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Abstract

We investigate the possibility of a dark matter candidate emerging from a minimal walking

technicolor theory. In this case techniquarks as well as technigluons transform under the adjoint

representation of SU(2) of technicolor. It is therefore possible to have technicolor neutral bound

states between a techniquark and a technigluon. We investigate this scenario by assuming that such

a particle can have a Majorana mass and we calculate the relic density. We identify the parameter

space where such an object can account for the full dark matter density avoiding constraints

imposed by the CDMS and the LEP experiments.
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I. INTRODUCTION

One of the most important open problems in modern physics is that of the origin of dark

matter. In 1933 Zwicky realized that the mass from the bright part of the Coma cluster

cannot explain the motion of galaxies at the edge of the cluster. He assumed that there

must be some kind of mass, that does not interact “much” and therefore appears dark to us,

that has to be present in order to explain the motion of the galaxies without changing the

gravitational law. Since then it remains an enigma what is the origin of dark matter. There

are two basic types of candidates for dark matter. In the first one belong objects usually

referred as MACHOs (Massive Compact Halo Objects), mostly of baryonic origin. Objects

like black holes, brown dwarf stars and giant planets can be legitimate MACHO candidates.

However reliable observations have concluded that MACHOs cannot account for more than

20% of dark matter [1].

In the second type of candidates belong particles usually referred as WIMPs (Weak

Interacting Massive Particles). These particles are usually of non-baryonic origin and in

principle can account for the whole dark matter density. There are some basic requirements

that these particles have to fulfill. First of all they have to be electrically neutral, since in

order to be part of dark matter they should not couple to electromagnetism. In addition

WIMPs should be relatively heavy and therefore nonrelativistic, in order to be part of cold

dark matter. Very light particles (as neutrinos for example) would form hot dark matter.

The existence of hot dark matter is not consistent with observations because the relativistic

velocities of the particles smear out structure on small scales before the relic hot gas of light

particles becomes nonrelativistic.

There are several dark matter candidates such as axions, supersymmetric particles and

technibaryons. There are also interesting alternative possibilities in literature [2, 3, 4, 5].

Dark matter candidates are constrained theoretically as well as experimentally. Several

observations like those of WMAP give a rather precise value for the dark matter density of

the universe. It is around 23% of the total matter density. Therefore when calculations are

plausible, constraints can be put on the different models according to what amount of dark

matter they produce. On the other hand earth based experiments like CDMS put constraints

on dark matter particles, because provided we know the local dark matter density, the non-

detection restrains the cross section of those particles scattered off nuclei targets.
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The case of dark matter candidates from technicolor theories is not a new subject. Several

authors in the past studied the scenario of having a neutral technibaryon as a natural

candidate for dark matter [6, 7, 8]. Recently it was suggested that technicolor theories that

have techniquarks transforming under not the fundamental but under higher representations

of the gauge group can be viable extensions of the Standard Model, because they are within

the limits of the Electroweak Precision Measurements and close to the conformal window

[9, 10, 11, 12, 13, 14, 15, 16]. In the minimal model only two flavors of techniquarks and an

SU(2) gauge group are sufficient to make the theory quasi-conformal. Because the addition

of new particles is small, this model is within the Electroweak Measurements and because

of the quasi-conformality this model avoids the problems of the old technicolor theories,

such as giving mass to the heavy particles like the top quark. The attraction of these

models enhances since they can achieve unification of couplings [17]. There can be several

different possibilities for having dark matter candidates from these technicolor theories. A

first attempt was done in [15, 18, 19], where the possibility of having a component of dark

matter from a neutral pseudo-Goldstone boson technibaryon was investigated. If there are no

processes violating the technibaryon number (apart from sphalerons), and there is an initial

technibaryon-antitechnibaryon asymmetry and the neutral technibaryon is the lightest one,

then it is absolutely stable. This technibaryon with a mass of the order of TeV can account

for even the whole dark matter density. However, since in this case the WIMP is a boson,

it can scatter coherently off nuclei targets. As a result the cross section for elastic collision

with nuclei targets is four times the spin independent one of a heavy Dirac neutrino. Such a

large cross section (given we accept that the local dark matter density in the neighborhood

of the earth is 0.2 − 0.4 GeV/cm3) should give a considerable number of counts in earth

based experiments like CDMS. The CDMS collaboration has not detected any counts so

far [20]. This technibaryon is ruled out as dark matter candidate if it should account for

the whole dark matter density. However if the technibaryon consists a component of dark

matter up to 20%, it cannot yet be ruled out [18].

Another interesting possibility of a dark matter candidate from the same technicolor

model was studied in [21]. The dark matter candidate in this scenario is the neutrino of a

fourth family of heavy leptons. In the minimal walking technicolor theory with techniquarks

transforming under the 2-index symmetric representation of the technicolor gauge group, a

fourth family of leptons is needed in order to cancel Witten global anomaly for the SU(2)
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weak group. If the techniquarks and the fourth family leptons have hypercharge assignments

as the corresponding Standard Model particles, then the fourth neutrino is electrically neu-

tral and it can account for the whole dark matter density if the evolution in early universe is

dominated by the quintessence-like dark energy component constrained by nucleosynthesis.

In this paper we investigate an interesting alternative possibility to the previous scenarios.

We study the case of a dark matter candidate made of a compound bound state of a techni-

quark with a technigluon forming a Majorana particle through a usual seesaw mechanism.

Because Majorana fermions cannot interact coherently with the nucleus, such particles have

smaller cross section and therefore fewer projected counts in CDMS. We calculate the relic

density of these particles and we address the issue of their detection. We should mention

that our results are also complementary to the scenario studied in [21] as we shall explain

in the next sections.

II. TECHNICOLOR MODEL AND DARK MATTER CANDIDATE

The technicolor model we are going to use is the one used in [15, 18, 21]. The technicolor

group is an SU(2) and there are just two techniquarks U and D transforming under the

adjoint representation of SU(2). The global symmetry of the model is an SU(4) that breaks

spontaneously down to an SO(4) resulting 9 Goldstone bosons, 3 of which are eaten by the

W and Z bosons [15]. The two techniquarks form a doublet under the electroweak gauge

symmetry. There are two extra particles, i.e. a “new neutrino” ν ′ and a “new electron” ζ

coupled to the electroweak in order to cancel the global Witten anomaly. The authors of

[15, 18] showed that for a specific assignment of the weak hypercharge for the technicolor

particles, that is allowed by the cancellation of gauge anomalies, one of the techniquarks (for

example the D) is electrically neutral. Therefore the Goldstone technibaryons of the theory

made exclusively of D techniquarks, if they are the lightest technibaryons of the theory can

be a legitimate dark matter candidate. As we mentioned in the introduction, although such

a possibility is very natural, the large cross section of the technibaryon scattering off a nuclei

target excludes this scenario if the technibaryon consists 100% of the dark matter density.

In this paper we are going to study a slightly different case. We are going to assume

the same hypercharge assignments as in [15, 18], so again the D techniquark is electrically

neutral, but we are not assuming that the Goldstone technibaryon made of D is the lightest
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stable object. Rather in this scenario we assume that bound states between D techniquarks

and technigluons G are the lightest objects. This is something of course not encountered

in QCD, since it is impossible to make a colorless object out of a quark and a gluon. This

is because quarks transform under the fundamental representation and gluons under the

adjoint representation of the gauge group. However in this particular technicolor model

both techniquarks and technigluons transform under the adjoint representation that makes

it possible to form a colorless object. Since we have two colors, red (r) and green (g), in

the adjoint representation, we have three color states: rr, rg + gr, and gg. If we number

these states from 1 to 3, the objects Dα
LG

α and Dα
RG

α are colorless. It is assumed that we

have chosen the “appropriate” basis for Gα and we sum over α which runs from 1 to 3.

Apparently similar colorless states can be constructed also using the U techniquark.

Unlike in [15, 18] we assume that at the GUT scale, Extended Technicolor (ETC) in-

teractions violate the technibaryon number. In addition we do not assume that there is an

initial technibaryon asymmetry. It is not necessary to speculate regarding the particular

ETC model. It is sufficient for our purpose to assume that below the ETC scale these tech-

nibaryon violating processes behave effectively as a Majorana mass term for the left handed

neutral techniquarks. The low energy effective theory has mass terms of the form

· · · −mD(ψ†
LψR + ψ†

RψL) − 1

2
M(ψc†

L ψL + ψ†
Lψ

c
L), (1)

where ψL and ψR are the left and right handed Weyl spinors of the technigluon-dressed

neutral techniquark. For example ψL is the colorless Dα
LG

α. The c index denotes charge

conjugation, mD is the Dirac mass of the technigluon-dressed techniquarks and M is the

Majorana mass for the left handed ones. On general grounds we can give a Majorana mass

also to the right handed techniquarks or for instance we can give a Majorana mass only to

the right handed and not to the left handed particles. Although not forbidden per se, we

shall argue that the case of left handed Majorana particles is far more interesting from the

point of view of phenomenology. The mass matrix is

Lmass = −1

2

(

ψ†
Lψ

c†
R

)





M mD

mD 0









ψc
L

ψR



 + h.c. (2)

The usual seesaw mechanism gives two mass eigenvalues M1 = (M +
√

M2 + 4m2
D)/2

and M2 = (
√

M2 + 4m2
D −M)/2 which at the limit where M >> mD become respectively
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M1 ≃ M and M2 ≃ m2
D/M . The two Majorana particles (that are mass eigenstates)

constructed from the left and right handed techniquarks are

N1 = cos θ





ψL

ψc
L



 + sin θ





ψc
R

ψR



 , (3)

N2 = sin θ





iψL

−iψc
L



 + cos θ





−iψc
R

iψR



 , (4)

where the angle θ is defined through tan 2θ = 2mD/M . Varying the angle θ within 0 <

θ < π/4 we can get the full range of the ratio mD/M from zero (mD << M) to infinity

(mD >> M). At the limit where mD << M , tan θ ≃ mD/M . Alternatively we can write

the original fields in terms of the particles N1 and N2,

ψL = cos θPLN1 − i sin θPLN2, (5)

ψR = sin θPRN1 − i cos θPRN2, (6)

where PR and PL are the right and left handed projection operators (1 ± γ5)/2. Now let’s

recall how the gluon-dressed D techniquark ψL couples to the weak gauge bosons. Since we

have chosen the D techniquark to be electrically neutral, the hypercharge derived from the

relation Q = T3 + Y must be 1/2. This means that ψL couples only to the Z boson as

LZ =

√

g2 + g′2

2
Zµψ̄Lγ

µψL. (7)

For completeness we should mention that the charge conjugated field ψc
L couples to the Z

with the same strength but opposite sign. Now we can write how the Z boson couples to

the Majorana particles N1 and N2. Using Eqs. (3), (4), (5), and (7) we get the following

couplings to the Z

√

g2 + g′2

2
Zµ(cos2 θN̄1γ

5γµN1 + sin2 θN̄2γ
5γµN2 + i sin θ cos θN̄1γ

5γµN2 + h.c.) (8)

It’s easy to interpret the above interactions at the limit where mD << M . Since N1 is

mostly ψL, it couples strongly to the Z, whereas for N2 being mostly ψR, the interaction is

suppressed by the factor sin2 θ. It is also evident that the interaction among N1, N2 and Z

is somewhat suppressed by just one power of sin θ. Because both N1 and N2 are Majorana

particles, the technibaryon number is not protected as in the scenario presented in [15, 18].
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This means that two of the N1 or N2 can annihilate each other. We shall show that the

heavy N1 decays fast enough so its relic density today is zero. The lighter N2 is our dark

matter candidate for this scenario. We shall argue that the annihilation cross section for N2

is not big enough in order to cause the complete annihilation of its relic density.

As we already mentioned, the U(1) symmetry of the technibaryon number is broken

because of the Majorana mass term. However the lightest technibaryon (N2 in this scenario)

is protected by a Z2 symmetry, i.e. the Lagrangian is invariant if N2 → −N2. The Z2

symmetry in this case is analogous to the R-parity in SUSY protecting the neutralino from

decaying. As long as the ETC model respects the Z2 symmetry and N2 is the lightest

technibaryon, N2 cannot decay, but co-annihilate with another N2.

Because of our ignorance regarding the exact ETC model and the non-perturbative nature

of the dynamics, it is difficult to conclude decisively that a state of DG can be lighter than

the regular technibaryons of the theory. However, studies of SYM with supersymmetry

softly broken showed that a Majorana mass for the gluino λ makes the λG lighter than the

λλ [22]. Although our model is not supersymmetric, this is an encouraging indication that

DG might be indeed the lightest technibaryon of the theory.

By inspection of Eqs. (1), (2), (3), (4), (7), and (8), one can realize that DLG couples to

Z with the same strength as a left handed neutrino. In this analogy ψL and ψR correspond

to a left and a right handed neutrino. Our scenario is analogous to the one studied in [21],

where there is one left handed heavy neutrino that has either Dirac or Majorana mass. Our

study is analogous to the case where the heavy left handed neutrino has both Majorana and

Dirac mass. From this point of view N1 and N2 are two Majorana neutrinos. Therefore our

results for the relic density and the CDMS and LEP constraints are directly applicable in

this case also.

III. RELIC DENSITY OF THE TECHNICOLOR WIMP

During the last few years we have obtained a lot of information regarding the baryon and

dark matter density from WMAP. The current knowledge is that Ω ≃ 1 with the baryon

density being ΩBh
2 = 0.022 and dark matter density Ωdh

2 = 0.112 [23]. In this section of

the paper we calculate the relic density of the Majorana particle N2 and we show that it

can account for the full dark matter density for a range of masses and of the angle θ. The
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relic density of such a particle is governed by the well known Boltzmann equation

dnN2

dt
+ 3HnN2

= −〈σAv〉[(nN2
)2 − (neq

N2
)2], (9)

where nN2
and neq

N2
are the number density of N2 at time t and at equilibrium respectively,

H is the Hubble expansion rate and 〈σAv〉 is the thermally averaged cross section for N2N2

annihilation times the relative velocity. On general grounds the annihilation cross section

should have the velocity dependence vp. The value p = 0 corresponds to s-wave annihilation

and p = 2 corresponds to a p-wave annihilation. Indeed this is the case for Majorana

particles. The thermal velocity is 〈v2〉 ∼ T/m. Therefore we can write the annihilation

cross section times the relative velocity as

〈σAv〉 = σ0(T/m)n = σ0x
−n, (10)

where m is the mass of N2, T is the temperature and x = m/T [24]. It is understood that

the s-wave annihilation corresponds to n = 0 and the p-wave one corresponds to n = 1. The

Boltzmann equation can be rewritten in a more convenient form in terms of Y = nN2
/s, (s

being the entropy density) as

dY

dx
= −λx−n−2(Y 2 − Y 2

eq), (11)

where

λ = 0.264(g∗s/g
1/2

∗ )MP lmσ0. (12)

We define Yeq = neq
N2
/s, MP l = 1.22 × 1019 GeV. The g∗ and g∗s are dimensionless numbers

defined in [24]. Roughly speaking they count the total number of effectively massless degrees

of freedom. For energies above 1 MeV, g∗ and g∗s are practically identical. At a temperature

of 1 GeV, g∗ and g∗s are about 80, increasing mildly to roughly 100 as temperature increases

up to 1 TeV. The knowledge of the annihilation cross section and the mass of N2 is sufficient

enough to determine the relic density of N2.

The N2 couples to the Z as it can be seen from Eq. (8) as a Majorana neutrino times

sin2 θ. There are two general cases regarding the annihilation cross section of N2. The first

case is when the mass of N2 is smaller than the mass of the W boson and the other one when

the mass is larger. We investigate separately the two cases because different annihilation

channels contribute to each of them.
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A. m < MW

In this case the annihilation of two N2 occurs into pairs of light fermion-antifermion (as

for example light neutrino-antineutrino pair or electron-positron pair) through Z exchange.

We calculated the average cross section times the relative velocity for annihilation of two

N2 into a pair of fermion-antifermion which is in accordance with [24]

〈σAv〉 =
4G2

Fm
2

3π
〈β2〉(C2

V + C2

A) sin4 θ, (13)

where GF is the Fermi constant, and β is the velocity of N2 at the center of mass reference

system. The parameters CV and CA are defined as CV = j3 − 2q sin2 θw and CA = j3, where

j3 and q are respectively the weak isospin and the electric charge of the fermion and sin θw

is the Weinberg angle. For the total annihilation cross section we should include all possible

channels with fermions that are lighter than N2. For a mass of N2 larger than 5 GeV,

the number of open channels for annihilation into pairs of fermion-antifermion includes all

leptons and all quarks (times three colors) except the top one [25, 26]. The total annihilation

cross section can be written as

〈σAv〉 = N
2G2

Fm
2

3π
〈β2〉 sin4 θ, (14)

where N = 14.47 represents the effective number of channels. In principle N should have

been 21 since we include five quarks times three colors and six leptons. However since all

the fermions do not couple with the same strength to the Z, the total annihilation cross

section is equivalent to the total cross section of N channels of neutrino-antineutrino. For

the derivation of the cross section we assumed that the fermions are much lighter than N2.

Eq. (14) is valid only in the case where m << MZ . For larger values of m we must take

into account the resonance effect and the fact that the denominator of the propagator of the

virtual Z boson is not anymore dominated by the mass of the Z. In this case (14) must be

modified as

〈σAv〉 = N
2G2

Fm
2

3π
〈β2〉 sin4 θ

M4
Z

(s−M2
Z)2 + Γ2

ZM
2
Z

, (15)

where ΓZ = 2.5 GeV is the width of the Z and s is the Mandelstam variable which at the

nonrelativistic limit is s ≃ 4m2. In principle one can argue that particles like N2 that couple

to the Z boson with a mass of a few GeV are already excluded by constraints from the

measurement of the width of the Z by the LEP collaboration. In fact, a fourth neutrino
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coupled to the Z with the same strength as the other three ones has been excluded by the

LEP collaboration for a mass up to 40-45 GeV [27]. However in this case, N2 can avoid

exclusion by LEP if the angle θ is small. We can see from Eq. (8) that N2 couples to the

Z as a regular neutrino times sin2 θ. Therefore if θ is sufficiently small then N2 cannot be

excluded by LEP even for masses smaller than 40 GeV. We address this question later on

this subsection. A similar case regarding neutrinos was studied in [28]. Another constraint

is provided by earth based experiments for dark matter search like CDMS. However as we

shall show in the next section, the elastic cross section of N2 scattering off the nuclei of the

detectors is very small to be ruled out by CDMS.

In order to calculate the relic density we have to solve Eq. (11). A very good approx-

imate solution for nonrelativistic particles has been given pedagogically in [24, 29]. The

approximate solution for Y is

Y∞ =
3.79(n+ 1)xn+1

f

(g∗s/g
1/2
∗ )MP lmσ0

, (16)

where xf denotes the value of x where the decoupling occurs. The value of xf is given by

the approximate relation

xf ≃ ln[(2 + c)cλα] − (n +
1

2
) ln[ln[(2 + c)cλα]]. (17)

The parameter c is a fitting numerical constant of order unity. Usually the best fitting to the

real solution is achieved when c(c+ 2) = n+ 1. The parameter α = 0.145(g/g∗s), where g is

the number of degrees of freedom for the particle N2 (therefore g = 2). The relic abundance

is

ΩN2
h2 = Y∞sm/(ρcrit/h

2) ≃ 2.82 × 108Y∞(m/GeV). (18)

By inspection of (15) we conclude that n = 1 and

σ0 =
NG2

Fm
2 sin4 θ

π

M4
Z

(s−M2
Z)2 + Γ2

ZM
2
Z

. (19)

This is because the thermal average velocity at the center of mass reference system is given

by

〈β2〉 =
3

2

T

m
. (20)

It is easy to prove the above relation if one notices that the thermal average velocity in the

lab frame is related to the one at the center of mass frame as 〈β2
lab〉 = 2〈β2〉. By using the
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equipartition theorem we get 〈β2
lab〉 = 3(T/m) and therefore 〈β2〉 is given by (20). Using

Eqs. (18), (19) and a value g∗ = 100 we calculated the relic density of N2. For m << MZ

the expression takes the simple form

ΩN2
h2 =

0.0283x2
f

m2 sin4 θ
. (21)

This relation is slightly more complicated once we include the extra term of (15) compared

to (14). In Fig. 1 we show the value of sin θ that gives the proper relic density for N2 (if it

accounts for the whole dark matter) as a function of its mass, for a range of m from 10 to

80 GeV. For a mass of 10 GeV the dark matter density is achieved for sin θ = 1. For a mass

lower than 10 GeV, N2 has a relic density larger than the dark matter density Ωdh
2 = 0.112.

If we increase the mass, sin θ drops, reaching 0.08 for m = 45.5 GeV, which is half of MZ .

As m increases beyond the resonant value, the annihilation cross section decreases and a

higher value of sin θ is needed in order to maintain ΩN2
h2 = 0.112. We have plotted sin θ

up to 80 GeV, which is the onset of a new dominant channel that we examine in the next

subsection. Since 0 < θ < π/4, sin θ is restricted between 0 < sin θ <
√

2/2 = 0.707. It is

evident from Fig. 1 that for m < 18 GeV where sin θ > 0.707, N2 cannot provide the dark

matter density and this region is excluded. This region is also excluded by LEP as we show

in the next paragraph.

There are constraints on the masses of neutral particles that couple to the Z boson

imposed by the LEP experiment. In LEP the total decay width for the Z boson into invisible

neutral particles was measured with very high accuracy. The ratio of the decay width into

invisible particles over the decay rate into a pair of neutrino-antineutrino determines the

number of light neutral particles coupled to the Z. The experimental value of this ratio is

[27]

Nν =
Γ(Z → invisible)

Γ(Z → ν̄ν)
= 3.00 ± 0.08. (22)

We interpret the bound as implying that the number of light species is Nν < 3.08. The

constraint for N2 can be written as

0.08 > Nν − 3 = sin4 θ × β3, (23)

where β is the velocity of N2 produced as Z decays [30]. In Fig. 1 we implemented this

constraint. As it was expected, low masses up to 23 GeV are excluded by LEP. However

we can see in the figure that LEP cannot exclude the region above 23 GeV. For a typical
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m

0.2

0.4

0.6

0.8

1
sinΘ

FIG. 1: The solid line shows the dependence of sin θ on the mass of N2 (in GeV), in order the relic

density ΩN2
h2 = 0.112. The dashed line shows the constraint on m and sin θ imposed by LEP. The

area above the dashed line is excluded. This means that m should be larger than 23 GeV, which

is the value where the two curves cross each other.

value m = 40 GeV, the mass of N1 is mN1
≃ 589 GeV. This corresponds to a Majorana

mass M ≃ 549 GeV and a Dirac mass mD ≃ 153 GeV. In the next section we shall address

the issue of N2 detection by the CDMS experiment. We shall argue that CDMS imposes

no further constraints on the suppression angle sin θ. For completeness we also checked if

it is possible for the heavier N1 particle to sustain any considerable relic density. From (8)

we can calculate the decay rate of N1 to an N2 and a Z. In order for a particle to give a

considerable relic density, the decay rate has to be smaller than the Hubble parameter. The

decay rate of N1 is proportional to

(

√

g2 + g′2

2
)2 sin2 θ cos2 θ

M3
N1

M2
Z

. (24)

The formula is similar to the decay rate of the top quark. The Hubble parameter has an

extremely low value of ∼ 10−33 eV. For any realistic value of MN1
, and unless there is no

extreme fine tuning of the mass difference among N1, N2 and Z or of the sin2 θ cos2 θ factor,

it is impossible the decay rate of N1 to be smaller than the Hubble parameter. Therefore

there is no relic density for N1 since it decays very fast to N2 and Z.
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B. m > MW

The second case we investigate is the one where m > MW . In principle this means that we

examine the possibility of m being higher than 80 GeV. No constraints are imposed by the

LEP experiment on this regime since the mass is higher than half ofMZ . In order to calculate

the relic abundance we use again the Boltzmann Eq. (11). However the annihilation cross

section is different in this case. It is very easy to show that the annihilation of two Majorana

N2 into pairs of light fermions (like electron-positron or quark-antiquark) for m > MZ is

suppressed by a factor (1/16)(MZ/m)4. This is because the propagator of the virtual Z

boson is 1/(q2 −M2
Z). In the case of m << MZ the propagator scales approximately as

1/M2
Z . However if m >> MZ the propagator scales as 1/s ≃ 1/(4m2). The cross section

depends on the square of the propagator and therefore the cross section is suppressed by

the factor we mentioned above. In this regime a new channel opens up and becomes the

dominant one [31]. It is the annihilation into a pair of W+-W− through a Z boson. We

calculated the cross section and we found

〈σAv〉 =
G2

Fm
2

3π
β2βW

s2

(s−M2
Z)2 + Γ2

ZM
2
Z

sin4 θ(1 −O(
M2

W

m2
)). (25)

Again β is the velocity of N2 at the center of mass frame and βW =
√

1 − 4M2
W/s is the

velocity of the W . Using (10) as in the previous case we can write σ0 as

σ0 =
G2

Fm
2

2π
βW

s2

(s−M2
Z)2 + Γ2

ZM
2
Z

sin4 θ(1 −O(
M2

W

m2
)). (26)

At the limit where m >> MW the above equation takes the simple form

σ0 =
G2

Fm
2

2π
sin4 θ. (27)

At the same limit the relic abundance of N2 can be written as

ΩN2
h2 =

0.818x2
f

m2 sin4 θ
. (28)

In Fig. 2 we plot the dependence of sin θ as a function of the mass m from 80 GeV up to 2

TeV in order to get a relic density ΩN2
h2 = 0.112. In our plot we took into account both

the annihilation channel to W+-W− and to pairs of fermions-antifermions. For the W+-W−

channel we dropped the terms that scale as powers of (MW/m)2. The mixing angle sin θ has

a peak at 122 GeV and then it drops smoothly as m increases. It is easy to see why this

13



peak appears. As soon as m becomes larger than 80 GeV, it is possible to have annihilation

to a pair of W+-W−. However close to the onset, the phase space for this amplitude is very

small and the cross section is controlled by βW (which is zero at s = 4M2
W ). Between 80

and 122 GeV, the total annihilation cross section drops because the W+-W− channel has

not yet enough phase space and the fermion-antifermion channels that still dominate have a

cross section that falls as we explained at the beginning of this subsection. Once m becomes

large enough so there is a lot of phase space for the W+-W− annihilation, the cross section

increases. This means that sin θ must drop if we have to maintain the dark matter density.

At a mass of 1 TeV sin θ = 0.26. For this mass of N2, the corresponding mass for the heavy

N1 is 13.5 TeV and the original Dirac and Majorana masses are respectively mD = 3.7 TeV

and M = 12.5 TeV. We plot sin θ up to m = 2 TeV where sin θ = 0.19. Our calculation of

the total cross section and consequently of the value of sin θ is extremely accurate both at the

onset of the W+-W− channel and for m >> MW . The only region where the cross section

is not very accurate is at the peak (around 122 GeV) because this is where the corrections

of the order of M2
W/m

2 are important. For masses larger than 122 GeV, these corrections

are suppressed. For masses close to the onset of the W+-W− channel, these corrections are

unimportant because the annihilation cross section is still dominated by the annihilation to

pairs of fermions-antifermions. However even at the peak, our estimation for the sin θ is off

at most by ∼ 10%. Either on the left or on the right of the peak our estimation of sin θ

becomes better than 95% accurate within a few GeV.

IV. DETECTION OF THE LIGHTEST TECHNIBARYON IN CDMS

We turn now our attention to the question of detection of N2 from dark matter search

experiments. It is well known that earth based experiments like CDMS can put tight con-

straints regarding the cross section of WIMPs scattering off nuclei targets. In fact, the

most important constraint related to the scenario of techni-Goldstone boson dark matter

candidate was coming from the non-detection of counts in CDMS [15, 18]. There are two

basic factors that influence the number of counts on earth detectors. The first one is the

local dark matter density and the second one is the elastic scattering cross section between

the WIMP and the nuclei of the detector. Most cosmologists agree that the local dark

matter density should be somewhere between 0.2 − 0.4 GeV/cm3. As for the cross section,
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FIG. 2: As in Fig. 1 the solid line shows the dependence of sin θ on the mass of N2 (in GeV), in

order the relic density ΩN2
h2 = 0.112.

Majorana particles have usually much smaller cross section compared to Dirac ones because

Majorana fermions do not scatter coherently with the whole nucleus of the target. This

is our motivation for investigating N2 as a dark matter candidate. A review of the cross

section of different dark matter candidates can be found in [32, 33]. For a Majorana particle

only spin-dependent elastic collisions contribute [34, 35]. Following [34], we can write the

spin-dependent cross section for N2 as

σN2
=

2G2
F

π
µ2Is sin4 θ, (29)

where µ is the reduced mass of the system WIMP-nucleus and Is is conventionally written

in the form Is = C2λ2J(J + 1). C is given by

C =
∑

q

T 3

q ∆q (q = u, d, s), (30)

where ∆q is the fraction of the spin carried by the specific quark q. T 3
q is the 3rd component

of the isotopic spin of each of the three quarks (T 3
u = 1/2, T 3

d = −1/2, T 3
s = −1/2). The

values for the different ∆q given by the European Muon Collaboration (EMC) are ∆u = 0.83,

∆d = −0.43 and ∆s = −0.10 [34]. A realistic value for λ2J(J + 1) within the model of odd

group for the detectors of Ge73 is 0.065. Given these values, the overall factor Is ≃ 0.03 for
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the Ge detectors. The cross section can be written in convenient units pb as

σN2
= 3.38 × 10−2µ2Is sin4 θ = 1.01 × 10−3µ2 sin4 θ(pb). (31)

The total rate of counts on an earth based detector in experiments like CDMS is [34]

R0 =
540

Am

(

σ0

1pb

)

( ρdm

0.4GeVc−2cm−3

)

(

υ0

230kms−1

)

kg−1days−1, (32)

where A is the mass number of the nucleus of the detector, ρdm is the local dark matter

density and υ0 is the average velocity of the WIMP. The total rate is given in terms of

kg−1days−1 which means that for a given detector of mass x and of exposure time y, the

total rate must be multiplied by xy. However the number of actual counts that can be seen

in a detector is given by

counts =
dR

dT
∆T × τ , (33)

where τ is the exposure of the detector measured in kg ·days and ∆T is the energy resolution

of the detector. The factor dR/dT is the derivative of the total rate with respect to the

recoil energy T given by the approximate relation

dR

dT
= c1

R0

E0r
e−c2T/E0r, (34)

where E0 is the kinetic energy of the WIMP and r = 4mMn/(m +Mn)2, m and Mn being

the masses of the WIMP and the nucleus of the detector respectively. The c1 and c2 are

fitting parameters. Eq. (34) was derived in [34] after averaging over the Boltzmann velocity

distribution of the WIMP. The case with c1 = c2 = 1 corresponds to averaging of the

velocity from zero to infinity. However it has been pointed out that the motion of the earth

should be taken into account and more realistic values for the parameters are c1 = 0.751

and c2 = 0.561. These parameters depend mildly on the detector’s energy threshold and the

mass of the WIMP, however do not change a lot and we consider them as constants. We

have taken the velocity of the earth to be vE = 1.05 × v0 = 1.05 × 230km/sec. In the first

results of the CDMS experiment [20], the exposure of the Ge detectors was 19.4 kg · days.

The energy resolution ∆T = 1.5 keV and the recoil energy threshold is 20 keV although the

detector can count recoil energies down to 10 keV. The current exposure of the detectors in

CDMS (19.4 kg · days) is not sufficient to give any counts for a particle like N2 with local

dark matter density ranging between 0.2 − 0.4 GeV/cm3. This is true for the whole range

of m we examined. In Fig. 3 we show what is the required exposure in order to detect
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FIG. 3: Left Panel :The required exposure of the Ge detectors in kg · days for a single count (with

90% confidence level) as a function of m (in GeV) for the range 20 < m < 80, although in reality

m is constrained by LEP to be larger than 23 GeV. The thin solid line corresponds to local dark

matter density ρ = 0.4 GeV/cm3, the dashed one to ρ = 0.3 GeV/cm3 and the thick solid one to

ρ = 0.2 GeV/cm3. For the purposes of presentation we show the required exposure up to 100000

kg · days. Around the resonance, where m = 45.5 GeV, the required exposure has a sharp peak of

about 107 kg · days. Right Panel :As in the left panel for 80 < m < 2000 GeV.

one count of N2 with 90% confidence level as a function of m. The 90% confidence level

corresponds to 2.3 counts. For the first case we studied with m up to 80 GeV, the required

exposure increases as a function of m up to the resonance peak of m = 45.5 GeV and then

drops. For a local dark matter density ρ = 0.4 GeV/cm3, a total amount of 7004 kg · days is

needed for a typical mass m = 30 GeV. This practically means that the required exposure

for detection of a single count should be 361 times the current exposure of 19.4 kg · days.

For masses m >> 100 GeV, the required factor is much larger. For m = 2 TeV, the required

exposure reaches 8× 106 kg · days. Our results are in accordance with the predictions of the

CDMS group for Majorana dark particles [36].

V. THE CASE OF MAJORANA MASS FOR THE RIGHT HANDED PARTICLE

So far we discussed the case of a Majorana mass for the left handed DLG and a Dirac

mass for both DLG and DRG. However, one might ask the question of what happens if

instead of giving a Majorana mass to the left handed particle, we give it to the right handed

one (DRG). This means that in the mass matrix of Eq. (2), M and 0 in the diagonal are
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exchanged. It turns out that the two Majorana eigenstates can be described easily using

Eqs. (3) and (4) if we make the substitution sin θ → cos θ and cos θ → sin θ. Under this

description, the relation that defines the angle θ, tan 2θ = 2mD/M remains the same. In

addition, the ratio of the masses of N1 and N2 is given by

MN2

MN1

= tan2 θ, (35)

as in the previous case. Using this description, N1 couples to the Z with a factor sin2 θ and

N2 with a factor cos2 θ. Since N2 is lighter than N1, we can find the value of cos θ as a

function of MN2
in order to have ΩN2

h2 = 0.112. This is exactly what we did in the previous

sections apart from the fact that the annihilation cross section for N2 is not proportional

now to sin4 θ, but cos4 θ. This means that Figs. 1 and 2 are valid in this case if we substitute

in the vertical axis of the figures sin θ by cos θ. However because (35) remains unchanged, in

order for N2 to be lighter than N1, sin θ < cos θ. This happens when cos θ >
√

2/2 ≃ 0.707.

By inspection of Figs. 1 and 2, one can see that there is only one region where this is true.

It is below 18 GeV (as seen in Fig. 1) and it is already excluded by LEP.

The physical reason of the qualitative difference between the two general cases we studied,

namely giving a Majorana mass to either the left or the right handed particles relies on the

simple fact that in the first case the lighter Majorana is also the particle with the suppressed

annihilation cross section and therefore the one that can provide a considerable abundance.

In the second case, the lighter Majorana is the one that is “mostly” left handed and therefore

the big annihilation cross section cannot make this particle to sustain a substantial relic

density.

VI. CONCLUSIONS AND DISCUSSION

In this paper we investigated the possibility of a dark matter candidate emerging from the

minimal walking technicolor theory. Because the two techniquarks of the theory transform

under the adjoint representation of the technicolor SU(2) group, it is possible to have a

bound colorless state between a techniquark and a technigluon. We looked upon the scenario

that the left handed technigluon-dressed techniquark has a Majorana mass and both left

and right handed have a Dirac mass. We found that this dark matter candidate can account

for the whole dark matter density for practically any mass higher than 23 GeV. This dark
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matter candidate can account for the whole dark matter density without being ruled out

by LEP or CDMS. We also commented on what happens if it is the right handed particles

that have a Majorana mass instead of the left handed. We showed that in this case the

lighter Majorana particle cannot account for the whole dark matter density. Since we are

lacking the tools to calculate the spectrum of this technicolor theory and we don’t know

the exact ETC model, we cannot know a priori what is the mass of N2. Lattice methods

just started being implemented for studying the dynamics of models with fermions in higher

representations of the gauge group than just fundamental. It will be very interesting if it

will be possible to study in lattice this bound state of quark-gluon.

We should emphasize here that our results are complementary to the case studied in [21].

We already mentioned that in the minimal walking technicolor model with techniquarks

in the adjoint representation, it is necessary to have an extra family of leptons to cancel

Witten global anomaly. If the hypercharge assignment for the fourth neutrino is like in

the Standard Model, then this heavy fourth neutrino can play the role of a dark particle.

However in the candidate we studied, we use a different hypercharge assignment, the one that

makes D neutral. Both assignments are consistent and free of gauge anomalies. Although

the hypercharge assignments are different, the strength of how DLG couples to the Z boson

is the same as this of the fourth neutral neutrino. Therefore if one assumes that the fourth

left handed neutrino (coming from technicolor) has both Majorana and Dirac mass, then

the calculation of the relic density and the constraints from LEP and CDMS are identical

with the corresponding ones of N2.
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