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I. INTRODUCTION

CP violation in the quark sector of the standard model
(SM) is controlled by the Jarlskog invariant [1],

 Im �det�YuYuy; YdYdy��; (1)

which can also be written in the form [2,3]

 Im �Tr�YuYuy; YdYdy�3�; (2)

where Yu;d are the quark Yukawa matrices. This is a
CP-odd quantity, invariant under quark basis transforma-
tions. CP violation is possible if and only if the Jarlskog
invariant is nonzero (assuming ��QCD � 0). This is a simple
and powerful result.

In the lepton sector, the situation is more complicated.
Assuming that the smallness of the neutrino masses is
explained by the seesaw mechanism [4–7], the effective
neutrino mass matrix is of the Majorana type. It has differ-
ent basis transformation properties compared to the Dirac
case. This results in 3 independent CP phases and more
complicated CP-odd invariants [8]. A recent discussion of
this subject is given in [9]. Applications of the invariant
technique to physics beyond the SM can be found in [10–
13].

A generalization of the Jarlskog invariant to supersym-
metric models was constructed in [14]. It was found that
CP violation is controlled in this case by a different type of
invariants containing an antisymmetric product of 3 flavor
matrices. Applications of this approach were studied in
[15]. In this work, we extend these results to supersymme-
try (SUSY) models with right-handed neutrinos. As seen in
the SM case, this brings in flavor objects with ‘‘unusual’’
transformation properties and leads to distinct physics.

In what follows, we first study CP phases and invariants
in the SM with 3 right-handed neutrinos. We differ from
previous work in implementing the concise techniques of
[14]. Within this formalism, we then construct the SUSY

generalization, the minimal supersymmetric standard
model (MSSM) with 3 right-chiral neutrino superfields,
and give an example of possible applications.

II. SM WITH THREE RIGHT-HANDED
NEUTRINOS

Consider an extension of the SM with 3 right-handed
neutrinos. The relevant terms in the leptonic Lagrangian
density are

 �L � Yeij �liejH � Y�ij �li�j
~H � 1

2Mij ��ci �j � H:c:;

where l, e, �, and H denote the left-handed charged lepton
doublet, the right-handed charged lepton singlet, the right-
handed neutrino singlet, and the Higgs doublet, respec-
tively. ~H is given by i�2H

�, where �2 is the second Pauli
matrix. Yeij is the charged lepton Yukawa matrix, Y�ij is the
Yukawa matrix for the neutrinos, and Mij is the complex
symmetric Majorana mass matrix for the right-handed
neutrinos. i, j are the generation indices and the superscript
c denotes charge conjugation.

The kinetic terms are invariant under unitary basis trans-
formations

 U�3�l �U�3�e �U�3��; (3)

namely,

 l! Uyl l; (4)

 e! Uye e; (5)

 �! Uy��: (6)

This means that a theory with the flavor matrices trans-
formed according to

 Ye ! Uyl Y
eUe; (7)

 Y� ! Uyl Y
�U�; (8)

 M ! UT
�MU� (9)

represents the same physical situation and is equivalent to
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the original one. With an appropriate choice of the phase
convention, the CP operation amounts to complex conju-
gation of these matrices (see e.g. [16]),

 M !M�; (10)

where M � fYe; Y�;Mg. If this operation can be ‘‘un-
done’’ by a symmetry transformation, no CP violation is
possible.

Physical CP violation is controlled by CP-violating
basis-independent invariants à la Jarlskog. This allows
one to formulate necessary and sufficient conditions for
CP conservation in a basis-independent way. On the other
hand, it is also instructive to study CP violating phases in a
specific basis, taking advantage of symmetries of the sys-
tem. In what follows, we will pursue both of these
approaches.

In seesaw models, the scale of the Majorana mass matrix
is taken to be very large, around the GUT scale. In this
case, the low-energy theory is obtained by integrating out
the right-handed neutrinos. This produces a dimension-5
operator involving the left-handed leptons and an effective
coupling constant

 meff � Y�M	1Y�
T
; (11)

which results in neutrino masses upon electroweak sym-
metry breaking. The apparent flavor symmetry of this low-
energy theory is

 U�3�l �U�3�e (12)

with the transformation law

 Ye ! Uyl Y
eUe; meff ! Uyl meffU

�
l : (13)

The number of independent CP phases can be obtained
by a straightforward parameter counting. In the high-
energy theory, Ye, Y�, and M contain 9� 9� 6 � 24
phases. A unitary 3� 3 matrix representing basis trans-
formations has 6 phases, which means that 18 phases can
be removed.1 Thus we end up with 6 physical phases at
high energies. In the low-energy theory, Ye and meff con-
tain 9� 6 � 15 phases. 12 of them can be removed by
unitary transformations, while 3 are physical. Clearly, the
other 3 physical phases of the high-energy theory are
associated with the heavy neutrinos and cannot be ob-
served at low energies. However, these can be relevant to
CP violation at high energies, e.g. leptogenesis [17].

In what follows, we study in more detail these CP
phases and the corresponding invariants.

A. High-energy theory

1. CP phases

Let us first identify the physical CP phases in a specific
basis assuming a general form of Ye, Y�, and M. The
unitary transformations (7)–(9) allow us to bring the flavor
matrices into the form

 Y� � real diagonal; Ye � Hermitian;

M � symmetric;
(14)

where the last equation is satisfied in any basis. (One can
also choose a basis in which both Y� and M are diagonal,
while Ye is arbitrary.) This basis is defined only up to a
diagonal phase transformation

 

~U l � ~Ue � ~U� � diag�exp�i�1�; exp�i�2�; exp�i�3��:

(15)

Under this residual symmetry, Ye and M transform as

 Yeij ! Yeij exp�i��j 	 �i��; (16)

 Mij ! Mij exp�i��i � �j��: (17)

The physical CP phases must be invariant under these
transformations. Since Ye and M have 9 phases, only 6
of them are physical.

The simplest invariant CP phase is a Cabibbo-
Kobayashi-Maskawa quark-mixing matrix (CKM) type
phase which is the only one surviving the limit M ! 0. It
is given by

 �0 � arg�Ye12Y
e
23Y

e�
13�: (18)

The other 5 phases involve M. Three of them can be built
entirely out of M,

 �1 � arg�M11M22M�212�; (19)

 �2 � arg�M22M33M�223�; (20)

 �3 � arg�M11M33M
�2
13�; (21)

while the remaining 2 involve Ye as well,

 �4 � arg�Ye13M13M
�
33�; (22)

 �5 � arg�Ye23M22M�23�: (23)

It should be clear by considering the independent matrix
entries, that these phases are independent.

The necessary and sufficient conditions for CP conser-
vation are given by

 �i � 0 (24)

for i � 0; ::; 5, and the phases are understood mod �. If
these conditions are satisfied, the flavor objects in Eq. (14)
can be made real by choosing appropriate �i. Then no CP
violation is possible. Conversely, CP conservation implies

1If the Majorana mass matrix were absent, only 17 phases
could be removed since a phase transformation proportional to
the unit matrix leaves Ye and Y� intact, which corresponds to a
conserved lepton number.
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that the flavor matrices are real in some basis. Then, the CP
conserving Ye, Y�, and M are generated by the phase
redefinitions in (15), leaving �i � 0 intact.

2. CP violating invariants

Conditions for CP conservation also can be formulated
in a basis-independent way. To do that, one first forms
matrices which are manifestly invariant under 2 of the
unitary symmetries, then buildsCP-odd traces out of them.

Consider the following Hermitian matrices

 A 
 Y�yY�; (25)

 B 
 Y�yYeYeyY�; (26)

 C 
 M�M; (27)

 D 
 M��Y�yY���M: (28)

In general, they are not diagonalizable simultaneously and
transform as

 M i ! Uy�MiU�; (29)

where Mi � fA;B;C;Dg. The simplest CP-odd invariants
that can be formed out of this set are

 Tr �Mp
i ;M

q
j �
n; Tr�Mp

i ;M
q
j ;M

r
k�
m; (30)

where p, q, r are integer and n, m are odd; �. . .� denotes
complete antisymmetrization of the matrix product. The
first class (‘‘J-type’’) of invariants is the familiar Jarlskog
type, while the second class (‘‘K-type’’) appears, for ex-
ample, in supersymmetric models [14]; see also Eqs. (84)
below. These objects areCP-odd since theCP operation on
the fields is equivalent to complex conjugation of the
matrices, which is in turn equivalent to a transposition
for Hermitian matrices. In a specific basis [for instance,
(14)], these objects are functions of the 6 physical CP
phases. In the nondegenerate case which we are consider-
ing, the vanishing of 6 independent invariants implies the
vanishing of the physical CP phases. This means in turn
that all possible CP violating invariants are zero and CP is
conserved.

An admissible choice of independent invariants is2

 Tr �A;B�3; (31)

 Tr �A;C�3; (32)

 Tr �A;D�3; (33)

 Tr ��A;C�B�; (34)

 Tr ��A;D�B�; (35)

 Tr ��A;D�C�; (36)

where we have used Tr�a; b; c� / Tr�a; b�c. The first in-
variant is proportional to the sine of the CKM-type phase
�0, while the others depend in a complicated way on all of
the phases (18)–(23). It is a nontrivial task to determine
whether given invariants are mutually independent. To do
that, we calculate the Jacobian,

 det
�
@J i

@�j

�
; (37)

where J i are the invariants above. A nonzero Jacobian
indicates that the objects are independent. We confirm that
this is indeed the case.

It is instructive to consider the above invariants in a
specific basis, for example, where matrix A is diagonal,

 A � diagonal: (38)

This basis is defined up to a rephasing

 

~U � � diag�exp�i�1�; exp�i�2�; exp�i�3��: (39)

The physical CP phases must be invariant under this
residual symmetry and are of the form

 arg�B12B23B
�
13�; arg�C12C23C

�
13�; . . . (40)

 arg�B12C
�
12�; arg�B23C

�
23�; . . . (41)

ForN independent Hermitian objects one can form 3N 	 5
independent invariant phases and all of the invariants de-
pend on these 3N 	 5 variables. This can be understood by
parameter counting: N Hermitian matrices contain 3N
phases and unitary basis transformations U� absorb 6	
1 � 5 of them since the overall phase transformation
leaves all the matrices intact. The explicit dependence of
the invariants on these phases has been studied in [14].

In our case, there appear to be 7 phases according to this
argument. However, not all of our Hermitian matrices are
completely independent as they are built out of 3 flavor
matrices. One of the phases is a function of the others and
we have 6 truly independent CP phases as explained in the
previous subsection. These are rather complicated func-
tions of the expressions (40) and (41), except

 �0 / arg�B12B23B�13�: (42)

Note that if we chose only 3 Hermitian matrices A, B, C to
work with, we could only extract 4 CP phases regardless of
how many invariants we would write. So, some informa-
tion is lost when constructing Hermitian objects. It is thus
necessary to include a further matrix D, which brings in
additional input. To show that this is sufficient, one must
calculate the Jacobian (37).

The necessary and sufficient conditions for CP conser-
vation in the nondegenerate case are2We drop the Im�. . .� for each invariant in the following.
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 J i � 0; (43)

where J i are the invariants (31)–(36). This is equivalent to
Eq. (24).

B. Low-energy theory

1. CP phases

At low energies, we have 2 flavor matrices Ye and meff .
Using the unitary freedom (13), we bring them into the
form

 meff � real, positive, and diagonal,

Ye � Hermitian:
(44)

In the nondegenerate case, there is no residual freedom in
this basis due to the Majorana character of meff . The 3
physical phases are therefore

 �eff
1 � arg�Ye12�; (45)

 �eff
2 � arg�Ye23�; (46)

 �eff
3 � arg�Ye13�: (47)

Alternatively, one can choose a basis in which Ye is
diagonal,

 Ye � real, positive, and diagonal, meff � symmetric;

(48)

where the second equation is satisfied in any basis. The
residual freedom is

 

~U l � ~Ue � diag�exp�i�1�; exp�i�2�; exp�i�3��; (49)

such that the 3 physical phases are of the form

 arg��meff�ii�meff�jj�meff�
�2
ij � (50)

for i � j.
It is conventional to separate these phases into so-called

Majorana and Dirac ones. This can be done by expressing
meff as

 meff � U�real diagonal�UT; (51)

where U is unitary. Five of its phases can be factored out
[18]
 

U � diag�exp�i�1�; exp�i�2�; exp�i�3��

�U0diag�1; exp�i�1�; exp�i�2��; (52)

withU0 containing a single phase which cannot be factored
out in this form. The phases �1	3 are unphysical and can
be removed by the residual symmetry transformations
meff ! ~Uyl meff

~U�l . The ‘‘Majorana’’ phases �1;2 as well
as the ‘‘Dirac’’ phase � in U0 are unaffected by this phase
redefinition and are physical. They enter the PMNS matrix

and thus contribute to the W-boson-lepton-lepton vertex
[19–21].

The necessary and sufficient conditions for CP conser-
vation in the nondegenerate case are given by

 �eff
i � 0 (53)

for i � 1, 2, 3 which is equivalent to �1 � �2 � � � 0
(the phases are understood mod �).

2. CP violating invariants

As in the previous subsection, we first construct
Hermitian matrices transforming under one of the unitary
symmetries only. At low energies, Ul is the relevant sym-
metry and we choose

 A � YeYey; B � meffm
�
eff ;

C � meff�Y
eYey��m�eff :

(54)

They all transform as

 M i ! Uyl MiUl; (55)

where Mi � fA;B; Cg. We first note that generally A,
B, C are not diagonalizable in the same basis. Second, they
contain 3� 3	 5 � 4 invariant phases, 3 of which are
independent and related to �eff

i . Again, using 2 Hermitian
matrices, e.g. A and B, would only allow us to extract
information about a single phase, so it is necessary to
consider C as well.

The CP-odd invariants can be chosen as

 Tr �A;B�3; (56)

 Tr �A; C�3; (57)

 Tr ��A;B�C�: (58)

In the nondegenerate case, they are all independent and can
be used to extract �eff

i . This is established by calculating
the Jacobian: det� @J i

@�eff
j
�. We thus have 3 necessary and

sufficient conditions for CP conservation or violation.
As expected, the Jarlskog-type invariant (56) is indepen-

dent of the Majorana phases and is proportional to the
Dirac phase,

 Tr �A;B�3 / sin�: (59)

It vanishes in the limit of degenerate eigenvalues or van-
ishing mixing angles. The other invariants are complicated
functions of the Dirac and Majorana phases.

The necessary and sufficient conditions for CP conser-
vation in the nondegenerate case are

 J i � 0; (60)

where J i (i � 1, 2, 3) denote the invariants (56)–(58).
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C. Degenerate case

So far we have assumed that there are no degenerate
eigenvalues in any of the matrices and that the mixing
angles are nonzero. It is, however, instructive to consider
the special case, where all the low-energy neutrino mass
eigenvalues are equal, i.e. there exists a basis such that

 meff � m� 1; (61)

where 1 is a 3� 3 unit matrix and m is real. In that case,
the special basis (44) is defined up to a real orthogonal
transformation

 

~U l � ~Ue � O; OOT � 1; (62)

which retains the Hermiticity of Ye. Because of this resid-
ual symmetry, the �eff

i are not all independent and can be
parametrized by a single phase [22].

This becomes more transparent in the other special basis
(48), where Ye is real and diagonal. This basis must be
unitarily related to the basis (61) and thus meff is given by

 meff � mUyl U
�
l � symmetric unitary: (63)

A symmetric unitary matrix can be parametrized by 4
phases (and 2 angles) [23]. Indeed, 3 of them can be
factored out as [18]

 diag �exp�i�1�; exp�i�2�; exp�i�3��U
0

� diag�exp�i�1�; exp�i�2�; exp�i�3��; (64)

while the symmetric unitary matrix U0 contains a single
phase. The explicit form of U0 can be found in [22]. The
phases �1	3 are removed by the residual phase symmetry
(49) in this basis, leaving a single physical phase.

Thus, in this degenerate case there is one physical
Majorana phase. This phase has to be Majorana since the
Jarlskog invariant Tr�A;B�3 vanishes. (B is proportional
to the unit matrix in some basis.) We observe that the only
nonvanishing invariant is (57). In the basis where meff is
diagonal, it is given by (up to a factor) [22]

 Tr �YeYey; �YeYey���3 (65)

and is invariant under the residual orthogonal symmetry
(62). It is nonzero in general since A and A� are not
diagonal in the same basis.

This analysis can be carried over to the ‘‘high-energy
theory’’ case in a straightforward albeit tedious way.

III. MSSM WITH THREE RIGHT-HANDED
NEUTRINOS

The leptonic part of the most general proton-hexality
[24] (or R-parity) conserving renormalizable superpoten-
tial is given by

 W leptonic � 	Ĥ 2Y
�
ijL̂iN̂j � Ĥ 1Y

e
ijL̂iÊj �

1
2MijN̂iN̂j:

(66)

Here L̂, Ê, and N̂ are the left-chiral superfields describing
the lepton doublet, a charge conjugate of the right-handed
electron and a charge conjugate of the right-handed neu-

trino, respectively. Ĥ 1 and Ĥ 2 are the Higgs doublet
superfields. The relevant soft SUSY breaking terms are
 

�Vsoft � �	H 2A
�
ij

~li~n
�
j �H 1A

e
ij

~li~e
�
j �

1
2Bij~ni~nj � H:c:�

�Ml2
ij

~li~l
�
j �M

�2
ij ~ni~n�j �M

e2
ij ~ei~e�j ; (67)

where ~l, ~e�, and ~n� are the scalar components of L̂, Ê, and
N̂, respectively. H 1 and H 2 denote the Higgs doublets.

As in the SM, the flavor symmetry is

 U�3�l �U�3�e �U�3��; (68)

which now applies to superfields.3 The transformation law
of the flavor structures is

 Y� ! Uyl Y
�U�; (69)

 Ye ! Uyl Y
eUe; (70)

 A� ! Uyl A
�U�; (71)

 Ae ! Uyl A
eUe; (72)

 Ml2 ! Uyl M
l2Ul; (73)

 M�2 ! Uy�M�2U�; (74)

 Me2 ! UyeMe2Ue; (75)

 M ! UT
�MU�; (76)

 B! UT
�BU�: (77)

These objects altogether contain 4� 9� 3� 3� 2�
6 � 57 complex phases. The symmetry transformations
eliminate 3� 6 of them such that we end up with 39
physical CP phases.4

In what follows, we classify the corresponding CP
phases and CP-odd invariants.

A. SUSY CP phases and CP-odd invariants

In the supersymmetric basis corresponding to (14)
where Y� is real and diagonal, and Ye is Hermitian, the
additional invariant CP phases due to the SUSY flavor
structures are given by

3Fermions and sfermions are transformed in the same fashion
in order to avoid flavor mixing at the supergauge vertices.

4If the Majorana matrices were absent, we would get 45	
17 � 28 physical CP phases.
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 arg�YeijA
fe;�g�
ij � ! 18; arg�YeijM

fe;�;lg2�
ij � ! 9;

arg�MijB
�
ij� ! 6:

(78)

These are invariant under the transformations (15).
In the standard model, as a next step, we constructed

simple Hermitian objects which all transformed under only
one of the symmetries (3). In the MSSM, this approach
leads to very cumbersome expressions. We thus construct 3
separate groups of Hermitian objects, which each trans-
form under only one unitary symmetry, respectively. These
are presented in Table I. We find that this set is sufficient to
determine all physical phases of the system in the non-
degenerate case. Before we write down the CP-odd invar-
iants, let us study what CP phases these Hermitian
matrices are sensitive to.

Consider, for example, column 3. In the basis where
Y�yY� is diagonal, the CP phases invariant under the
residual symmetry (15) are of the type

 arg��Mi�12�Mi�23�Mi�
�
13�; (79)

 arg��Mi�12�Mi�1�
�
12�; ::; (80)

where Mi are the Hermitian matrices of the third column
of Table I. Given N > 1 independent Hermitian matrices,
one can construct 3N 	 5 independent invariant phases.
These can be chosen as one CKM-type phase (79) and the
rest of the form (80). In this fashion, we obtain 19 invariant
phases from column 3. However, as we have seen in the SM
case, one has to be cautious in determining the correct
number of independent phases, and not too many, since
there are certain relations among these matrices.

In order to make the choice of Hermitian objects in
Table I plausible and to better understand the counting of
independent phases, consider first the hypothetical special
case, when the only nonzero quantities are Ye, Y�, and
M�2. In the basis (14) with M � 0, using the above count-
ing arguments, we then obtain only 4 physical independent
phases. These cannot be recovered from the Hermitian
quantities in the 3 columns of Table I. It is only possible
to get one phase of the form (79) in column 1, and another
phase of the same type from column 3. In order to construct
the 4 phases, it is thus necessary to include a more com-

plicated Hermitian object, Y�yYeYeyY�, in column 3, as we
did in Sec. II. This brings in 3 extra phases, 2 of which are
independent. This shows that, in the special case, extra
Hermitian objects may have to be included.

Next let us consider the more involved case, where apart
from Ye, Y�, andM�2, also A� � 0. Again, by our counting
argument, we then have 13 physical independent phases
from the remaining Hermitian objects in Table I in the
supersymmetric basis corresponding to (14). In order to
construct the extra phases, we can now write down addi-
tional Hermitian matrices A�A�y and A�Y�y � H:c: in the
first column, as well as A�yA� and A�yY� � H:c: in the
third column. These extra objects restore the deficit en-
countered above, i.e. we can now recover 13 physical
phases from the Hermitian objects. The naı̈ve counting
gives 7 phases for column 1 and 7 phases for column 3,
which is too many. However, of the matrices

 A�A�y; A�Y�y � H:c:; A�yA�; A�yY� � H:c:

only 3 are independent. One of these matrices, say
A�yY� � H:c:, can be reconstructed from the others [14].
In other words, the 9 phases of A� can be derived from the 9
phases of the 3 Hermitian matrices. This means that the
CKM-type phase associated with A�yY� � H:c:, namely,

 arg��A�yY� � H:c:�12�A
�yY� � H:c:�23�A

�yY� � H:c:��13�

(81)

is not an independent phase and should not be counted.
Although it may seem that A�yY� � H:c: should be ex-
cluded altogether, this is not correct since it allows us to
restore the (otherwise missing) phases of M�2 through the
rephasing invariant combinations

 arg��M�2�12�A
�yY� � H:c:��12�; etc: (82)

The other 3 phases can be chosen as

 arg��A�yA��12�A�yY� � H:c:��12�; etc: (83)

We thus end up with 6 phases from the Hermitian matrices
of column 3 and 7 phases from those of column 1. Similar
considerations apply when adding Ae to column 2, where
the CKM-type phase for AeyYe � H:c: is not independent.

In the Dirac case, where only M � B � 0 in (66) and
(67), i.e. also Ml, M�, Me � 0, these are the only compli-
cations and we get 28 phases from the Hermitian objects of
Table I. Adding a nontrivial Majorana mass M results in 5
further physical phases. This is because, in the basis (14),
M adds 6 phases while its overall phase can be eliminated
by the residual symmetry transformation, which leaves Ye

and Y� invariant. To recover these 5 phases from the
Hermitian objects, we must add 2 entries in column 3,
M�M and M��Y�yY���M. This adds 6 invariant phases of
the type (80), 5 of which are independent. Finally, inclu-
sion of B brings in 6 more physical phases of the type (80)
in the basis (14), all of which are independent.
Correspondingly, we add B��Y�yY���B and B�M� H:c:

TABLE I. The minimal set of Hermitian flavor objects.

U�3�l U�3�e U�3��

YeYey YeyYe Y�yY�

Y�Y�y AeyAe A�yA�

AeAey YeyAe � H:c: A�yY� � H:c:
A�A�y Me2 M�2

YeAey � H:c: M�M
A�Y�y � H:c: M��Y�yY���M
Ml2 B��Y�yY���B

B�M� H:c:
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to column 3, which are sensitive to these phases. Note that
the object of the form B�M� H:c: is necessary as it
depends on the physical relative phase between B and M.
In the end, the first, second, and third column provide 16, 6,
and 17 independent phases, respectively.

The above choice of the Hermitian objects is not unique
and there are many other possibilities. In particular, one
may replace A�yA� in the third column with Y�yYeYeyY�.
In that case, the limit “soft terms”! 0 reproduces the SM
Hermitian matrices of Eqs. (25)–(28). On the other hand,
our choice is similar to the quark sector Hermitian objects
of Ref. [14]. These choices are equivalent in the nonde-
generate case.

The CP-odd invariants are constructed out of the
Hermitian objects transforming under one of the unitary
symmetries in Eq. (68), respectively. These can be chosen
as one Jarlskog-type invariant and the rest K invariants.
The former is sensitive to the cyclic product of phases of
each matrix while the latter are sensitive to the relative
phases between Hermitian matrices [14]. Thus we have 39
independent invariants in the nondegenerate case,

 J�H1; H2�; K�Hp
i ;H

q
j ; H

r
k�; (84)

where J�A;B� 
 Tr�A;B�3, K�A;B;C� 
 Tr�A;B;C�, and
p, q, r are integers. In each invariant, only matrices Ha
belonging to the same column appear. In the Appendix, we
give an explicit example of 39 independent invariants. To
prove that they are independent functions of the 39 physi-
cal phases (78) and (18)–(23), we have calculated the
Jacobian

 det
�
@Ji
@�j

�
; (85)

where Ji denotes collectively all the invariants (84) and �i
are the physical phases. We find that the Jacobian is non-
zero. Thus, all the physical phases can be determined from
these invariants.

We note that the traditional Jarlskog invariants
Tr�Hp

i ; H
q
j �
r are not sufficient to describe CP violation in

supersymmetry. This is seen most easily in the case of 3
Hermitian matrices A, B, C (which can be, for example,
YeYey, Y�Y�y, and Ml2). This system has 4 physical
phases; however, there are only 3 independent Jarlskog-
type invariants Tr�A;B�3, Tr�B;C�3, and Tr�C;A�3. All
higher order Jarlskog-type invariants are proportional to
these 3. This means that one CP phase cannot be picked up
by such invariants and even if all of them vanish, CP
violation is possible. It is thus necessary to include the
K-type invariants [14].

The necessary and sufficient conditions for CP conser-
vation in the nondegenerate case amount to vanishing of
the invariants (84). In that case, the 39 physical phases
vanish and in some basis all the flavor objects are real.
Clearly, there can then be no CP violation and any higher

order CP-odd invariant, e.g. Tr�A;B;C;D; E; ::�, would
vanish as well.

We will not discuss here the degenerate case in detail.
Suffice it to say that additional conditions such as
Im�Tr�AeYey�n� � 0, etc. arise [14].5

B. Low-energy theory

Below the seesaw scale M, one can integrate out the
right-handed neutrinos as superfields. The resulting theory
is the MSSM supplemented with the dimension-5 operator

L̂Ĥ 2L̂Ĥ 2 (which is proton-hexality and R-parity invari-
ant) generating the left-handed neutrino masses. The flavor
objects in the low-energy theory are Ye, meff and the soft
terms Ae, Ml2, Me2.

In the basis (44), there is no residual rephasing freedom
and the extra SUSY CP phases are

 arg�Aeij� ! 9; arg�Ml2
ij � ! 3; arg�Me2

ij � ! 3;

(86)

such that altogether we have 18 physical phases. The
corresponding basis invariants are built out of the
Hermitian matrices of Table II. Eighteen independent in-
variants can be chosen to be of the form (84) withHi being
the matrices belonging to the same column of Table II,
respectively. Their independence is established by calcu-
lating the Jacobian with respect to the physical CP phases.
An example of such invariants is given in the Appendix.
The necessary and sufficient conditions for CP conserva-
tion in the nondegenerate case amount to the vanishing of
18 independent invariants.

1. Observables and CP-odd invariants

Physical observables are (complicated) functions of the
basis invariants. An example relevant to CP violation in
neutrino oscillations can be found in [25]. Here, let us
illustrate this connection with a simple example of the

TABLE II. The minimal set of Hermitian flavor objects in the
low-energy theory.

U�3�l U�3�e

YeYey YeyYe

AeAey AeyAe

YeAey � H:c: YeyAe � H:c:
Ml2 Me2

meffm
�
eff

meff�Y
eYey��m�eff

5We are working under the assumption that different matrices
are not diagonal in the same basis. In the degenerate case, this is
not true and all J invariants and K invariants can vanish even
though there is physical CP violation. CP-odd invariants sensi-
tive to the corresponding CP phases are, for example,
Tr��AeYey�n 	 H:c:�.

SUPERSYMMETRIC JARLSKOG INVARIANTS: THE . . . PHYSICAL REVIEW D 76, 015006 (2007)

015006-7



neutralino-induced electron electric dipole moment
(EDM) (see [26] for recent analyses). In generic SUSY
models, it is often expressed in terms of the ‘‘mass inser-
tion’’ ��eLR�11 [27],

 �de / Im��eLR�11; (87)

with

 ��eLR�11 �
hH 1iA

e
11

~m2 ; (88)

where we have neglected the �-term contribution. ~m is the
average slepton mass and the A-terms are calculated in the
basis where the charged lepton masses are diagonal and
real.

To understand the connection to CP-odd invariants, let
us assume a simple form for the A-terms in this basis,

 Ae �
Ae11 Ae12 0
0 0 0
0 0 0

0
@

1
A: (89)

Calculating the K invariants with Hermitian matrices of
Table II, column 2, we find
 

Tr��YeyYe;�YeyAe�H:c:��AeyAe�/ sin�arg�Ae11Y
e�
11��: (90)

We thus conclude that it is this invariant that controls the
electron EDM.

A few comments are in order. First, note the appearance
of the reparametrization invariant phase arg�Ae11Y

e�
11�.

Second, this phase cannot be ‘‘picked up’’ by any
Jarlskog-type invariant. This is because the A-matrix is
effectively 2� 2 and the CKM-type phases vanish.
Finally, if Ae12 � 0, Ae and Ye are diagonal simultaneously.
In this (special) case, the K invariants vanish and CP
violation comes from CP-odd invariants based on anti-
Hermitian objects like Tr��AeYey�n 	 H:c:�.

In general, even if all of the soft terms are real in some
basis, that does not guarantee absence of dangerous SUSY
contributions to EDMs. The SM flavor structures Ye and
meff may contain complex phases such that the reparamet-
rization invariant phases are nonzero. In other words, K
invariants can be nonzero even if the soft terms are real.
This is similar to the quark sector where the CKM phase
can result in large EDMs in the presence of real soft terms
[28].

IV. CONCLUSION

We have constructed a generalization of the Jarlskog
invariant to supersymmetric models with right-handed
neutrinos. We find that CP violation in supersymmetric
models is controlled by CP-odd invariants of the conven-
tional Jarlskog-type (J invariants) as well as those involv-
ing antisymmetric products of 3 Hermitian matrices (K
invariants), which cannot be expressed in terms of the
former.

The presence of right-handed neutrinos brings in new
features, in particular, Majorana-type CP phases in super-
symmetric as well as soft terms. The corresponding
CP-odd invariants are built out of Hermitian objects in-
volving a product of 2 or 4 flavor matrices as opposed to 2
in the Dirac case. This complicates the analysis, on the one
hand, but allows for interesting features, on the other hand.
For example, CP violation is possible even if the neutrinos
are all degenerate in mass.

We have identified 39 physical CP phases and corre-
sponding CP-odd invariants which control CP violation in
the lepton sector of the MSSM with right-handed neutri-
nos. Below the seesaw scale, the low-energy theory is
described by 18 CP phases which can again be linked to
18 independent CP invariants. This allows us to formulate
basis-independent conditions for CP conservation in the
nondegenerate case.

Physical observables are in general complicated func-
tions of CP-odd invariants, which we illustrate with an
example of the electron EDM. SUSY CP violation and, in
particular, dangerous EDM contributions, are possible
even if the soft supersymmetry breaking terms are real in
some basis.
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APPENDIX: INDEPENDENTCP-ODD INVARIANTS

Let us label matrices of the first column of Table I by Xi;
second column, Yi; and third column, Zi, where i refers to
the row number. Then the 39 independent invariants can be
chosen as

 Tr �X1; X2�
3; (A1)

 Tr �X1; X2�X3; (A2)

 Tr �X2
1 ; X2�X3; (A3)

 Tr �X1; X
2
2�X3; (A4)
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 Tr �X1; X2�X4; (A5)

 Tr �X2
1 ; X2�X4; (A6)

 Tr �X1; X
2
2�X4; (A7)

 Tr �X1; X2�X5; (A8)

 Tr �X2
1 ; X2�X5; (A9)

 Tr �X1; X2
2�X5; (A10)

 Tr �X1; X2�X6; (A11)

 Tr �X2
1 ; X2�X6; (A12)

 Tr �X1; X
2
2�X6; (A13)

 Tr �X1; X2�X7; (A14)

 Tr �X2
1 ; X2�X7; (A15)

 Tr �X1; X
2
2�X7: (A16)

 Tr �Y1; Y3�Y2; (A17)

 Tr �Y2
1 ; Y3�Y2; (A18)

 Tr �Y1; Y2
3�Y2; (A19)

 Tr �Y1; Y3�Y4; (A20)

 Tr �Y2
1 ; Y3�Y4; (A21)

 Tr �Y1; Y
2
3�Y4: (A22)

 Tr �Z1; Z3�Z2; (A23)

 Tr �Z2
1; Z3�Z2; (A24)

 Tr �Z1; Z2
3�Z2; (A25)

 Tr �Z1; Z3�Z4; (A26)

 Tr �Z2
1; Z3�Z4; (A27)

 Tr �Z1; Z2
3�Z4; (A28)

 Tr �Z1; Z3�Z5; (A29)

 Tr �Z2
1; Z3�Z5; (A30)

 Tr �Z1; Z
2
3�Z5; (A31)

 Tr �Z1; Z3�Z6; (A32)

 Tr �Z2
1; Z3�Z6; (A33)

 Tr �Z1; Z3�Z7; (A34)

 Tr �Z2
1; Z3�Z7; (A35)

 Tr �Z1; Z2
3�Z7; (A36)

 Tr �Z1; Z3�Z8; (A37)

 Tr �Z2
1; Z3�Z8; (A38)

 Tr �Z1; Z
2
3�Z8: (A39)

Similarly, labelling entries of the first column of Table II
by Ai and those of the second column by Bi, we have the
following 18 independent invariants:

 Tr �A1; A6�
3; (A40)

 Tr �A5; A1�A6; (A41)

 Tr �A2
5; A1�A6; (A42)

 Tr �A5; A1�A2; (A43)

 Tr �A2
5; A1�A2; (A44)

 Tr �A5; A
2
1�A2; (A45)

 Tr �A5; A1�A3; (A46)

 Tr �A2
5; A1�A3; (A47)

 Tr �A5; A2
1�A3; (A48)

 Tr �A5; A1�A4; (A49)

 Tr �A2
5; A1�A4; (A50)

 Tr �A5; A2
1�A4; (A51)

 Tr �B1; B3�B2; (A52)

 Tr �B2
1; B3�B2; (A53)
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 Tr �B1; B
2
3�B2; (A54)

 Tr �B1; B3�B4; (A55)

 Tr �B2
1; B3�B4; (A56)

 Tr �B1; B
2
3�B4: (A57)
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