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1. Introduction

The discovery and investigation of D-branes have given as some insight into the non-

perturbative structure of string theory and have improved our understanding of string

dualities. However, despite of this success our view upon many aspects of D-branes is still

rather limited.

For instance many properties of D-branes in string compactifications are only qualified

in certain regions of the string moduli space, such as the geometric regime, where the

compactification space is taken to be large compared to the string scale and hence string

corrections are suppressed. These scenarios allow us to treat D-branes semi-classically and
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to apply geometric methods. However, in other regions of the moduli space we cannot

neglect stringy quantum corrections [1 – 3], and therefore it is necessary to describe D-

branes with the machinery of boundary conformal field theory. In principal boundary

conformal field theories constitute a suitable description for generic values of the moduli.

However, in practice these methods are only applicable at special points in the moduli

space, where due to enhanced symmetries the conformal field theory becomes rational

and hence solvable [4 – 6]. Thus studying D-branes in string compactifications for generic

moduli remains a challenge.

Recently matrix factorizations have emerged as yet another tool to study D-branes [7 –

13] . They model branes in Landau-Ginzburg theories, which describe string compactifica-

tions on hypersurfaces in a non-geometric regime of the Kähler moduli space [14]. In the

context of Landau-Ginzburg models we are still able to continuously vary both bulk com-

plex structure moduli, realized in terms of deformations of the Landau-Ginzburg superpo-

tential, and D-brane moduli, encoded in the matrix factorization [15 – 17]. Furthermore, we

can even study obstructed moduli and their associated effective superpotentials [15, 16, 18 –

21].

These Landau-Ginzburg theories are believed to flow to an infrared conformal fixed

point. Since this flow is rather complicated we use here the framework of topological

Landau-Ginzburg theories, which compute quantities invariant with respect to the renor-

malization group.

The goal of this work is to transport brane probes in the Kähler moduli space so as

to explore its global structure. But instead of considering an arbitrary path in the moduli

space [22] (cf. also refs. [1, 3, 23 – 26]), we are less ambitious and analyze branes as we

move along a closed path with base point at the Landau-Ginzburg phase in the Kähler

moduli space. This corresponds to determining upon matrix factorizations the action of

monodromies induced from moduli space singularities. A similar analysis has been carried

out in refs. [27 – 30], where the large radius point is chosen as a base point and where

the monodromies act upon complexes of coherent sheaves.1 This work should be seen

complementary to the large radius results as some of the calculations are more tractable

in the language of matrix factorizations.

The outline of the paper is as follows. In section 2 we mainly review matrix factor-

izations in Landau-Ginzburg orbifolds in order to set our conventions and to introduce

the notation. In particular we focus on equivariant matrix factorizations [11, 33, 17] and

their gradings [33], as these properties play an important role in the D-brane monodromy

analysis.

Then we turn to the structure of the Kähler moduli space of Calabi-Yau hypersurfaces

from a gauged linear σ-model point of view [14]. Typically one obtains three kinds of

singularities in the Kähler moduli space, namely the large radius, the Landau-Ginzburg

and the conifold singularity. In section 3 we investigate in detail the monodromies of these

singularities acting upon matrix factorizations.

In section 4 we employ the developed techniques and study D-brane monodromies

1On the level of D-brane charges monodromies have also been studied in refs. [1, 25, 31, 32].
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on the moduli space of the cubic torus. The matrix factorizations of the cubic torus are

well-understood [16, 17], and hence the torus serves as good first example to study the

effect of monodromies on matrix factorizations. We also demonstrate that the results are

compatible with the expected transformation behavior of D-brane charges. Finally we show

the connection of the Kähler moduli space as seen from the gauged linear σ-model [14] to

the Teichmüller space of the two-dimensional torus [34].

We turn towards our second example, the quintic Calabi-Yau hypersurface, in sec-

tion 5. We explicitly address the action of the monodromies upon two types of matrix

factorizations of the quintic. Again we verify our results by comparing with the mon-

odromy transformations of the D-brane charges presented in ref. [1, 32].

In section 6 we present our conclusions and in appendix A we have collected the open-

string cohomology elements used in section 4.

2. D-branes in Landau-Ginzburg orbifold theories

In order to set the stage for the forthcoming analysis we review the notion of B-type branes

in the context of topological Landau-Ginzburg orbifolds. By now it is well-known [8, 9, 11 –

13] that B-branes in Landau-Ginzburg theories are given by matrix factorizations of the

Landau-Ginzburg superpotential, W . In this section we recapitulate the aspects which are

important for this work.

2.1 Matrix factorizations and open-string states

A B-type brane, P , in the topological Landau-Ginzburg theory with homogenous Landau-

Ginzburg superpotential, W (x), is realized as matrix, QP , and a linear involution, σP , i.e.

σ2
P = 1, such that [8, 9, 11 – 13]

Q2
P (x) = W (x) · 12n×2n , σP QP + QP σP = 0. (2.1)

Here the 2n × 2n matrix, QP , has polynomial entries in the bulk chiral Landau-Ginzburg

fields, x`. Furthermore, two matrix factorizations, (QP , σP ) and (QP ′ , σP ′), are gauge-

equivalent, i.e. they describe the same brane, if they are related by an invertible 2n × 2n

matrix, U(x),2

QP ′(x) = U(x)QP(x)U−1(x) , σP′ = U(x)σP U−1(x) . (2.2)

From a given matrix factorization, (QP , σP ), of a brane, P , we can immediately construct

the matrix factorization, (QP̄ , σP̄ ), of the anti-brane, P̄ , by acting with the operator, T :

T : P 7→ P̄ , (QP , σP ) 7→ (QP ,−σP ) . (2.3)

Thus the operator, T , generates the matrix factorization of the anti-brane.

2Invertible as a matrix in the ring of polynomials in x`.
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The physical string states in the topological Landau-Ginzburg theory arise as non-

trivial cohomology elements of the BRST operator. For open-string states, Θ(P,R), of

strings stretching from the brane, P , to the brane, R, the BRST operator is given by

D(P,R)Θ(P,R) = QRΘ(P,R) − σRΘ(P,R)σP QP . (2.4)

It is straight forward to check that the BRST operator, D(P,R), squares to zero.

Furthermore, we observe that the open-string states, Θ(P,R), split into bosonic states,

Φ(P,R), and fermionic states, Ψ(P,R), which differ by their eigenvalues ±1 with respect to

the involutions of the attached branes:

σRΦ(P,R)σP = + Φ(P,R) , σRΨ(P,R)σP = −Ψ(P,R) . (2.5)

In the paper we also use an equivalent description for the matrix factorization,

(QP , σP ), which arises as follows: Due to the fact that the matrix, QP , anti-commutes

with the involution, σP , we can always find a gauge in which the involution, σP , takes the

block diagonal form σP = Diag(1n×n,−1n×n). In this gauge the matrix, QP , decomposes

into two n × n matrices according to3

QP (x) =

(

0 JP (x)

P (x) 0

)

. (2.6)

Thus we can alternatively describe the brane, P , in terms of the matrix pair, (JP , EP ),

which then fulfills

JP (x)EP (x) = EP (x)JP (x) = W (x) · 1n×n . (2.7)

In this description the operator, T , which maps branes to their anti-branes, becomes

T : P 7→ P̄ , (JP , EP ) 7→ (JP̄ , EP̄ ) = (−EP ,−JP ) . (2.8)

Moreover, bosonic and fermionic open-string states, Φ(P,R) = (φ0, φ1) and Ψ(P,R) =

(ψ0, ψ1), decompose also into two matrices, and the open-string BRST operator, D(P,R),

reads

D(P,R)Φ(P,R) = D(P,R)(φ0, φ1) = (JRφ0 − φ1JP , ERφ1 − φ0EP ) ,

D(P,R)Ψ(P,R) = D(P,R)(ψ0, ψ1) = (ERψ0 + ψ1JP , JRψ1 + ψ0EP ) . (2.9)

2.2 R-charge assignments

For the Landau-Ginzburg model to flow to a non-trivial conformal IR fixed point, it is

necessary for the theory to have a (non-anomalous) U(1) R-symmetry. With respect to

this U(1) symmetry the bulk Landau-Ginzburg superpotential has R-charge assignment

3Note that the block-diagonal form of the involution, σP , corresponds to a partial gauge fixing, which is

preserved by gauge transformations (2.2) with block-diagonal matrices, U = Diag(Vn×n, Wn×n). Here the

n × n matrices, Vn×n and Wn×n, are invertible again in the ring of polynomials in x`.
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+2. Hence for a homogenous superpotential, W (x), of degree d the bulk chiral fields, x`,

have R-charge +2
d .4

For Landau-Ginzburg theories with branes it is also necessary to extend the U(1) R-

symmetry of the bulk to the boundary. This corresponds to requiring that we can find

a U(1) representation, ρP (θ), such that the matrix, QP , which according to eq. (2.1) has

R-charge +1, transforms with respect to the U(1) R-symmetry as [33]5

ρP (θ)QP (e2i θ
d x)ρ−1

P (θ) = eiθQP (x) . (2.10)

Here the representation, ρP (0), obeys ρP (0) = 12n×2n and ρP (πd) = 12n×2n for even d

whereas ρP (2πd) = 12n×2n for odd d.

For us it is important that the representations, ρP (θ) and ρR(θ), of the branes, P and

R, assign also the R-charge, qΘ(P,R)
, to the open-string states, Θ(P,R),

ρR(θ)Θ(P,R)(e
2i θ

d x)ρ−1
P (θ) = e

iθqΘ(P,R)Θ(P,R)(x) . (2.11)

2.3 Equivariant matrix factorizations

Ultimately we want to study monodromies in the Kähler moduli space of Calabi-Yau com-

pactifications. For the compactifications considered in this work the Landau-Ginzburg

phase is realized as a Landau-Ginzburg orbifold [14]. The orbifold group, Zd, acts on the

bulk chiral fields, x`, as

x` 7→ ωkx` , ω = e
2πi
d , k ∈ Zd . (2.12)

In this context branes are characterized by Zd-equivariant matrix factorizations. This

means we need to add to the data of the brane, P , a Zd representation, RP , such that the

matrix, QP , fulfills the equivariance condition [11, 33, 17]:

RP (k)QP (ωkx)RP (−k) = QP (x) . (2.13)

In terms of the matrices, (JP , EP ), the representations, RP , splits into two parts, RP
0 and

RP
1 , and the equivariance condition (2.13) becomes

JP (x) = RP
0 (k)JP (ωkx)RP

1 (−k) ,

EP (x) = RP
1 (k)EP (ωkx)RP

0 (−k) . (2.14)

The expression (2.13) resembles closely the transformation behavior (2.10) of the ma-

trix, QP , with respect to the U(1) R-symmetry. Indeed for irreducible matrix factorizations

the representation, RP , are related to the U(1) representation, ρP , by [33]

R(k) = eiπkλP ρ(πk)σk
P , a =

λP d

2
∈ Z . (2.15)

4In this paper we consider only homogenous Landau-Ginzburg superpotentials. The generalization to

quasi-homogenous superpotentials is straight forward.
5We always choose a gauge for the matrix factorization, QP , such that the representation, ρ(θ), is

diagonal and x-independent (cf. ref. [33]).
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Here λP denotes the grade of the equivariant matrix factorization, which is constraint

by RP (d) = 12n×2n. Thus for each irreducible matrix, QP , there are d inequivalent Zd

representations, RPa, which give rise to d different equivariant branes, Pa, in the orbifold

theory. Given an equivariant brane, P , we simply obtain the other branes, Pa, in the same

equivariant orbit by

RPa(k) = ωakRP (k) . (2.16)

As the representations, RP , distinguishes among the branes in the equivariant orbit

we must also adjust the notion of open-string states. Therefore induced from eq. (2.13) we

impose on open-string states, Θ(P,R), the condition

RR(k)Θ(P,R)(ω
kx)RP (−k) = Θ(P,R)(x) . (2.17)

2.4 Gradings of branes

Finally let us discuss one additional refinement in the description of branes. We have seen

that branes are equipped with a grade, λP , which, so far, has been ambiguous up to shifts

of even integers. As explained in refs. [35, 36] this ambiguity is not important as long

as we analyze the physics of a single brane but becomes relevant for the analysis of open

strings stretching between different branes. Thus in order to keep track of this ambiguity,

we assign to each brane an integer, n, and denote the graded brane by P [n]. The grading,

n, is the integer offset of the grade, λP . If we perform the shift, λP → λP − 1, we observe

in eq. (2.15) that this amounts to changing the sign of the involution, σP , i.e. σP → −σP .

Thus according to eq. (2.3) the brane, P [1], is the anti-brane of P [0], and hence we identify

the operator, T , which maps branes to anti-branes, with the translation operator for the

integer grading, n:

T : P [n] 7→ P [n + 1] . (2.18)

Note that in the following we abbreviate the branes, P [0] and P [1], by the short-hand

notation, P and P̄ .

As a consequence of the interplay of the integer grading, n, and the grade, λP , we also

obtain the relation

Pa+d[n] = Pa[n − 2] . (2.19)

Furthermore, for even degrees, d, we find that branes and anti-branes are in the same

equivariant orbit because the anti-brane, P̄a, coincides with the brane, Pa−d/2.

With these definitions at hand we can now assign integer gradings to open-string states.

Namely, the grading, p, of an open-string state, Θ(P,R), with R charge, qΘ(P,R)
, arises as [33]

p = λR − λP + qΘ(P,R)
. (2.20)

For odd and even integers, p, the open-string states are bosonic and fermionic respectively.

Thus, the integer grading, p, is compatible with the statistics of open-string states. We

denote the space of open-string states at grading, p, by Extp(P,R) and for p = 0 by

Hom(P,R) = Ext0(P,R). Due to eq. (2.20) the open-string states at different gradings are

related by

Extp(P,R) ' Hom(P [−p], R) ' Hom(P,R[p]) . (2.21)

– 6 –
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All those described ingredients are captured in a graded category [37, 38, 26, 39, 22],

where the objects are matrix factorizations, the morphisms between objects are open-string

states, and finally the shift functor is the operator, T . For us it is important to note that

in the category of matrix factorizations of topological B-banes, in addition to the gauge

equivalences (2.2), two matrix factorizations are also equivalent if they only differ by blocks

of trivial matrix factorizations [37, 15, 38]

QW =

(

0 1

W 0

)

, QW̄ =

(

0 W

1 0

)

. (2.22)

Physically the trivial matrix factorization, QW , corresponds to a trivial brane-anti-brane

pair, which annihilates to the vacuum.

3. D-brane monodromies in the Kähler moduli space

In this section we introduce the tools needed to study D-brane monodromies in the Kähler

moduli space of hypersurfaces embedded in (weighted) projective spaces. These geometries

have a Landau-Ginzburg orbifold phase [14, 22], in which matrix factorizations describe

D-branes, and hence they are suitable to study D-brane monodromies from a matrix fac-

torization perspective.

3.1 The Kähler moduli space and D-brane monodromies

In this paper the cubic torus in CP
2 and the quintic hypersurface in CP

4 serve as our

working examples, but the following discussion generalizes to many other Calabi-Yau hy-

persurfaces as well.

Compactifications of both geometries depend on a single (complexified) Kähler mod-

ulus and the Kähler moduli space becomes singular at three distinct points. There is the

large radius point, where the volume of the compactification space becomes infinite, then

there is the conifold point, where the (quantum) volume of the hypersurface shrinks to

zero size while the (quantum) volume of the lower even dimensional cycles stays finite [40],

and finally there is the Landau-Ginzburg point, where the singularity in the moduli space

arises from a global discrete symmetry of the theory. The structure of the Kähler moduli

space is schematically depicted in figure 1 (a).

In the topological B-model the dependence of branes on Kähler moduli is rather mild.

For instance a brane probe transported along a closed contractible loop is expected to come

back unchanged. If, however, the loop is non-contractible, that is to say if we encircle one

of the above mentioned singularities, then, in general, the original brane configuration is

changed. This, however, does not imply that we get a new theory with different branes.

Instead, it just means that the monodromy of the singularity maps individual branes to

other branes within the same theory [28].

Note that for physical branes there is a stronger dependence on the Kähler moduli,

as one also has to take into account the notion of Π-stability [41, 27, 28], i.e. a physical

brane probe can decay as it crosses a line of marginal stability in the Kähler moduli space.
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Figure 1: (a) The figure illustrates the complex one dimensional Kähler moduli space of a Calabi-

Yau hypersurface with the large radius (LR), the Landau-Ginzburg (LG) and the conifold (C)

singularity. (b) Here we show the three non-trivial loops in the Kähler moduli space along which

we transport brane probes. The base point of these loops is in the vicinity of the Landau-Ginzburg

point, where branes are given in terms of matrix factorizations.

However, we limit our analysis to topological branes and hence we do not address this issue

here.

Our next task is to discuss the D-brane monodromies arising from the different sin-

gularities. As we focus on branes given by matrix factorizations, the base point for the

non-contractible loops is located near the Landau-Ginzburg point as depicted in figure 1 (b).

3.2 Landau-Ginzburg point monodromy

Since we describe branes in the Landau-Ginzburg phase of the σ-model to the Calabi-

Yau hypersurface, the Landau-Ginzburg monodromy is the simplest one in the language

of matrix factorizations. At the Landau-Ginzburg point in the Kähler moduli space the

theory has an enhanced discrete symmetry, which is the orbifold group in the Landau-

Ginzburg phase [34, 42]. Thus encircling the Landau-Ginzburg singularity in the Kähler

moduli space corresponds to permuting the branes in the equivariant orbit of the Landau-

Ginzburg orbifold [25, 32, 33]. Therefore the monodromy action on the equivariant brane,

Pa, simply reads

MLG(Pa) = Pa+1 , M−1
LG(Pa) = Pa−1 . (3.1)

3.3 Conifold point monodromy

Next we want to address the monodromy about the conifold point. At the conifold point

of Calabi-Yau hypersurfaces the (quantum) volume of the compactification space shrinks

to zero size, while the (quantum) volume of lower-dimensional even cycles remains fi-

nite [40]. As a consequence a brane that wraps the compactification space without any

lower-dimensional brane charges is massless at the conifold point [43, 40]. Such a brane,

X, potentially binds to the transported brane probe, P , as follows [30]. The mass of a BPS

brane is given by the absolute value of its central charge, Z, which depends holomorphically

on the Kähler moduli. Hence at the conifold singularity the central charge, Z(X), of the

brane, X, is zero and therefore reads in terms of spherical coordinates, (r, θ), of the Kähler

moduli space in the vicinity of the singularity

Z(X) = r eπiθ . (3.2)
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On the other hand we assume that the brane probe, P , remains massive at the conifold

point, and therefore we further assume that close to the conifold point the central charge,

Z(P ), is to lowest order constant

Z(P ) = c eπiλP , (3.3)

with some real constant, c, and some constant grade, λP .

The difference of the grades, λP − λX = λP − θ, measures the mass of fermionic open-

string states, Ψ(X,P ), from brane, X, to brane, P [41, 27, 28], i.e. Ψ(X,P ) is massive for

λP > λX and tachyonic for λP < λX . As the brane probe, P , encircles the conifold point

the mass of the open-string state, Ψ(X,P ), changes gradually form massive to tachyonic.

Thus along the path the pair of branes, P and X, becomes unstable and an energetically

favored bound state is formed via tachyon condensation. The matrix factorization, QCon,

of the condensate with the operator, Ψ(X,P ), is easily realized as [44, 17]

QCon =

(

QP Ψ(X,P )

0 QX

)

. (3.4)

Here Ψ(X,P ) denotes the matrix representative (2.5) with respect to the BRST opera-

tor (2.4), and the condensate of the branes, P and X, corresponds to the cone construc-

tion, Cone
(

Ψ(X,P ) : X[−1] → P
)

, with the fermionic operator, Ψ(X,P ), as an element of

the open-string cohomology group, Ext1(X,P ).

So far we have skipped an important detail. The grades, λ, of the central charges,

Z, correspond in the Landau-Ginzburg phase to the grades of the matrix factorizations

discussed in section 2.4. Therefore we have the same integer ambiguity in defining the

grade, λ, from its central charge, Z, and the different choices give rise to the integer

grading of the brane [41, 28]:

λP [n] = λP − n . (3.5)

Obviously the integer grading is relevant in the discussion of massive vs. tachyonic open-

string operators. The open-string states, which becomes tachyonic along the path around

the conifold monodromy, are cohomology elements of Ext1(X,P ). However, also the other

cohomology elements, Θ(X,P ), of Extp(X,P ) trigger a condensation process because by

eq. (2.21) they are dual to elements in Ext1(X[1 − p], P ). Hence they generate bound

states with the brane, X[1 − p], which is also massless at the conifold point.

Thus the brane, MC(P ), transformed with respect to the conifold monodromy, arises

from condensates of the probe brane, P , with the massless branes, X[n]. Each cohomology

element in Ext1(X[n], P ), or equivalently each cohomology element in Extp(X,P ), gives

rise to a tachyonic open-string state along the path around the conifold monodromy and

triggers a condensation. The presented heuristic arguments motivate the formula for the

conifold monodromy as proposed by Kontsevich [45, 46]

MC(P ) = Cone(ev : hom(X,P ) ⊗ X → P ) . (3.6)

Here X is the brane, which becomes massless at the conifold point, hom(X,P ) denotes the

graded complex

0 → Hom(X,P ) → Ext1(X,P ) → Ext2(X,P ) → · · · , (3.7)

– 9 –
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and ev is the evaluation map with respect to the elements of Extp(X,P ).

The formula (3.6) looks rather superficial. However, in the language of matrix factor-

izations one can evaluate this equation by a straight forward algorithm:

(i) Determine the brane, X, or rather the matrix factorization, QX , which becomes mass-

less at the conifold point. This is the D-brane, which in the geometric regime fills the

entire compactification space and has no lower-dimensional brane charges [43, 40],

e.g. the pure D6-brane for the quintic threefold or the pure D2-brane for the two-

dimensional cubic torus.

(ii) Compute a basis of the open-string cohomology elements, Ext1(X[1 − p], P ) '

Extp(X,P ). We denote the basis elements by Θp
ip

, ip = 1, . . . , bp, p = 0, . . . ,D,

where bp is the dimension of the cohomology group, Extp(X,P ), and D is the com-

plex dimension of the compactification space in the large radius regime. Recall that

due to the Calabi-Yau condition we have the relation, D = d− 2, with the degree, d,

of the Landau-Ginzburg superpotential.

(iii) In the last step we construct the cone (3.6) with the matrix representation of the

basis, Θp
ip

, and obtain the matrix factorization of the brane, MC(P ):

QMC(P ) =





















QP Θ0
1 Θ0

2 · · · ΘD
bD−1 ΘD

bD

0 QX[1] 0 · · · 0 0

0 0 QX[1] · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · QX[1−D] 0

0 0 0 · · · 0 QX[1−D]





















. (3.8)

Finally let us briefly comment on the inverse conifold monodromy. If we encircle

the conifold monodromy with the opposite orientation, then instead of the cohomology

elements, Θ(X,P ), their Serre dual cohomology elements, Θ̂(P,X), become tachyonic and

trigger a bound state formation. Thus the inverse conifold monodromy reads

M−1
C (P ) = Cone(ev : P → hom(P,X) ⊗ X) , (3.9)

which translates into the matrix factorization expression

QM−1
C (P ) =















QX[−1] 0 · · · 0 Θ̂0
1

0 QX[−1] · · · 0 Θ̂0
2

...
...

. . .
...

...

0 0 · · · QX[D−1] Θ̂D
b̂D

0 0 · · · 0 QP















. (3.10)

Here the cohomology elements, Θ̂q
iq

, iq = 1, . . . , b̂q, q = 0, . . . ,D, constitute a basis of

the open-string states, Ext1(Pa,X[q − 1]) ' Extq(Pa,X). Due to Serre duality, i.e.

Extq(Pa,X) ' ExtD−q(X,Pa), the multiplicities, b̂q and bD−q, coincide, and the coho-

mology elements, Θ̂q
iq

, can be chosen to be Serre dual to the elements, ΘD−q
iD−q

.

One can check that the two monodromy action (3.8) and (3.10) are indeed inverse to

each other.
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3.4 Large radius point monodromy

Next we turn to the large radius monodromy, which we deduce indirectly. Encircling first

the conifold point and then the Landau-Ginzburg point is equivalent to going around the

large radius monodromy in the reverse orientation (cf. figure 1 (b)). Therefore from the

knowledge of the Landau-Ginzburg and the conifold monodromy we readily compute the

large radius monodromy

M−1
LR(Pa) = (MLG ◦ MC)(Pa) , MLR(Pa) = (M−1

C ◦ M−1
LG)(Pa) . (3.11)

Note that a similar strategy has been employed in refs. [28 – 30], where the Landau-

Ginzburg monodromy is calculated from the large radius and the conifold monodromy.

4. D-brane monodromies of the cubic torus

As our first example to study D-brane monodromies serves the cubic two-dimensional torus,

which in the geometric large radius regime arises as the cubic hypersurface

W (x) = x3
1 + x3

2 + x3
3 − 3 ax1x2x3 , (4.1)

in the projective space, CP
2. Here the parameter, a, is the algebraic complex structure

modulus, which is related to the flat modulus, τ , of the two-dimensional torus in terms of

the modular invariant j-function as [34]

3a(a3 + 8)

a3 − 1
= j(τ) . (4.2)

In the Landau-Ginzburg phase the relation (4.1) becomes the cubic superpotential of the

Landau-Ginzburg orbifold [14], where the orbifold group, Z3, acts according to eq. (2.12)

as

x` 7→ ωkx` , ω = e
2πi
3 , k ∈ Z3 . (4.3)

The aim of this section is to analyze D-brane monodromies acting upon the ‘long’

and ‘short’ branes, which are represented by matrix factorizations in the Landau-Ginzburg

phase of the cubic torus. As we will see the result carries the signature of the underlying

gauged linear σ-model, and we will exhibit the relationship of the monodromies in the

linear σ-model Kähler moduli space as depicted in figure 1 (a) to the monodromies in the

Teichmüller space of the two-dimensional torus.

4.1 Matrix factorizations of the cubic torus

The matrix factorizations of the cubic torus are discussed in detail in refs. [16, 17]. Here

we briefly review the matrix factorizations of the ‘long’ and the ‘short’ branes, as we will

study their monodromy transformations.

The matrix factorization of the three ‘long’ branes, La, of the cubic torus is described

in terms of the 3 × 3-matrix pair [16]

JL =





1
α1

G1
23

1
α3

G3
12

1
α2

G2
13

1
α2

G213
312

1
α1

G123
213

1
α3

G312
123

1
α3

G312
213

1
α2

G213
123

1
α1

G123
312



 EL =





α1 x1 α2 x3 α3 x2

α3 x3 α1 x2 α2 x1

α2 x2 α3 x1 α1 x3



 , (4.4)
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with the quadratic polynomials

Glmn
ijk = x2

i −
α2

l

αmαn
xjxk , Gi

jk = G
ijk
ijk = x2

i −
α2

i

αjαk
xjxk . (4.5)

The parameters, α`, are subject to the constraint

0 = α3
1 + α3

2 + α3
3 − 3 aα1α2α3 , (4.6)

and they encode the open-string modulus of the ‘long’ branes, which (projectively)

parametrize a continuous family of gauge-inequivalent matrix factorizations. The U(1)

representation (2.10) of the R-symmetry for the ‘long’ branes reads

ρL(θ) = Diag(13×3, e
iθ
3 13×3) . (4.7)

and we immediately obtain with eq. (2.15) the three equivariant representations

RLa

0 = ωak 13×3 , RLa

1 = ω(a+2)k 13×3 , (4.8)

with ω ≡ e
2πi
3 . The label, a, distinguishes the three ‘long’ branes, La, in the equivariant

orbit of the matrix factorization (4.4).

Similarly, the ‘short’ branes, Sa, of the cubic torus are given by the 2 × 2-matrix

factorization [16]

JS =

(

L1 F2

−L2 F1

)

, ES =

(

F1 −F2

L2 L1

)

, (4.9)

with the linear entries6

L1 = α3x1 − α1x3 , L2 = α3x2 − α2x3 , L3 = α2x1 − α1x2 . (4.10)

and the quadratic polynomials

F1 =
1

α3
x2

1 +
α1

α2
3

x1x3 −
α2

2

α1α
2
3

x2x3 −
α3

2α1α2
x2x3 −

1

2α1
x2

3 ,

F2 =
1

α3
x2

2 +
α2

α2
3

x2x3 −
α2

1

α2α
2
3

x1x3 −
α3

2α1α2
x1x3 −

1

2α2
x2

3 . (4.11)

Note that, as for the ‘long’ branes, the open-string parameters, α`, are constrained by

eq. (4.6), and they also projectively parametrize a continuous family of 2 × 2 factoriza-

tions (4.9). For the ‘short’ branes the U(1) R-symmetry representation becomes

ρL(θ) = Diag(12×2, e−
iθ
3 , e

iθ
3 ) , (4.12)

and we obtain with eq. (2.15) the three equivariant ‘short’ branes, Sa, distinguished by

their Z3 representations

RSa

0 = ωak 12×2 , RSa

1 = ωak Diag(ωk, ω2k) , (4.13)

6We introduce also the linear polynomial, L3, for later convenience.

– 12 –



J
H
E
P
0
2
(
2
0
0
7
)
0
0
6

with ω ≡ e
2πi
3 .

Finally we introduce the exceptional 4 × 4-matrix factorization, which contains the

pure D2-brane in its equivariant orbit [17]

JX =









0 −x1 −x2 −x3

x1 0 −x2
3 + ax1x2 x2

2 − ax1x3

x2 x2
3 − ax1x2 0 −x2

1 + ax2x3

x3 −x2
2 + ax1x3 x2

1 − ax2x3 0









, (4.14)

EX =









0 x2
1 − ax2x3 x2

2 − ax1x3 x2
3 − ax1x2

−x2
1 + ax2x3 0 x3 −x2

−x2
2 + ax1x3 −x3 0 x1

−x2
3 + ax1x2 x2 −x1 0









.

This matrix factorization does not depend on any open-string moduli, but it arises in

the limit where the 3 × 3 factorization (4.4) becomes singular as one of the open-string

parameters, α`, approaches zero [17]. The U(1) R-symmetry representation (2.10) is given

by

ρL(θ) = Diag(e
2iθ
3 , 13×3, e−

iθ
3 , e

iθ
3 13×3) , (4.15)

and the resulting three equivariant representations read

RXa

0 = ωak Diag(ωk, 13×3) , RXa

1 = ωak Diag(ωk, ω2k 13×3) , (4.16)

which label the branes, Xa, in their equivariant orbit.

4.2 Conifold monodromies of the ‘long’ and ‘short’ branes

Next we turn to the computation of the D-brane monodromies in the language of matrix

factorizations. As discussed in section 3, the monodromy about the Landau-Ginzburg

point arises canonically in the context of equivariant matrix factorizations whereas the

monodromy about the large radius point is computed indirectly with eq. (3.11) from the

Landau-Ginzburg and the conifold monodromy. Therefore we first analyze the monodromy

about the conifold point.

Following our recipe for the conifold monodromy outlined in section 3.3 we need to

determine the open-string states stretching between the transported brane and the branes,

X[n], which become massless at the conifold point. On the cubic torus we expect the pure

D2-brane to become massless.7 In terms of matrix factorizations the D2-brane is realized

as one of the branes in the equivariant orbit of the exceptional matrix factorization (4.15):

QX ≡ QX1 . (4.17)

The open-string states between the brane, X, which becomes massless at the conifold

point, and the ‘long’ and ‘short’ branes are depicted in the Quiver diagram figure 2,[17].

The explicit matrix expressions for these open-string states are collected in appendix A.

7Strictly speaking the massless brane at the conifold point depends on the path in the Kähler moduli

space, on which we approach the conifold point. Here we approach the conifold point directly without

encircling any other singular points.

– 13 –



J
H
E
P
0
2
(
2
0
0
7
)
0
0
6

S1

S2

S3[2]

L1

L2L3[2]

X

1X

ΩX

Ψ
k
(X,S2)

Ψ
k
(X,L2)

Φ(X,S3[2])

Φ(X,S1)

Φ
k
(X,L3[2])

Hom(X, · ) Ext1(X, · )

Figure 2: The quiver diagram displays the fermionic (solid red lines) and bosonic (dashed blue

lines) open-string states stretched between the D2-brane, X , and the branes, La and Sa, on the

cubic torus. The states, ΩX , and 1X , drawn in light colors, only appear in the open-string moduli

space of the ‘long’ brane, L1, where the brane, L1, is equal to the exceptional D2-brane, X , cf.

ref. [17].

First we compute the conifold monodromies of the ‘short’ branes. The quiver diagram

shows that between the the D2-brane, X, and the ‘short’ brane, S1, there is a single

bosonic open-string state, Φ(X,S1), explicitly given by the matrices (A.10). Thus applying

formula (3.8) for the conifold monodromy we obtain the factorization, QMC(S1), for the

transformed brane, MC(S1),

QMC(S1) =

(

QS1 Φ(X,S1)

0 QX̄

)

. (4.18)

Here we use the relation, Hom(X,S1) ' Ext1(X̄, S1), and by slight abuse of notation, we

denote both the bosonic and fermionic open-string states of Hom(X,S1) and Ext1(X̄, S1)

by Φ(X,S1).

We can further simplify the factorization (4.18) by applying a gauge transforma-

tion (2.2) and by subtracting trivial brane-anti-brane pairs (2.22). In order to keep track

of the grading and the equivariant label we also need to simultaneously transform the U(1)

R-symmetry representation (2.10) and the equivariant representation (2.15). After a few

steps of algebra we obtain that the matrix factorization, QMC(S1), is equivalent to the

factorization, QS3[2]. Thus we have the relation:

MC(S1) = S3[2] . (4.19)

Next we consider the monodromy of the ‘short’ brane, S2, about the conifold point.

There are two fermionic open-string states, Ψk
(X,S2)

, k = 1, 2, given in eqs. (A.7) to (A.8),

which contribute to the factorization, QMC(S2),

MC(S2) =





QS2 Ψ1
(X,S2)

Ψ2
(X,S2)

0 QX 0

0 0 QX



 . (4.20)
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Analogously as before this expression is further simplified by gauge transformations (2.2)

and by subtracting trivial brane-anti-brane pairs (2.22). This reduces the 10 × 10-matrix

factorization (4.20) to a 7 × 7-matrix factorization, which explicitly reads:

JMC(S2) =



























0 0
x2

α1α2α3

x1
α1α2α3

x3
α1α2α3

0 −
x1

α1α2α3

0
x1

α1α2α3
0

x2
α1α2α3

0
x3

α1α2α3
0

1
α2

G1
23 −

α2
1

α2
2

α3
G2

13 − 1
α2

G3
12 −

α2
α1α3

G1
23

1
α2

G2
13

α1
α2
3

G3
12 H1

1
α1

G2
13 − 1

α1
G3

12 −
α2
2

α2
1

α3
G1

23 −
α1

α2α3
G2

13
α2
α2
3

G3
12

1
α1

G1
23 H2

α1α2
α3
3

G3
12 −

α2
2

α1α2
3

G1
23 −

α2
1

α2α2
3

G2
13 − 1

α3
G3

12
1

α3
G1

23
1

α3
G2

13 H3

−
x3

α1α2
3

L1 −
x2

α1α2
3

L1 −
x1

α1α2
3

L1 0 0 0 − 1
α1

F2

−
x3

α2α2
3

L2 −
x2

α2α2
3

L2 −
x1

α2α2
3

L2 0 0 0 1
α2

F1



























,

EMC(S2) =

























α3
2 G1

23 α3
1 G2

13 α2 x1 x2 α1 0
α2
3

2α2
M2

α2
3

2α1
M1

α2
1α2

2
α3

G3
12 α1α2α3 G1

23 0 −α1 x3 0 α2
2 x3 −α2 M2

α1α2α3 G2
13

α2
1α2

2
α3

G3
12 −α2 x3 0 0 −α1 M1 α2

1 x3

α1α2α3 G1
23 α1α2α3 G2

13 0 0 −α3 x3 α1α2 x3 α2α3 x1

α1α2α3 G3
12 α3

2 G1
23 α2 x2 0 α3 x1 α2

1 x2 −α1 M3

α3
1 G2

13 α1α2α3 G3
12 0 α1 x1 α3 x2 −α2 M3 α2

2 x1

0 0 0 0 0 −α1 L2 α2 L1

























. (4.21)

Here we write the entries of the matrices in terms of the linear and quadratic terms (4.10)

and (4.11) and the polynomials

H1 =

(

α2

α3
−

α2
3

2α2
2

)

x2
1

α1
+

α1 x2
2

α2α3
−

α1 x2
3

α2
2

+
x1x2

α3
−

α3 x1x3

α2
2

−
α1α3 x2x3

2α3
2

,

H2 = −
α2 x2

1

α1α3
+

α2
3 x2

2

2α2
1α2

+
α2 x2

3

α2
1

−
x1x2

α3
−

(

α2

α2
3

−
α2α3

2α3
1

)

x1x3 +
α3 x2x3

α2
1

,

H3 =
α1 x2

1

α2
3

−
α2 x2

2

α2
3

+
x2

3

2α3
−

(

α2
3

2
+

α3
2

α3
−

α3
1

α3

)

x1x2

α1α2α3
+

α2
1 x1x3

α3
3

−
α2

2 x2x3

α3
3

,

M1 = α3 x1 + α1 x3 , M2 = α3 x2 + α2 x3 , M3 = α2 x1 + α1 x2 . (4.22)

The U(1) R-symmetry representation and the equivariant representation for the matrix

factorization (4.21) for the brane, MC(S2), becomes

ρMC(S2)(θ) = Diag(12×2, e−
2iθ
3 15×5, e−

iθ
3 17×7) , (4.23)

and

R
MC(S2)
0 = Diag(ω2k 12×2, ωk 15×5) , R

MC(S2)
1 = 17×7 . (4.24)

For the ‘short’ brane, S3[2], the quiver diagram figure 2 reveals one bosonic open-string

states, Φ(X,S3[2]). By shifting the grades along the lines of eq. (2.21) this bosonic open-

string state is mapped into the cohomology group, Ext1(X̄ [−2], S3). Then it describes a

fermionic open-string state stretching from the anti-D2-brane, X̄[−2], to the ‘short’ brane,

S3. Therefore the conifold monodromy acts upon the ‘short’ brane, S3, as

QMC(S3) =

(

QS3 Φ(X,S3[2])

0 QX̄[−2]

)

, (4.25)
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with the matrix (A.11) for Φ(X,S3[2]). We simplify this 6 × 6-matrix factorization with

an appropriate gauge transformation (2.2), and we subtract one trivial brane-anti-brane

pair (2.22) to arrive at the 5 × 5-matrix factorization:

JMC(S3) =















−α2L1 0 α1(α2
3x3−α2

2x2) α2
1α2x1−α3

3x2
α4
3

2α1
x1+

α3
3
2

x3−α2
2α3x2

α1L2 0 α1α2
2x2−α3

3x1 α2(α2
3x3−α2

1x1)
α4
3

2α2
x2+

α3
3
2

x3−α2
1α3x1

0 1
α1

G1
23 0 −α3x3 α2x2

0 1
α2

G2
13 α3x3 0 −α1x1

0 1
α3

G3
12 −α2x2 α1x1 0















,

EMC(S3) =















− 1
α2

F1
1

α1
F2 K1 K2 K3

0 0 α1x1 α2x2 α3x3

−
α1x1
α2α4

3
L2 −

x1
α4
3
L1 −

α1x1
α3
3

L2
1

α3
G3

12+
α1
α2
3
G1

13 − 1
α2

G2
13−

α1α2
α3
3

G1
12

−
x2
α4
3

L2 −
α2x2
α1α4

3
L1 − 1

α3
G3

12−
α2
α2
3

G2
23

α2x2
α3
3

L1
1

α1
G1

23+
α1α2

α3
3

G2
12

−
x3

α2α3
3

L2 −
x3

α1α3
3

L1
1

α2
G2

13+
α2
α2
3

G3
23 − 1

α1
G1

23−
α1
α2
3

G3
13 −

x3
α2
3
L3















.(4.26)

The entries of this matrix factorization are abbreviated by the polynomials (4.10), (4.11)

and (4.5) and by

K1 = −
α3

3 x2
2

2α1α
2
2

−
α3 x2

3

2α1
+

α1 x1x2

α2
−

α2
3 x1x3

2α2
1

+

(

α2
2

α3
−

α2
3

2α2

)

x2x3

α1
,

K2 = −
α3

3 x2
1

2α2
1α2

−
α3 x2

3

2α2
+

α2 x1x2

α1
+

(

α2
1

α3
−

α2
3

2α1

)

x1x3

α2
−

α2
3 x2x3

2α2
2

,

K3 =
α1 x2

1

α3
+

α2 x2
2

α3
−

α2
3 x1x2

α1α2
−

α3 x1x3

2α1
−

α3 x2x3

2α2
. (4.27)

The U(1) R-symmetry representation of the transformed ‘short’ brane, MC(S3), which is

associated to the simplified factorization (4.26), is given by

ρMC(S3)(θ) = Diag(15×5, e−
iθ
3 , e

iθ
3 , e−

iθ
3 13×3) , (4.28)

whereas the Z3-equivariant representation becomes

R
MC(S2)
0 = 15×5 , R

MC(S2)
1 = Diag(ωk, ω2k, ωk 13×3) . (4.29)

Now we turn to the analysis of the monodromy about the conifold point acting on the

three equivariant ‘long’ branes. The quiver diagram figure 2 shows again the open-string

spectrum, which is relevant to evaluate the conifold monodromy for the ‘long’ branes. The

matrix representations of these open-string states are collected in appendix A.

First we consider the ‘long’ brane, L1. At a generic point in the open-string moduli

space there are no open-string states stretching between the pure D2-brane, X, and the

‘long’ brane, L1. Therefore the monodromy about the conifold point leaves the ‘long’ brane,

L1, simply invariant:

MC(L1) = L1 . (4.30)

However, if we choose the open-string modulus such that the factorization (4.4) of L1

becomes singular, i.e. if one of the open-string parameters, α`, in the factorization (4.4)
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approaches zero, then, as discussed in ref. [17], the factorization of the ‘long’ brane turns

into the exceptional matrix factorization (4.15) of the brane, X1. Hence at this exceptional

point in the open-string moduli space the ‘long’ brane, L1, coincides with the pure D2-

brane, X1, and as a consequence the (bosonic) identity operator, 1X , and its fermionic

Serre dual operator, ΩX , appear in the open-string spectrum (cf. figure 2).8 Thus at this

point in the open-string moduli space the conifold monodromy acts upon the ‘long’ brane,

L1 ≡ X1, as

QMC(X1) =





QX ΩX 1X

0 QX 0

0 0 QX̄



 . (4.31)

This factorization actually simplifies to again the factorization, QX1 , by applying a gauge

transformations (2.2), which allows us to drop eight trivial brane-anti-brane pairs (2.22).

Thus at all points in the open-string moduli space the relation (4.30) holds because also

the exceptional ‘long’ brane, X1, undergoes the conifold monodromy unchanged.

The open-string spectrum between the D2-brane, X, and the ‘long’ brane, L2, consists

for all open-string moduli of three fermionic open-string states, Ψk
(X,L2), k = 1, 2, 3 (cf.

figure 2), given in eqs. (A.1) to (A.3). Therefore with eq. (3.8) we find for the conifold

monodromy of the brane, L2, the factorization

QMC(L2) =









QL2 Ψ1
(X,L2) Ψ2

(X,L2) Ψ3
(X,L2)

0 QX 0 0

0 0 QX 0

0 0 0 QX









. (4.32)

Analogously to the previous examples due to gauge transformations (2.2) and due to equiv-

alences arising from trivial brane-anti-brane pairs (2.22) this 15 × 15-matrix factorization

simplifies to a 9 × 9-matrix factorization

JMC(L2)=









































x3 x1 x2 0 0 0 0 0 0

0 0 0 x2 x3 x1 0 0 0

0 0 0 0 0 0 x1 x2 x3

0
G2

13
α1

−

G1
23

α1

α3G2
13

α1α2
0 −

G3
12

α3
−

α3G1
23

α2
1

α2G3
12

α1α3
0

−

G2
13

α2
0

G3
12

α2
−

G1
23

α1

α1G3
12

α2α3
0 0 −

α1G2
13

α2
2

α3G1
23

α1α2

G1
23

α3
−

G3
12

α3
0 0 −

G2
13

α2
−

α3G1
23

α2
1

α1G2
13

α2α3
0 −

α2G3
12

α2
3

x1x2
α3

α2x1x3
α2
1

α3x2
1

α1α2

α3x1x3
α2
1

x2
1

α2

α2x1x2
α1α3

α2
3x2

1
α2
1

α2
−

T3
α1

x2
2

α1

α1x2
2

α2α3

x2x3
α1

α3x1x2
α2
2

α3x2x3
α1α2

α1x1x2
α2
2

x2
2

α3

x2
3

α2

α2
1x2

2
α2
2

α3
−

T1
α2

α1x2x3
α2
3

α2x2
3

α1α3

x1x3
α2

x2
3

α1

α1x1x3
α2α3

α2x2x3
α2
3

−
T2
α3

x2
1

α3

α2
2x2

3
α1α2

3









































,

8Note that as the bosonic and the fermionic open-string states arise simultaneously, the index of the

open-string spectrum remains invariant over the open-string moduli space.
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EMC(L2)=

































G3
12 −

α2
α1

G1
23 −

α1
α2

G2
13 0 −α2x2 α3x1 0 0 0

G1
23

α3
α2

G2
13 −

α2
α3

G3
12 α1x2 0 −α3x3 0 0 0

G2
13 −

α1
α3

G3
12 −

α3
α1

G1
23 −α1x1 α2x3 0 0 0 0

0 G2
13 0 0 −α1x1 α2x3 0 −α3x1 α1x3

0 G3
12 0 α3x1 0 −α2x2 α2x1 0 −α1x2

0 G1
23 0 −α3x3 α1x2 0 −α2x3 α3x2 0

0 0 G1
23 0 0 0 0 α2x3 −α3x2

0 0 G2
13 0 0 0 −α1x3 0 α3x1

0 0 G3
12 0 0 0 α1x2 −α2x1 0

































. (4.33)

In these matrices we introduce in addition to the polynomials (4.5) the quadratics

T1 = x2
1 −

α3
1 + α3

2

α1α2α3
x2x3 , T2 = x2

2 −
α3

2 + α3
3

α1α2α3
x1x3 , T3 = x2

3 −
α3

1 + α3
3

α1α2α3
x1x2 . (4.34)

The U(1) R-symmetry representation for the matrix factorization (4.33) becomes

ρMC(L2) = Diag(13×3, e−
2iθ
3 16×6, e−

iθ
3 19×9) , (4.35)

whereas the Z3 equivariant representation turns out to be

R
MC(L2)
0 = Diag(ω2k 13×3, ωk 16×6) , R

MC(L2)
1 = 19×9 . (4.36)

Finally let us turn to the conifold monodromy acting on the remaining ‘long’ brane, L3.

From the Quiver diagram figure 2 we extract that there are three bosonic open-string states,

Φk
(X,L3[2]), k = 1, 2, 3, given by eqs. (A.4) to (A.6). Similarly to the analysis of the ‘short’

brane, S3, using eq. (2.21) we map these bosonic open-string states to fermionic open-string

states stretching between the anti-D2-brane, X̄[−2], and the ‘long’ brane, L3. Then, with

slight abuse of notation for these fermionic states, we write the conifold monodromy action

upon the brane, L3, as

QMC(L3) =









QL3 Φ1
(X,L3[2])

Φ2
(X,L3[2]) Φ3

(X,L3[2])

0 QX̄[−2] 0 0

0 0 QX̄[−2] 0

0 0 0 QX̄[−2]









. (4.37)

With the help of gauge transformations and factorization equivalences this 15× 15-matrix

factorization reduces to a 12 × 12-matrix factorization, which in terms of the quadratic

polynomials (4.5) and

G̃1
23 = G1

23 −
α2

2

α1α3
x2x3 , G̃2

13 = G2
13 −

α2
3

α1α2
x1x2 , G̃3

12 = G3
12 −

α2
1

α2α3
x1x2 , (4.38)
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can be written as:

JMC(L3) =




















































0 0 0 −
α2x3
α1α3

x2
α2

0 0
α3x1
α1α2

x3
α3

x1
α1

0 −
α1x2
α2α3

0 0 0
x1
α3

0 −
α3x2
α1α2

−
α1x3
α2α3

x2
α1

0 0 −
α2x1
α1α3

x3
α2

0 0 0 −
α1x2
α2α3

0
x3
α1

x1
α2

−
α2x3
α1α3

0 0
x2
α3

−
α3x1
α1α2

G1
23 0 −

α2
2G3

12
α2
3

0 −x3 x2 0 0 0 0 0 0

G2
13 0 −

α2G1
23

α1
x3 0 −x1 0 0 0 0 0 0

G3
12 0 −

α2G2
13

α3
−x2 x1 0 0 0 0 0 0 0

−
α2G3

12
α1

G1
23 0 0 0 0 0 −x3 x2 0 0 0

−

α2
3G1

23
α2
1

G2
13 0 0 0 0 x3 0 −x1 0 0 0

−

α3G2
13

α2
G3

12 0 0 0 0 −x2 x1 0 0 0 0

0 −

α1G3
12

α3
G1

23 0 0 0 0 0 0 0 −x3 x2

0 −

α3G1
23

α2
G2

13 0 0 0 0 0 0 x3 0 −x1

0 −

α2
1G2

13
α2
2

G3
12 0 0 0 0 0 0 −x2 x1 0





















































,

EMC(L3) = (4.39)





















































0 0 0 x1 x2 x3 0 0 0 0 0 0

0 0 0 0 0 0 x1 x2 x3 0 0 0

0 0 0 0 0 0 0 0 0 x1 x2 x3

α2x1x2 α3x2
1 α1x1x3 0 G3

12 −x2
2 −

α2x1x3
α3

0 0 0 −

α1x2
2

α3

α2G1
23

α1

α2x2
2 α3x1x2 α1x2x3 −G3

12 0 G̃1
23 −

α2x2x3
α3

0 0
α1G2

13
α3

−

α2
2x2x3

α2
3

−

α2
2G3

12
α2
3

α2x2x3 α3x1x3 α1x2
3 G2

13 −G1
23 −

α2
2x2

3
α1α3

−

α2x2
3

α3
0 0 −

α2G1
23

α1
−

α2x1x2
α1

0

α3x1x3 α1x1x2 α2x2
1 0 −

α3G2
13

α2
−

α3x2x3
α2

−

α2
3x2

1
α1α2

G3
12 −G2

13 0 −

α3x2
1

α1
0

α3x2x3 α1x2
2 α2x1x2 −

α3G2
13

α2
0 −

α2x2
3

α1
−x2

3 0 G1
23 0 −

α3x1x2
α1

0

α3x2
3 α1x2x3 α2x1x3 −

α2
3G1

23
α2
1

α2G3
12

α1
−

α2
3x1x3

α2
1

G̃2
13 −G1

23 0 0 −
α3x1x3

α1
0

α1x2
1 α2x1x3 α3x1x2 0 0 −

α1x1x2
α2

−

α2
1x1x2
α2
2

−

α2
1G2

13
α2
2

α3G1
23

α2
0 G̃3

12 −G2
13

α1x1x2 α2x2x3 α3x2
2 0 0 −

α1x2
2

α2
−

α1x1x3
α3

0 −

α1G3
12

α3
−G3

12 −

α2
1x2

2
α2α3

G1
23

α1x1x3 α2x2
3 α3x2x3 0 0 −

α1x2x3
α2

−

α3x2
1

α2

α1G3
12

α3
0 G2

13 −x2
1 0





















































.

Furthermore, the U(1) R-symmetry representation reads

ρMC(L3) = Diag(112×12, e
iθ
3 13×3, e−

iθ
3 19×9) , (4.40)

and the Z3 equivariant representation is given by

R
MC(L3)
0 = 112×12 , R

MC(L3)
1 = Diag(ω2k 13×3, ωk 19×9) . (4.41)

This completes the calculation of the conifold monodromy acting on the ‘long’ and

‘short’ branes. In the next section these results serve as our starting point to analyze the

remaining monodromies and in discussing global properties of the Kähler moduli space.
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Brane Pa chLR(Pa) MC(Pa) chLR(MC(Pa)) M−1
LR(Pa) chLR(M−1

LR(Pa))

L1 (1, 0) L1 (1, 0) L2 (1,−3)

L2 (1,−3) MC(L2) (4,−3) M−1
LR(L2) (1,−6)

L3 (−2, 3) MC(L3) (−5, 3) M−1
LR(L3) (−2, 9)

S1 (0, 1) S3[2] (−1, 1) S1 (0, 1)

S2 (1,−2) MC(S2) (3,−2) M−1
LR(S2) (1,−5)

S3 (−1, 1) MC(S3) (−2, 1) M−1
LR(S3) (−1, 4)

Table 1: Conifold and large radius monodromies acting on the ‘long’ and ‘short’ branes, La and

Sa, of the two-dimensional torus together with their RR charges.

4.3 D-brane monodromies of the ‘long’ and ‘short’ branes

With the analysis of the monodromy about the conifold point performed in the previ-

ous section we can now discuss the remaining Kähler moduli space monodromies. The

monodromy about the Landau-Ginzburg point from the perspective of equivariant matrix

factorizations is straight forward as it simply shifts the equivariant label of the brane. In

practice this amounts to multiplying the equivariant Z3 representation of the factorization

with ω ≡ e
2πi
3 along the lines of eq. (2.16). Hence the Landau-Ginzburg monodromy acts

upon the defining data of the brane, P , simply by

MLG :





QP

ρP

RP (k)



 7→





QMLG(P )

ρMLG(P )

RMLG(P )(k)



 =





QP

ρP

ωkRP (k)



 . (4.42)

Here P represents any equivariant brane, in particular any of the ‘long’ and ‘short’ branes,

Sa and La.

Along the lines of eq. (3.11) we combine the conifold and the Landau-Ginzburg mon-

odromy to deduce the action of the inverse large radius monodromy.9 Thus together with

eq. (4.42) we obtain for the inverse large radius monodromy of the brane, P ,

M−1
LR :





QP

ρP

RP (k)



 7→







QM−1
LR(P )

ρM−1
LR(P )

RM−1
LR(P )(k)






=





QMC(P )

ρMC(P )

ωkRMCP (k)



 . (4.43)

The Landau-Ginzburg monodromy and the large radius monodromy does not introduce

new matrix factorizations, Q, but instead modifies the equivariant representation, R, of

the branes. The transformation behavior of the ‘long’ and ‘short’ branes is summarized in

table 1.

In this table we have also included the large radius RR charges. These charges are

computed by a set of disk correlators, where we insert a basis of RR ground states in

the bulk and where the brane data enters in the boundary condition of the disk. In

9In order to get the large radius monodromy one needs to compute according to eq. (3.11) the inverse

conifold monodromy. In this work we do not present this computation explicitly as it does not lead to

further insight compared to the computation of the inverse large radius monodromy.
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the context of matrix factorizations these disk correlators are computed by the residue

formula [47, 48, 33]

〈l;α|P 〉 =
1

rl!
ResWl

[

φα
l Str

(

(RP )l(∂QP,l)
∧rl

)]

. (4.44)

Here |P 〉 is the boundary state of the brane, P , and |l;α〉 denotes a basis of RR ground

states, which are labeled by the twisted sectors, l, whereas the label, α, distinguishes

further the RR ground states in each twisted sector. The integer, rl, denotes the number

of untwisted fields, x`, in each twisted sector, l. The details of the disk correlator are

explained in ref. [33]. For us, however, it is important to note that all correlators (4.44)

for rl 6= 0 vanish for both the cubic torus and the quintic Calabi-Yau hypersurface. Hence

we only need to evaluate the correlators with rl = 0, for which the residue formula reduces

to [33]

〈l; 0|P 〉 = Str
[

(RP )l
]

. (4.45)

For the cubic superpotential (4.1) all untwisted fields vanish, i.e. rl = 0, in the sectors,

l = 1, 2, and hence the only potentially non-vanishing disk correlators on the cubic torus

are 〈1; 0|P 〉 and 〈2, 0|P 〉. Thus we readily obtain the RR charge vector, chLG(P ),

chLG(P ) = (〈1; 0|P 〉 , 〈2; 0|P 〉) =
(

Str
[

RP
]

, Str
[

(RP )2
])

. (4.46)

Note that these charges are given in the basis which arises naturally at the Landau-

Ginzburg point in the Kähler moduli space. However, in order to gain some geometric

intuition we want to relate these charges to the large radius charge vector, chLR(P ),

chLR(P ) = (r, c1) . (4.47)

Here, r is the D2-brane charge and c1 is the D0-brane charge. Geometrically these two

quantities correspond to the rank and the first Chern class of the bundle date associated

in the large radius regime to the brane, P . The two charge vectors, chLG(P ) and chLR(P ),

are related by the 2 × 2-transformation matrix, Ξ,

chLR(P ) = chLG(P ) · Ξ . (4.48)

Thus in order to calculate the large radius charges of any equivariant factorization,

we need first to determine the matrix, Ξ. We know that the pure D2-brane in the large

radius regime is represented by the brane, X1, and hence has the charge, chLR(X1) =

(1, 0). Furthermore, the matrix factorization, X2, is in the same equivariant orbit and has

according to refs. [16, 17] the large radius charges, chLR(X2) = (1,−3). By comparing with

the Landau-Ginzburg charges (4.45),

chLG(X1) =
(

3 − 3ω2, 3 − 3ω
)

, chLG(X2) =
(

−3ω + 3ω2, 3ω − 3ω2
)

, (4.49)

we readily determine the transformation matrix, Ξ, to be

Ξ =

( 1
3(1−ω)

ω2

3
1

3(1−ω2)
− 1

3(ω+1)

)

. (4.50)
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With the explicit expression for the transformation matrix, Ξ, we can now compute with

eqs. (4.46) and (4.48) the large radius charges for all the factorizations collected in table 1.

Let us know take a closer look at the transformation behavior of the individual branes

listed in table 1. In the previous section we have already seen that the ‘long’ brane, L1, is

not affected by the conifold monodromy. Therefore the large radius monodromy maps the

‘long’ brane, L1, to the ‘long’ brane, L2.

The ‘short’ brane, S1, is the pure D0-brane in agreement with its large radius

RR charges, and its open-string modulus parametrizes the position of the D0-brane on

the two-dimensional torus [16, 17]. With respect to the large radius monodromy the brane,

S1, remains invariant. This is precisely the transformation behavior we expect because the

large radius monodromy corresponds to an integer shift of the B-field. But on the point-

like worldvolume of the brane the B-field has no support and therefore the D0-brane, S1,

remains unchanged. Note also the interplay of gradings among the different monodromies.

The conifold monodromy shifts the grade of S1 by two to S3[2] (cf. eq. (4.19)), which is

again compensated by yet another shift (2.19) of −2 resulting from the Landau-Ginzburg

monodromy. Hence the inverse large radius monodromy (3.11), as arising from the com-

position of the other two monodromies, does not modify the grading of the D0-brane,

S1.

For all the branes listed in table 1 we observe that the large radius monodromy trans-

forms the large radius RR charges as

⊗L−3 : (r, c1) → (r, c1 − 3r) . (4.51)

This transformation behavior is natural from the gauged linear σ-model point of view, in

which the large radius monodromy shifts the B-field of the cubic torus by the two form,

Θ, induced from the generator of H2(CP
2, Z) of the ambient space, CP

2. Note, however,

that the generator of H2(T 2, Z) is the two-form, 1
3Θ, instead of the induced two-from, Θ.

Therefore the large radius monodromy in the linear σ-model corresponds to tensoring with

the line bundle, L3, where L is the line bundle of the torus with first Chern number one.

Hence, encircling the inverse large radius monodromy is associated with the tensor product

by the bundle, L−3, which generates the transformation (4.51) for the RR charges.

Although the gauged linear σ-model favors a shift of the B-field induced from the

ambient space, we would expect that the large radius monodromy of the two-dimensional

torus is generated by tensoring with the line bundle, L. However, the moduli space,

as analyzed from the gauged linear σ-model, does not reveal the whole structure of the

Teichmüller space of the two-dimensional torus. The relationship to the Teichmüller moduli

space is further analyzed in the next section.

4.4 Teichmüller and gauge linear σ-model moduli space of the cubic torus

The Kähler moduli space of the two-dimensional torus is parametrized by the fundamental

domain of its Teichmüller space (cf. figure3 (a)). Due to the identifications in the funda-

mental domain the Teichmüller space has three singularities, namely a Z4-orbifold point,

P4, a Z6-orbifold point, P6, and the point, P∞, of infinite order [34].
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(a) (b)P∞ P∞ P∞P∞

P∞

P4 P4 P4P4

P6P6 P6P6P6P6

LR

C

Figure 3: (a) The figure shows the fundamental domain of the Teichmüller moduli space. Its

boundaries are identified according to the black arrows. These identifications generate the three

singularities, P4, P6, P∞, indicated in red. (b) Here we illustrate the Kähler moduli space of the

cubic torus as seen from the gauged linear σ-model, which is a fourfold cover of the fundamen-

tal domain. In blue we show the path associated to the large radius (LR) and the conifold (C)

monodromy in the gauged linear σ-model.

Here we are interested how these singularities generate monodromies acting upon the

RR charges of the toroidal B-branes. The monodromies, however, are most easily deter-

mined on the mirror torus, where the B-branes with RR charges, (r, c1), are mapped to

A-branes realized as special Lagrangian submanifolds with winding numbers, (p, q) [49].

On the mirror side the monodromies are generated by encircling the corresponding sin-

gularities in the complex structure moduli space, which, for the torus, is identical to the

Teichmüller space depicted in figure 3 (a). Thus we are able to determine geometrically

the effect of the monodromies by simply tracing the fate of the winding numbers as we

encircle the singularities in the complex structure moduli space, and we obtain

P∞ =

(

1 −1

0 1

)

, P4 =

(

0 1

−1 0

)

, P6 =

(

0 −1

1 1

)

, (4.52)

with P 4
4 ≡ 12×2 and P 6

6 ≡ 12×2.

Finally we want to make the connection to the gauged linear σ-model Kähler moduli

space. In the previous section we have shown that the large radius monodromy shifts

the first Chern number by multiples of three. Hence, so as to generate the large radius

monodromy of the cubic torus we should encircle three times the singularity, P∞, in the

Teichmüller space. Furthermore, taking again a look at table 1 we observe that the conifold

monodromy shifts the rank, r → r − c1, by the first Chern class, c1. Thus we should also

identify the conifold monodromy with the singularity, P∞. However, compared to the large

radius monodromy the roles of the rank, r, and the Chern number, c1, are interchanged,

and hence we identify the conifold point with the singularity, P∞, which in the covering

space of the Teichmüller space is S-dual to the large radius singularity, P∞. To summarize

we can view the Kähler moduli space of the gauged linear σ-model of the cubic torus as the
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fourfold cover of the Teichmüller space depicted in figure 3 (b), where three fundamental

domains are related by translations and where one fundamental domain is S-dual to one of

the three others.

Let us now qualitatively relate the Teichmüller monodromies to the linear σ-model

monodromies. In figure 3 (b) the paths around the large radius and the conifold monodromy

are also drawn and they gives rise to the relations MLR = P 3
∞ and MC = P4P∞P−1

4 .

The Landau-Ginzburg monodromy from the linear σ-model point of view must then be

comprised of the monodromies around the singularities which are traversed if we deform

in figure 3 (b) the conifold contour into the large radius contour. This procedure yields

MLG = (P4P6)
3P 2

4 P6P
−1
4 . Using the matrices (4.52) we explicitly obtain:

MLR =

(

1 −3

0 1

)

, MC =

(

1 0

1 1

)

, MLG =

(

−2 3

−1 1

)

. (4.53)

It is easy to check that M3
LG ≡ 12×2 and that the matrices reproduce the RR charge

transformations listed table 1.

5. D-brane monodromies of the quintic Calabi-Yau hypersurface

The quintic Calabi-Yau threefold serves as our second example in studying D-brane mon-

odromies. At the large radius point the quintic hypersurface is realized as the zero locus

of the quintic polynomial,

W (x) =

5
∑

i=1

x5
i − 5ψ x1x2x3x4x5 , (5.1)

in the complex four-dimensional projective space, CP
4. The 101 complex structure defor-

mations of the quintic threefold are captured by homogeneous deformations of the poly-

nomial (5.1). For simplicity we exhibit here only the dependence on a single complex

structure modulus expressed in the algebraic variable, ψ.

The Kähler moduli space of the quintic Calabi-Yau threefold is complex one-

dimensional and has the structure alluded in section 3.1. In the Landau-Ginzburg phase of

the Kähler moduli space the degree five polynomial (5.1) becomes the superpotential of the

Landau-Ginzburg orbifold [14], where the Z5 orbifold group acts on the Landau-Ginzburg

chiral fields, x`, as

x` 7→ ωkx` , ω ≡ e
2πi
5 , k ∈ Z5 . (5.2)

Thus at the Landau-Ginzburg point of the quintic threefold we adequately represent

branes in terms of Z5-equivariant matrix factorizations of the quintic polynomial (5.1).

5.1 Matrix factorization of the quintic threefold

First we introduce the canonical matrix factorization of the quintic superpotential (5.1).

The homogeneous polynomial, W , factors as W = 1
5

∑

` x` ∂`W , which directly yields the

canonical matrix factorization, QX ,

QX =
5

∑

`=1

(

x`π` +
1

5
∂`Wπ̄`

)

. (5.3)
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Here π` and π̄`, ` = 1, . . . , 5, are five pairs of boundary fermions, which obey

{π`, π̄k} = δ`k , {π`, πk} = {π̄`, π̄k} = 0 . (5.4)

These fermions are explicitly realized as a 32 × 32-matrix representation of this Clifford

algebra, and they allow us to express the linear involution, σX , of the canonical matrix

factorization as

σX =
5

∏

`=1

(π̄` + π`) (π̄` − π`) . (5.5)

The matrix, σX , is the chirality matrix of the Clifford algebra. If we choose a matrix

representation for the Clifford algebra (5.3) such that the involution, σX , is block diagonal,

i.e. σX = Diag(116×16,−116×16), then the 32 × 32 matrix, QX , decomposes into 16 × 16

blocks according to eq. (2.6). We arrive at a 16 × 16-matrix factorization in terms of the

matrix pair, (JX , EX).10

The next task is to determine the U(1) R-symmetry representation for the canonical

factorization. As the matrix factorization, QX , and the chiral fields, x`, have R charges

+1 and +2
5 the boundary fermions, π` and π̄`, carry R charges, +3

5 and −3
5 , respectively.

Therefore along the lines of eq. (2.10) the representation, ρX(θ), must act on the boundary

fermions as

ρX(θ)π` ρ−1
X (θ) = e

3iθ
5 π` , ρX(θ) π̄` ρ−1

X (θ) = e−
3iθ
5 π̄` . (5.6)

Up to an overall phase factor these conditions determine the U(1) R-symmetry represen-

tation, ρX , to be

ρX(θ) = e
3
5
iθ(

P

` π`π̄`+132×32) . (5.7)

Then with eq. (2.15) we readily deduce the five equivariant Z5 representations, RXa , for the

five branes, Xa, a = 1, . . . , 5, in the equivariant orbit of the canonical factorization (5.3)

RXa(k) = ωak ω
3
5
k(

P

` π`π̄`+132×32) σk
X . (5.8)

At the Gepner point in the complex structure moduli space the canonical matrix factoriza-

tion describes the L = 0 Recknagel-Schomerus branes [11]. One of these corresponds to the

pure D6-brane [1], and hence also at a generic point in the complex structure moduli space

the canonical matrix factorization contains the pure D6-brane in its equivariant orbit.

Next we construct the matrix factorization of the quintic, which contains the D0-

brane in its equivariant orbit. Geometrically we describe the locus of the D0-brane as the

intersection point of four linear equations, Ls, in the ambient projective space, CP
4,

Ls = α5xs − αsx5 , s = 1, . . . , 4 . (5.9)

Generically the intersection of these four lines in CP
4 is not located on the hypersurface,

W = 0. If, however, we constrain the parameters, α`, to also obey the quintic hypersurface

equation

0 =

5
∑

`=1

α5
` − 5ψ α1α2α3α4α5 , (5.10)

10Note that also the exceptional factorization (4.15) of the cubic torus is the canonical factorization (5.3)

of the homogeneous cubic Landau-Ginzburg superpotential (4.1) with three boundary fermions [17, 21].
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the intersection point is tuned to lie on the quintic hypersurface. Then the Nullstellensatz

ensures that for all parameters, α`, fulfilling eq (5.10), we can find four quartic polynomials,

Fs, s = 1, . . . , 4, such that [19]

W =

4
∑

s=1

Ls Fs . (5.11)

A view steps of algebra reveal that a possible choice for the quartics, Fs, is given by

Fs =
1

α5
5

4
∑

k=0

(αsx5)
4−k(α5xs)

k −
5ψ

αs
5αs

(

s
∏

k=1

αk

)(

4
∏

k=s

xk+1

)

xs−1
5 . (5.12)

In the final step we use the factorization (5.11) of the Landau-Ginzburg superpotential

to construct again with boundary fermions the matrix factorization, which is associated to

the D0-brane at the intersection of the four complex lines (5.9)

QS =

4
∑

s=1

(

Lsζs + Fsζ̄s

)

, σS = −

4
∏

s=1

(

ζ̄s + ζs

) (

ζ̄s − ζs

)

. (5.13)

The four pairs of boundary fermions, ζs and ζ̄s, s = 1, . . . , 4, obey the Clifford algebra

{ζs, ζ̄t} = δst , {ζs, ζt} = {ζ̄s, ζ̄t} = 0 , (5.14)

and we represent these fermions by 16 × 16-matrices. Hence choosing a gauge, where σS

becomes σS = Diag(18×8,−18×8), we obtain a 8 × 8-matrix factorization of the matrix

pair, (JS , ES).

To determine the U(1) R-symmetry representation, ρS , and the Z5-equivariant repre-

sentation, RSa, we repeat the construction applied to the canonical factorization and we

arrive at

ρS(θ) = e
3
5
iθ(

P

s ζsζ̄s+116×16) , (5.15)

and with eq. (2.15) at

RSa(k) = ωak ω
3
5
k(

P

s ζsζ̄s+116×16) σk
S . (5.16)

So far we have motivated the matrix factorization, QS , by geometrically building a D0-

brane. The resulting matrix factorization, however, models an orbit of equivariant branes

in the non-geometric Landau-Ginzburg phase. Hence it is not obvious that one of the

branes, Sa, does indeed correspond to the D0-brane. However, by construction the branes,

Sa, have an open-string modulus parametrized by the parameters, α`, which are subject

to the constraint (5.10). A closer look reveals that the open-string variables, α`, are really

projective coordinates, because a homogenous rescaling, α` → λα`, merely generates a

gauge transformation (2.2) of the factorization, QS . Hence we observe that the open-string

moduli space of the branes, Sa, is the quintic threefold, which is the correct open-string

moduli space of a D0-brane. In the next section we will present further arguments in favor

of this claim.
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X1

X2

X3

X

X4[2]

X5[2]
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1010

ΩX 1X

1 1

Ψ
k
(X,X2)

Φ
k,l

(X,X3)
Ψ

k,l,m

(X,X4[2])

Φ
k,l,m,n

(X,X5[2])

Hom(X, · )

Ext2(X, · )

Ext1(X, · )

Ext3(X, · )

Figure 4: The quiver diagram displays the fermionic (red lines) and bosonic (blue lines) open

string-states stretching between the D6-brane, X , and the other branes, Xa, in the same equivariant

orbit. The grades of the open-string states are distinguished by different kinds of dashed lines.

5.2 D-brane monodromies on the quintic threefold

In this section we analyze the monodromies about the singularities in the Kähler moduli

space of the quintic threefold acting on the matrix factorizations, QX and QS . Since this

analysis is similar to the discussion presented in sections 4.2 and 4.3 we can be brief here.

We have argued in the previous section that one of the branes, Xa, is the D6-brane of

the quintic, which we choose to denote by11

QX ≡ QX1 . (5.17)

At the conifold point in the Kähler moduli space the branes, X[n], become massless [40],

and hence the factorization, QX , triggers the transformation (3.8) generated by the mon-

odromy about the conifold point.

First we determine the D-brane monodromies associated to the equivariant branes of

the canonical matrix factorization, QX . In order to compute the conifold monodromy

we calculate the relevant open-string states stretching between the D6-brane, X, and the

transported branes, Xa. The resulting cohomology elements are summarized in the quiver

diagram figure 4.

The bosonic boundary preserving operator, 1X , is simply the 32 × 32-identity matrix.

The remaining cohomology elements can directly be expressed with the boundary fermions,

πi and π̄j. In particular all the open-string states depicted in the quiver diagram are

generated by the fermionic open-string states

Ψk
(Xa,Xa+1)

= πk − x3
kπ̄k + ψ xk+1xk+2xk+3π̄k+4 , k = 1, . . . , 5 . (5.18)

The index of the variable, xk, and the boundary fermion, π̄k, should be thought of taking

values modulo 5. Note that these cohomology elements cannot be exact since the associated

11Since only relative grades [35, 36], and hence relative equivariant labels, of the branes are physically

relevant we are free to choose the D6-brane in the equivariant orbit of the matrix factorization, QX . This

fixes now the grades and equivariant labels of all the other branes.
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matrices carry constant entries arising from the boundary fermion, πk. The boundary

changing operators (5.18) yield for a = 1 the five fermionic open-string states, Ψk
(X,X2)

,

and give rise to the other states shown in figure 4:

Φk,l
(X,X3) = Ψ

[k
(X,X2)Ψ

l]
(X2,X3) ,

Ψk,l,m
(X,X4[2])

= Ψ
[k
(X,X2)Ψ

l
(X2,X3)Ψ

m]
(X3,X4)

,

Φk,l,m,n
(X,X5[2])

= Ψ
[k
(X,X2)Ψ

l
(X2,X3)Ψ

m
(X3,X4)

Ψ
n]
(X4,X5)

,

ΩX = Ψ1
(X,X2) · · ·Ψ

5
(X5,X) . (5.19)

Here the brackets, [. . .], indicate that the products are anti-symmetrized.

Now we have assembled all the ingredients to compute the conifold monodromy and

to eventually deduce the inverse large radius monodromy of the branes, Xa, in the orbit

of the canonical matrix factorization. For the conifold monodromy of the brane, X1, we

employ again eq. (3.8) and obtain

MC(X1) =





QX1 1X ΩX

0 QX 0

0 0 QX[−2]



 . (5.20)

Due to the thirty-two constant entries arising from the operator, 1X , we can remove after

a gauge transformation (2.2) thirty-two trivial 2 × 2-matrix blocks (2.22) and we obtain

the simple relation

MC(X1) = X1[−2] . (5.21)

Thus the conifold monodromy acting on the brane, X1, neither changes its matrix factor-

ization nor modifies its equivariant label, but merely shifts its grade by −2. This shift of the

D6-brane grade with respect to conifold monodromy has also been observed in ref. [28, 30],

where it was traced back to a simple pole in the period of the D6-brane.

Then we immediately determine the inverse large radius monodromy of the brane, X1,

by applying according to eq. (3.11) a subsequent Landau-Ginzburg monodromy

M−1
LR(X1) = X2[−2] . (5.22)

In the same fashion we also derive with the open-string states, Ψk
(X,X2), the conifold

monodromy of the canonical brane, X2, and we find

MC(X2) =











QX2 Ψ1
(X,X2) · · · Ψ5

(X,X2)

0 QX · · · 0
...

...
. . .

...

0 0 · · · QX











, (5.23)

whereas the associated U(1) R-symmetry representation and the equivariant representa-

tions become

ρMC(X2) = Diag
(

ρX(θ), e−
2iθ
5 ρX(θ), . . . , e−

2iθ
5 ρX(θ)

)

, (5.24)
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Figure 5: The quiver diagram presents the fermionic (red lines) and the bosonic (blue lines) open-

string states stretching between the D6-brane, X , and the branes, Sa. The different blue dashed

lines distinguish between the two grades of the bosonic open-string states.

and

RMC(X2)(k) = Diag(RX2(k), RX1(k), · · · , RX1(k)) . (5.25)

The presented 96 × 96-matrix factorization (5.23) is also reducible due to the constant

entries in the cohomology elements, Ψk
(X,X2)

. There are a total of 31 independent constants,

which allow us to rewrite the matrix factorization (5.23) to an equivalent 65 × 65-matrix

factorization. In this work we do not use and hence do not state the explicit form of the

reduced matrix factorization.

The inverse large radius monodromy of the brane, X2, adjusts the equivariant repre-

sentation of the brane, MC(X2),

RM−1
LR(X2)(k) = Diag(RX3(k), RX2(k), · · · , RX2(k)) , (5.26)

whereas the matrix factorization, QM−1
LR(X2) = QMC(X2), and the U(1) R-symmetry repre-

sentation, ρM−1
LR(X2) = ρMC(X2), are not modified.

For the other branes, Xa, in the equivariant orbit of the canonical matrix factorization

the conifold monodromy and the large radius monodromy are derived analogously.

Finally we want to discuss the monodromies of the branes, Sa, in the equivariant

orbit of the factorization, QS . For the monodromy about the conifold point we need to

calculate the open-string states between the D6-brane, X, and the branes, Sa. This is

achieved by directly evaluating the cohomology of the BRST operator (2.4) for all possible

charge levels (2.11) and equivariant labels (2.13). The result of this tedious but straight

forward computation is summarized in the quiver diagram figure 5. We do not present

the complicated expressions for the 16× 32-matrix representation of the open-string states

listed in the quiver because for the following analysis we mainly need the multiplicities of

the open-string states.
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For the brane, S1, the quiver exhibits one bosonic open-string state, ∆(X,S1), and hence

the monodromy about the conifold point yields with eq. (3.8) the matrix factorization

QMC(S1) =

(

QS1 ∆(X,S1)

0 QX̄

)

. (5.27)

The U(1) R-symmetry representation and the Z5-equivariant representation become

ρMC(S1)(θ) = Diag
(

ρS(θ), e−iθρX(θ)
)

, (5.28)

and

RMC(S1)(k) = Diag
(

RS1(k), RX̄(k)
)

. (5.29)

This matrix factorization (5.27) is again reducible and thus further simplifies with the help

of gauge transformations (2.2) and by subtracting trivial brane-anti-brane pairs (2.22). A

details analysis reveals

MC(S1) = S5[2] . (5.30)

The shift in the grade and the equivariant label are determined by carefully keeping track

of the gauge transformations (2.2) acting on the representations (5.28) and (5.29). Thus

with eq. (2.19) we readily deduce for the inverse large radius monodromy

M−1
LR(S1) = S1 . (5.31)

The remaining branes, Sa, transform analogously with respect to the monodromies and

the analysis is parallel to many previously presented examples. Therefore we immediately

turn to the discussion of the RR charges to gain further insight into the structure of the

transformed matrix factorizations. As before we extract the RR charges of the matrix

factorizations by applying the residue formula (4.44). As for the cubic torus, the residue

formula (4.44) of the quintic hypersurface also reduces to the simplified expression (4.45).

Hence we are able to compute the RR charges solely from the equivariant representations,

RMC(Sa), which in turn are already determined from the knowledge of the multiplicities of

the open-string states depicted in the quivers.

For the quintic hypersurface we obtain non-vanishing disk amplitudes in the twisted

sectors, l = 1, . . . , 4, i.e. the potentially non-vanishing correlators with a brane, P , are

〈1; 0|P 〉, . . . , 〈4, 0|P 〉. Therefore the Landau-Ginzburg charge vector, chLG(P ), on the

quintic threefold is given via eq. (4.45) by

chLG(P ) = (〈1; 0|P 〉 , . . . , 〈4, 0|P 〉) . (5.32)

The next task is to make the connection to the RR charges which are natural from a

geometric point of view. We denote these charges by the large radius charge vector, chLR,

of the quintic hypersurface

chLR(P ) = (d6, d4, d2, d0) . (5.33)

Here we use the integer basis introduced in ref. [32], where the integer, d6, denotes the

D6-brane charge whereas the lower dimensional brane charges are denoted by d4, d2 and

d0.
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Brane Pa chLR(Pa) MC(Pa) chLR(MC(Pa)) M−1
LR(Pa) chLR(M−1

LR(Pa))

X1 (1,0,0,0) X1[−2] (1,0,0,0) X2[−2] (1,−1,5,−5)

X2 (1,−1,5,−5) MC(X2) (6,−1,5,−5) M−1
LR(X2) (1,−2,15,−20)

X3 (−4,3,−10,5) MC(X3) (−14,3,−10,5) M−1
LR(X3) (−4,7,−45,50)

X4 (6,−3,5,0) MC(X4) (16,−3,5,0) M−1
LR(X4) (6,−9,50,−50)

X5 (−4,1,0,0) MC(X5) (−9,1,0,0) M−1
LR(X5) (−4,5,−25,25)

S1 (0,0,0,1) S5[2] (−1,0,0,1) S1 (0,0,0,1)

S2 (1,−1,5,−4) MC(S2) (5,−1,5,−4) M−1
LR(S2) (1,−2,15,−19)

S3 (−3,2,−5,1) MC(S3) (−9,2,−5,1) M−1
LR(S3) (−3,5,−30,31)

S4 (3,−1,0,1) MC(S4) (7,−1,0,1) M−1
LR(S4) (3,−4,20,−19)

S5 (−1,0,0,1) MC(S5) (−2,0,0,1) M−1
LR(S5) (−1,1,−5,6)

Table 2: For the quintic Calabi-Yau threefold we display the action of the conifold and the large

radius monodromy upon the branes, Xa and Sa, together with their large radius RR charges. The

RR charges of the L = 0 Recknagel-Schomerus branes, Xa, have been extracted from ref. [32] in

order to calibrate the remaining large radius RR charges.

The Landau-Ginzburg charge vector (5.32) and the large radius charge vector (5.33) are

linked with a linear transformation, which we now need to determine. We have argued that

the branes, Xa, in the orbit of the canonical factorization describe the L = 0 Recknagel-

Schomerus branes, for which on the other hand the large radius RR charges are recorded in

ref. [32]. This allows us to determine the linear transformation we are after. The resulting

large radius RR charges of all the discussed branes are collected in table 2.

A closer look at table 2 reveals that the brane, S1, is invariant with respect to the

(inverse) large radius monodromy (cf. also eq. (5.31)) and has the large radius charge of a

D0-brane. These properties show that the equivariant brane, S1, describes the D0-brane

as already anticipated in the previous section.

Finally we observe that the RR charges of all the branes transform with respect to the

(inverse) large radius monodromy as

⊗L−1 : (d6, d4, d2, d0) 7→ (d6, d4, d2, d0)









1 −1 5 −5

0 1 −5 5

0 0 1 −1

0 0 0 1









. (5.34)

This transformation does not change the D6-brane charge, and it turns out that the inverse

large radius monodromy acts upon the bundle date of the brane by tensoring with the line

bundle, L−1 [32], where L is the line bundle associated to the generator of H2(Quintic, Z).

This is the expected transformation behavior associated to the large radius monodromy

because physically it corresponds to a shift of the B-field by the generator of H2(Quintic, Z).

For us the result also serves as a non-trivial check on the computed multiplicities of the

open-string states depicted in the quiver diagrams figure 4 and figure 5.

Before we conclude this section we note that, in contrast to the cubic torus, for the

quintic hypersurface the large radius monodromy as seen from the gauged linear σ-model

coincides with the large radius monodromy in the Teichmüller space. This is due to the
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fact that the Lefschetz hyperplane theorem ensures that in the gauged linear σ-model of

the quintic the generator of H2(CP
4, Z) of the ambient projective space, CP

4, induces the

generator of H2(Quintic, Z) on the quintic hyperplane [50].

6. Conclusions

In the context of string compactifications we have probed the global structure of the moduli

space by transporting branes along closed loops in the Kähler moduli space. Generically

the brane probes were transformed along the path as governed by the monodromies of the

enclosed moduli space singularities. We chose the base point of these closed loops to be

located in the Landau-Ginzburg phase, in which the brane probes were described by matrix

factorizations. This required us to develop tools, which were suitable to describe D-brane

monodromies from a matrix-factorization point of view.

In terms of matrix factorizations the monodromy about the Landau-Ginzburg singu-

larity of the Kähler moduli space arose canonically. Following a conjecture of ref. [45]

we realized the monodromy about the conifold point as a multiple tachyon condensation

process of the probe brane with the branes, which became massless at the conifold locus.

Finally we computed the action of the large radius monodromy by composing the Landau-

Ginzburg and the conifold monodromy. We explicitly demonstrated our techniques on the

cubic torus and the quintic Calabi-Yau hypersurface.

A complementary analysis is presented in refs. [28 – 30], where the base point for the

non-contractible loops is chosen in the large radius regime of the Kähler moduli space. In

these scenarios D-branes are modeled as complexes of coherent sheaves [35, 51, 27], which

are then transformed by Kähler moduli space monodromies. In this context the conifold

monodromy is also realized as a multiple tachyon condensation process. However, the

computation of monodromies is rather complicated because generically the probe brane

needs to be represented by a suitable complex. Thus in certain situations the computation

of the D-brane monodromies is simpler in the language of matrix factorizations as we are

able to compute the Kähler moduli space monodromies in an algorithmic way.

There are several directions to be further pursued. Our techniques should also apply

for hypersurfaces in weighted projective spaces. Furthermore, since matrix factorizations

are also a good framework to study obstructed and unobstructed open-string moduli it

would be interesting to trace the fate of these moduli with respect to the monodromy

transformations alluded here. In this work we have evaded stability issues, which definitely

deserve more attention and should eventually be addressed.
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A. Cohomology elements of the ‘long’ and ‘short’ branes

Here we present explicitly matrix representations of the open-string states displayed in

the quiver diagram figure 2 for the ‘long’ and ‘short’ branes of the cubic torus. These

matrices are determined by evaluating the BRST cohomology elements (2.9) depicted in

the quiver figure 2.

The resulting three fermionic open-string states, Ψk
(X,L2), stretching between the D2-

brane, X, and the ‘long’ brane, L2, are the cohomology elements of the BRST operator,

D(X,L2), and they are given by

Ψ1
(X,L2)

:















































ψ0 =









1
(

a −
α2

2
α1α3

)

x1 −
(

a −
α2

1
α2α3

)

x2 0

0 −α3
α1

x2 − α1
α2

x3 −α2
α3

x1

0 α2
α1

x3
α3
α2

x1
α1
α3

x2









,

ψ1 =





(

a −
α2

2
α1α3

)

α1x1 −α1 0 0

0 0 0 −α3

−
(

a −
α2

1
α2α3

)

α2x2 0 −α2 0



 ,

(A.1)

and

Ψ2
(X,L2) :



















































ψ0 =









0 α1
α3

x3
α2
α1

x1
α3
α2

x2

1 0
(

a −
α2

2
α1α3

)

x2 −
(

a −
α2

1
α2α3

)

x3

0 −α2
α3

x2 −α3
α1

x3 −α1
α2

x1









,

ψ1 =







−
(

a −
α2

1
α2α3

)

α2x3 0 0 −α2
(

a −
α2

2
α1α3

)

α1x2 0 −α1 0

0 −α3 0 0






,

(A.2)

and

Ψ3
(X,L2) :























































ψ0 =









0 −α1
α2

x2 −α2
α3

x3 −α3
α1

x1

0 α3
α2

x3
α1
α3

x1
α2
α1

x2

1 −
(

a −
α2

1
α2α3

)

x1 0
(

a −
α2

2
α1α3

)

x3









,

ψ1 =









0 0 −α3 0

−
(

a −
α2

1
α2α3

)

α2x1 −α2 0 0
(

a −
α2

2
α1α3

)

α1x3 0 0 −α1









.

(A.3)

Furthermore evaluating the grading (2.20) yields that these fermionic open-string states

arise as cohomology elements of Ext1(X,L2).

In the same fashion we deduce the three bosonic open-string states, Φk
(X,L3[2]), between

the D2-brane, X, and the ‘long’ brane, L3[2]. They appear in the cohomology (2.9) of the
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BRST operator, D(X,L3[2]), and turn out to be

Φ1
(X,L3[2]) :



















































φ0 =











−

„

a−
α2
2

α1α3

«

α1 x2x3
α2α3

x1
α1

0 −
α1 x2
α2α3

„

a−
α2
2

α1α3

«

x2
3

α2
+

„

a−
α2
1

α2α3

«

α2 x1x2
α1α3

0 −
α2 x1
α1α3

x3
α2

−

„

a−
α2
1

α2α3

«

x2
2

α3
−

α3 x3
α1α2

x2
α3

0











,

φ1 =





1 0

„

a−
α2
1

α2α3

«

x2 −

„

a−
α2
2

α1α3

«

x3

0 0 0 0

0
α1 x2

α3

α3 x3
α2

α2 x1
α1



 ,

(A.4)

and

Φ2
(X,L3[2]) :



















































φ0 =











„

a−
α2
3

α1α2

«

x2
3

α3
+

„

a−
α2
2

α1α3

«

α3 x1x2
α1α2

0 −
α3 x1
α1α2

x3
α3

−

„

a−
α2
2

α1α3

«

x2
2

α1
−

α1 x3
α2α3

x2
α1

0

−

„

a−
α2
3

α1α2

«

α2 x2x3
α1α3

x1
α2

0 −
α2 x2
α1α3











,

φ1 =







0
α2 x2

α1

α1 x3
α3

α3 x1
α2

1 0

„

a−
α2
2

α1α3

«

x2 −

„

a−
α2
3

α1α2

«

x3

0 0 0 0






,

(A.5)

and

Φ3
(X,L3[2]) :























































φ0 =











−

„

a−
α2
3

α1α2

«

x2
2

α2
−

α2 x3
α1α3

x2
α2

0

−

„

a−
α2
1

α2α3

«

α3 x2x3
α1α2

x1
α3

0 −
α3 x2
α1α2

„

a−
α2
1

α2α3

«

x2
3

α1
+

„

a−
α2
3

α1α2

«

α1 x1x2
α2α3

0 −
α1 x1
α2α3

x3
α1











,

φ1 =







0 0 0 0

0
α3 x2

α2

α2 x3
α1

α1 x1
α3

1 0

„

a−
α2
3

α1α2

«

x2 −

„

a−
α2
1

α2α3

«

x3






.

(A.6)

These bosonic open-string states arise with eq. (2.20) as cohomology elements of

Hom(X,L3[2]).

Stretching between the D2-brane, X, and the ‘short’ brane, S2, we find the fermionic

open-string states, Ψk
(X,S2)

, in the cohomology (2.9) of the BRST operator, D(X,S2). These

open-string states are elements of Ext1(X,S2) and they read

Ψ1
(X,S2)

:























ψ0 =

(

1 −
a x1

2
+

α2 x2
α3

−

„

3a
2
−

α2
2

α1α3

«

α1 x3
α3

−a x2+
α2
1 x3

α2
3

0

0
α1 x1

α3
−

3a x2
2

−

„

3a
2
−

α2
1

α2α3

«

α2 x3
α3

−
α2 x1

α3
+

α1 x2
α3

−
α1α2 x3

α2
3

−x1

)

,

ψ1 =

(

U12
x1
α3

−
α1 x3

α2
3

−
α3
1−α3

2
2α1α2α2

3
x3

3a x2
2α3

+
x3
2α1

α1 x1−a α3 x2 0 −α3 α2

)

,

(A.7)

and

Ψ2
(X,S2) :























ψ0 =

(

0 −
α2 x1

α3
+

α1 x2
α3

+
α1α2 x3

α2
3

3a x1
2

−
α2 x2

α3
+

„

3a
2
−

α2
2

α1α3

«

α1 x3
α3

x2

1 a x1−
α2
2 x3

α2
3

−
α1 x1

α3
+

a x2
2

+

„

3a
2
−

α2
1

α2α3

«

α2 x3
α3

0

)

,

ψ1 =

(

U21 −
α3
1−α3

2
2α1α2α2

3
x3

x2
α3

+
α2 x3

α2
3

−
x3
2α2

−
3a x1
2α3

a α3 x1−α2 x2 −α3 0 α1

)

.

(A.8)
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with the quadratic polynomials

Uij = −
ax2

i

2α3
−

αi x
2
j

α2
3

+
αj x1x2

α2
3

+

(

α3
i

αj
−

α3
3

2αj
+ α2

j

)

xix3

3α3
3

−

(

α2
i

αj
−

α2
j

αi

)

axjx3

2α2
3

. (A.9)

The bosonic open-string state, Φ(X,S1), in Hom(X,S1) is they only non-trivial open-

string state stretching between the D2-brane, X, and the ‘short’ brane, S1,

Φ(X,S1) :



























φ0 =

( a x1
2 − α2 x2

α3
+

(

3 a
2 −

α2
2

α1α3

)

α1 x3
α3

1 0 −α1
α3

−α1 x1
α3

+ a x2
2 +

(

3 a
2 −

α2
2

α1α3

)

α1 x3
α3

0 −1 α2
α3

)

,

φ1 =

(

1
α3

−a x1
2α3

+ α2 x2

α2
3

− x3
2α2

−α1 x1

α2
3

+ ax2
2α3

+ x3
2α1

α3
1−α3

2

2α1α2α2
3
x3

0 α1 α2 α3

)

,

(A.10)

Finally between the D2-brane, X, and the ‘short’ brane, S3[2], we find in Hom(X,S3[2])

the bosonic open-string state, Φ(X,S3[2]), which reads

Φ(X,S3[2]) :



























φ0 =

( a x2
2

α3
− α1 x1x2

α2
3

0 x2
α3

−3 a x1
2α3

+ α2 x2

α2
3

−
(

3 a
2 −

α2
2

α1α3

)

α1 x3

α2
3

−
a x2

1
α3

+ α2 x1x2

α2
3

x1
α3

0 α1 x1

α2
3

− 3 a x2
2α3

−
(

3 a
2 −

α2
1

α2α3

)

α2 x3

α2
3

)

,

φ1 =

(

(

α2
1

2α2
−

α2
2

2α1

)

x3

α3
3

V12 V21 −x1x2

α2
3

1 ax1 −
α2 x2
α3

α1 x1
α3

− ax2 0

)

,

(A.11)

with the quadratic polynomials

Vij = −

(

α2
i

αj
+

α2
j

αi
+

α3
3

α1α2

)

x2
j

2α3
3

+
αi x1x2

α3
3

−

(

α2
j

αi
−

α2
i

αj

)

axix3

2α3
3

−
xjx3

2αiα3
. (A.12)
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