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Abstract

We present results of the performance of the first prototype of the CASTOR quartz-tungsten sampling
calorimeter, to be installed in the very forward region of the CMS experiment at the LHC. This study
includes GEANT Monte Carlo simulations of tk&erenkov light transmission efficiency of different
types of air-core light guides, as well as analysis of the calorimeter linearity and resolution as a func-
tion of energy and impact-point, obtained with 20-200 GeV electron beams from CERN/SPS tests in
2003. Several configurations of the calorimeter have been tested and compared, including different
combinations of (i) structures for the active material of the calorimeter (quartz plates and fibres), (ii)
various light-guide reflecting material (glass and foil reflectors) and (iii) light-sensing devices (photo-
multipliers and avalanche photodiodes).



1 Introduction

The CASTOR (Centauro And Strange Object Research) detector is a quartz-tungsten sampling calorimeter that
has been proposed to study the very forward rapidity (baryon-rich) region in heavy ion collisions in the multi-
TeV range at the LHCO[1] and thus to complement the heavy ion physics programme, developed essentially in the
baryon-free midrapidity region. CASTOR will be installed in the CMS experiment at 14.38 m from the interaction
point, covering the pseudorapidity range &8 < 6.6 and will, thus, contribute not only to the heavy ion program,

but also to diffractive and low-physics in pp collisiond[2]. The CMS and TOTEM experiments supplemented

by the CASTOR detector will constitute the largest acceptance system ever built at a hadron collider, having the
possibility to measure the forward energy and particle flow up te 6.6 [3]. With the design specifications

for CASTOR, the total and the electromagnetic energies in its acceptance Epgel80 TeV andEgm ~50

TeV respectively according to HIJINGI[4] PbPb simulations at 5.5 TeV) can be measured with a resolution better
than~1% and, therefore, “Centauro” and/or strangelets events with an unusual ratio of electromagnetic to total
(hadronic) energie$ [5] can be well identified.

A calorimeter prototype has been constructed and tested with electron beams at CERN/SPS in the summer 2003.
The purpose of this beam test was to investigate and compare the performance of different component options
(structure of the quartz active material, choice of the light guides/reflectors and light sensing devices), rather than
to get precise quantitative results of the response of the final detector setup. The general view of the prototype
is shown in Figurg¢]l. The different detector configurations considered in this work are shown schematically in
Figure[2. Preliminary results of the analysis have been presented at different CMS méétings [6]. Here we present
a more quantitative analysis, including the beam profile data [7].
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Figure 1: CASTOR prototype I: frontal view (left) and lateral view (right, only one light guide is shown).
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Figure 2: Configuration options investigated in the 2003 beam test: different quartz structures (fibres and plate)
and reflectors (glass, foil). The points A-E and 4-8 are scan locations used in calorimeter response uniformity
studies (see Sectin .2).



2 Technical description

The CASTOR detector is@erenkov-effect based calorimeter with tungsten (W) absorber and quartz (Q) as sensi-
tive material. An incident high-energy particle will shower in the tungsten volume and produce relativistic charged
particles that will emitCerenkov light in the quartz plane. TiZerenkov light is then collected and transmitted

to light-sensing devices through air-core light-guides. The different instrumentation options, investigated in this
work, are shown in Figuig 2. In sectipn .1 we describe the various arrangements of the active (quartz) and passive
(tungsten) materials of the calorimeter considered. Selctign 2.2 discusses the light transmission efficiency of differ-
ent combinations of light-guides and reflectors and seffign 2.3 summarizes the characteristics of the light-sensing
devices (photomultipliers and avalanche photodiodes) tested.

2.1 Tungsten - Quartz

The calorimeter prototype is azimuthally divided into 4 octants and longitudinally segmented into W/Q layers
(Fig.[T). Each tungsten absorber layer is followed by a number of quartz planes. The tungsten/quartz planes are
inclined at 45 with respect to the beam axis to maximizerenkov light outpﬂ_ﬂ The tungsten plates have density

~ 19.0 g/cnd. The total length of each sector is 003, or 23.7Xo.

The calorimeter response and relative energy resolution were studied for quartz fibres (Q-F) and quartz plates
(Q-P) (see Sectidn 3). We have tested four octant readout units of the calorimeter, arranged side-by-side in four
azimuthal sectors. Each readout unit consisted of 10 sampling units. Each sampling unit for sectors J1, J2, and S2
(see Fig[ ) is comprised of a 5 mm thick tungsten plate and three planes pfreéick quartz fibres. The quartz

fibres were produced by Ceram Optec and have®@@ure fused silica core with a 48n polymer cladding and

a corresponding numerical aperture NA = 0.37. The sampling unit for sector S1 consisted of a 5 mm thick tungsten

plate and one 1.8 mm thick quartz plate. Both types of quartz active material, fibre or plate, had about the same

effective thickness. The filling ratio was 30% and 37% for the quartz fibres and quartz plates, respectively.

2.2 Air-core light guides

The light guide constructed for the CASTOR prototype | is shown in Figure 3. Itis an air-core light-guide made of
Cu-plated 0.8 mm PVC. The internal walls are covered either with a glass reflector (AIO+MgFr) or with a reflector
foil (Dupont AIO+SiG,+TiO>). The light transmittance in the light-guides was studied for both types of reflecting
materials.

1 The index of refraction of quartz is= 1.46— 1.55 for wavelengtha = 600-200 nm. The correspondifigrenkov threshold
velocity isf3c = 1/n= 0.65—0.69, and therefore, fd8. ~ 1 the angle of emission B; = acog1/nf3) = 46° — 50°.
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Figure 3: Picture of the light guide used in the prototype.

The design and dimensions of the light guide are obtained from Monte Carlo simulations. In the simulations,
the Cerenkov photons produced in the quartz of the calorimeter are collected and transmitted to the light-sensing
device by air-core light guides. The efficiency of light transmission and its dependence on the light-source position
are crucial parameters characterizing the light guide and significantly affecting the performance of the calorimeter.
We developed a GEANT 3.21-based code to simulate the transmissiererfikov photons produced in the quartz
plane through a light guid&][8]. A photon is tracked until it is either absorbed by the walls or by the medium and
is thus lost, or until it escapes from the light guide volume. In the latter case it is considered detected only if it
escapes through the exit to the light-sensing device. If it is back-scattered towards the entry of the light guide it is
also lost.

In the simulations, fibres of various numerical apertures (NA =0.22 - 0.48) as well as light-guides of various shapes
(fully square cross section or partially tapered) were used (seg]Fig. 4). The maximum values of core-exiting and
air-entering anglesore, 64ir) in degrees for various numerical apertures are given in Table 1. For the quartz plate,
the air-entering angléy;, is larger than 30
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Figure 4: General view of the air-core light guide geometgy(Im) is defined as the ratio of the length of the
(non-)tapered section over the mean dimension of the base of the light guide.




Table 1: Maximum values of the core-exitin@.§.) and air-exiting 04;r) angles, for various numerical apertures
(NA) of the quartz fibres (index of refractionggre = 1.46).

NA (Ncore=1.46)  Bcore  Bair

0.22 8.7 127
0.37 147 217
0.40 159 23.6
0.44 175 26.1
0.48 19.2 287

The walls of the simulated light guide have a reflection coefficient of 0.85, simulating the reflecting internal mirror
surface of the glass light guide. The entrance plane of the light guide was uniformly scanned with the simulated
light source. The percentage of photons escaping in the direction of the light-sensing device has been recorded
as a function of the source position, giving, after integration over the complete surface, the light guide efficiency.
The spatial uniformity of the light-guide performance can be quantified with the relative variatiomeén) of

the efficiency across the entrance. Results for the light guides efficiency and uniformity studied are tabulated in
Tableqd 1Fb and are plotted in Figufés 5 4rjd 6 for fibres with NA = 0.37 and 0.48, respectively. The pargmeters
andim refer to the tapered and non-tapered sections of the light guide, as shown inFrigure 4, defihed as [8]:

Ig = length of tapered part over the mean length of entrance, and
Im = length of non tapered part over the mean length of entrance.
Thus, e.g. with an entrance mean length of 10 cm, an Ig:Im=21:2 light guide has a total length of 30 cm with 10

cm of tapering part, and an Ig:Im=2:0 one is a fully tapered light guide with length 20 cm. Intéples 2-5, the row
(column) indicates the magnitude of the paramelt@rég), respectively.

Table 2: Light-guide efficiency (%) for different values of tlieandIm parameters (see text) and quartz fibres
with NA =0.37.

'™ 0 1 2

1 38.3 345 348
2 46.1 39.1 43.2
3 448 41.8 415

Table 3: Relative variation of the light-guide efficiency across the entrandéean (%), for different values of
thelg andlm parameters (see text) and quartz fibres with NA = 0.37.

\'m o 1 2

1 393 355 3.6
2 89 383 34
3 33 228 3.2




Table 4: Light-guide efficiency (%) for different values of thipandIm parameters (see text) and quartz fibres
with NA = 0.48.

g\m o0 1 2

1 311 283 27.1
2 301 275 275
3 271 250 25.0

Table 5: Relative variation of the light-guide efficiency across the entraryddean (%), for different values of
thelg andlm parameters (see text) and quartz fibres with NA = 0.48.

|g\|m 0 1 2

1 204 238 41

2 39 284 46

3 3.8 232 37
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Figure 5: Efficiency (top) and relative variation of the efficiency (bottom) for various light guides (calorimeter
quartz fibres with NA = 0.37) for different values of tigeandIm parameters (see text).
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Figure 6: Efficiency (top) and relative variation of the efficiency (bottom) for various light guides (calorimeter
quartz fibres with NA = 0.48) for different values of tlggandim parameters (see text).

From the tablef|[[}5 and figurigs 5 4rid 6 we note that, as the NA of the fibre and hence the air-enterifgangle,
increases, the transmission efficiency decreases. Also, the optimum length for the air-core light guide decreases,
while the uniformity of the light exiting increases.

We have considered two alternatives for the reflecting medium in the light guide:

1. 0.5 mm thick float-glass with evaporations of AIO and MgFr, Fjg. 7a, and

2. Dupont polyester film reflector coated with AlO and reflection enhancing dielectric layer stagKT810D,
the so-called HF reflector foil, Fig] 7b.
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Figure 7: Reflectance of two mirrors coated with (a) AIO+MgFr and (b) Dupont foil with AIO and-Sit®,, as
a function of the incident light wavelength.

To choose the most suitable reflector, we also have to take into account the quantum efficiency of the light-sensing
device (see Secti.3) This is because the short Waveléugﬂrnkov light A < 400 nm) deteriorates fast with
irradiation of the quartz material and thus a continuous compensation must be applied. The optimum combination
of the reflector and the Q-efficiency of the light-sensing device ensure that the total efficiency is maximized above
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400 nm and falls sharply to zero below 400 nm. In Table 6 we calculate the product of the light guide transmittance
and APD quantum efficiency for Q-fibres with NA = 0.37 and 3 internal reflections in the designed light guide.

Table 6: Light guide transmittance times the Avalanche Photodiode quantum efficiency at each wavelength (see
Figure[9) for the two reflectors and quartz fibres (Q-F: NA = 0.37, 3 reflections).

Wavelength  Glass reflector (Al+MgF)

Dupont + Layer stack

650 nm
400 nm
350 nm
300 nm

62%
53%
44%
10%

64%

62%
7%
~0%




2.3 Light-sensing Devices

We instrumented the calorimeter prototype with two different types of light-sensing devices:

1. Two different kinds of Avalanche Photodiodes (APDs): Hamamatsu S8148 (APD1) and Advanced Photonics
DUV (APD2), Fig.[8.

2. Two different types of photomultipliers (PMTs): Hamamatsu R374 and Philips XP2978.

We used 4 Hamamatsu APDs, eachBmn?, in a 2x2 matrix with total area of 1 cf The Advanced Photonics
DUV APD had an active area of 2 @&n(g=16 mm). The Hamamatsu and Philips PMTs have both an active area
of 3.1 cnf. The Hamamatsu and Advanced Photonics APD quantum efficiency are shown versus wavelength in

Fig.[S.

Figure 8: Two types of APDs used in the beam test.
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Figure 9: The Hamamatsu and Advanced Photonics APD quantum efficiency versus wavelength.



3 Beam Test Results

The beam test took place in summer 2003 at the H4 beam line of the CERN SPS. The calorimeter prototype was
placed on a platform movable with respect to the electron beam in both horizontal and vertical (X,Y) directions.
Telescopes of two wire chambers, as well as two crossed finger scintillator counters, positioned in front of the
calorimeter, were used to determine the electron impact point. In the next two sections we present the measured
calorimeter linearity and resolution as a function of energy and impact point for different prototype configurations.

3.1 Energy Linearity and Resolution

To study the linearity of the calorimeter response and the relative energy resolution as a function of energy, the
central points C (Fid.]2) in different azimuthal sectors have been exposed to electron beams of energy 20, 40, 80,
100, 150 and 200 GeV. The results of the energy scanning, analyzed for four calorimeter configurations, are shown
in figured TOFIRB. The distributions of signal amplitudes, after introducing the cuts accounting for the profile of the
beam, are in most cases symmetric and well fitted by a Gaussian function. Asymmetry in few distributions was
partly caused by the wide spread of the beam in these events.
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Figure 10: Distributions of signal amplitudes in ADC channels for electron beam energies (20, 40, 80, 100, 150
and 200 GeV) impinging on the central point C of sector S1 (Philips PMT).
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Figure 13: Distributions of signal amplitudes in ADC channels for electron beam energies (20, 40, 80, 100, 150,
and 200 GeV) impinging on the central point C of sector S1 (Advanced Photonics APD).

For all configurations, the calorimeter response is found to be linear in the energy range explored (sge Fig. 14).
The average signal amplitude, expressed in units of ADC channels, can be satisfactorily fitted by the following
formula:

ADC = a+bxE 1)

where the energy E is in GeV. The ADC distributions are not pedestal subtractegpéremeter gives the pedestal
value which is roughly the same for all studied configurations). The fitted values of the parameters for each
configuration are shown in Fig. [14 and are tabulated in Tgble 7.
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Figure 14: Energy linearity in sectors: (a) S1 (Philips PMT), (b) S2 (Philips PMT), (c) J2 (APD1), (d) S1 (APD2).

The relative energy resolution of the calorimeter has been studied by plotting the normalized width of the Gaussian
signal amplitudes (Figs. 10—[13)/E, with respect to the incident beam electron energy, E (GeV) and fitting the
data points with two different functional forms|[9]:

O/E = po+p/VE 2
0/E = po®p1/VE® p/E 3)

where thes indicates that the terms have been added in quadrature. In exprégsion (3), three terms determine the
energy resolution:

1. The constant ternpg, coming from the gain variation with changing voltage and temperature, limits the
resolution at high energies.

2. The stochastic termpy, due to intrinsic shower photon statistics, and

3. thepy term, which contains the noise contribution from capacitance and dark current.
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Figure 15: Energy resolution in sectors: (a) S1 (Philips PMT), (b) S2 (Philips PMT), (c) J2 (APD1), (d) S1 (APD2).
Two fits are showno/E = po + p1/VE (black);a/E = po @ p1/VE @ p2/E (red).

Generally, both formulae satisfactorily fit the data (ffigl 15). The fit parameters are shown ifi [Table 7. The first
thing to notice is that the constant tenpg is close to O for all options. The measured stochastic tetris in

the range~ 24% - 82% and indicates that we may measure the total electromagnetic energy hitting CASTOR in
Pb+Pb collisions at the LHG{ 40 TeV, HIJING [4] prediction) with a resolution better than 0.3%. The readout

by avalanche photodiodes leads to theterm, measured to be 1.25 GeV and 4.5 GeV for Advanced Photonics
APD and Hamamatsu APD, respectively. It should be noted that the APDs are very sensitive to both voltage and
temperature changes, but in this test there was no such stabilization. Irf Jrable 7 we summarize the fit parameters
for both parameterizations and for the four considered configurations.
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Table 7: Energy linearity and resolution of four different configurations of the CASTOR calorimeter prototype.
For the energy resolution, we quote the parameters for two fitso ()= po + p1/VE, and (2)0/E = po @
p1/VE & po/E.

HESOLUTION LINEARITY
fit Pa ™ 2 v fndf 7 b ¥ /nd
[GeV|
Quartz Plate
S1, glass
1 0,004 &+ 0.002  0.36 £+ 3.02 6.4/4 370+ 121 T.74 £ 0.18 —'L'EJ."'-I

Fhilips PMT

8]

00100004 038002 0.00x042 T.4/3

Advanced Photonie | 1 0017 £ (L0053 + .04 2.5/3 | 325+ 24 435 £00 2.2/3
APD 20,038 £ 0.006 + .01 1.2540.20 G.2/3
Quartz Fibres
S2, glass 1 0.004 £ 0,005 045 £ 0.04 3.2/4 33.6 £ 0.7 4.6 £ 0.1 0.=21/4
Fhilips PMT 2 0.013+0006 048 x=0.02 000083 3.7/3

Quartz Fibres
J2, glass 1 =001 £ 0.0L 1.16 + (.13 4.1/4 238+ 3.3 1.3% £+ 0.06 l‘).::l,.'f—l
Hamamatsn APD 2 004 002 0.832 £ (.22 4516 1.3/3
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3.2 Area scanning

The purpose of the area scanning was to check the uniformity of the calorimeter response, affected by electrons
hitting points at different places on the sector area, as well as to assess the amount of “edge effects” and lateral
leakage from the calorimeter, leading to cross-talk between neighboring sectors.

For the area scanning of sector S2, connected to the Philips PMT, central points (A-E) as well as border points
(I-O) have been exposed to electron beam of energy 100 GeV (s€g Fig. 2). The distributions are symmetric and
well described by Gaussian fits for the majority of the points. Asymmetric distributions are seen only for points
closer tham-3 mm to the calorimeter outer edge or sector border.

Figure shows the calorimeter response and relative resolwatjd) @s a function of the distande from the
calorimeter center, for both central and border points. The top plot shows the coordinates of the points, corrected
for the beam impact point position. It is seen that points E, F, J practically lie at the upper edge of the calorimeter.
The rise of the signal amplitudes (bottom left), as well as of the distribution widths with R can be attributed to a
lateral spread of the beam. For lafgea substantial part of the electron beam is outside of the calorimeter sector
and falls directly onto the light guides. The bottom right plot shows that the energy resolutioh. %% for 100

GeV electrons and is relatively independent of the position of the impact points.
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Figure 16: Dependence of signal amplitude on the dist&frem the calorimeter center in sector S2 (Philips
PMT). Top: Coordinates of the scanned points. Bottom plots: Measured response to 100 GeV electrons on central
(A-E, blue) and border (I-O, red) points.

3.2.1 S1-S2crosstalk

Ten points, located at distances 2.5-32 mm from the S1/S2 sector border, have been exposed to the electron beam
of energy 80 GeV. The simultaneous readout of both sectors has been done by Advanced Photonics APD and
Hamamatsu PMT in S1 and S2, respectively. The upper left pad of Highre 17 shows the coordinates of the mea-
sured points in the calorimeter frame, corrected for the beam impact point position. The star symbol marks the
coordinates of the border point between S1 and S2 sectors, found from the dependence of the signal amplitudes on
X(Y) coordinates (lower pads).
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Figure 17: Top: Position of the points in the calorimeter frame, corrected for the beam impact points. Bottom:
Measured calorimeter response versus coordinates X (left) and Y (right) in sectors S1 (APD2) and S2 (Hamamatsu
PMT) for several points at distances2.5-32 mm from the sector border.

The distributions of the signal amplitudes in S2 sector, for points distanced from the sector border meré&than
mm, are symmetric (Gaussian) and leakage to S1 sector is negligible. The relative energy respiutoaf the
order~ 2.9% for 80 GeV electrons.

The dependence of the calorimeter response, leakage fraction and relative energy resgteponse, on the
distanced from the sector border, for S1 and S2 sectors are shown in Higjire 18.
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Figure 18: Comparison of the calorimeter response (top right), leakage fraction (bottom left), and relative energy
resolution,o/response, (bottom right) in sectors S1 (APD2) and S2 (Hamamatsu PMT) for points at different
distances from the sector border.

Both the light output and energy resolution are a little better for S2 sector, connected to Hamamatszy EMT (
2.9%), than for S1 sector, connected to Advanced Photonics APP £ 4.5%). This is expected since there is
more light collected by the PMT as compared to the APD: area(PMT)/area(APD) = 1.55.

3.2.2 Comparison of J1, J2 and S1 sectors

For comparison of the uniformity of calorimeter response, several points located at different places on the sectors
have been exposed to the electron beam of 80 GeV energy. The points (A-E) at the middle of J1, J2 and S1 sectors
and points (4-8) at the border of S1 sector have been studied (see [Figure 2). All sectors have been connected
to Hamamatsu PMT. Symmetric and Gaussian distributions of signal amplitudes in the middle of the sectors and
asymmetric distributions close to the sector border (points 4-8) and sometimes also close to the inner (point A) and
outer (point E) calorimeter edge in J1 sector are observed. The beam profile correction reduces the asymmetry.
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Figure 19: Comparison of calorimeter response (left) and resolution (right) to 80 GeV electrons for several impact
points (A-E) of J2, J1 and S1 sectors, readout with Hamamatsu PMTs.
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Comparison of light output and relative energy resolution for all options studied is shown in Figure 19. Light
output is highest in the S1 (QP-glass) sector and it is practically the same for the central and border points. It
depends weakly on the distanBeof the impact point. For S1, a weak decrease and for J1 and J2 sectors a weak
increase of the calorimeter response with distance R from the calorimeter center are observed. The relative energy
resolution is almost independent of the position of the impact point and-itli-2.5 % for S1 (QP-glass) and J2
(QF-glass) sectors and 3.5-4.0 % for J2 (QF-foil) for 80 GeV electrons.
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4 Summary

We have presented a comparative study of the performances of the first prototype of the CASTOR quartz-tungsten
calorimeter of the CMS experiment using different detector configurations. GEANT-based MC simulations have
been employed to determine tBerenkov light efficiency of different types of air-core light guides and reflectors.
Electron beam tests, carried out at CERN SPS in 2003, have been used to analyze the calorimeter linearity and
resolution as a function of energy and impact point. Different sectors of the calorimeter have been setup with
various quartz active materials and with different light-sensing devices (PMTs, APDs). The main results obtained
can be summarized as follows:

1. Comparison between the calorimeter response using a single quartz plate or using a quartz-fibre bundle indi-
cates that:

1.a. Good energy linearity is observed for both active medium optiong (Hig. 14).
1.b. The Q-plate gives more light output than equal thickness Q-fibreg (Frig. 19).

1.c. Relative energy resolution is similar for quartz plates and quartz fibreq (frig. 15). When readout with the
same Hamamatsu PMT (S1, S2 sectors), we fouB#h energy resolution for 80 GeV electrons (ffig} 19).

1.d. The constant termg of the energy resolution, that limits performance at high energies, is less than 1% in
both options for the same Philips PMT and glass reflector [Fig. 15). The stochastipitésm:36 % and
~46% for quartz plates and quartz fibres, respectively (Tgble 7).

2. Avalanche-photodiodes (APDs) appear to be a working option for the light-sensing device, although they still
need more investigation (radiation-hardness, cooling and voltage stabilization tests).

3. The relative energy resolution is weakly dependent on the position of the impact poirft (Fig. 19). Leakage
(cross-talk) between sectors is negligible for impact points separated more than 8 mm from the sector border.
Only, electrons impinging less than 3 mm from the detector edge show a degraded energy response and worse
resolution.

4. The light output is a little higher for the light-guides with glass reflector compared to those that use HF-foil, for
the same light sensing device (Hamamatsu PMT,[Fip. 19). This is understood, since the HF reflecting foil is
designed to cuEerenkov light with\ < 400 nm, where the light output is greater. However, the HF-reflector
foil has higher efficiency in the region> 400 nm than the glass mirror (Table 6).

In summary, this study suggests that equipping the CASTOR calorimeter with quartz-plates as active material,
APDs as light-sensing devices (with temperature and voltage stabilization), and light-guides with foil reflector is a
promising option, although the final configuration would benefit from some further (detailed) investigation to take
into account the experimental conditions that will be encountered in the forward rapidity region of CMS. A beam
test of the second prototype is foreseen for 2004.
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