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W e generalize the notion of the Jarlskog invariant to supersym m etric m odels w ith right{handed
neutrinos. This allow s us to form ulate basis{independent necessary and su cient conditions for CP

conservation in such m odels.

I. INTRODUCTION

CP viohtion in the quark sector of the Standard
M odel (SM ) is controlled by the Jarlskog invariant

i,

Tm Det[y"y";ydyd] ; 1)
which can also be written In the form E],E]

T Triy"yW;ydy¥wp (2)

where Y # are the quark Yukawa m atrices. This is a
CP {odd guantity, invariant under quark basis trans—
form ations. CP violation is possible if and only if the
Jarlskog invariant is non{zero (assum ng gcp = 0).
This is a sin ple and pow erful result.

In the lepton sector, the situation is m ore com pli-
cated. A ssum ing that the sm allness of the neutrino
m asses is explained by the seesaw m echanisn Q]—B],
the e ective neutrino m assm atrix is of the M a prana
type. It has di erent basis transform ation properties
com pared to the D irac case. T his results In three in—
dependent CP phases and m ore com plicated CP {odd
Invariants E]. A recent discussion of this sub gct is
given in @ ]. Applications of the invariant technigue
to physics beyond the SM can be found in ].

A generalization of the Jarlskog invariant to super—
symm etric m odels was constructed in @}. Tt was
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found that CP violation is controlled in this case by
a di erent type of invariants containing an antisym —
m etric product of three avour m atrices. A pplica—
tions of this approach were studied in ]. In this
work, we extend these results to SUSY m odels w ith
right{handed neutrinos. A s seen in the SM case, this
brings In avour ob gcts w ith \unusual" transform a—
tion properties and leads to distinct physics.

In what ollows, we zst study CP {phases and in—
variants in the SM with three right{handed neutri-
nos. W e di er from previous work in in plem enting
the concise technigues of @]. W ithin this form alism ,
we then construct the SUSY generalization, the M in—
in al Supersym m etric Standard M odel (M SSM ) w ith
three right{chiralneutrino super elds, and give an ex—
am ple of possible applications.

II. SM W ITH THREE RIGHT-HANDED
NEUTRINOS

Consider an extension of the SM w ith three right-
handed neutrinos. T he relevant tem s in the leptonic
Lagrangian density are

1
L = Y SkeH + YL 4+ EMij i+ Hey

where 1, e, and H denote the left-handed charged
Jepton doublet, the right-handed charged lepton sin-
glet, the right-handed neutrino singlet and the H iggs
doublet, respectively. ¥ is given by i ,H , where ,
is the second Paulim atrix. Y5 is the charged lepton
Yukawa m atrix, Yy is the Yukaw a m atrix for the neu—
trinos, and M 5 is the com plex symm etric M a prana
m ass m atrix for the right-handed neutrinos. i; j are
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the generation indices and the superscript ¢ denotes
charge conjagation.

T he kinetic term s are Invariant under unitary basis
transfom ations

UEBn UEBk UE) ; (3)
nam ely
1! Uy (4)
e ! Ule; (5)
Uy o (6)

This m eans that a theory with the avour m atrices
transform ed according to

Ye ! U{Y®U; (7)
Yy ! uf ; (8)
M ! Ut U 9)

represents the sam e physical situation and is equiva—
lent to the original one. W ith an appropriate choice
of the phase convention , the CP operation am ounts to
com plex conjugation of these m atrices (see e.g. 1,

M ' M ; (10)

where M = fY®;Y ;M g. If this operation can be
\undone" by a sym m etry transform ation, no CP vio—
lation is possble.

PhysicalCP violation is controlled by CP {violating
basis Independent invariants a la Jarlskog. This al-
low s one to form ulate necessary and su cient condi-
tions for CP conservation in a basis independent way.
O n the other hand, it is also instructive to study CP
violating phases in a speci ¢ basis, taking advantage
of sym m etries of the system . In what ollow s, we w il
pursue both of these approaches.

In seesaw m odels, the scale of the M a prana m ass
m atrix is taken to be very large, around the GUT
scale. In this case, the low energy theory is obtained
by Integrating out the right{handed neutrinos. This
produces a dim ension-5 operator Involring the left{
handed leptons and an e ective coupling constant

me =Y M 'y (11)

which results In neutrino m asses upon electroweak
symm etry breaking. T he apparent avour symm etry
of this low energy theory is

U (3)e (12)
w ith the transform ation law
Ye ! U{Y°U.;

me ! U/m. U, : (13)

The number of independent CP phases can be
obtained by a straightforward param eter counting.
In the high energy theory, Y¢;Y and M contain
9+ 9+ 6 = 24 phases. A unitary 3 3m atrix represent-
ing basis transform ations has 6 phases, which m eans
that 18 phases can be rem oved ! Thuswe end up w ith
six physicalphases at high energies. In the low energy
theory, Y€ and m. contain 9+ 6 = 15 phases. 12
of them can be rem oved by unitary transform ations,
w hile three are physical. C learly, the other three phys-
ical phases of the high energy theory are associated
w ith the heavy neutrinos and cannot be observed at
low energies. However, these can be relevant to CP
violation at high energies, eg. leptogenesis E].

In what follow s, we study In m ore detail these CP
phases and the corresponding invariants.

A . High{Energy T heory
1. CP phases

Let us rst dentify the physical CP phases in a
gpeci ¢ basis assum ing a general form of Y ¢;Y and
M . The unitary transform ations (#9) allow us to
bring the avourm atrices into the form

Y = realdiagonal;
Y ® = Hem itian ; (14)
M = symmetric ;

w here the last equation is satis ed in any basis. This
basis is de ned only up to a diagonal phase transfor-
m ation
G1= 8. =§ = diag(expli 1Jiexpli 2 Jiexpli 3)):
(15)
Under this resdual symm etry, Y€ and M transform
as

Y5 DY expli( )1 (16)
Mj_j M i3 exp[l( it j”: (17)

T he physical CP phasesm ust be invariant under these
transform ations. Since Y © and M have 9 phases, only
6 of them are are physical

The sim plest Invariant CP phase is a CKM {type
phasewhich istheonly one surviving the lim itM ! 0.
It is given by

0= argly 5Y5Y5 1: (18)

1 If the M afprana m ass m atrix were absent, only 17 phases
could be rem oved since a phase transform ation proportional
to the unit m atrix leaves Y© and Y intact, which corre—
sponds to a conserved lepton num ber.



The other ve phases involve M . Three of them can
be built entirely out ofM ,

1 = argM ;1M M 45 ]; (19)
2 = argM oM 33M ,31; (20)
5 = argM 1M 33M 25 (21)
while the rem aining two involve Y € aswell,
4 = argfflegM 13M 33 ); (22)
5 = arg[Y;gM 22M 53 I (23)

It should be clear by considering the independentm a—
trix entries, that these phases are Independent.

T he necessary and su cient conditions for CP con—
servation are given by

1=0 (24)

fori= 0;::;5, and the phases are understood m od
If these conditions are satis ed, the avour ob fcts In
Eq. (I4) can be m ade real by choosing appropriate

;. Then no CP violation is possible. C onversely, CP
conservation in plies that the avourm atricesare real
in som e basis. Then, the CP conserving Y ;Y and
M are generated by the phase rede nitions in (I3),
]eavjng i= 0 intact.

2. CP Viohting Invariants

Conditions for CP conservation can also be form u—
lated In a basis independent way. To do that,one st
form s m atrices which are m anifestly invariant under
two of the unitary symm etries, then builds CP {odd
traces out of them .

Consider the follow ing H erm itian m atrices

A Y Yy (25)
B Yy Yyey ¥y ; (26)
C M M ; (27)
D M (Y YY )M : (28)

Tn general, they are not diagonalizable sin ultaneously
and transform as

M i ! V) Y M i 8] H (29)
whereM ; = fA ;B ;C;Dg. The sin plest CP-odd in—
variants that can be form ed out of this set are

TrM TM 9T ;
TrM TM §M (T (30)
where p;q;r are Integer and n;m are odd; [:::]denotes

com plete antisym m etrization of the m atrix product.

The rst class (\J {type") of nvariants is the fam il-
jar Jarlskog type, while the second class (\K {type")
appears, for exam ple, in supersym m etric m odels @ 1,
see also Egs. (84]) below . These obfcts are CP-odd
since the CP operation on the elds is equivalent to
com plex conjugation of the m atrices, which is in tum
equivalent to a transposition for Hemn itian m atrices.
Tn a speci cbasis [for instance, (I4)], these ob fctsare
functions of the six physical CP phases. In the non{
degenerate case which we are considering, the vanish—
ing of six Independent invariants im plies the vanishing
of the physical CP phases. Thism eans iIn tum that
all possible CP violating invariants are zero and CP
is conserved.
An adm issible choice of independent invariants is?

Tr[a;B T; (31)
TrA ;C T; (32)
TrA ;D F; (33)
Tr(R;C B); (34)
Tr(R ;D B); (35)
Tr(R ;D L ); (36)

where we have used Trla;b;c] / Trla;bk. The rst
invariant is proportional to the sine of the CKM {type
phase o, while the others depend In a com plicated
way on all of the phases {I8)-(23). It is a non {trivial
task to determ ine w hether given invariants arem utu—
ally independent. To do that, we calculate the Jaco—
bian

Det % ; (37)

J

w here ji are the invariants above. A non{zero Jaco—
bian indicates that the ob fcts are independent. W e
con m that this is indeed the case.

Tt is instructive to consider the above invariants in a
speci chbasis, forexam ple,wherem atrix A isdiagonal,

A = diagonal: (38)
T his basis isde ned up to a rephasing
U = diag(exp[i 1 Jiexp[i o Jiexp[i 3]) : (39)

T he physicalCP phasesm ust be Invariant under this
residual sym m etry and are of the form

(40)
(41)

arg[B1,B 23B 5] ; arglC12C23C 5] 7
argB12C 1,17 argB23Cog] ;i

For N independent Hem itian ob fcts one can form
3N 5 independent invariant phases and all of the

2 W e drop the Im (...) for each invariant in the follow ing.



Invariantsdepend on these 3N 5 variables. T hiscan
be understood by param eter counting: N Hem itian
m atrices contain 3N phases and unitary basis trans-
form ations U absorb 6 1 = 5 of them since the
overall phase transform ation leaves all the m atrices
intact. T he explicit dependence of the invariants on
these phases has been studied in @}.

In our case, there appear to be seven phases accord—
iIng to this argum ent. H ow ever, not all of our H em i-
tian m atrices are com pletely Independent as they are
built out of three avourm atrices. O ne of the phases
is a function of the others and we have six truly inde-
pendent CP phases as explained in the previous sub—
section. T hese are rather com plicated functions of the
expressions (40)) and (41]), except

0o/ argB12B23B 3] (42)

Note that if we chose only three Hem itian m atrices
A ;B ;C to work with,we could only extract four CP
phases regardless of how many invariants we would
w rite. So, som e inform ation is lost w hen constructing
Hem itian objcts. It is thus necessary to include a
further m atrix D , which brings in additional input.
To show that this is su cient, onem ust calculate the
Jacobian (37).

T he necessary and su cient conditions for CP con—
servation in the non{degenerate case are

(43)

where #; are the nvariants (Z1)-{(3d). T his is equiv-
alent to Eq.(24).

B. Low {Energy T heory
1. CP Phases

At low energies, we have two avour m atrices Y.
and m . . Using the unitary freedom (I3), we bring
them into the form

m. = real; positive and diagonal;

(44)
Y® = Hem itian :
In the non{degenerate case, there is no residual free-
dom in this basis due to the M aprana character of

m ¢ . The three physical phases are therefore

b arglY,5]; (45)
5 arglY 51 ; (46)
S = amlgl: (47)

A Itermatively, one can choose a basis in which Y © is
diagonal,

Ye

real; positive and diagonal; 48)

m. = symmetric;

where the second equation is satis ed in any basis.
T he residual freedom is

G = §. = diag(expli 1 expl 2 expd 31); (49)

such that the three physical phases are of the form
arglm e )ime )yyme )if] (50)

foris j.

It is conventional to separate these phases nto so-
called M aprana and D irac ones. T his can be done by
expressingm . as

m., = U (realdiagonal) UT ; (51)

where U isunitary. F ive of its phases can be factored

out ]

U = diag(expli 1 Jiexpld 2 Jexpli 31)
U’diag(expl 1Jexpli 2D 7 (52)
w ith U ° containing a single phase w hich cannotbe fac-
tored out In this form . The phases 1 3 are unphys—
ical and can be rem oved by the residual symm etry
transformationsme ! Ujm. U, . The \M aprana"
phases 1, aswellas the \D Irac" phase in U are
una ected by this phase rede nition and are physical.
They enter the PM N S m atrix and thus contribute to
the W -boson { lepton { lepton vertex ].

T he necessary and su cient conditions for CP con—
servation in the non{degenerate case are given by
¢ =0

1

(53)

fori= 1;2;3which isequivalentto ;= ,= =0
(the phases are understood mod ).

2. CP Violting Invariants

As in the previous subsection, we st construct
Hem itian m atrices transform ing under one of the uni-
tary symm etries only. At low energies, U; is the rele-
vant symm etry and we choose

A=Y°Y®;
B=mem_, ;
C=meg (YeYey)me : (54)

They all transform as

M ;! UM ;U;; (55)
whereM ; = fA ;B;Cg. W e rst note that generally
A ;B ;C are not diagonalizable in the sam e basis. Sec-
ond,they contain 3 3 5= 4 invariant phases, three
of which are Independent and related to § . Agal,

1



using two Hemm itian m atrices, eg. A and B, would
only allow us to extract nform ation about a single
phase, so it is necessary to consider C as well.

The CP {odd invariants can be chosen as

TrRA ;BT ; (56)
TrR ;CT ; (57)
Tr(R;BL): (58)

In the non{degenerate case, they are all independent
and can be used to extract § . This is established

by calculating the Jacobian: Det @@Je}f W e thus

have three necessary and su cient con(jjji'jons forCP
conservation or violation.

A s expected, the Jarlskog{type invariant (5f) is in—
dependent ofthe M a prana phases and is proportional
to the D irac phase,

Tr[a ;BT / sih (59)

Tt vanishes in the lin it of degenerate eigenvalues or
vanishing m ixing angles. The other invariants are
com plicated functions of the Dirac and M ajprana
phases.

T he necessary and su cient conditions for CP con—
servation in the non{degenerate case are

(60)

where J; (i= 1;2;3) denote the invariants (58)-(28).

C . D egenerate C ase

So far we have assum ed that there are no degen-—
erate eigenvalues In any of the m atrices and that the
m xing angles are non{zero. It is how ever instructive
to consider the special case, where all the low -energy
neutrino m ass eigenvalues are equal, ie. there exists
a basis such that

(61)

where 1 isa 3 3 unit matrix and m is real. Tn
that case, the specialbasis (44)) isde ned up to a real
orthogonal transform ation

Up=Uc=0 ;00" =1; (62)
which retains the H em iticity of Y ©. D ue to this resid—
ualsymm etry,the § arenotallindependentand can
be param etrized by a single phase ].

T hisbecom esm ore transparent in the other special
basis (48), where Y. is realand diagonal. T his basis
m ust be unitarily related to the basis (&l) and thus
m. isgiven by

me =m UyU; = symm etric unitary : (63)

A symm etric unitary m atrix can be param etrized by
four phases (and two angles) @}. Indeed, three of
them can be factored out as @J

diag(expli 1 ;expli » lexpli 3) U°

diag(expli 1 expll 2 Jexpld 3)) ; (64)

while the sym m etric unitary m atrix U ° contains a sin—
gle phase. The explicit form of U can be fund in
@}. The phases ; 3 are ram oved by the residual
phase symm etry (49)) in this basis, leaving a single
physical phase.

T hus, in this degenerate case there is one physical
M aprana phase. T hisphase has to beM a prana since
the Jarlskog invariant Tr[A ;B P vanishes. Both A and
B are diagonal in the basis (63).] W e observe that
the only non{vanishing invariant is (7). In the basis
wherem . isdiagonal, it is given by (up to a factor)

241
Trly 8Y &¥; (v °Y ) } (65)

and is Invariant under the residual orthogonal sym —
m etry (67). It is non{zero in general sihce A and A
are not diagonalin the sam e basis.

T hisanalysiscan be carried over to the \high energy
theory" case in a straightforw ard albeit tedious way.

IIT. M SSM W ITH THREE RIGHT{HANDED
NEUTRINOS

The leptonic part of the most general proton—
hexality @J (or R “parity) conserving renomm alizable
superpotential is given by

A A N AN A N
Woeptonie =  HoYy LN+ HOYSLIES  (66)
l Ay Ay
+ EM j_jN ;N 5

Here I, E and N are the leftchiral super elds de-
scribing the lepton doublet, a charge conjugate of the
right{handed electron and a charge conjugate of the
right{handed neutrino, respectively. £, and H, are
the H ggsdoublet super elds. T he relevant soft SU SY
breaking tem s are

Vs = ( HoAIn,+ H 1A'-ijiej (67)
+ %B rins + H )
+M L+ M i+ M S e
wAhere I,Ae and n are the scalar com ponents of ﬁ,
E and N , respectively. H, and H , denote the H iggs

doublets.
A s in the SM , the avour symm etry is

U(@3) ; (68)



which now applies to super elds.’ T he transfom ation
law of the avour structures is

Yy ! uly u ; (69)
Ye ! u/Y®U.; (70)
A ! u/a U ; (71)
A® ! UJA®U.; (72)
MM oufMt?ug; (73)
M 1! UYM ‘U ; (74)
Me? 1 UuYM U, ; (75)
M ! U'"M U ; (76)
B! UTBU (77)

T hese ob Bctsaltogethercontain 4 9+ 3 3+ 2 6=
57 com plex phases. The symm etry transform ations
elim Inate 3 6 of tham such that we end up w ith 39
physical CP phases

In what ollow s, we classify the corresponding CP
phases and CP {odd invariants.

A . SUSY CP Phases and CP {odd Invariants

In the supersymm etric basis corresponding to (14)
where Y is realand diagonal, and Y € is Hemm itian,
the additional invariant CP phases due to the SUSY

avour structures are given by

arg Y5 Afje; ¢ ! 18 ;
arg YSM 7921 9y (78)
arg M i B ' 6

T hese are invariant under the transform ations (13).

In the Standard M odel, as a next step, we con—
structed sim ple Hem itian ob gcts which all trans-
form ed under only one of the symm etries (3). In the
M SSM , this approach leads to very cum bersom e ex—
pressions. W e thus construct three separate groups of
Hem itian ob fcts, which each transform under only
one unitary symm etry, respectively. These are pre—
sented in Table[l. W e nd that this set is su cient
to detem ine all physical phases of the system in the
non {degenerate case. Before we write down the CP {
odd invariants, let us study what CP phases these
Hem itian m atrices are sensitive to.

3 Ferm ions and sferm fons are transform ed in the sam e fashion
in order to avold avour m ixing at the super{gauge vertices.

4 IftheM ajranam atricesw ere absent, wewould get 45 17 =
28 physical CP phases.

U3 U (3)e U (3)
yeyey y ¥y e Y vy
Y Y ¥ ASYA® A YA
ACASY YA®+ He:l A YY + Hx:
AAY M ©? M ?
YA + Hr: M M
AY Y+ Hx: M (Y 'Y )M
M 12 B (Y YY )B
B M + Hx:

TABLE I:Them ininalset of Hemn itian  avour ob fcts.

Consider for exam ple Colum n 3. In the basiswhere
Y YY isdiagonal, the CP phases nvariantunder the
residual symm etry {189) are of the type

arg(M 1)12M 1)23M 1)13) 5
arg(M i)12M 441)15) 72

whereM ; aretheH emn itian m atrices of the third C ol
umn of Tabke[l. G iven N > 1 independent H em itian
m atrices, one can construct 3N 5 independent invari-
ant phases. These can be chosen as one CKM {type
phase (79) and the rest of the form (80). In this fash—
ion, we obtain 19 invardiant phases from Colimn 3.
However, as we have seen In the SM case, one has to
be cautious in determm ining the correct num ber of in—
dependent phases, and not too m any, since there are
certain relations am ong these m atrices.

In order to m ake the choice of H emm itian ob fcts In
Tablk[ plausble and to better understand the count-
ing of independent phases, consider rst the hypo—
thetical special case, when the only non{zero quan-
titles are Y®, Y and M 2. In the basis (I4) w ith
M = 0,usinhg the above counting argum ents, we then
obtain only four physical independent phases. T hese
can not be recovered from the Hem itian quantities
in the three colimns of Tablk[d. Tt is onl possble
to get one phase of the form (/9) In Column 1, and
another phase of the sam e type from Colmn 3. In
order to construct the four phases, it is thus neces—
sary to include a m ore com plicated H ermm itian ob fct,
Y YYeY®Y ,inColumn 3,aswedid in Sect.I.This
brings in three extra phases, two of which are inde-
pendent. This show s that, In the special case, extra
Hem itian ob fctsm ay have to be included.

N ext let us consider the m ore involved case, w here
apart from Y©,Y andM ?,alsoA 6 0.Again,by
our counting argum ent,w e then have 13 physical inde—
pendent phases from the rem aining H erm itian ob fcts
in Table[d in the supersym m etric basis corresponding
to {I4l). In order to construct the extra phases, we can
now w rite down additionalH em itian m atricesA A Y
andA Y Y+ Hx:inthe rstcolumn,aswellasA YA
and A YY + Hx:in the third coimn. These extra



ob Ects restore the de cit encountered above, ie. we
can now recover 13 physical phases from the Hem i-
tian ob fcts. The na ve counting gives seven phases
for Column 1 and seven phases for Column 3, which
is too m any. H ow ever, of the m atrices
AAY;AY Y+Hx:;A YA ;A Y +Hc:

only three are independent. O ne of these m atrices,
say A YY + H x: can be reconstructed from the oth—
ers ]. In other words, the nine phases of A can
be derived from the nine phases of the three Hem i-
tian m atrices. Thism eans that the CKM {type phase
associated with A YY + H x:, namely

arg A Y +Hx)@ YY +Hwe)ps@ YY +Hx),

(81)
is not an independent phase and should not be
counted. A lthough it may seem thatA YY + Hxc:
should be excluded altogether, this is not correct since
it allow s us to restore the (otherw ise m issing) phases

ofM 2 through the rephasing nvariant com binations
arg M %)@ YY + Hwc:),, ;etc: (82)
T he other three phases can be chosen as
arg @A YA ), @A Y + Hwx:), ;etc: (83)

W e thus end up with six phases from the Hem i-
tian m atrices of Column 3 and seven phases from
thoseof Colum n 1. Sin ilar considerationsapply when
adding A€ to Colum n 2, where the CKM —type phase
for A®YY © + H x: is not independent.

In the Dirac case,whereonly M = B = 0 in (d),
&), ie. alsoM ;M ;M ¢ 6 0, these are the onlky
com plications and we get 28 phases from the Hem i-
tian objcts of Tablk[l. Adding a non{trivial M ap-
rana mass M results in ve further physical phases.
This is because, in the basis {I4),M adds six phases
w hile its overallphase can be elin inated by the resid-
ual symm etry transform ation, which leaves Y ¢ and
Y Invariant. To recover these ve phases from the
Hem itian ob fcts, we must add two entries n Col-
unn 3,M M andM (Y YY )M . Thisadds six in—
variant phases of the type (8d), ve of which are in—
dependent. Finally, inclusion of B brings in six m ore
physical phases of the type (8d) in the basis {I4), all
of which are Independent. Correspondingly, we add
B (Y ¥YY )B andB M + Hx:to Column 3, which
are sensitive to these phases. N ote that the ob fct of
the form B M + H x: is necessary as it depends on
the physical relative phase between B and M . In the
end, the rst, second and third Colum n provide 16, 6
and 17 independent phases, respectively.

T he above choice of the Hem itian ob gcts is not
unigue and there are m any other possibilities. In

particular, one m ay replace A YA in the third Col-
umn with Y YY €Y €Y . In that case, the 1in it \soft
term s" ! 0 reproduces the SM H erm itian m atrices of
Egs.Z8328). On the other hand, our choice is sin i-
lar to the quark sector Hem itian ob jcts ofRef.].
These choices are equivalent in the non{degenerate
case.

The CP {odd invariants are constructed out of the
Hem itian ob fcts transform ing under one of the uni-
tary symm etries in Eq. (68), respectively. T hese can
be chosen as one Jarlskog{type Invariant and the rest
K {invariants. The fom er is sensitive to the cyclic
product of phases of a each m atrix while the lhatter
are sensitive to the relative phases betw een H em itian
m atrices [14]. T husw e have 39 independent invariants
in the non{degenerate case,

JMH1;H,) ;
( 1pl 201/ B (84)
K H{HGHD

whereJ@;B) TrA;BTF,K @;B;C) TrRA;B;C]

and p;q;r are Integers. In each Invariant, only m atri-
ces H , belonging to the sam e colum n appear. In the
Appendix, we give an explicit exam ple of 39 indepen-—
dent Invariants. To prove that they are independent
flinctions of the 39 physical phases (78) and (I823),
we have calculated the Jacobian
@J;
Det ;
€

(85)

where J; denotes collectively all the invariants (84))
and ; are the physical phases. W e nd that the Ja-
cobian is non{zero. T hus, all the physical phases can
be detem ined from these invariants.

W e note that the traditional Jarlskog invariants
TrH f;H ?}r are not su cient to describe CP vicla-—
tion in supersym m etry. T his is seen m ost easily in the
case of three Hem itian m atrices A ;B ;C (which can
be, for exam ple, YY ®Y,Y Y Yand M '?). This sys-
tem has four physical phases, how ever there are only
three independent Jarlskog{type nvariantsTr A ;B T,
Tr[B;C T and Tr [C;A F. A llhigher order Jarlskog/{
type invariants are proportional to these three. This
m eans that one C P phase cannot be picked up by such
invariants and even ifallof them vanish,CP violation
ispossble. It is thus necessary to include the K {type
Invariants 1.

The necessary and su cient conditions for CP {
conservation in the non{degenerate case am ount to
vanishing of the invariants (84). In that case, the 39
physicalphasesvanish and in som ebasisallthe avour
ob Ects are real. C kearly, there can then beno CP vi-
olation and any higher order CP {odd invariant, eg.
Tr [A ;B ;C ;D ;E ;:],would vanish aswell.

W e w il not discuss here the degenerate case in de-
tail. Su ce it to say that additional conditions such



U (31 U (3)e
YeYey YeyYe
A°SA®Y AYAC
YA + He: |YYA®+ H c:
M 12 M e 2
Mme m.
me (YY) m,

TABLE II: Them inin al set of H emm itian
in the low energy theory.

avour ob gcts

asTn (Tr (ASY ¥ )" )= 0, etc. arise [14]5

B. Low Energy Theory

Below the seesaw scale M , one can integrate out
the right{handed neutrinos as super elds. The re-
sulting theory is the M SSM supplem ented w ith the
din ension-5 operator LAHAZLAHAZ (which is proton hex—
ality and R -parity invariant) generating the Ileft{
handed neutrino m asses. The avour obfcts In the
Jow {energy theory are Y®, m. and the soft term s
Ae,M 12, M2,

In the basis (44), there is no residualrephasing free—
dom and the extra SUSY CP phases are

arg@y) !9
argM i*) ! 3;
argM §°) ! 3;

such that altogether we have 18 physical phases. T he
corresponding basis nvariantsare built out of the H er—
m itian m atrices of Table[I. 18 independent invariants
can be chosen to be of the form (84) with H; being
the m atrices belonging to the sam e colum n of Table
[0, respectively. T heir independence is established by
calculating the Jacobian w ith respect to the physical
CP phases. An exam ple of such invariants is given
in the A ppendix. T he necessary and su clent condi-

tions for C P {conservation in the non{degenerate case
am ount to the vanishing of 18 independent invariants.

5 W e are working under the assum ption that di erentm atrices
are not diagonal in the sam e basis. In the degenerate case,
this is not true and all J { and K {invariants can vanish even
though there is physical CP violation. CP {odd invariants
sensitive to the corresponding CP phases are, for exam ple,
Tr [(A®Y V)"  hwc:]

1. Observables and CP {odd Invariants

Physical observables are (com plicated) functions of
the basis invariants. An exam ple relevant to CP vi-
olation iIn neutrino oscillations can be found in ].
Here, ket us illustrate this connection with a sin ple
exam ple of the neutralino{induced electron EDM (see
@J for recent analyses). In generic SUSY m odels,
it is often expressed in term s of the \m ass insertion"
(£r1 211,

de/ Tn (g h1 i (87)
w ith
MH 1A
e 11,
(fen  ——ait (88)

where we have neglected the {tem contribution. m
is the average slepton m ass and the A {tem s are cal-
culated In the basis where the charged lepton m asses
are diagonaland real.

To understand the connection to CP {odd invari-
ants, let us assum e a sin ple form for the A {term s in
this basis,

0 1
AS, AS, O
R 8 11 12 C
A®= 0 0 0A (89)
0

Calculating theK {invariantsw ith H erm itian m atrices
of Tabke[I, Coimn 2,we nd

Tr [YY®;(YYA® + Hx:)A®YA®

/ sin(arg A5,YS )+ (90)
W e thus conclude that it is this Invariant that controls
the electron EDM .

A few comments are In order. First, note the
appearance of the reparam etrization Invariant phase
arg (Af,Y.5 ). Second, this phase cannot be \picked
up" by any Jarlskog{type Invariant. This is because
the A {matrix is e ectively 2 2 and the CKM {type
phases vanish. Finally, if A, = 0,A® and Y © aredi-
agonal sin ultaneously. In this (special) case, the K {
invariants vanish and CP violation com es from CP {
odd invariants based on anti{H em itian ob fcts like
Tr [ACY )  he:l

In general, even if all of the soft term s are real in
som e basis, that does not guarantee absence of dan-
gerous SU SY contributionsto EDM s. TheSM  avour
structures Y © and m . may contain com plex phases
such that the reparam etrization invariant phases are
non{zero. In other words, K {invariants can be non({
zero even if the soft termm s are real. T his is sin ilar to
the quark sector where the CKM phase can result in
large EDM s in the presence of real soft tem s ].



Iv.. CONCLUSION

W e have constructed a generalization of the Jarl-
skog invariant to supersym m etric m odels w ith right{
handed neutrinos. W e nd thatCP violation in super—
sym m etric m odels is controlled by CP {odd invariants
of the conventional Jarlskog{type (\J {invariants")
as well as those Involving antisym m etric products
of three H emm itian m atrices (\K {Invariants"), which
cannot be expressed in tem s of the form er.

T he presence of right{handed neutrinos brings in
new features, In particular,M a prana{typeCP phases
in supersymm etric as well as soft term s. T he corre—
soonding CP {odd invariants are built out of Hem i-
tian ob fcts involving a product of two or four avour
m atrices as opposed to 2 In the D irac case. T his com —
plicates the analysis, on the one hand, but allow s for
interesting features, on the other hand. For exam ple,
CP violation is possible even if the neutrinos are all
degenerate In m ass.

W e have denti ed 39 physical CP phases and cor—
responding CP {odd invariants which controlCP vio—
lation in the lepton sector of the M SSM w ith right{
handed neutrinos. Below the seesaw scale, the low
energy theory isdescribed by 18 CP phaseswhich can
again be linked to 18 independent CP invariants. T his
allow s us to form ulate basis{independent conditions
for CP conservation in the non{degenerate case.

Physical observables are In general com plicated
functions of CP {odd invariants, which we illustrate
with an example of the elkctron EDM . SUSY CP
viclation and, in particular, dangerous EDM contri-
butions, are possble even if the soft supersym m etry
breaking tem s are real In som e basis.
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APPENDIX A:INDEPENDENT CP{ODD
INVARIANTS

Let us labelm atrices of the rst colum n of Table[d
by X i, second { Y;, and third { Z;, where i refers to
the row num ber. Then the 39 independent nvariants

can be chosen as

TrlX 1;X,T; @1)
TriX ;X2 K 3; (A2)
TrX { X 2 K3; a3)
TriX 17X ;K 3; a4)
TriX1;X2Ky; (A5)
TrlX {;X 2 K4; (Ao6)
TrX 17X 5 Kaj @7)
TriX ;X2 Ks; (A8)
TrX { X o Ks; @9)
TriX 17X 5 Ks; (210)
TriX1;X2Ke; (a11)
TriX { ;X2 Ke; @12)
TriX 17X 5 Ke; (A 13)
TriX ;X2 K75 (A14)
TrlX { ;X2 K7; (A 15)
TrlX 1;X 5 Kot (A 16)
TrlY,;Y3o; A17)
TrlY;Ys3]2; (A 18)
TrlY: ;Y7 Yo ; (*19)
TrlY1;Y3Ng; (2 20)
Tl ;Y3 Ns; (a21)
TrlY1;YS Ny: (222)
TrlZ.1;23V2; (A23)
TriZ ;23 %25 (B 24)
TrlZ1;25 Bo; (225)
TrlZ1;23V4; (A 26)
TrlZ{;Z3F4; @27)
TrlZ1;25 Ba; (2 28)
TrlZ,1;23Vs; (A29)
TriZ?;Z3%s; (230)
TrlZ1;25Bs; (A 31)
Tr[Z21;23Vs; (A32)
TriZ{ ;%3 %e; (& 33)
Trl21;23%7; (A 34)
TrlZ7;2:87; (A 35)
TrlZ1;25%q; (A 36)
Tr[Z21;Z23Vs; (A37)
TriZ{ ;%3 %s; (2 38)
TrZ,;2% Fe: (A 39)

Sin ilarly, labelling entries of the rst colum n of Ta—
blke[@by A ; and those of the second colum n by B;,we



have the ollow Ing 18 independent invariants:

TrB1;B3B2; (A52)
TrB{;B3B2; (A53)
Tr[B1;B3B2; (2 54)
TrB1;B3By4; (A 55)
TrBZ;B3By; (A56)
Tr[B1;B5By: @57)

Tra1 ;A6 T ; (2 40)
TrAs;A1 Re; (n41)
TrAZ;A; RBe; (242)
TrAs;A1Ro; (A43)
TrAZ;A1 RBo; (A 44)
TrAs;AT R (A 45)
TrAs;A1 R3; (A 46)
TrA ;A1 B3 @47)
TrAs;ATRs; (2 48)
TrAs;A1Ryg; (A 49)
TrRZ;A1 By; (& 50)
TrAs;ATRa; (A 51)
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