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We investigate the possibility of a dark matter candidate emerging from a minimal walking technicolor
theory. In this case, techniquarks as well as technigluons transform under the adjoint representation of
SU(2) of technicolor. It is therefore possible to have technicolor neutral bound states between a
techniquark and a technigluon. We investigate this scenario by assuming that such a particle can have
a Majorana mass and we calculate the relic density. We identify the parameter space where such an object
can account for the full dark matter density avoiding constraints imposed by the CDMS and the LEP
experiments.
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I. INTRODUCTION

One of the most important open problems in modern
physics is that of the origin of dark matter. In 1933, Zwicky
realized that the mass from the bright part of the Coma
cluster cannot explain the motion of galaxies at the edge of
the cluster. He assumed that there must be some kind of
mass, that does not interact ‘‘much’’ and therefore appears
dark to us, that has to be present in order to explain the
motion of the galaxies without changing the gravitational
law. Since then, the origin of dark matter remains an
enigma. There are two basic types of candidates for dark
matter. In the first one belong objects usually referred as
MACHOs (massive compact halo objects), mostly of bar-
yonic origin. Objects like black holes, brown dwarf stars,
and giant planets can be legitimate MACHO candidates.
However, reliable observations have concluded that
MACHOs cannot account for more than 20% of dark
matter [1].

In the second type of candidates belong particles usually
referred as WIMPs (weak interacting massive particles).
These particles are usually of nonbaryonic origin and in
principle can account for the whole dark matter density.
There are some basic requirements that these particles have
to fulfill. First of all, they have to be electrically neutral,
since in order to be part of dark matter they should not
couple to electromagnetism. In addition, WIMPs should be
relatively heavy and therefore nonrelativistic, in order to be
part of cold dark matter. Very light particles (as neutrinos,
for example) would form hot dark matter. The existence of
hot dark matter is not consistent with observations because
the relativistic velocities of the particles smear out struc-
ture on small scales before the relic hot gas of light
particles becomes nonrelativistic.

There are several dark matter candidates such as axions,
supersymmetric particles, and technibaryons. There are
also interesting alternative possibilities in literature [2–

5]. Dark matter candidates are constrained theoretically
as well as experimentally. Several observations like those
of WMAP give a rather precise value for the dark matter
density of the universe. It is around 23% of the total matter
density. Therefore when calculations are plausible, con-
straints can be put on the different models according to
what amount of dark matter they produce. On the other
hand, earth-based experiments like CDMS put constraints
on dark matter particles because, provided we know the
local dark matter density, the nondetection restrains the
cross section of those particles scattered off nuclei targets.

The case of dark matter candidates from technicolor
theories is not a new subject. Several authors in the past
studied the scenario of having a neutral technibaryon as a
natural candidate for dark matter [6–8]. Recently it was
suggested that technicolor theories that have techniquarks
transforming under not the fundamental but under higher
representations of the gauge group can be viable extensions
of the standard model, because they are within the limits of
the electroweak precision measurements and close to the
conformal window [9–16]. In the minimal model, only two
flavors of techniquarks and an SU(2) gauge group are
sufficient to make the theory quasiconformal. Because
the addition of new particles is small, this model is within
the electroweak measurements and because of the quasi-
conformality this model avoids the problems of the old
technicolor theories, such as giving mass to the heavy
particles like the top quark. The attraction of these models
enhances since they can achieve unification of couplings
[17]. There can be several different possibilities for having
dark matter candidates from these technicolor theories. A
first attempt was done in [15,18,19], where the possibility
of having a component of dark matter from a neutral
pseudo-Goldstone boson technibaryon was investigated.
If there are no processes violating the technibaryon number
(apart from sphalerons), and there is an initial
technibaryon-antitechnibaryon asymmetry and the neutral
technibaryon is the lightest one, then it is absolutely stable.
This technibaryon with a mass of the order of TeV can*kouvaris@nbi.dk

PHYSICAL REVIEW D 76, 015011 (2007)

1550-7998=2007=76(1)=015011(9) 015011-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.015011


account for even the whole dark matter density. However,
since in this case the WIMP is a boson, it can scatter
coherently off nuclei targets. As a result, the cross section
for elastic collision with nuclei targets is 4 times the spin
independent one of a heavy Dirac neutrino. Such a large
cross section (given we accept that the local dark matter
density in the neighborhood of the earth is
0:2–0:4 GeV=cm3) should give a considerable number of
counts in earth-based experiments like CDMS. The CDMS
collaboration has not detected any counts so far [20]. This
technibaryon is ruled out as dark matter candidate if it
should account for the whole dark matter density.
However, if the technibaryon consists of a component of
dark matter up to 20%, it cannot yet be ruled out [18].

Another interesting possibility of a dark matter candi-
date from the same technicolor model was studied in [21].
The dark matter candidate in this scenario is the neutrino of
a fourth family of heavy leptons. In the minimal walking
technicolor theory with techniquarks transforming under
the 2-index symmetric representation of the technicolor
gauge group, a fourth family of leptons is needed in order
to cancel Witten global anomaly for the SU(2) weak group.
If the techniquarks and the fourth family leptons have
hypercharge assignments as the corresponding standard
model particles, then the fourth neutrino is electrically
neutral and it can account for the whole dark matter density
if the evolution in the early universe is dominated by the
quintessencelike dark energy component constrained by
nucleosynthesis.

In this paper we investigate an interesting alternative
possibility to the previous scenarios. We study the case of a
dark matter candidate made of a compound bound state of
a techniquark with a technigluon forming a Majorana
particle through a usual seesaw mechanism. Because
Majorana fermions cannot interact coherently with the
nucleus, such particles have smaller cross section and
therefore fewer projected counts in CDMS. We calculate
the relic density of these particles and we address the issue
of their detection. We should mention that our results are
also complementary to the scenario studied in [21] as we
shall explain in the next sections.

II. TECHNICOLOR MODEL AND DARK MATTER
CANDIDATE

The technicolor model we are going to use is the one
used in [15,18,21]. The technicolor group is an SU(2) and
there are just two techniquarks U and D transforming
under the adjoint representation of SU(2). The global
symmetry of the model is an SU�4� that breaks sponta-
neously down to an SO(4) resulting in 9 Goldstone bosons,
3 of which are eaten by the W and Z bosons [15]. The two
techniquarks form a doublet under the electroweak gauge
symmetry. There are two extra particles, i.e. a ‘‘new neu-
trino’’ �0 and a ‘‘new electron’’ � coupled to the electro-
weak in order to cancel the global Witten anomaly. The

authors of [15,18] showed that, for a specific assignment of
the weak hypercharge for the technicolor particles, which
is allowed by the cancellation of gauge anomalies, one of
the techniquarks (for example, the D) is electrically neu-
tral. Therefore the Goldstone technibaryons of the theory
made exclusively ofD techniquarks, if they are the lightest
technibaryons of the theory, can be a legitimate dark matter
candidate. As we mentioned in the Introduction, although
such a possibility is very natural, the large cross section of
the technibaryon scattering off a nuclei target excludes this
scenario if the technibaryon consists 100% of the dark
matter density.

In this paper we are going to study a slightly different
case. We are going to assume the same hypercharge assign-
ments as in [15,18], so again the D techniquark is electri-
cally neutral, but we are not assuming that the Goldstone
technibaryon made ofD is the lightest stable object. Rather
in this scenario we assume that bound states between D
techniquarks and technigluons G are the lightest objects.
This is something of course not encountered in QCD, since
it is impossible to make a colorless object out of a quark
and a gluon. This is because quarks transform under the
fundamental representation and gluons under the adjoint
representation of the gauge group. However, in this par-
ticular technicolor model both techniquarks and techni-
gluons transform under the adjoint representation that
makes it possible to form a colorless object. Since we
have two colors, red (r) and green (g), in the adjoint
representation, we have three color states: rr, rg� gr,
and gg. If we number these states from 1 to 3, the objects
D�
LG

� and D�
RG

� are colorless. It is assumed that we have
chosen the ‘‘appropriate’’ basis for G� and we sum over �
which runs from 1 to 3. Apparently, similar colorless states
can be constructed also using the U techniquark.

Unlike in [15,18], we assume that at the GUT scale,
extended technicolor (ETC) interactions violate the tech-
nibaryon number. In addition, we do not assume that there
is an initial technibaryon asymmetry. It is not necessary to
speculate regarding the particular ETC model. It is suffi-
cient for our purpose to assume that below the ETC scale
these technibaryon violating processes behave effectively
as a Majorana mass term for the left-handed neutral tech-
niquarks. The low energy effective theory has mass terms
of the form

 � � � �mD� 
y
L R �  

y
R L� �

1
2M� 

cy
L  L �  

y
L 

c
L�; (1)

where  L and  R are the left- and right-handed Weyl
spinors of the technigluon-dressed neutral techniquark.
For example,  L is the colorless D�

LG
�. The c index

denotes charge conjugation, mD is the Dirac mass of the
technigluon-dressed techniquarks, and M is the Majorana
mass for the left-handed ones. On general grounds we can
give a Majorana mass also to the right-handed techniquarks
or, for instance, we can give a Majorana mass only to the
right-handed and not to the left-handed particles. Although
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not forbidden per se, we shall argue that the case of left-
handed Majorana particles is far more interesting from the
point of view of phenomenology. The mass matrix is

 Lmass � �
1

2
� yL 

cy
R �

M mD

mD 0

� �
 cL
 R

� �
� H:c: (2)

The usual seesaw mechanism gives two mass eigenval-

ues M1��M�
����������������������
M2�4m2

D

q
�=2 and M2��

����������������������
M2�4m2

D

q
�

M�=2 which at the limit where M� mD become respec-
tively M1 ’ M and M2 ’ m2

D=M. The two Majorana par-
ticles (that are mass eigenstates) constructed from the left-
and right-handed techniquarks are

 N1 � cos�
 L
 cL

� �
� sin�

 cR
 R

� �
; (3)

 N2 � sin�
i L
�i cL

� �
� cos�

�i cR
i R

� �
; (4)

where the angle � is defined through tan2� � 2mD=M.
Varying the angle � within 0< �< �=4, we can get the
full range of the ratio mD=M from zero (mD � M) to
infinity (mD � M). At the limit where mD � M, tan� ’
mD=M. Alternatively, we can write the original fields in
terms of the particles N1 and N2,

  L � cos�PLN1 � i sin�PLN2; (5)

  R � sin�PRN1 � i cos�PRN2; (6)

where PR and PL are the right- and left-handed projection
operators �1	 �5�=2. Now let us recall how the gluon-
dressed D techniquark  L couples to the weak gauge
bosons. Since we have chosen the D techniquark to be
electrically neutral, the hypercharge derived from the rela-
tion Q � T3 � Y must be 1=2. This means that  L couples
only to the Z boson as

 LZ �

������������������
g2 � g02

p
2

Z� � L�� L: (7)

For completeness we should mention that the charge con-
jugated field  cL couples to the Zwith the same strength but
opposite sign. Now we can write how the Z boson couples
to the Majorana particles N1 and N2. Using Eqs. (3)–(5)
and (7), we get the following couplings to the Z:

 

������������������
g2 � g02

p
2

Z��cos2� �N1�
5��N1 � sin2� �N2�

5��N2

� i sin� cos� �N1�
5��N2 � H:c:�: (8)

It is easy to interpret the above interactions at the limit
wheremD � M. SinceN1 is mostly  L, it couples strongly
to the Z, whereas for N2 being mostly  R, the interaction is
suppressed by the factor sin2�. It is also evident that the
interaction amongN1,N2 and Z is somewhat suppressed by
just one power of sin�. Because both N1 and N2 are

Majorana particles, the technibaryon number is not pro-
tected as in the scenario presented in [15,18]. This means
that two of the N1 or N2 can annihilate each other. We shall
show that the heavy N1 decays fast enough so its relic
density today is zero. The lighter N2 is our dark matter
candidate for this scenario. We shall argue that the annihi-
lation cross section for N2 is not big enough in order to
cause the complete annihilation of its relic density.

As we already mentioned, the U(1) symmetry of the
technibaryon number is broken because of the Majorana
mass term. However, the lightest technibaryon (N2 in this
scenario) is protected by a Z2 symmetry, i.e. the
Lagrangian is invariant if N2 ! �N2. The Z2 symmetry
in this case is analogous to the R-parity in SUSY protecting
the neutralino from decaying. As long as the ETC model
respects the Z2 symmetry and N2 is the lightest techni-
baryon, N2 cannot decay, but coannihilate with another N2.

Because of our ignorance regarding the exact ETC
model and the nonperturbative nature of the dynamics, it
is difficult to conclude decisively that a state of DG can be
lighter than the regular technibaryons of the theory.
However, studies of Super Yang Mills theories with super-
symmetry softly broken showed that a Majorana mass for
the gluino � makes the �G lighter than the �� [22].
Although our model is not supersymmetric, this is an
encouraging indication that DG might be indeed the light-
est technibaryon of the theory.

By inspection of Eqs. (1)–(4), (7), and (8), one can
realize that DLG couples to Z with the same strength as a
left-handed neutrino. In this analogy  L and  R correspond
to a left- and a right-handed neutrino. Our scenario is
analogous to the one studied in [21], where there is one
left-handed heavy neutrino that has either Dirac or
Majorana mass. Our study is analogous to the case where
the heavy left-handed neutrino has both Majorana and
Dirac mass. From this point of view, N1 and N2 are two
Majorana neutrinos. Therefore our results for the relic
density and the CDMS and LEP constraints are directly
applicable in this case also.

III. RELIC DENSITY OF THE TECHNICOLOR
WIMP

During the past few years we have obtained a lot of
information regarding the baryon and dark matter density
from WMAP. The current knowledge is that � ’ 1 with
the baryon density being �Bh

2 � 0:022 and dark matter
density �dh

2 � 0:112 [23]. In this section of the paper we
calculate the relic density of the Majorana particle N2 and
we show that it can account for the full dark matter density
for a range of masses and of the angle �. The relic density
of such a particle is governed by the well-known
Boltzmann equation,

 

dnN2

dt
� 3HnN2

� �h	Avi
�nN2
�2 � �neq

N2
�2�; (9)
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where nN2
and neq

N2
are the number density of N2 at time t

and at equilibrium, respectively,H is the Hubble expansion
rate, and h	Avi is the thermally averaged cross section for
N2N2 annihilation times the relative velocity. On general
grounds the annihilation cross section should have the
velocity dependence vp. The value p � 0 corresponds to
s-wave annihilation and p � 2 corresponds to a p-wave
annihilation. Indeed this is the case for Majorana particles.
The thermal velocity is hv2i � T=m. Therefore we can
write the annihilation cross section times the relative ve-
locity as

 h	Avi � 	0�T=m�n � 	0x�n; (10)

where m is the mass of N2, T is the temperature, and x �
m=T [24]. It is understood that the s-wave annihilation
corresponds to n � 0 and the p-wave one corresponds to
n � 1. The Boltzmann equation can be rewritten in a more
convenient form in terms of Y � nN2

=s, (s being the en-
tropy density) as

 

dY
dx
� ��x�n�2�Y2 � Y2

eq�; (11)

where

 � � 0:264�gs=g
1=2
 �MPlm	0: (12)

We define Yeq � neq
N2
=s, MPl � 1:22� 1019 GeV. The g

and gs are dimensionless numbers defined in [24].
Roughly speaking, they count the total number of effec-
tively massless degrees of freedom. For energies above
1 MeV, g and gs are practically identical. At a tempera-
ture of 1 GeV, g and gs are about 80, increasing mildly to
roughly 100 as temperature increases up to 1 TeV. The
knowledge of the annihilation cross section and the mass of
N2 is sufficient enough to determine the relic density ofN2.

The N2 couples to the Z as it can be seen from Eq. (8) as
a Majorana neutrino times sin2�. There are two general
cases regarding the annihilation cross section of N2. The
first case is when the mass ofN2 is smaller than the mass of
the W boson and the other one when the mass is larger. We
investigate separately the two cases because different an-
nihilation channels contribute to each of them.

A. m <MW

In this case the annihilation of two N2 occurs into pairs
of light fermion-antifermion (as, for example, light
neutrino-antineutrino pair or electron-positron pair)
through Z exchange. We calculated the average cross
section times the relative velocity for annihilation of two
N2 into a pair of fermion-antifermion which is in accor-
dance with [24]

 h	Avi �
4G2

Fm
2

3�
h
2i�C2

V � C
2
A�sin4�; (13)

whereGF is the Fermi constant, and 
 is the velocity of N2

at the center of mass reference system. The parameters CV
and CA are defined as CV � j3 � 2qsin2�w and CA � j3,
where j3 and q are, respectively, the weak isospin and the
electric charge of the fermion and sin�w is the Weinberg
angle. For the total annihilation cross section, we should
include all possible channels with fermions that are lighter
than N2. For a mass of N2 larger than 5 GeV, the number of
open channels for annihilation into pairs of fermion-
antifermion includes all leptons and all quarks (times three
colors) except the top one [25,26]. The total annihilation
cross section can be written as

 h	Avi � N
2G2

Fm
2

3�
h
2isin4�; (14)

where N � 14:47 represents the effective number of chan-
nels. In principle, N should have been 21 since we include
five quarks times three colors and six leptons. However,
since all the fermions do not couple with the same strength
to the Z, the total annihilation cross section is equivalent to
the total cross section of N channels of neutrino-
antineutrino. For the derivation of the cross section, we
assumed that the fermions are much lighter than N2.
Equation (14) is valid only in the case where m� MZ.
For larger values of m we must take into account the
resonance effect and the fact that the denominator of the
propagator of the virtual Z boson is not anymore domi-
nated by the mass of the Z. In this case (14) must be
modified as

 h	Avi � N
2G2

Fm
2

3�
h
2isin4�

M4
Z

�s�M2
Z�

2 � �2
ZM

2
Z

; (15)

where �Z � 2:5 GeV is the width of the Z and s is the
Mandelstam variable which at the nonrelativistic limit is
s ’ 4m2. In principle, one can argue that particles like N2

that couple to the Z boson with a mass of a few GeV are
already excluded by constraints from the measurement of
the width of the Z by the LEP collaboration. In fact, a
fourth neutrino coupled to the Z with the same strength as
the other three ones has been excluded by the LEP col-
laboration for a mass up to 40–45 GeV [27]. However in
this case, N2 can avoid exclusion by LEP if the angle � is
small. We can see from Eq. (8) that N2 couples to the Z as a
regular neutrino times sin2�. Therefore if � is sufficiently
small then N2 cannot be excluded by LEP even for masses
smaller than 40 GeV. We address this question later on this
subsection. A similar case regarding neutrinos was studied
in [28]. Another constraint is provided by earth-based
experiments for dark matter search like CDMS. However,
as we shall show in the next section, the elastic cross
section of N2 scattering off the nuclei of the detectors is
very small to be ruled out by CDMS.

In order to calculate the relic density, we have to solve
Eq. (11). A very good approximate solution for nonrelativ-
istic particles has been given pedagogically in [24,29]. The
approximate solution for Y is
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 Y1 �
3:79�n� 1�xn�1

f

�gs=g
1=2
 �MPlm	0

; (16)

where xf denotes the value of x where the decoupling
occurs. The value of xf is given by the approximate relation

 xf ’ ln
�2� c�c��� � �n� 1
2� ln
ln
�2� c�c����: (17)

The parameter c is a fitting numerical constant of order
unity. Usually the best fitting to the real solution is
achieved when c�c� 2� � n� 1. The parameter � �
0:145�g=gs�, where g is the number of degrees of freedom
for the particle N2 (therefore g � 2). The relic abundance
is

 �N2
h2 � Y1sm=��crit=h2� ’ 2:82� 108Y1�m=GeV�:

(18)

By inspection of (15) we conclude that n � 1 and

 	0 �
NG2

Fm
2sin4�
�

M4
Z

�s�M2
Z�

2 � �2
ZM

2
Z

: (19)

This is because the thermal average velocity at the center of
mass reference system is given by

 h
2i �
3

2

T
m
: (20)

It is easy to prove the above relation if one notices that the
thermal average velocity in the lab frame is related to the
one at the center of mass frame as h
2

labi � 2h
2i. By using
the equipartition theorem, we get h
2

labi � 3�T=m� and
therefore h
2i is given by (20). Using Eqs. (18) and (19)
and a value g � 100, we calculated the relic density ofN2.
For m� MZ the expression takes the simple form

 �N2
h2 �

0:0283x2
f

m2sin4�
: (21)

This relation is slightly more complicated once we include
the extra term of (15) compared to (14). In Fig. 1 we show
the value of sin� that gives the proper relic density for N2

(if it accounts for the whole dark matter) as a function of its
mass, for a range of m from 10 to 80 GeV. For a mass of
10 GeV, the dark matter density is achieved for sin� � 1.
For a mass lower than 10 GeV, N2 has a relic density larger
than the dark matter density �dh2 � 0:112. If we increase
the mass, sin� drops, reaching 0.08 for m � 45:5 GeV,
which is half of MZ. As m increases beyond the resonant
value, the annihilation cross section decreases and a higher
value of sin� is needed in order to maintain �N2

h2 �

0:112. We have plotted sin� up to 80 GeV, which is the
onset of a new dominant channel that we examine in the
next subsection. Since 0< �<�=4, sin� is restricted
between 0< sin� <

���
2
p
=2 � 0:707. It is evident from

Fig. 1 that form< 18 GeV where sin� > 0:707,N2 cannot
provide the dark matter density and this region is excluded.

This region is also excluded by LEP as we show in the next
paragraph.

There are constraints on the masses of neutral particles
that couple to the Z boson imposed by the LEP experiment.
In LEP the total decay width for the Z boson into invisible
neutral particles was measured with very high accuracy.
The ratio of the decay width into invisible particles over the
decay rate into a pair of neutrino-antineutrino determines
the number of light neutral particles coupled to the Z. The
experimental value of this ratio is [27]

 N� �
��Z! invisible�

��Z! ����
� 3:00	 0:08: (22)

We interpret the bound as implying that the number of light
species is N� < 3:08. The constraint for N2 can be written
as

 0:08>N� � 3 � sin4�� 
3; (23)

where
 is the velocity ofN2 produced as Z decays [30]. In
Fig. 1 we implemented this constraint. As it was expected,
low masses up to 23 GeV are excluded by LEP. However,
we can see in the figure that LEP cannot exclude the region
above 23 GeV. For a typical value m � 40 GeV, the mass
of N1 is mN1

’ 589 GeV. This corresponds to a Majorana
mass M ’ 549 GeV and a Dirac mass mD ’ 153 GeV. In
the next section we shall address the issue of N2 detection
by the CDMS experiment. We shall argue that CDMS
imposes no further constraints on the suppression angle
sin�. For completeness we also checked if it is possible for
the heavier N1 particle to sustain any considerable relic
density. From (8) we can calculate the decay rate of N1 to
an N2 and a Z. In order for a particle to give a considerable
relic density, the decay rate has to be smaller than the
Hubble parameter. The decay rate of N1 is proportional to

20 40 60 80
m

0.2

0.4

0.6

0.8

1
sinθ

FIG. 1. The solid line shows the dependence of sin� on the
mass of N2 (in GeV), in order the relic density �N2

h2 � 0:112.
The dashed line shows the constraint on m and sin� imposed by
LEP. The area above the dashed line is excluded. This means that
m should be larger than 23 GeV, which is the value where the two
curves cross each other.
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� ������������������
g2 � g02

p
2

�
2
sin2�cos2�

M3
N1

M2
Z

: (24)

The formula is similar to the decay rate of the top quark.
The Hubble parameter has an extremely low value of
�10�33 eV. For any realistic value of MN1

, and unless
there is no extreme fine-tuning of the mass difference
among N1, N2, and Z or of the sin2�cos2� factor, it is
impossible for the decay rate of N1 to be smaller than the
Hubble parameter. Therefore there is no relic density for
N1 since it decays very fast to N2 and Z.

B. m >MW

The second case we investigate is the one where m>
MW . In principle, this means that we examine the possi-
bility of m being higher than 80 GeV. No constraints are
imposed by the LEP experiment on this regime since the
mass is higher than half of MZ. In order to calculate the
relic abundance, we use again the Boltzmann Eq. (11).
However, the annihilation cross section is different in this
case. It is very easy to show that the annihilation of two
Majorana N2 into pairs of light fermions (like electron-
positron or quark-antiquark) for m>MZ is suppressed by
a factor �1=16��MZ=m�4. This is because the propagator of
the virtual Z boson is 1=�q2 �M2

Z�. In the case ofm� MZ
the propagator scales approximately as 1=M2

Z. However, if
m� MZ the propagator scales as 1=s ’ 1=�4m2�. The
cross section depends on the square of the propagator
and therefore the cross section is suppressed by the factor
we mentioned above. In this regime a new channel opens
up and becomes the dominant one [31]. It is the annihila-
tion into a pair of W�-W� through a Z boson. We calcu-
lated the cross section and we found
 

h	Avi �
G2
Fm

2

3�

2
W

s2

�s�M2
Z�

2 � �2
ZM

2
Z

� sin4�
�
1�O

�
M2
W

m2

��
: (25)

Again 
 is the velocity of N2 at the center of mass frame

and 
W �
�������������������������
1� 4M2

W=s
q

is the velocity of the W. Using
(10) as in the previous case we can write 	0 as

 	0 �
G2
Fm

2

2�

W

s2

�s�M2
Z�

2 � �2
ZM

2
Z

sin4�
�
1�O

�
M2
W

m2

��
:

(26)

At the limit where m� MW , the above equation takes the
simple form

 	0 �
G2
Fm

2

2�
sin4�: (27)

At the same limit the relic abundance of N2 can be written
as

 �N2
h2 �

0:818x2
f

m2sin4�
: (28)

In Fig. 2 we plot the dependence of sin� as a function of the
mass m from 80 GeV up to 2 TeV in order to get a relic
density �N2

h2 � 0:112. In our plot we took into account
both the annihilation channel to W�-W� and to pairs of
fermions-antifermions. For the W�-W� channel we
dropped the terms that scale as powers of �MW=m�

2. The
mixing angle sin� has a peak at 122 GeV and then it drops
smoothly as m increases. It is easy to see why this peak
appears. As soon as m becomes larger than 80 GeV, it is
possible to have annihilation to a pair ofW�-W�. However
close to the onset, the phase space for this amplitude is very
small and the cross section is controlled by 
W (which is
zero at s � 4M2

W). Between 80 and 122 GeV, the total
annihilation cross section drops because theW�-W� chan-
nel has not yet enough phase space and the fermion-
antifermion channels that still dominate have a cross sec-
tion that falls as we explained at the beginning of this
subsection. Once m becomes large enough so there is a
lot of phase space for the W�-W� annihilation, the cross
section increases. This means that sin� must drop if we
have to maintain the dark matter density. At a mass of
1 TeV sin� � 0:26. For this mass of N2, the corresponding
mass for the heavy N1 is 13.5 TeV and the original Dirac
and Majorana masses are respectively mD � 3:7 TeV and
M � 12:5 TeV. We plot sin� up to m � 2 TeV where
sin� � 0:19. Our calculation of the total cross section
and consequently of the value of sin� is extremely accurate
both at the onset of theW�-W� channel and form� MW .
The only region where the cross section is not very accu-
rate is at the peak (around 122 GeV) because this is where
the corrections of the order of M2

W=m
2 are important. For

masses larger than 122 GeV, these corrections are sup-
pressed. For masses close to the onset of the W�-W�

channel, these corrections are unimportant because the
annihilation cross section is still dominated by the annihi-
lation to pairs of fermions-antifermions. However, even at

500 1000 1500 2000
m

0.2

0.4

0.6

0.8

1
sinθ

FIG. 2. As in Fig. 1, the solid line shows the dependence of
sin� on the mass of N2 (in GeV), in order the relic density
�N2

h2 � 0:112.
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the peak, our estimation for the sin� is off at most by
�10%. Either on the left or on the right of the peak our
estimation of sin� becomes better than 95% accurate
within a few GeV.

IV. DETECTION OF THE LIGHTEST
TECHNIBARYON IN CDMS

We turn our attention now to the question of detection of
N2 from dark matter search experiments. It is well known
that earth-based experiments like CDMS can put tight
constraints regarding the cross section of WIMPs scatter-
ing off nuclei targets. In fact, the most important constraint
related to the scenario of the techni-Goldstone boson dark
matter candidate was coming from the nondetection of
counts in CDMS [15,18]. There are two basic factors that
influence the number of counts on earth detectors. The first
one is the local dark matter density and the second one is
the elastic scattering cross section between the WIMP and
the nuclei of the detector. Most cosmologists agree that the
local dark matter density should be somewhere between
0:2–0:4 GeV=cm3. As for the cross section, Majorana
particles have usually much smaller cross section com-
pared to Dirac ones because Majorana fermions do not
scatter coherently with the whole nucleus of the target.
This is our motivation for investigating N2 as a dark matter
candidate. A review of the cross section of different dark
matter candidates can be found in [32,33]. For a Majorana
particle only spin-dependent elastic collisions contribute
[34,35]. Following [34], we can write the spin-dependent
cross section for N2 as

 	N2
�

2G2
F

�
�2Issin4�; (29)

where � is the reduced mass of the system WIMP-nucleus
and Is is conventionally written in the form Is �
C2�2J�J� 1�. C is given by

 C �
X
q

T3
q�q �q � u; d; s�; (30)

where �q is the fraction of the spin carried by the specific
quark q. T3

q is the 3rd component of the isotopic spin of
each of the three quarks (T3

u � 1=2, T3
d � �1=2, T3

s �
�1=2). The values for the different �q given by the
European Muon Collaboration are �u � 0:83, �d �
�0:43, and �s � �0:10 [34]. A realistic value for
�2J�J� 1� within the model of odd group for the detectors
of Ge73 is 0.065. Given these values, the overall factor Is ’
0:03 for the Ge detectors. The cross section can be written
in convenient units pb as

 	N2
� 3:38� 10�2�2Issin4�

� 1:01� 10�3�2sin4� �pb�: (31)

The total rate of counts on an earth-based detector in
experiments like CDMS is [34]

 R0 �
540

Am

�
	0

1 pb

��
�dm

0:4 GeV c�2 cm�3

�

�

�
�0

230 kms�1

�
kg�1 days�1; (32)

where A is the mass number of the nucleus of the detector,
�dm is the local dark matter density, and �0 is the average
velocity of the WIMP. The total rate is given in terms of
kg�1 days�1 which means that, for a given detector of mass
x and of exposure time y, the total rate must be multiplied
by xy. However, the number of actual counts that can be
seen in a detector is given by

 counts �
dR
dT

�T � ; (33)

where  is the exposure of the detector measured in kg �
days and �T is the energy resolution of the detector. The
factor dR=dT is the derivative of the total rate with respect
to the recoil energy T given by the approximate relation

 

dR
dT
� c1

R0

E0r
e�c2T=E0r; (34)

where E0 is the kinetic energy of the WIMP and r �
4mMn=�m�Mn�

2, m and Mn being the masses of the
WIMP and the nucleus of the detector, respectively. The
c1 and c2 are fitting parameters. Equation (34) was derived
in [34] after averaging over the Boltzmann velocity distri-
bution of the WIMP. The case with c1 � c2 � 1 corre-
sponds to averaging of the velocity from zero to infinity.
However, it has been pointed out that the motion of the
earth should be taken into account and more realistic
values for the parameters are c1 � 0:751 and c2 � 0:561.
These parameters depend mildly on the detector’s energy
threshold and the mass of the WIMP, however do not
change a lot and we consider them as constants. We have
taken the velocity of the earth to be vE � 1:05� v0 �
1:05� 230 km= sec . In the first results of the CDMS
experiment [20], the exposure of the Ge detectors was
19:4 kg � days. The energy resolution �T � 1:5 keV and
the recoil energy threshold is 20 keV although the detector
can count recoil energies down to 10 keV. The current
exposure of the detectors in CDMS (19:4 kg � days) is
not sufficient to give any counts for a particle like N2

with local dark matter density ranging between
0:2–0:4 GeV=cm3. This is true for the whole range of m
we examined. In Fig. 3 we show what is the required
exposure in order to detect one count of N2 with 90%
confidence level as a function of m. The 90% confidence
level corresponds to 2.3 counts. For the first case we
studied with m up to 80 GeV, the required exposure in-
creases as a function ofm up to the resonance peak ofm �
45:5 GeV and then drops. For a local dark matter density
� � 0:4 GeV=cm3, a total amount of 7004 kg � days is
needed for a typical mass m � 30 GeV. This practically
means that the required exposure for detection of a single
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count should be 361 times the current exposure of 19:4 kg �
days. For masses m� 100 GeV, the required factor is
much larger. For m � 2 TeV, the required exposure
reaches 8� 106 kg � days. Our results are in accordance
with the predictions of the CDMS group for Majorana dark
particles [36].

V. THE CASE OF MAJORANA MASS FOR THE
RIGHT-HANDED PARTICLE

So far we discussed the case of a Majorana mass for the
left-handedDLG and a Dirac mass for bothDLG andDRG.
However, one might ask the question of what happens if,
instead of giving a Majorana mass to the left-handed
particle, we give it to the right-handed one (DRG). This
means that in the mass matrix of Eq. (2), M and 0 in the
diagonal are exchanged. It turns out that the two Majorana
eigenstates can be described easily using Eqs. (3) and (4) if
we make the substitution sin�! cos� and cos�! sin�.
Under this description, the relation that defines the angle �,
tan2� � 2mD=M remains the same. In addition, the ratio
of the masses of N1 and N2 is given by

 

MN2

MN1

� tan2�; (35)

as in the previous case. Using this description, N1 couples
to the Z with a factor sin2� and N2 with a factor cos2�.
SinceN2 is lighter thanN1, we can find the value of cos� as
a function of MN2

in order to have �N2
h2 � 0:112. This is

exactly what we did in the previous sections apart from the
fact that the annihilation cross section for N2 is not pro-
portional now to sin4�, but cos4�. This means that Figs. 1
and 2 are valid in this case if we substitute in the vertical
axis of the figures sin� by cos�. However, because (35)
remains unchanged, in order for N2 to be lighter than N1,
sin� < cos�. This happens when cos� >

���
2
p
=2 ’ 0:707.

By inspection of Figs. 1 and 2, one can see that there is
only one region where this is true. It is below 18 GeV (as
seen in Fig. 1) and it is already excluded by LEP.

The physical reason of the qualitative difference be-
tween the two general cases we studied, namely, giving a
Majorana mass to either the left- or the right-handed
particles, relies on the simple fact that in the first case
the lighter Majorana is also the particle with the suppressed
annihilation cross section and therefore the one that can
provide a considerable abundance. In the second case, the
lighter Majorana is the one that is ‘‘mostly’’ left-handed
and therefore the big annihilation cross section cannot
make this particle to sustain a substantial relic density.

VI. CONCLUSIONS AND DISCUSSION

In this paper we investigated the possibility of a dark
matter candidate emerging from the minimal walking
technicolor theory. Because the two techniquarks of the
theory transform under the adjoint representation of the
technicolor SU(2) group, it is possible to have a bound
colorless state between a techniquark and a technigluon.
We looked upon the scenario that the left-handed
technigluon-dressed techniquark has a Majorana mass
and both left- and right-handed have a Dirac mass. We
found that this dark matter candidate can account for the
whole dark matter density for practically any mass higher
than 23 GeV. This dark matter candidate can account for
the whole dark matter density without being ruled out by
LEP or CDMS. We also commented on what happens if it
is the right-handed particles that have a Majorana mass
instead of the left-handed. We showed that in this case the
lighter Majorana particle cannot account for the whole
dark matter density. Since we are lacking the tools to
calculate the spectrum of this technicolor theory and we
do not know the exact ETC model, we cannot know a
priori what is the mass of N2. Lattice methods just started
being implemented for studying the dynamics of models
with fermions in higher representations of the gauge group
than just fundamental. It will be very interesting if it will be
possible to study in lattice this bound state of quark-gluon.

We should emphasize here that our results are comple-
mentary to the case studied in [21]. We already mentioned

30 40 50 60 70 80
m

20000

40000

60000

80000

100000
Exposure in days.kg

500 1000 1500 2000
m

2 106

4 106

6 106

8 106

1 107
Exposure in days.kg

FIG. 3. Left panel: The required exposure of the Ge detectors in kg � days for a single count (with 90% confidence level) as a function
of m (in GeV) for the range 20<m< 80, although in reality m is constrained by LEP to be larger than 23 GeV. The thin solid line
corresponds to local dark matter density � � 0:4 GeV=cm3, the dashed one to � � 0:3 GeV=cm3, and the thick solid one to � �
0:2 GeV=cm3. For the purposes of presentation, we show the required exposure up to 100 000 kg � days. Around the resonance, where
m � 45:5 GeV, the required exposure has a sharp peak of about 107 kg � days. Right panel: As in the left panel for 80<m<
2000 GeV.
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that, in the minimal walking technicolor model with tech-
niquarks in the adjoint representation, it is necessary to
have an extra family of leptons to cancel Witten global
anomaly. If the hypercharge assignment for the fourth
neutrino is like in the standard model, then this heavy
fourth neutrino can play the role of a dark particle.
However, in the candidate we studied, we use a different
hypercharge assignment, the one that makes D neutral.
Both assignments are consistent and free of gauge anoma-
lies. Although the hypercharge assignments are different,
the strength of howDLG couples to the Z boson is the same
as this of the fourth neutral neutrino. Therefore if one
assumes that the fourth left-handed neutrino (coming

from technicolor) has both Majorana and Dirac mass,
then the calculation of the relic density and the constraints
from LEP and CDMS are identical with the corresponding
ones of N2.
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