use the Online
Configuration database [6] to configure the DAQ system since
databases are nowadays a powerful and safe technology to
save data for large systems. Information stored in the database
should be:

• complete, to be able to start up the network after a crash;

0018-9499/$20.00 © 2006 IEEE



996 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

Fig. 1. The LHCb DAQ architecture.

• scalable, to support any extension or changes to the net-
work topology or in the hardware of the components;

• consistent, to avoid errors and incompatibilities in routing
tables or in configuration files;

C. Routing Table Definition

A routing table, stored in a router or a switch, keeps track
of routes to particular network host interfaces. There is one
routing table per switch or router. We can distinguish two types
of routing tables (we describe the different entries of routing ta-
bles as they are stored in swicthes and routers).

• IP routing tables for routers (layer 3 in the OSI model [11]).
The IP routing table has the following entries.
— Port number to forward data (Port nb in Fig. 2).
— IP address of the next hop (IP @ Next Hop in Fig. 2).
— IP address of the destination (IP @ destin. in Fig. 2).
— Subnet Mask [12]: property of a subnet i.e., a pool of

networking devices (Subnet mask in Fig. 2).
— Path length or round trip down to the destination (Path

length in Fig. 2).
Fig. 2 shows the IP routing table of the switch A. The
columns represent the entries quoted previously. A row
of a routing table describes which port to take to reach
a given destination. For instance, a packet destinated to
132.123.198.52 arrives in switch A. Switch A looks for
132.123.198.52 in the column @ destin of its routing
table. Then, it forwards the packet to the port number (read
from Port nb colum) associated with this destination, i.e.,
port 2, referring to Fig. 2.

• MAC routing tables for switches (layer 2 in the OSI
model). The MAC routing table has the following entries:
— Port number to forward data;
— MAC address of the next hop;
— MAC address of the destination;

Fig. 2. Example of an IP routing table of switch A.

— VLAN (Virtual Local Area Network) [13] prefix which
is a characteristic of a pool of networking devices;

— Path length or round trip down to the destination.



ABADIE: CONFIGURING THE LHCB READOUT NETWORK USING A DATABASE 997

Different kinds of routing algorithms exist; in this paper, we
use the most common one-the shortest path-which consists in
minimizing the number of network devices crossed i.e., number
of hops.

III. REPRESENTATION OF THE DAQ NETWORK

We will focus on determining the necessary information to be
stored in the database and on finding an efficient table schema.

A. Network Definitions

A network can be seen as a graph composed of a certain
number of nodes and links. Our network consists of the fol-
lowing.

• Host nodes (or “hosts”) correspond to equipment which
process data such as PCs. Host nodes are either sources
(sending data) or destinations (receiving data).

• Switch nodes (or “switches”) are intermediate nodes
which forward data through the network.

• Two nodes may be inter-connected by a link. The end
points of a link are called ports which are attached to
nodes. The ports of a node are numbered.
A link consists of the following:
— a node and a port number for the start and the end of the

connection;
— a type corresponding to the data type that the link carries

such as control or data traffic (Fig. 1);
— an orientation: bidirectional or unidirectional (in our

case all the links are bidirectional);
— a status: either functional or dead.

• A network interface card (NIC) implements a port of a
node. Each NIC is characterized by a MAC address and an
IP address. Therefore, every port on a switch has a Mac
address and an IP address.

• A path is a sequence of distinct connected nodes (or links).
A routing path is a special type of path which starts from
a switch node and terminates with a host node.

• The maximum hops correspond to the maximum number
of links in a path. This parameter is a characteristic of the
network. It is noted M.

B. Table Design Methodology

We use the the entity relationship model (ERM) because of
its simplicity and its flexibility to model many systems. The
ERM represents a collection of entities and their relationships.
An entity represents an object or a concept. It is modelled using
a table whose rows correspond to instances of this object. The
table’s columns represent the attributes of the object. In our case,
nodes, links, ports, network interfaces are examples of enti-
ties. A relationship describes how entities are linked. For ex-
ample, the parent-children relationship means that one or sev-
eral attributes of the children tables will point to one or more
attributes of the parent table (Foreign Keys).

In order to design the database schema, we collect use cases.
A use case is an example of an application that will use the data-
base schema. By collecting the main use cases, we can identify
the requirements of a system. The main use cases for the DAQ
network are as folows.

• We need to know in advance the data path connecting a FE
board (source) to a SFC (destination). Referring to Fig. 2,

if the PC identified by IP address 132.123.198.42 sends
data to the destination 132.123.198.52, we should know
that the data will first enter the switch A on its port number
1 and get out on its port number 2, then enter switch B
via its interface 132.123.198.33 and get out from the port
number 5 (for instance, although not specified in the figure)
and finally reach its destination. This is different from the
default operation of a network in which a node is likely to
dynamically determine the routes for a given data packet.

• The switches in the DAQ network can be either routers
or switches. In the case of LHCb, this has not yet been
defined. So we need to set up both IP and MAC routing
tables for each switch. It means that we have to provide
the entries as defined in Subsection II.C.

• In our DAQ network (see Fig. 1), a FE board (source)
cannot directly send data to a SubFarm PC but only to a
SFC which then will process the data and forward it to the
SubFarm PCs. Same remark for the switches in the Sub-
Farms. The SFC distributes the event to the Subfarm PCs
which run trigger algorithms. Then the trigger decisions
are sent back to the SFC. So in the routing tables of the
readout network, switches will have the entries-MAC ad-
dress destination and IP address destination-corresponding
to FE boards and SFCs. The routing table of the switches
in the SubFarms will have the entries—MAC address des-
tination and IP address destination-corresponding to Sub-
Farm PCs and to SFCs. Given these requirements, a routing
path is a sequence of distinct intermediate nodes (or links)
which starts from a switch—the one we want to generate
the routing table for-and ends with a host node. A routing
path has one and only one host node which is the terminal
node.

C. Relational Database Design for the DAQ System

Fig. 3 shows an optimized database schema which represents
our DAQ network system and allows an easy implementation of
the use cases mentioned earlier.

The primary key of a table, used to refer to other tables, is
in bold. The arrows represent the relationships (foreign keys)
between the different entities (or tables).

In the database, we distinguish the following two types of
tables.

• Tables filled by the user (typically the network adminis-
trator of the DAQ). The names of these tables are in upper
case in Fig. 3.
The name and characteristics of the nodes (host and inter-
mediate) are stored in the DEVICE table. The links be-
tween node interfaces and their properties are stored in the
CONNECTIVITY table. The IP MAC table contains the
IP and MAC adresses corresponding to the node interfaces
and the PORT table contains port properties. This type of
information cannot be generated automatically.

• Tables derived from the information stored in the data-
base (table names in lower case in Fig. 3) such as routing
tables, configuration files. Section IV describes the algo-
rithms used to derive these tables.
The routing table table contains both the MAC and IP
routing tables of a switch: there is one routing table table
per switch.



998 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

Fig. 3. Table design for the DAQ system based on the ERM.

The path line table contains all the complete routing paths
starting at a given switch: there is one path line table per
switch. Although the path line table does not comply with
the relational rules (because the number of columns de-
pends on M), we decided to proceed with this design for
efficiency reasons.

IV. GENERATING A ROUTING TABLE

This section explains how we generate the routing table for a
particular switch node using the table schema of Fig. 3.

The main idea to generate a routing table for a switch A is
to determine all the routing paths-designated by their nodes-
starting from switch A and with a length less than M (maximum
number of hops) which will be stored in the path line table.

First we define the concept of link and path weights. Then, we
introduce the concept of logical links and link pairs which are
used to build the routing paths. Finally, we present an algorithm
to find optimal routing paths.

A. Link and Path Weights

In the DEVICE table (Fig. 3), the Node attribute, set by the
user, is equal to 1 if it is a host node and 0 if it is an intermediate
node.

In the CONNECTIVITY table from Fig. 3, the Link weight
of a link L (noted is set to the folowing:

• 0 if the link is between 2 intermediate nodes;
• 1 if the link is between a host node and an intermediate

node;
• 2 if the link is between 2 host nodes (although not used

here).
Fig. 4 illustrates the concept of link weight.
The path weight is defined as the sum of the link

weights along the path (see Fig. 5).
By using the definition of the routing path, we can derive

the following theorem which will be used to find the subset of
routing paths from paths.

Fig. 4. Link weight concept.

A path P of length J is a routing path of length J

where corresponds to the weight of the i-th link in the
path P. The proof is given in the Appendix II.

B. Algorithm Initialization

The input parameters of the routing algorithm are the name of
the intermediate node and M (max hops in Fig. 3). This concept
of maximum length is necessary as finding all the paths in a
graph is a NP-complete (Non-Polynomial) problem [14].

The algorithm to generate the routing table is based on the
following steps.

• Create the logical links table which is the logical (or
macroscopic) view of the system. It is derived from the
CONNECTIVITY table (cf Fig. 3).
In the logical links table, multiple physical links between
two nodes are represented by one single link. This step is
performed to reduce the redundant paths which leads to
inconsistent routing tables. Referring to Fig. 6, the four



ABADIE: CONFIGURING THE LHCB READOUT NETWORK USING A DATABASE 999

Fig. 5. Example of a routing path.

Fig. 6. Routing table of switch A: an ambiguous routing table.

links between Switch A and Switch B are replaced with
one single link. Our switches have the “Link Aggrega-
tion” feature [15]. It means that we can group several phys-
ical links and consider them as one “logical” link. The
switch will then forward the packet through this logical
link (it’s the switch which decides to which physical port
the data should be forwarded). The reason of this “ag-
gregation” operation is to ensure that there is only one
routing path per destination and to avoid misconfiguration
which often leads to broadcasts and finally screws the net-
work up. For instance, assume that a packet destinated for
132.123.198.58 arrives at Switch A. Switch A looks for
132.123.198.58 in its routing table and sees four possible
ports to forward the packet (1, 2, 3 or 4). If these 4 phys-
ical links are not aggregated, switch A will not know from
which port the packet should get out.

• Create the link pairs table in which all valid pairs of suc-
cessive links are stored. To create the link pairs table, we
perform a self-join of the logical links table. It is like a
Cartesian product of the table with itself with the following
constraints.
• Link1 is defined by (Node_1, Node_2) and Link2 is de-

fined by (Node 2, Node 3) (referring to Fig. 3) where
Node 2 corresponds both to Node to of link1 and to
Node from of link2.

• The link weight of link1 must be equal to 0 because we
want to find routing paths (i.e., it starts from a switch
and, as we are looking for pairs of links, we exclude the
switch-host links).

The logical links and link pairs tables are not switch de-
pendent. They are re-generated only when a change occurs
in the CONNECTIVITY table.

• For each switch, a path line table is created and initialized
with the elements from the link pairs table which have this
switch as a starting node. We then have found paths which
have a length equal to 1 or 2. These paths are inserted in
the path line table. If the length path is equal to 1, then the
path is inserted as a row into the path line table using the
columns Node_1, Node_2. If the legnth path is equal to 2,
then the path is inserted as a row into the path line table
using the columns Node_1, Node_2, Node_3.

C. Algorithm Body

This subsection explains how we find the routing paths.
We iterate over which represents the length. At each itera-

tion , a join between the link pairs and the path line tables is
executed. It means that a path P, with (i.e., having not
reached a host) is completed with an element from link pairs
whose first link is equal to the last link of P. If no such pair ex-
ists, the path P is removed. There may be more than one pair
which verify the conditions. Thus if there are N possible pairs,
these N possible pairs will be appended to P and there will be
N new paths (i.e., N new rows in the path line). At the end of
iteration , we have found all the paths of length and inserted
them in the path line table and we have filled the Node
columns of path line table.

For each iteration , the detailed description of the steps is as
follows.

• Step 1. In the path line table, select the paths P where
. (The last column filled is Node_ ).

• Step 2. Find all the possible pairs of links where (Node
, Node ) is equal to (Node_1, Node_2) of link pairs

table and check that there is no cycle (i.e., a node appearing
twice in the path).



1000 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

• Step 3. Insert these new valid paths in the path line table.
So the Node_1 to Node columns are filled in.

• Step 4. Delete the old paths where and
Node .

• Step 5. Increment by 1.
• Step 6. Stop the loop if is greater than M or if all the paths

are routing paths, i.e., all paths verify .
• Step 7. Finally, we resolve multiple paths to a given

destination by selecting the shortest routing path. These
shortest path are stored in a temporary table called
shortest_routing_path. This table is not mentioned in the
Fig. 3.

This algorithm works in all network architectures including
full mesh layouts. A more detailed version in “pseudo-code” is
given in Appendix III.

D. Routing Table

The path line table contains all the routing paths of a switch.
The shortest_routing_path table contains the shortest routing
path to a given destination. Then we do a mapping of the in-
formation stored in the shortest_routing_path table to the two
types of routing tables (IP and MAC).

V. IMPLEMENTATION AND TEST

The Configuration database is a central database based on Or-
acle technology (Oracle 9i) [16] because it is well supported at
CERN. Also Oracle is operating system independant. To gen-
erate the routing tables, we have developed a PL/SQL package.
PL/SQL (Procedural Language) is a proprietary but portable
language developed by Oracle [17]. PL/SQL is a server side lan-
guage interpreted by (Oracle) DBMS servers. The main advan-
tage to use PL/SQL is we can build functions and procedures
which perform SQL queries in the server-side. The execution
time is faster as we reduce the number of round trips over the
network. We have tested this package with different layouts of
the DAQ network system which has been represented with 2350
nodes and 4216 links. In our tests, M was set to 10 and the real
maximum path length found was 7.

VI. CONCLUSION

This paper proposes a way to configure a network with a focus
on how generating routing tables using a database. The next step
is to implement other packages to generate configuration files
by still using the same representation. One ongoing project is to
automatically generate a DHCP configuration file.

APPENDIX I
EXAMPLE OF A DHCP CONFIGURATION FILE

#

# Sample dhcpd.conf file

# Check with your network

# admin for local settings

#

# main Class B network

subnet 127.238.0.0

# subnet mask (Class B)

netmask 255.255.0.0 { not authoritative; }

group {

# gateway address

option routers 127.238.1.1;

# the boot image

filename “vmlinuz-2.4.26-ccpc08.nbi”;

# the tftp-server IP address

server-name “127.238.142.63”;address

# the nfs-server IP address

next-server “127.238.142.63”;

option root-path

“127.238.142.63:/usr/local/defaultroot”;

# here now the entries for the Hosts

host pclbcc02 {

hardware ethernet “01:02:03:04:05:05”;

fixed-address 127.238.142.77;

}

}

The usual and necessary entries we find in a dhcp configuration
file are in bold. Comments are in italic.

APPENDIX II
PROOF OF THE THEOREM

Proof of: A path P of length J is a routing path of length J

A path P of length J is a routing path of length is
a sequence of nodes which are all intermediate nodes (J
nodes) except the terminal one which is a host node.

So P is a routing path of length is a sequence of
J-1 links between intermediate nodes and one link intermediate-
host nodes.

As the link weight between two intermediate nodes is equal
to 0 and the link weight between an intermediate node and a host
node is equal to 1, we have the folowing.

P is a routing path of length

As all the link weights are greater or equal than 0, we have



ABADIE: CONFIGURING THE LHCB READOUT NETWORK USING A DATABASE 1001

and we also have

Hence, A path P of length J is a routing path of length J

APPENDIX III
THE CORE OF THE ALGORITHM

# Initialization: paths of length < 3 have

# been found using the link_pairstable.

# i represents the length.

i = 3;

WHILE (stop = 0 and i � max hops)}

# steps 1 and 2 join between link_pairs

# and path_line tables

SELECT f.Node_1,. . ., f.Node_i, t.Node_3

FROM link_pairs t, path_line f

# 4 conditions to respect:

# (Node1,Node2)=(Nodei-1,Nodei)

WHERE

t:Node 2 = f:Node_i AND t:Node 1 = f:Node_i-1 AND

# check W (P ) = 0 and same link type

f:Path weight = 0 AND f:Path type = t:Link type AND

# check there is no cycle,

# i.e., twice the same node.

[ (t:Node 3� f:Node k)] 6= 0.

# step 3:insert the result of select

# (new paths of length i)

INSERT the new valid paths found

(of length i) in the path line table.

# step 4: delete old paths i.e., where

# W (P ) = 0 and path length = i � 1

DELETE path line the rows WHERE Path weight = 0

AND Node_i + 1 = 0.

COUNT the number of rows where Path weight = 0

in the path\_line table.

# step 5 and 6: stop the loop if

# all the paths are routing paths

# otherwise increment i by 1

IF all the Path weight > 0 then

stop = 1;

ELSE

i = i + 1;

END IF;

END WHILE;

ACKNOWLEDGMENT

The author would like to thank A. Barczyk, J.-P. Dufey,
B. Gaidioz, and N. Neufeld for their fruitful discussion on
the LHCb DAQ network. The author would also like to thank
supervisor E. van Herwijnen, for his careful reading of the
paper. His numerous comments, suggestions, and corrections
have substantially improved the quality of this text.

REFERENCES

[1] LHCb Technical Proposal (in The LHCb Collaboration), , Feb. 1998
[Online]. Available: http://lhcb-tp.web.cern.ch/lhcb-tp/index.htm

[2] LHCb Reoptimized Detector Design and Performance (in The LHCb
Collaboration), , Sept. 2003 [Online]. Available: http://lhcb.web.
cern.ch/lhcb/TDR/reoptdr.pdf

[3] The LHCb LOI (Letter of Intent), [Online]. Available: http://lhc-b.web.
cern.ch/lhc-b/loi/LOI.html

[4] LHCb Online Computing, Trigger System Technical Design Report (in
The LHCb Collaboration), , Oct. 2003 [Online]. Available: http://lhcb.
web.cern.ch/lhcb/TDR/TDR.htm

[5] C. Gaspar, “An integrated experiment control system, architecture, and
benefits: The LHCb approach,” IEEE Trans. Nucl. Sci., vol. 51, no. 3,
pp. 513–520, Jun. 2004.

[6] LHCb Online Configuration Database, [Online]. Available: http://lhcb-
online.web.cern.ch/lhcb-online/configurationdb/

[7] Etherboot Protocol Details, [Online]. Available: http://www.etherboot.
org/

[8] NFS: Network File System Protocol specification - RFC 1094, [Online].
Available: http://www.faqs.org/rfcs/rfc1094.html

[9] Dynamic Host Configuration Protocol DHCP: RFC 2131, [Online].
Available: http://www.faqs.org/rfcs/rfc2131.html

[10] Domain Name System DNS: RFC 1035, [Online]. Available: http://
www.faqs.org/rfcs/rfc1035.html

[11] The Seven OSI Layers Model Created by ISO, [Online]. Available:
http://www2.rad.com/networks/1994/osi/layers.htm

[12] Internet Standard Subnetting Procedure: RFC 950, [Online]. Avail-
able: http://www.faqs.org/rfcs/rfc950.html

[13] Virtual LANs (Local Area Network) IEEE 802.1Q, [Online]. Available:
http://www.ieee802.org/1/pages/802.1Q.html

[14] Finding Paths in a Graph, a NP Problem, [Online]. Available: http://
mat.gsia.cmu.edu/mstc/heurnote/node23.html

[15] Link Aggregation Specifications (Ethernet Protocol 802.3ad), [Online].
Available: http://www.ieee802.org/3/ad/index.html

[16] Oracle Technology Network Website, [Online]. Available: http://www.
oracle.com/technology/index.html

[17] Oracle PL/SQL language Documentation, [Online]. Available: http://
www.oracle.com/technology/tech/pl_sql/index.html


