
ar
X

iv
:a

st
ro

-p
h/

07
03

15
4v

2 
 2

7 
M

ar
 2

00
7

Cosmic-ray positron fraction measurement
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Abstract

A measurement of the cosmic ray positron fractione+/(e+ + e−) in the energy range
of 1–30 GeV is presented. The measurement is based on data taken by the AMS-01 ex-
periment during its 10 day Space Shuttle flight in June 1998. Aproton background sup-
pression on the order of106 is reached by identifying converted bremsstrahlung photons
emitted from positrons.
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1 Introduction

Over the past decades cosmic ray physics has joined astronomy as a means to gather information about
the surrounding universe. Of the few particles that are stable and thus able to cross vast interstellar
distances, electrons and positrons are of particular interest.

Electrons are believed to be accelerated in shock waves following supernova explosions. Their
spectrum is subsequently altered by inverse Compton scattering off cosmic microwave background
photons, synchrotron radiation due to the galactic magnetic field, bremsstrahlung processes in the
interstellar medium and modulation in the solar magnetosphere. Thus they serve as an important
probe of cosmic ray propagation models. On the other hand, positrons are produced secondarily in
the decay cascades ofπ+, which are created in hadronic interactions of cosmic ray protons with the
interstellar medium. This yields ane+/e− ratio of roughly 10 %.

In addition to these classical sources, positrons may also originate from more exotic ones. Among
the most important unsolved questions in modern cosmology is the nature of dark matter. Based
on observations of the cosmic microwave background, supernovae of type IA and galaxy clustering,
among others, the standard model of cosmology now contains adensity of non-luminous matter ex-
ceeding that of baryonic matter by almost a factor of five [1].The most promising candidate for dark
matter is a stable weakly interacting massive particle predicted by certain supersymmetric extensions
to the standard model of particle physics [2] and called the neutralino,χ . Positrons and electrons will
then be created in equal numbers as stable decay products of particles stemming fromχ-χ annihila-
tions, for instance in the galactic halo. Such a process would constitute a primary source of positrons.
Therefore, a measurement of the positron fraction is also motivated by the prospect of indirect dark
matter detection, especially if combined with other sources of information, such as antiprotons, dif-
fuseγ-rays or, more challenging, antideuterons.

2 The AMS-01 experiment

As a predecessor to the Alpha Magnetic Spectrometer AMS-02,which is to be operated on the In-
ternational Space Station (ISS) for at least 3 years, the AMS-01 experiment was flown on the Space
ShuttleDiscovery from June 2nd to 12th, 1998.

The AMS-01 experiment consisted of a cylindrical permanentmagnet with a bending power of
0.14 Tm2 and an acceptance of 0.82 m2sr. The magnet bore was covered at each of the upper and lower
ends with two orthogonal layers of scintillator paddles, forming the time of flight system (TOF). This
provided a fast trigger signal as well as a measurement of velocity and charge number. The silicon
tracking device consisted of six layers of double-sided silicon strip detectors mounted inside the mag-
net volume. Charged particle trajectories were reconstructed with an accuracy of better than 20µm
in the bending coordinate. The momentum resolution at 10 GeV/c was about 10 % for singly charged
particles. The inner magnet surface was lined with the scintillator panels of the anticoincidence sys-
tem serving as a veto counter against particles traversing the magnet wall. Velocity measurements
were augmented with a two-layered aerogelČerenkov threshold counter (ATC) mounted underneath
the lowest TOF layer, allowinge+/p discrimination below 3 GeV/c. A low energy particle shield cov-
ered the experiment to absorb particles below 5 MeV, while a multi-layer insulation blanket served as
a protection against space debris and solar radiation. The radiation thickness of all materials above
the tracking device sums up to 18.2 % of a radiation length. Below the tracking device, not including
the Space Shuttle, the material sums up to 19.1 % of a radiation length. A detailed description of
the experiment is given in [3]. Orbiting with an inclinationof ± 50.7◦ at altitudes between 320 and
390 km, AMS-01 recorded108 events in 184 hours. During 4 days of the flight, the Space Shuttle was
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docked to the Mir space station. Before and after docking, the Shuttle’s yaw axis (AMS z-axis) was
kept pointing at 0◦, 20◦, 30◦, 45◦ and 180◦ with respect to the zenith for several hours each. During
docking its pointing varied continuously between 40◦ and 145◦.

3 Conversion of bremsstrahlung photons

The main challenge of cosmic ray positron measurements is the suppression of the vast proton back-
ground. As is known from previous measurements [3, 4], the flux of cosmic ray protons exceeds that
of positrons by a factor of104 in the momentum range of 1–50 GeV/c. Hence, in order to keep the pro-
ton contamination of positron samples below 1 %, a proton rejection of106 has to be reached. Since
the ATC subdetector of AMS-01 provided a sufficient single track proton rejection only for energies
below 3 GeV, a different approach has been chosen for this analysis. It relies on the identification of
bremsstrahlung emission through photoconversion. Due to the inverse quadratic dependence on the
particle mass of the cross section, bremsstrahlung emission is suppressed by a factor of more than
3 ⋅ 106 for protons with respect to positrons.

Figure 1 shows the principle of a converted bremsstrahlung event signature. A primary positron
enters the detector volume from above and emits a bremsstrahlung photon in the first TOF scintillator
layer. The photon then converts into an electron-positron pair in the second TOF layer. Because of
the low fraction of momentum which is typically carried awayby the photon, the secondary particles
have lower momenta than the primary. Therefore, in the bending plane projection, the secondaries
tend to form the left and right tracks, while the primary remains in the middle.

Both bremsstrahlung and photon conversion are closely related electromagnetic processes whose
energy and angular distributions can be calculated with theBethe-Heitler formalism. In the relativistic
limit, the angles of photon emission as well as the opening angles of pair production show distribu-
tions with a most probable value ofθ0 ≈ 1/γ, γ being the Lorentz factor of the emitting particle or
the electron-positron pair, respectively. In the GeV energy range, these values fall below the accuracy
limit of the track reconstruction induced by multiple scattering, and thus are practically equal to zero.

The dominant backgrounds are caused by electrons with misreconstructed momentum sign and
by protons undergoing hadronic reactions in the material distribution of the experiment. In the latter
case, mesons are produced that mimic the 3-track signature of converted bremsstrahlung events. For
example, in the reactionpN → pNπ+π− + X, whereX are additional undetected particles, the charged
pions can be misidentified as an electron-positron pair. Besides this, neutral pions produced in reac-
tions of the typepN → pNπ0 + X decay into two photons, one of which may escape undetected. If the
remaining photon converts, the conversion pair will form a 3-track event together with the primary
proton. However, the invariant masses of the mesons and the primary proton and photon are typically
at the scale of the pion mass, leading to significantly largeremission angles.

4 Event reconstruction

In order to gain the highest possible selection efficiency, it is mandatory to apply sophisticated track
and vertex finding algorithms which are particularly customized for the converted bremsstrahlung
event signature [5]. To account for the asymmetric geometryof the detector along its z-axis, the ana-
lysis is performed separately for particles traversing thedetector top-down(downward) and bottom-up
(upward).
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4.1 Preselection

As a first step, the hits in the silicon strip detectors of the tracker are projected into the bending plane
for clustering. For further analysis, a minimum of 8 trackerclusters are required. Events are selected
in which at least two of the six layers of silicon detectors signaled exactly three clusters(triplets).

4.2 Track finding

Since particle tracks diverge in the magnetic field, the triplets are required to have increasing cluster to
cluster distances along the z-axis in the flight direction. Assuming that three particles have traversed
the tracker, in events with three or more triplets the clusters in the triplets can be directly assigned to
a left, a middle and a right track of minimum length. Startingwith these track seeds, further clusters
on the other layers are gradually added to the tracks. Layer by layer, a competition algorithm based
on χ2 minimization builds the tracks and assigns as many clustersas possible to them.

A generalized algorithm has been developed for the treatment of events that feature only two
tracker layers with exactly three clusters. It is based on a combinatorial approach to the track finding
problem and has been employed in the analysis, thus improving the lepton efficiency [6].

Subsequently, ambiguities in the x-coordinate, parallel to the magnetic field, due to the clustering
in the bending plane projection only, have to be resolved. For this, a narrow corridor along the hits
in the TOF system is defined, and only tracker hits within thiscorridor are retained. To each track, a
series of helix fits is applied, taking into account each combination of hits in any of the track clusters.
The final tracks are then defined by the combinations with the lowestχ2.

4.3 Vertice reconstruction

Vertex reconstruction is based on back-propagation of the tracks through the magnetic field using the
functionality of the GEANT3 package [7]. The vertices of theleft and right tracks are determined by
parallel back-propagation from the point of the first tracker hit. Theconversion vertex is then defined
as the barycenter of the track points at the z-coordinate of closest approach of the tracks. In case the
tracks intersect in the bending plane projection, the intersection point is taken as the vertex with the
x-coordinate derived from geometrical interpolation.

The four-vector of the photon is reconstructed from the sum of those of the left and right track.
Then, using the same algorithm as described above, thebremsstrahlung vertex of the photon and the
middle track is computed.

No requirements are placed on the location of the bremsstrahlung vertex nor the conversion vertex.

4.4 Reconstruction quality and Monte Carlo

The quality of the reconstruction algorithms is verified with 16.8 ⋅ 106 electron and positron events
from a complete Monte Carlo simulation of the experiment using GEANT3. The momentum reso-
lution is approximately 13 % for the downward case and 14 % forthe upward case. This resolution
is similar to that for single track events in the energy rangeof 10 GeV and above [8, 9], where our
reconstruction algorithms have their peak sensitivity.

The properties of the bremsstrahlung photon can be particularly well reconstructed. The momen-
tum resolution of the photon is 8 %, while the absolute direction error has a standard deviation of
below 9 mrad.
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5 Analysis

Analysis and suppression of background mainly rely on the evaluation of the topology and geometri-
cal properties of the reconstructed events, and are therefore based on data from the tracker. Addition-
ally, cuts on data from the TOF system are applied. However, substantial parts of the analysis deal
with measures to account for the environmental circumstances under which the AMS-01 experiment
was operated, especially the effect of the geomagnetic field.

5.1 Basic cuts

Several cuts have to be applied to the data in order to suppress misreconstructed events:

• Track fits with resulting momenta lower than 100 MeV/c may lead to misreconstruction. Events
containing such tracks are thus rejected.

• Due to the deflection in the magnetic field, the charge signs ofthe secondaries are exactly
constrained and depend on flight direction. The charge sum ofthe three tracks is required to be
±1.

• With higher energies, the track momentum resolution and thesignal over background ratio
deteriorate. Thus the total reconstructed momentum must not exceed 50 GeV/c.

The requirement for increasing cluster distances within the seed triplets along the flight path
largely distinguishes between downward and upward going particles. To make sure the flight di-
rection is correctly recognized, timing information from the TOF system is used. The time of passage
in the individual scintillators is measured with a resolution of 120 ps [10]. The flight timetƒ for down-
ward and upward going particles is calculated according totƒ = (t1 + t2)/2 − t3, where theti denote
the time of passage measured in TOF layeri (i is counted from top to bottom). Due to high voltage
failures in TOF layer 4 [10], its timing information is not used. The sign oftƒ depends on the flight
direction. Events are rejected for which|tƒ| is smaller than 3.5 ns or the sign oftƒ disagrees with the
flight direction given by the requirement of increasing cluster distances.

To make sure that there are three particles traversing the detector, consistent with the signature of
a converted bremsstrahlung photon, a minimum average energy deposition of 5 MeV (equivalent to 2
MIPs) is required in each of the last two TOF layers in the flight direction.

Nuclei such asHe or N have been observed to induce background events through hadronic inter-
actions. Such particles withZ > 1 deposit significantly more energy in the subdetectors than singly
charged particles. The truncated mean of the energy depositions in the TOF scintillators is calculated,
and events are rejected with an energy deposition of more than 10 MeV. Additionally, a cut is applied
to the mean of the three highest tracker hit amplitudes. By these means events involving nuclei are
entirely eliminated.

5.2 Suppression of dominant background

For the suppression of background, the fact is used that bremsstrahlung and photon conversion imply
small opening angles of the particles at the vertices. In order to make these angles independent of the
frame of reference, the corresponding invariant masses arecalculated according to

m2
inv = 2 ⋅ E1 ⋅ E2 ⋅ (1 − cosθ ) , (1)
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whereθ , E1 andE2 denote the opening angle and the energies of the primary particle and the photon,
or the conversion pair, respectively.

The distribution of the invariant mass at the conversion vertex is shown in Figure 2. For events
with negative charge, which represent a largely clean electron sample, it reveals a narrow shape with
a peak at zero, in agreement with Monte Carlo results. For events with positive total charge, con-
sisting of positrons and background, the distribution alsoshows a peak at zero, and an additional
long tail towards higher invariant masses caused by the proton background. The distributions of the
invariant mass at the bremsstrahlung vertex show similar behaviors. In order to discriminate against
background events, cuts are applied on the invariant masses. The cuts are parameterized as ellipses in
the invariant mass plane, centered at zero, with half axes inunits of the standard deviations,σ, of the
electron distribution from data. Events outside the ellipses are rejected. In order to keep the positron
selection efficiency high, the cut values have been set to 2σ.

5.3 Geomagnetic cutoff

The spectra of cosmic rays are modulated by the geomagnetic field. Depending on the incident
direction and the geomagnetic coordinates of the entry point into the magnetosphere, particles with
momenta below a certain cutoff are deflected by the geomagnetic field and cannot reach the Earth’s
proximity. Hence, below geomagnetic cutoff the particles detected by AMS-01 must originate from
within the magnetosphere. They were mostly produced as secondaries through hadronic interactions
and trapped on geomagnetic field lines.

To discriminate against these secondaries, particle trajectories were individually traced back from
their measured incident location, angle and momentum through the geomagnetic field by numerical
integration of the equation of motion [11]. A particle was rejected as a secondary if its trajectory once
approached the surface of the Earth, and thus originated from an interaction with the atmosphere.
Particles which did not reach a distance of 25 Earth radii were considered as trapped and also rejected.

6 Correction for irreducible background

As can be seen in Figure 2, the invariant mass distribution ofprotons does not vanish in the signal
region. The same applies to the background from misidentified electrons. Consequently, a small
fraction of background events will not be rejected by the cuton the invariant masses. This remaining
irreducible background has to be corrected. This has been accomplished using Monte Carlo simula-
tions.

The approach used is to run the analysis on16.5 ⋅ 107 proton and9.4 ⋅ 106 electron Monte Carlo
events as if they were data, determine the momentum distribution of particles that are misidentified
as positrons, and subtract these from the raw positron counts obtained from data. However, such a
comparison of Monte Carlo and data requires the adjustment of several properties of the simulated
events. Particularly, they have not been affected by the geomagnetic field.

As introduced in§ 5.3, the geomagnetic field shields the Earth’s vicinity fromlow energy parti-
cles. However, the geomagnetic cutoff cannot be calculatedindividually for Monte Carlo particles,
since their four vector is not defined with respect to the geomagnetic coordinates. To correct for the
shielding effect, the livetime function, described in§ 8.2 is used. The livetime function gives the
effective measurement time as a function of momentum for singly charged particles. Normalized to
a maximum value of 1 at highest momenta well above the cutoff,its value at a given momentum
denotes the probability for a particle to penetrate the geomagnetic field. Hence, it serves as a weight
for distributions of any event variable from Monte Carlo, particularly for the momentum distribution
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of background events from Monte Carlo. As for the data, the livetime function has to be evaluated
using the reconstructed momentum, rather than the incidentparticle’s simulated momentum.

The incident momentum spectrum of the Monte Carlo particlesfollows a distributionφMC(p) =
p−1, which differs significantly from the true spectrum. Since the event variables are correlated with
the incident momentum, they again have to be reweighted. Using the parameterized fluxesφD(p) of
protons [3] and electrons [12], measured by AMS-01, the spectral reweighting function is calculated
asw(p) = φD(p)/φMC(p).

The livetime function as well as the spectral reweighting function correct for the shape of the
momentum distribution of background events calculated from Monte Carlo. Subsequently, since the
latter function does not conserve the integral, the background distributions need to be scaled to the
data.

Figure 2b illustrates the scaling of the proton Monte Carlo to the data using the sidebands of the
invariant mass distributions. The sidebands are defined as the ranges of invariant mass above certain
thresholds in which the positron contribution to the sampleof positively charged events from data
is negligible. The thresholds are determined from the electron distribution to be 0.16 GeV/c2 at the
conversion vertex and 0.2 GeV/c2 at the bremsstrahlung vertex. Below the thresholds the excess in the
data due to the positron contribution is apparent.

The correction due to electrons with misreconstructed charge sign is calculated in a very similar
way. The main difference is the fact that the distributions originating from a given number of Monte
Carlo electrons are scaled directly to the electron candidate sample found in the data.

Using the scaling factors obtained with the above procedures, the background contribution to
the number of positron candidates is calculated. Figure 3 shows the total background correction
as a function of momentum, separately indicating the contributions from protons and misidentified
electrons. In total, they amount to 24.9 and 6.5 events, respectively. The resulting corrected lepton
sample consists of 86 positrons and 1026 electrons.

7 Positron fraction

The positron fractione+/(e+ + e−) is calculated from the electron counts and corrected positron counts
for each energy bin. It is shown in Figure 4 in comparison withearlier results [12–14] and a model
calculation based on purely secondary positron production[15]. Table 1 summarizes the results. The
total errors are clearly dominated by the contribution fromstatistical errors, systematic errors play a
lesser role. In the following, the contributions to the error on the positron fraction are discussed.

7.1 Statistical errors

Due to the complexity of the positron fraction computation,taking into account two sources of back-
ground, and low statistics, a Bayesian approach based on Monte Carlo simulation has been chosen
for the determination of the statistical errors [16]. The aim is to acquire the probability distribution
of all possible values of the positron fraction which can, superimposed on the background, lead to
the observed number of particle counts. From this distribution, the confidence levels are derived by
numerical integration.

In a first step, for a particular momentum bin, two random floating point numbers are generated,
following a uniform distribution and representing the “true” numbers of electrons and positrons. Sub-
sequently, the background counts from Monte Carlo – modulated with errors to account for their
systematic uncertainty – are added to the true number of positrons. Here, the scale factors from back-
ground scaling have to be considered. The resulting numbersof positively and negatively charged
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particles are modulated with Poisson errors, thus become integers, and then represent the “measured”
number of candidates including background. If these numbers are exactly equal to the counts observed
in the experiment, the positron fraction calculated from the true numbers is accepted for further ana-
lysis, and the above procedure is repeated.

The distribution of simulated positron fraction values is finally parameterized and normalized to
an integral of 1. Subsequently, by repeated numerical integration, the smallest interval is found in
which the integral of the distribution equals 0.683, consequently giving the lower and upper limit of
the 1σ Gaussian confidence interval.

7.2 Systematic errors

In the positron fraction – as a ratio of particle fluxes – most sources of systematic error, such as
detector acceptance or trigger efficiency, naturally cancel out. Hence, only sources of error which are
asymmetric with respect to the particle charge have to be considered.

Background correction is applied to the sample of positron candidates only and is therefore a
source of systematic error. To a certain degree, the description of the experimental setup may be
inaccurately implemented in the Monte Carlo program. Furthermore, in contrast to the production of
charged pions, background processes involving neutral pion production imply photoconversion with
typically low angles between tracks emerging from the vertices. Hence, the distribution of invariant
masses depends on the cross sections of charged and neutral pion production. Possible inaccuracies
in the implementation of the cross sections in the Monte Carlo program must therefore be considered.

The systematic error from background correction can be estimated by evaluating the deviation
of the scaled Monte Carlo background from the data in the invariant mass plane. With a binning
coarse enough to flatten statistical fluctuations, the mean deviation outside the signal region leads to
a systematic error estimate of 20 % of the background events.This value is then propagated to the
positron fraction for each momentum bin.

As a consequence of the East-West effect [17], in combination with the asymmetric layout of the
AMS-01 tracker, the product of the detector acceptance times the livetime as functions of the particles’
incident direction may vary for positrons and electrons. Even though no deviation of their average
livetimes is apparent (see§ 8.2), we account for this effect with a second contribution to the systematic
error of the positron fraction. It is estimated from the meanvariation of the difference in livetime of
positrons and electrons over the detector acceptance. After propagation to the positron fraction, the
systematic error due to the East-West effect is below 10 % forall momentum bins, except for the
highest momenta above 26.5 GeV, where it amounts to approximately 10 % of the positron fraction
value.

8 Flux calculation

As a crosscheck to the measurement of the positron fraction,presented above, the absolute incident
fluxes of electrons and positrons are calculated. The electron flux is then compared to measurements
by other experiments and the results obtained previously byAMS-01.

One can calculate the differential flux for a given momentum bin p of width ∆p from the measured
particle countN(p, θ , φ ) in this bin, the detector acceptanceA(p, θ , φ ), and the livetimeT(p, θ , φ ), as
follows:

dΦ(p, θ , φ )
dp

=
N(p, θ , φ )

A(p, θ , φ ) ⋅ T(p, θ , φ ) ⋅ ∆p
. (2)
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By the termlivetime, we mean the effective amount of time during which cosmic rayparticles coming
from outer space have the opportunity to reach the detector.If – as is the case with the AMS-01
downward flux – the livetime is only weakly depending on the direction, the angular distribution of
the particle count will follow that of the acceptance. Then,one can approximate (2) to become

dΦ(p)
dp

=
N(p)

A(p) ⋅ T(p) ⋅ ∆p
. (3)

In the following two sections, the determination of the detector acceptance and the calculation of the
livetime will be described.

8.1 Detector acceptance

The detector acceptance for the bremsstrahlung conversionprocess is calculated from Monte Carlo,
separately for electrons and positrons and for downward andupward going particles. In the sim-
ulation, particles are emitted from a square surfaceS, with a side length of 3.9 m, above or below
the detector, respectively. Withnt being the total number of Monte Carlo particles emitted fromS
into the hemisphere facing the detector with an isotropic angular distribution, andnc the number of
reconstructed events remaining after the cuts, the acceptance as a function of incident momentum
is [18]

A(p) = S ⋅ π ⋅
nc(p)
nt(p)

. (4)

As Figure 5 shows,A(p) is on the order of several cm2⋅ sr and reaches a maximum at approximately
20 GeV/c. Towards higher momentum the decreasing cluster separation approaches the resolution
limit of the silicon strip detectors, and the acceptance drops. At low momentum, by contrast, sec-
ondary particles may be deflected such that they generate multiple separated hits in the TOF scin-
tillators. In this case events are rejected by the trigger logic of the experiment. Furthermore, the
probability rises that secondary particles have a too low momentum to be properly reconstructed,
hence the acceptance decreases.

Formed by the Space Shuttle’s payload bay floor and the support structure of AMS-01, additional
material is traversed by upward going particles before theyenter the detector, thus increasing the
probability of bremsstrahlung emission and photoconversion. Consequently, the acceptance for up-
ward going particles is generally higher with respect to downward going ones. The amount of this
additional material is estimated to be 4.5 % of a radiation length. No significant difference in the
acceptance for electrons and positrons is observed.

8.2 Calculation of livetime

Two cardinal effects can prevent cosmic ray particles from reaching the detector. First, the body of
the Earth obstructs particles arriving from the “wrong” side. Second, and more complicated, the geo-
magnetic field forces the trajectories of incoming particles on a helix, effectively capturing particles
with under-cutoff momentum. This effect depends on the position of the Space Shuttle, the incident
direction and time. In addition, the periods of time during which the trigger system was busy enter as
dead time into this calculation.

The livetimeT(p) was derived as follows. The acceptance region of the AMS-01 detector was
divided into nine bins of equal size along cos(θ ), in the interval of[0.7, 1], and into eight bins along
φ . The momentum range between 1 GeV/c and 50 GeV/c was divided into eight bins. Then, for every
four seconds during the flight, using the recorded position and attitude of Discovery and for each
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of the 576(p, dΩ) bins, a virtual charged particle was started with the corresponding values on the
aperture of the detector and propagated backward through the geomagnetic field. If the virtual particle
fulfilled the criteria of a primary cosmic ray particle as described in§ 5.3, the interval during which
the trigger was not busy was added to the total livetime.

The livetime, averaged over the detector acceptance, for downward and upward going positively
and negatively charged particles, is displayed in Figure 6.Due to obstruction by the Earth, the livetime
for downward going particles is twice that of upward going ones. Concerning the average livetime,
no significant difference between positively and negatively charged particles is apparent.

8.3 Positron and electron fluxes

Since the amount of material underneath the detector is estimated only, in this analysis particle fluxes
are calculated solely for particles which traverse the detector top-down. Figure 7 displays the fluxes
of downward going positrons and electrons, together with results published earlier by AMS-01 [12]
and HEAT-e± [4] with their statistical errors. The fluxes are in very goodagreement with previous
measurements over the full momentum range, except for a slight discrepancy in the electron fluxes
between 2 and 3 GeV/c. Here, at low momentum in combination with low statistics, we expect the
inaccuracies of the backtracing through the geomagnetic field to become the dominant source of
systematic error to the fluxes. However, for the positron fraction as a ratio of particle counts, this
effect cancels out.

9 Conclusions

In this paper, we present a new measurement of the cosmic ray positron fraction up to energies of
30 GeV with the AMS-01 detector. Positrons are identified by conversion of bremsstrahlung photons,
which yields an overall proton rejection on the order of106. This approach allows to extend the energy
range accessible to the experiment far beyond its design limits and to fully exhaust the detector’s
capabilities. The results, especially on the positron fraction, are consistent with those obtained in
previous experiments at large.

For the reconstruction of converted bremsstrahlung events, customized algorithms for track find-
ing and event reconstruction have been developed and implemented. We have shown that the back-
ground is controllable and the overall uncertainty is dominated by the statistical error due to the low
overall cross section of the signal process.

Furthermore, the absolute lepton fluxes have been calculated and found to match the earlier results.
This required a new precise and extensive livetime calculation.
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Momentum
Ne − Ne +

Positron
σstat σsys,b σsys,l[GeV/c] fraction

1.0 – 1.5 11 3.0 0.210 +0.11
−0.1 ± 0 ± 0

1.5 – 2.0 31 4.8 0.133 +0.064
−0.051

+0.002
−0 ± 0.006

2.0 – 3.0 85 10.7 0.112 +0.034
−0.031

+0.001
−0.003 ± 0.004

3.0 – 4.5 186 15.8 0.078 +0.021
−0.018

+0.001
−0.003 ± 0.004

4.5 – 6.0 172 10.0 0.055 +0.025
−0.022

+0.006
−0.007 ± 0.001

6.0 – 8.9 198 9.0 0.043 +0.029
−0.017

+0.01
−0.004 ± 0.004

8.9 – 14.8 195 14.5 0.069 +0.03
−0.014

+0.01
−0.002 ± 0.006

14.8 – 26.5 109 15.4 0.124 +0.038
−0.03

+0.009
−0.003 ± 0.007

26.5 – 50.0 39 2.9 0.070 +0.075
−0.034

+0.01
−0.01 ± 0.007

Table 1: The number of electron (Ne −) and corrected positron (Ne +) candidates and the positron frac-
tion as a function of momentum. Systematic errors are given separately for background (σsys,b) and
livetime (σsys,l) correction.
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Figure 1: Schematic view of a converted bremsstrahlung event caused by a positron going top-down.

15



minv  [GeV/c2] 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
v

e
n

ts

1

10

210

310

410
Invariant mass at conversion vertex

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
v

e
n

ts

-110

1

10

210

310

410
Invariant mass at conversion vertex

Data (negative events)

Electron Monte Carlo

Data (positive events)

Proton Monte Carlo

Sideband

a)

b)

minv  [GeV/c2] 

Figure 2: a) Invariant mass distribution at the conversion vertex for negatively charged data events
(circles) and electron Monte Carlo (histogram). b) The samedisplay for positively charged data events
(squares) and proton Monte Carlo (histogram). The proton Monte Carlo distribution has been scaled
to the data using the sideband. Below the sideband thresholdof 0.16 GeV/c2, the excess in the data
due to the positron contribution is apparent.

16



p  [GeV/c]
1 2 3 4 5 6 7 10 20 30

E
v

e
n

ts

0

5

10

15

20

25

30
Background contribution

to positron candidates

Figure 3: Momentum distribution of the positron candidatesincluding background (solid line) and the
total estimated background (blue dotted line), itemized into contributions from protons (green dashed
line) and wrongly identified electrons (red dash-dotted line).
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Figure 4: The positron fractione+/(e+ + e−) measured in this analysis (filled circles), compared with
earlier results from AMS-01 (open circles) [12], TS93 (squares) [13], the combined results from
HEAT-e± and HEAT-pbar (triangles) [14], together with a model calculation for purely secondary
positron production from [15] (solid line). The total erroris given by the outer error bars, while the
inner bars represent the systematic contribution to the total error.
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