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1. Introduction

The discovery and investigation of D-branes have given as some insight into the

non-perturbative structure of string theory and have improved our understanding of

string dualities. However, despite of this success our view upon many aspects of

D-branes is still rather limited.

For instance many properties of D-branes in string compactifications are only

qualified in certain regions of the string moduli space, such as the geometric regime,

where the compactification space is taken to be large compared to the string scale and

hence string corrections are suppressed. These scenarios allow us to treat D-branes

semi-classically and to apply geometric methods. However, in other regions of the

moduli space we cannot neglect stringy quantum corrections [1,2,3], and therefore it is

necessary to describe D-branes with the machinery of boundary conformal field theory.

In principal boundary conformal field theories constitute a suitable description for

generic values of the moduli. However, in practice these methods are only applicable

at special points in the moduli space, where due to enhanced symmetries the conformal

field theory becomes rational and hence solvable [4,5,6]. Thus studying D-branes in

string compactifications for generic moduli remains a challenge.

Recently matrix factorizations have emerged as yet another tool to study D-

branes [7,8,9,10,11,12,13] . They model branes in Landau-Ginzburg theories, which

describe string compactifications on hypersurfaces in a non-geometric regime of the

Kähler moduli space [14]. In the context of Landau-Ginzburg models we are still

able to continuously vary both bulk complex structure moduli, realized in terms of

deformations of the Landau-Ginzburg superpotential, and D-brane moduli, encoded

in the matrix factorization [15,16,17]. Furthermore, we can even study obstructed

moduli and their associated effective superpotentials [15,18,16,19,20,21].

These Landau-Ginzburg theories are believed to flow to an infrared conformal

fixed point. Since this flow is rather complicated we use here the framework of topo-

logical Landau-Ginzburg theories, which compute quantities invariant with respect to

the renormalization group.

The goal of this work is to transport brane probes in the Kähler moduli space so

as to explore its global structure. But instead of considering an arbitrary path in the

moduli space [22] (cf. also refs. [1,3,23,24,25,26]), we are less ambitious and analyze
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branes as we move along a closed path with base point at the Landau-Ginzburg

phase in the Kähler moduli space. This corresponds to determining upon matrix

factorizations the action of monodromies induced from moduli space singularities. A

similar analysis has been carried out in refs. [27,28,29,30], where the large radius point

is chosen as a base point and where the monodromies act upon complexes of coherent

sheaves.1 This work should be seen complementary to the large radius results as some

of the calculations are more tractable in the language of matrix factorizations.

The outline of the paper is as follows. In section 2 we mainly review matrix

factorizations in Landau-Ginzburg orbifolds in order to set our conventions and to

introduce the notation. In particular we focus on equivariant matrix factorizations

[11,33,17] and their gradings [33], as these properties play an important role in the

D-brane monodromy analysis.

Then we turn to the structure of the Kähler moduli space of Calabi-Yau hy-

persurfaces from a gauged linear σ-model point of view [14]. Typically one obtains

three kinds of singularities in the Kähler moduli space, namely the large radius, the

Landau-Ginzburg and the conifold singularity. In section 3 we investigate in detail

the monodromies of these singularities acting upon matrix factorizations.

In section 4 we employ the developed techniques and study D-brane monodromies

on the moduli space of the cubic torus. The matrix factorizations of the cubic torus

are well-understood [16,17], and hence the torus serves as good first example to study

the effect of monodromies on matrix factorizations. We also demonstrate that the

results are compatible with the expected transformation behavior of D-brane charges.

Finally we show the connection of the Kähler moduli space as seen from the gauged

linear σ-model [14] to the Teichmüller space of the two-dimensional torus [34].

We turn towards our second example, the quintic Calabi-Yau hypersurface, in

section 5. We explicitly address the action of the monodromies upon two types of

matrix factorizations of the quintic. Again we verify our results by comparing with

the monodromy transformations of the D-brane charges presented in ref. [1,32].

In section 6 we present our conclusions and in appendix A we have collected the

open-string cohomology elements used in section 4.

1 On the level of D-brane charges monodromies have also been studied in refs. [1,25,31,32].
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2. D-branes in Landau-Ginzburg orbifold theories

In order to set the stage for the forthcoming analysis we review the notion of

B-type branes in the context of topological Landau-Ginzburg orbifolds. By now it

is well-known [8,9,11,12,13] that B-branes in Landau-Ginzburg theories are given by

matrix factorizations of the Landau-Ginzburg superpotential, W . In this section we

recapitulate the aspects which are important for this work.

2.1. Matrix factorizations and open-string states

A B-type brane, P , in the topological Landau-Ginzburg theory with homoge-

nous Landau-Ginzburg superpotential, W (x), is realized as matrix, QP , and a linear

involution, σP , i.e. σ2
P = 1, such that [8,9,11,12,13]

Q2
P (x) = W (x) · 12n×2n , σP QP +QP σP = 0. (2.1)

Here the 2n × 2n matrix, QP , has polynomial entries in the bulk chiral Landau-

Ginzburg fields, xℓ. Furthermore, two matrix factorizations, (QP , σP ) and (QP ′ , σP ′),

are gauge-equivalent, i.e. they describe the same brane, if they are related by an

invertible 2n× 2n matrix, U(x),2

QP ′(x) = U(x)QP (x)U−1(x) , σP ′ = U(x) σP U
−1(x) . (2.2)

From a given matrix factorization, (QP , σP ), of a brane, P , we can immediately

construct the matrix factorization, (QP̄ , σP̄ ), of the anti-brane, P̄ , by acting with the

operator, T :

T : P 7→ P̄ , (QP , σP ) 7→ (QP ,−σP ) . (2.3)

Thus the operator, T , generates the matrix factorization of the anti-brane.

The physical string states in the topological Landau-Ginzburg theory arise as non-

trivial cohomology elements of the BRST operator. For open-string states, Θ(P,R), of

strings stretching from the brane, P , to the brane, R, the BRST operator is given by

D(P,R)Θ(P,R) = QRΘ(P,R) − σRΘ(P,R)σP QP . (2.4)

2 Invertible as a matrix in the ring of polynomials in xℓ.
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It is straight forward to check that the BRST operator, D(P,R), squares to zero.

Furthermore, we observe that the open-string states, Θ(P,R), split into bosonic

states, Φ(P,R), and fermionic states, Ψ(P,R), which differ by their eigenvalues ±1 with

respect to the involutions of the attached branes:

σRΦ(P,R)σP = +Φ(P,R) , σRΨ(P,R)σP = −Ψ(P,R) . (2.5)

In the paper we also use an equivalent description for the matrix factorization,

(QP , σP ), which arises as follows: Due to the fact that the matrix, QP , anti-commutes

with the involution, σP , we can always find a gauge in which the involution, σP , takes

the block diagonal form σP = Diag(1n×n,−1n×n). In this gauge the matrix, QP ,

decomposes into two n× n matrices according to3

QP (x) =

(

0 JP (x)
EP (x) 0

)

. (2.6)

Thus we can alternatively describe the brane, P , in terms of the matrix pair, (JP , EP ),

which then fulfills

JP (x)EP (x) = EP (x) JP (x) = W (x) · 1n×n . (2.7)

In this description the operator, T , which maps branes to their anti-branes, becomes

T : P 7→ P̄ , (JP , EP ) 7→ (JP̄ , EP̄ ) = (−EP ,−JP ) . (2.8)

Moreover, bosonic and fermionic open-string states, Φ(P,R) = (φ0, φ1) and Ψ(P,R) =

(ψ0, ψ1), decompose also into two matrices, and the open-string BRST operator,

D(P,R), reads

D(P,R)Φ(P,R) = D(P,R)(φ0, φ1) = (JRφ0 − φ1JP , ERφ1 − φ0EP ) ,

D(P,R)Ψ(P,R) = D(P,R)(ψ0, ψ1) = (ERψ0 + ψ1JP , JRψ1 + ψ0EP ) .
(2.9)

3 Note that the block-diagonal form of the involution, σP , corresponds to a partial gauge

fixing, which is preserved by gauge transformations (2.2) with block-diagonal matrices, U =

Diag(Vn×n, Wn×n). Here the n × n matrices, Vn×n and Wn×n, are invertible again in the

ring of polynomials in xℓ.
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2.2. R-charge assignments

For the Landau-Ginzburg model to flow to a non-trivial conformal IR fixed point,

it is necessary for the theory to have a (non-anomalous) U(1) R-symmetry. With

respect to this U(1) symmetry the bulk Landau-Ginzburg superpotential has R-charge

assignment +2. Hence for a homogenous superpotential, W (x), of degree d the bulk

chiral fields, xℓ, have R-charge + 2
d
.4

For Landau-Ginzburg theories with branes it is also necessary to extend the U(1)

R-symmetry of the bulk to the boundary. This corresponds to requiring that we

can find a U(1) representation, ρP (θ), such that the matrix, QP , which according to

eq. (2.1) has R-charge +1, transforms with respect to the U(1) R-symmetry as [33]5

ρP (θ)QP (e2i θ
d x)ρ−1

P (θ) = eiθQP (x) . (2.10)

Here the representation, ρP (0), obeys ρP (0) = 12n×2n and ρP (πd) = 12n×2n for even

d whereas ρP (2πd) = 12n×2n for odd d.

For us it is important that the representations, ρP (θ) and ρR(θ), of the branes,

P and R, assign also the R-charge, qΘ(P,R)
, to the open-string states, Θ(P,R),

ρR(θ)Θ(P,R)(e
2i θ

d x)ρ−1
P (θ) = e

iθqΘ(P,R) Θ(P,R)(x) . (2.11)

2.3. Equivariant matrix factorizations

Ultimately we want to study monodromies in the Kähler moduli space of Calabi-

Yau compactifications. For the compactifications considered in this work the Landau-

Ginzburg phase is realized as a Landau-Ginzburg orbifold [14]. The orbifold group,

Zd, acts on the bulk chiral fields, xℓ, as

xℓ 7→ ωkxℓ , ω = e
2πi
d , k ∈ Zd . (2.12)

4 In this paper we consider only homogenous Landau-Ginzburg superpotentials. The

generalization to quasi-homogenous superpotentials is straight forward.
5 We always choose a gauge for the matrix factorization, QP , such that the representation,

ρ(θ), is diagonal and x-independent (cf. ref. [33]).
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In this context branes are characterized by Zd-equivariant matrix factorizations. This

means we need to add to the data of the brane, P , a Zd representation, RP , such that

the matrix, QP , fulfills the equivariance condition [11,33,17]:

RP (k)QP (ωkx)RP (−k) = QP (x) . (2.13)

In terms of the matrices, (JP , EP ), the representations, RP , splits into two parts, RP
0

and RP
1 , and the equivariance condition (2.13) becomes

JP (x) = RP
0 (k) JP (ωkx)RP

1 (−k) ,

EP (x) = RP
1 (k)EP (ωkx)RP

0 (−k) .
(2.14)

The expression (2.13) resembles closely the transformation behavior (2.10) of the

matrix, QP , with respect to the U(1) R-symmetry. Indeed for irreducible matrix

factorizations the representation, RP , are related to the U(1) representation, ρP , by

[33]

R(k) = eiπkλP ρ(πk)σk
P , a =

λP d

2
∈ Z . (2.15)

Here λP denotes the grade of the equivariant matrix factorization, which is constraint

by RP (d) = 12n×2n. Thus for each irreducible matrix, QP , there are d inequivalent

Zd representations, RPa , which give rise to d different equivariant branes, Pa, in the

orbifold theory. Given an equivariant brane, P , we simply obtain the other branes,

Pa, in the same equivariant orbit by

RPa(k) = ωakRP (k) . (2.16)

As the representations, RP , distinguishes among the branes in the equivariant

orbit we must also adjust the notion of open-string states. Therefore induced from

eq. (2.13) we impose on open-string states, Θ(P,R), the condition

RR(k)Θ(P,R)(ω
kx)RP (−k) = Θ(P,R)(x) . (2.17)

2.4. Gradings of branes

Finally let us discuss one additional refinement in the description of branes.

We have seen that branes are equipped with a grade, λP , which, so far, has been
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ambiguous up to shifts of even integers. As explained in refs. [35,36] this ambiguity is

not important as long as we analyze the physics of a single brane but becomes relevant

for the analysis of open strings stretching between different branes. Thus in order to

keep track of this ambiguity, we assign to each brane an integer, n, and denote the

graded brane by P [n]. The grading, n, is the integer offset of the grade, λP . If we

perform the shift, λP → λP −1, we observe in eq. (2.15) that this amounts to changing

the sign of the involution, σP , i.e. σP → −σP . Thus according to eq. (2.3) the brane,

P [1], is the anti-brane of P [0], and hence we identify the operator, T , which maps

branes to anti-branes, with the translation operator for the integer grading, n:

T : P [n] 7→ P [n+ 1] . (2.18)

Note that in the following we abbreviate the branes, P [0] and P [1], by the short-hand

notation, P and P̄ .

As a consequence of the interplay of the integer grading, n, and the grade, λP ,

we also obtain the relation

Pa+d[n] = Pa[n− 2] . (2.19)

Furthermore, for even degrees, d, we find that branes and anti-branes are in the same

equivariant orbit because the anti-brane, P̄a, coincides with the brane, Pa−d/2.

With these definitions at hand we can now assign integer gradings to open-string

states. Namely, the grading, p, of an open-string state, Θ(P,R), with R charge, qΘ(P,R)
,

arises as [33]

p = λR − λP + qΘ(P,R)
. (2.20)

For odd and even integers, p, the open-string states are bosonic and fermionic respec-

tively. Thus, the integer grading, p, is compatible with the statistics of open-string

states. We denote the space of open-string states at grading, p, by Extp(P,R) and

for p = 0 by Hom(P,R) = Ext0(P,R). Due to eq. (2.20) the open-string states at

different gradings are related by

Extp(P,R) ≃ Hom(P [−p], R) ≃ Hom(P,R[p]) . (2.21)

All those described ingredients are captured in a graded category [37,38,26,39,22],

where the objects are matrix factorizations, the morphisms between objects are open-

string states, and finally the shift functor is the operator, T . For us it is important to
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note that in the category of matrix factorizations of topological B-banes, in addition

to the gauge equivalences (2.2), two matrix factorizations are also equivalent if they

only differ by blocks of trivial matrix factorizations [37,15,38]

QW =

(

0 1
W 0

)

, QW̄ =

(

0 W

1 0

)

. (2.22)

Physically the trivial matrix factorization, QW , corresponds to a trivial brane-anti-

brane pair, which annihilates to the vacuum.

3. D-brane monodromies in the Kähler moduli space

In this section we introduce the tools needed to study D-brane monodromies in

the Kähler moduli space of hypersurfaces embedded in (weighted) projective spaces.

These geometries have a Landau-Ginzburg orbifold phase [14,22], in which matrix

factorizations describe D-branes, and hence they are suitable to study D-brane mon-

odromies from a matrix factorization perspective.

3.1. The Kähler moduli space and D-brane monodromies

In this paper the cubic torus in CP
2 and the quintic hypersurface in CP

4 serve as

our working examples, but the following discussion generalizes to many other Calabi-

Yau hypersurfaces as well.

Compactifications of both geometries depend on a single (complexified) Kähler

modulus and the Kähler moduli space becomes singular at three distinct points. There

is the large radius point, where the volume of the compactification space becomes infi-

nite, then there is the conifold point, where the (quantum) volume of the hypersurface

shrinks to zero size while the (quantum) volume of the lower even dimensional cycles

stays finite [40], and finally there is the Landau-Ginzburg point, where the singular-

ity in the moduli space arises from a global discrete symmetry of the theory. The

structure of the Kähler moduli space is schematically depicted in Fig. 1 (a).
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Fig. 1: (a) The figure illustrates the complex one dimensional
Kähler moduli space of a Calabi-Yau hypersurface with the large
radius (LR), the Landau-Ginzburg (LG) and the conifold (C) singu-
larity. (b) Here we show the three non-trivial loops in the Kähler
moduli space along which we transport brane probes. The base point
of these loops is in the vicinity of the Landau-Ginzburg point, where
branes are given in terms of matrix factorizations.

In the topological B-model the dependence of branes on Kähler moduli is rather

mild. For instance a brane probe transported along a closed contractible loop is

expected to come back unchanged. If, however, the loop is non-contractible, that is

to say if we encircle one of the above mentioned singularities, then, in general, the

original brane configuration is changed. This, however, does not imply that we get a

new theory with different branes. Instead, it just means that the monodromy of the

singularity maps individual branes to other branes within the same theory [28].

Note that for physical branes there is a stronger dependence on the Kähler mod-

uli, as one also has to take into account the notion of Π-stability [41,27,28], i.e. a

physical brane probe can decay as it crosses a line of marginal stability in the Kähler

moduli space. However, we limit our analysis to topological branes and hence we do

not address this issue here.

Our next task is to discuss the D-brane monodromies arising from the different

singularities. As we focus on branes given by matrix factorizations, the base point for

the non-contractible loops is located near the Landau-Ginzburg point as depicted in

Fig. 1 (b).
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3.2. Landau-Ginzburg point monodromy

Since we describe branes in the Landau-Ginzburg phase of the σ-model to the

Calabi-Yau hypersurface, the Landau-Ginzburg monodromy is the simplest one in the

language of matrix factorizations. At the Landau-Ginzburg point in the Kähler moduli

space the theory has an enhanced discrete symmetry, which is the orbifold group in

the Landau-Ginzburg phase [34,42]. Thus encircling the Landau-Ginzburg singularity

in the Kähler moduli space corresponds to permuting the branes in the equivariant

orbit of the Landau-Ginzburg orbifold [25,32,33]. Therefore the monodromy action

on the equivariant brane, Pa, simply reads

MLG(Pa) = Pa+1 , M−1
LG(Pa) = Pa−1 . (3.1)

3.3. Conifold point monodromy

Next we want to address the monodromy about the conifold point. At the conifold

point of Calabi-Yau hypersurfaces the (quantum) volume of the compactification space

shrinks to zero size, while the (quantum) volume of lower-dimensional even cycles

remains finite [40]. As a consequence a brane that wraps the compactification space

without any lower-dimensional brane charges is massless at the conifold point [43,40].

Such a brane, X , potentially binds to the transported brane probe, P , as follows [30].

The mass of a BPS brane is given by the absolute value of its central charge, Z, which

depends holomorphically on the Kähler moduli. Hence at the conifold singularity the

central charge, Z(X), of the brane, X , is zero and therefore reads in terms of spherical

coordinates, (r, θ), of the Kähler moduli space in the vicinity of the singularity

Z(X) = r eπiθ . (3.2)

On the other hand we assume that the brane probe, P , remains massive at the conifold

point, and therefore we further assume that close to the conifold point the central

charge, Z(P ), is to lowest order constant

Z(P ) = c eπiλP , (3.3)

with some real constant, c, and some constant grade, λP .
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The difference of the grades, λP − λX = λP − θ, measures the mass of fermionic

open-string states, Ψ(X,P ), from brane, X , to brane, P [41,27,28], i.e. Ψ(X,P ) is mas-

sive for λP > λX and tachyonic for λP < λX . As the brane probe, P , encircles

the conifold point the mass of the open-string state, Ψ(X,P ), changes gradually form

massive to tachyonic. Thus along the path the pair of branes, P and X , becomes un-

stable and an energetically favored bound state is formed via tachyon condensation.

The matrix factorization, QCon, of the condensate with the operator, Ψ(X,P ), is easily

realized as [44,17]

QCon =

(

QP Ψ(X,P )

0 QX

)

. (3.4)

Here Ψ(X,P ) denotes the matrix representative (2.5) with respect to the BRST op-

erator (2.4), and the condensate of the branes, P and X , corresponds to the cone

construction, Cone
(

Ψ(X,P ) : X [−1] → P
)

, with the fermionic operator, Ψ(X,P ), as an

element of the open-string cohomology group, Ext1(X,P ).

So far we have skipped an important detail. The grades, λ, of the central charges,

Z, correspond in the Landau-Ginzburg phase to the grades of the matrix factorizations

discussed in section 2.4. Therefore we have the same integer ambiguity in defining the

grade, λ, from its central charge, Z, and the different choices give rise to the integer

grading of the brane [41,28]:

λP [n] = λP − n . (3.5)

Obviously the integer grading is relevant in the discussion of massive vs. tachy-

onic open-string operators. The open-string states, which becomes tachyonic along

the path around the conifold monodromy, are cohomology elements of Ext1(X,P ).

However, also the other cohomology elements, Θ(X,P ), of Extp(X,P ) trigger a con-

densation process because by eq. (2.21) they are dual to elements in Ext1(X [1−p], P ).

Hence they generate bound states with the brane, X [1− p], which is also massless at

the conifold point.

Thus the brane, MC(P ), transformed with respect to the conifold monodromy,

arises from condensates of the probe brane, P , with the massless branes, X [n]. Each

cohomology element in Ext1(X [n], P ), or equivalently each cohomology element in

Extp(X,P ), gives rise to a tachyonic open-string state along the path around the
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conifold monodromy and triggers a condensation. The presented heuristic arguments

motivate the formula for the conifold monodromy as proposed by Kontsevich [45,46]

MC(P ) = Cone(ev : hom(X,P )⊗X → P ) . (3.6)

Here X is the brane, which becomes massless at the conifold point, hom(X,P ) denotes

the graded complex

0 → Hom(X,P ) → Ext1(X,P ) → Ext2(X,P ) → · · · , (3.7)

and ev is the evaluation map with respect to the elements of Extp(X,P ).

The formula (3.6) looks rather superficial. However, in the language of matrix

factorizations one can evaluate this equation by a straight forward algorithm:

(i) Determine the brane, X , or rather the matrix factorization, QX , which becomes

massless at the conifold point. This is the D-brane, which in the geometric regime

fills the entire compactification space and has no lower-dimensional brane charges

[43,40], e.g. the pure D6-brane for the quintic threefold or the pure D2-brane for the

two-dimensional cubic torus.

(ii) Compute a basis of the open-string cohomology elements, Ext1(X [1 − p], P ) ≃

Extp(X,P ). We denote the basis elements by Θp
ip

, ip = 1, . . . , bp, p = 0, . . . , D, where

bp is the dimension of the cohomology group, Extp(X,P ), and D is the complex

dimension of the compactification space in the large radius regime. Recall that due

to the Calabi-Yau condition we have the relation, D = d − 2, with the degree, d, of

the Landau-Ginzburg superpotential.

(iii) In the last step we construct the cone (3.6) with the matrix representation of

the basis, Θp
ip

, and obtain the matrix factorization of the brane, MC(P ):

QMC(P ) =



















QP Θ0
1 Θ0

2 · · · ΘD
bD−1 ΘD

bD

0 QX[1] 0 · · · 0 0
0 0 QX[1] · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · QX[1−D] 0
0 0 0 · · · 0 QX[1−D]



















. (3.8)
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Finally let us briefly comment on the inverse conifold monodromy. If we encircle

the conifold monodromy with the opposite orientation, then instead of the cohomology

elements, Θ(X,P ), their Serre dual cohomology elements, Θ̂(P,X), become tachyonic

and trigger a bound state formation. Thus the inverse conifold monodromy reads

M−1
C (P ) = Cone(ev : P → hom(P,X)⊗X) , (3.9)

which translates into the matrix factorization expression

QM−1
C

(P ) =















QX[−1] 0 · · · 0 Θ̂0
1

0 QX[−1] · · · 0 Θ̂0
2

...
...

. . .
...

...
0 0 · · · QX[D−1] Θ̂D

b̂D

0 0 · · · 0 QP















. (3.10)

Here the cohomology elements, Θ̂q
iq

, iq = 1, . . . , b̂q, q = 0, . . . , D, constitute a basis

of the open-string states, Ext1(Pa, X [q − 1]) ≃ Extq(Pa, X). Due to Serre duality,

i.e. Extq(Pa, X) ≃ ExtD−q(X,Pa), the multiplicities, b̂q and bD−q, coincide, and the

cohomology elements, Θ̂q
iq

, can be chosen to be Serre dual to the elements, ΘD−q
iD−q

.

One can check that the two monodromy action (3.8) and (3.10) are indeed inverse

to each other.

3.4. Large radius point monodromy

Next we turn to the large radius monodromy, which we deduce indirectly. En-

circling first the conifold point and then the Landau-Ginzburg point is equivalent to

going around the large radius monodromy in the reverse orientation (cf. Fig. 1 (b)).

Therefore from the knowledge of the Landau-Ginzburg and the conifold monodromy

we readily compute the large radius monodromy

M−1
LR(Pa) = (MLG ◦MC)(Pa) , MLR(Pa) = (M−1

C ◦M−1
LG)(Pa) . (3.11)

Note that a similar strategy has been employed in refs. [28,29,30], where the Landau-

Ginzburg monodromy is calculated from the large radius and the conifold monodromy.
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4. D-brane monodromies of the cubic torus

As our first example to study D-brane monodromies serves the cubic two-

dimensional torus, which in the geometric large radius regime arises as the cubic

hypersurface

W (x) = x3
1 + x3

2 + x3
3 − 3 a x1x2x3 , (4.1)

in the projective space, CP2. Here the parameter, a, is the algebraic complex structure

modulus, which is related to the flat modulus, τ , of the two-dimensional torus in terms

of the modular invariant j-function as [34]

3a(a3 + 8)

a3 − 1
= j(τ) . (4.2)

In the Landau-Ginzburg phase the relation (4.1) becomes the cubic superpotential of

the Landau-Ginzburg orbifold [14], where the orbifold group, Z3, acts according to

eq. (2.12) as

xℓ 7→ ωkxℓ , ω = e
2πi
3 , k ∈ Z3 . (4.3)

The aim of this section is to analyze D-brane monodromies acting upon the ‘long’

and ‘short’ branes, which are represented by matrix factorizations in the Landau-

Ginzburg phase of the cubic torus. As we will see the result carries the signature

of the underlying gauged linear σ-model, and we will exhibit the relationship of the

monodromies in the linear σ-model Kähler moduli space as depicted in Fig. 1 (a) to

the monodromies in the Teichmüller space of the two-dimensional torus.

4.1. Matrix factorizations of the cubic torus

The matrix factorizations of the cubic torus are discussed in detail in refs. [16,17].

Here we briefly review the matrix factorizations of the ‘long’ and the ‘short’ branes,

as we will study their monodromy transformations.

The matrix factorization of the three ‘long’ branes, La, of the cubic torus is

described in terms of the 3 × 3-matrix pair [16]

JL =





1
α1
G1

23
1

α3
G3

12
1

α2
G2

13
1

α2
G213

312
1

α1
G123

213
1

α3
G312

123
1

α3
G312

213
1

α2
G213

123
1

α1
G123

312



 , EL =





α1 x1 α2 x3 α3 x2

α3 x3 α1 x2 α2 x1

α2 x2 α3 x1 α1 x3



 , (4.4)

14



with the quadratic polynomials

Glmn
ijk = x2

i −
α2

l

αmαn
xjxk , Gi

jk = G
ijk
ijk = x2

i −
α2

i

αjαk
xjxk . (4.5)

The parameters, αℓ, are subject to the constraint

0 = α3
1 + α3

2 + α3
3 − 3 aα1α2α3 , (4.6)

and they encode the open-string modulus of the ‘long’ branes, which (projectively)

parametrize a continuous family of gauge-inequivalent matrix factorizations. The

U(1) representation (2.10) of the R-symmetry for the ‘long’ branes reads

ρL(θ) = Diag(13×3, e
iθ
3 13×3) . (4.7)

and we immediately obtain with eq. (2.15) the three equivariant representations

RLa

0 = ωak 13×3 , RLa

1 = ω(a+2)k 13×3 , (4.8)

with ω ≡ e
2πi
3 . The label, a, distinguishes the three ‘long’ branes, La, in the equiv-

ariant orbit of the matrix factorization (4.4).

Similarly, the ‘short’ branes, Sa, of the cubic torus are given by the 2× 2-matrix

factorization [16]

JS =

(

L1 F2

−L2 F1

)

, ES =

(

F1 −F2

L2 L1

)

, (4.9)

with the linear entries6

L1 = α3x1 − α1x3 , L2 = α3x2 − α2x3 , L3 = α2x1 − α1x2 . (4.10)

and the quadratic polynomials

F1 =
1

α3
x2

1 +
α1

α2
3

x1x3 −
α2

2

α1α
2
3

x2x3 −
α3

2α1α2
x2x3 −

1

2α1
x2

3 ,

F2 =
1

α3
x2

2 +
α2

α2
3

x2x3 −
α2

1

α2α
2
3

x1x3 −
α3

2α1α2
x1x3 −

1

2α2
x2

3 .

(4.11)

6 We introduce also the linear polynomial, L3, for later convenience.
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Note that, as for the ‘long’ branes, the open-string parameters, αℓ, are constrained by

eq. (4.6), and they also projectively parametrize a continuous family of 2 × 2 factor-

izations (4.9). For the ‘short’ branes the U(1) R-symmetry representation becomes

ρL(θ) = Diag(12×2, e
−

iθ
3 , e

iθ
3 ) , (4.12)

and we obtain with eq. (2.15) the three equivariant ‘short’ branes, Sa, distinguished

by their Z3 representations

RSa

0 = ωak 12×2 , RSa

1 = ωak Diag(ωk, ω2k) , (4.13)

with ω ≡ e
2πi
3 .

Finally we introduce the exceptional 4 × 4-matrix factorization, which contains

the pure D2-brane in its equivariant orbit [17]

JX =







0 −x1 −x2 −x3

x1 0 −x2
3 + a x1x2 x2

2 − a x1x3

x2 x2
3 − a x1x2 0 −x2

1 + a x2x3

x3 −x2
2 + a x1x3 x2

1 − a x2x3 0






,

EX =







0 x2
1 − a x2x3 x2

2 − a x1x3 x2
3 − a x1x2

−x2
1 + a x2x3 0 x3 −x2

−x2
2 + a x1x3 −x3 0 x1

−x2
3 + a x1x2 x2 −x1 0






.

(4.14)

This matrix factorization does not depend on any open-string moduli, but it arises in

the limit where the 3×3 factorization (4.4) becomes singular as one of the open-string

parameters, αℓ, approaches zero [17]. The U(1) R-symmetry representation (2.10) is

given by

ρL(θ) = Diag(e
2iθ
3 , 13×3, e

−
iθ
3 , e

iθ
3 13×3) , (4.15)

and the resulting three equivariant representations read

RXa

0 = ωak Diag(ωk, 13×3) , RXa

1 = ωak Diag(ωk, ω2k 13×3) , (4.16)

which label the branes, Xa, in their equivariant orbit.
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4.2. Conifold monodromies of the ‘long’ and ‘short’ branes

Next we turn to the computation of the D-brane monodromies in the language of

matrix factorizations. As discussed in section 3, the monodromy about the Landau-

Ginzburg point arises canonically in the context of equivariant matrix factorizations

whereas the monodromy about the large radius point is computed indirectly with

eq. (3.11) from the Landau-Ginzburg and the conifold monodromy. Therefore we first

analyze the monodromy about the conifold point.

Following our recipe for the conifold monodromy outlined in section 3.3 we need

to determine the open-string states stretching between the transported brane and the

branes, X [n], which become massless at the conifold point. On the cubic torus we

expect the pure D2-brane to become massless.7 In terms of matrix factorizations the

D2-brane is realized as one of the branes in the equivariant orbit of the exceptional

matrix factorization (4.14):

QX ≡ QX1
. (4.17)

The open-string states between the brane, X , which becomes massless at the coni-

fold point, and the ‘long’ and ‘short’ branes are depicted in the Quiver diagram

Fig. 2 [17]. The explicit matrix expressions for these open-string states are collected

in Appendix A.

First we compute the conifold monodromies of the ‘short’ branes. The quiver

diagram shows that between the the D2-brane, X , and the ‘short’ brane, S1, there

is a single bosonic open-string state, Φ(X,S1), explicitly given by the matrices (A.10).

Thus applying formula (3.8) for the conifold monodromy we obtain the factorization,

QMC(S1), for the transformed brane, MC(S1),

QMC(S1) =

(

QS1
Φ(X,S1)

0 QX̄

)

. (4.18)

Here we use the relation, Hom(X,S1) ≃ Ext1(X̄, S1), and by slight abuse of nota-

tion, we denote both the bosonic and fermionic open-string states of Hom(X,S1) and

Ext1(X̄, S1) by Φ(X,S1).

7 Strictly speaking the massless brane at the conifold point depends on the path in the

Kähler moduli space, on which we approach the conifold point. Here we approach the conifold

point directly without encircling any other singular points.
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S1

S2

S3[2]

L1

L2L3[2]

X

1X

ΩX

Ψ
k
(X,S2)

Ψ
k
(X,L2)

Φ(X,S3[2])

Φ(X,S1)

Φ
k
(X,L3[2])

Hom(X, · ) Ext1(X, · )

Fig. 2: The quiver diagram displays the fermionic (solid red lines)
and bosonic (dashed blue lines) open-string states stretched between
the D2-brane, X, and the branes, La and Sa, on the cubic torus.
The states, ΩX , and 1X , drawn in light colors, only appear in the
open-string moduli space of the ‘long’ brane, L1, where the brane,
L1, is equal to the exceptional D2-brane, X, cf. ref. [17].

We can further simplify the factorization (4.18) by applying a gauge transfor-

mation (2.2) and by subtracting trivial brane-anti-brane pairs (2.22). In order to

keep track of the grading and the equivariant label we also need to simultaneously

transform the U(1) R-symmetry representation (2.10) and the equivariant represen-

tation (2.15). After a few steps of algebra we obtain that the matrix factorization,

QMC(S1), is equivalent to the factorization, QS3[2]. Thus we have the relation:

MC(S1) = S3[2] . (4.19)

Next we consider the monodromy of the ‘short’ brane, S2, about the conifold

point. There are two fermionic open-string states, Ψk
(X,S2)

, k = 1, 2, given in eqs. (A.7)

to (A.8), which contribute to the factorization, QMC(S2),

MC(S2) =





QS2
Ψ1

(X,S2)
Ψ2

(X,S2)
0 QX 0
0 0 QX



 . (4.20)
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Analogously as before this expression is further simplified by gauge transforma-

tions (2.2) and by subtracting trivial brane-anti-brane pairs (2.22). This reduces the

10 × 10-matrix factorization (4.20) to a 7 × 7-matrix factorization, which explicitly

reads:

JMC(S2) =



























0 0
x2

α1α2α3

x1
α1α2α3

x3
α1α2α3

0 −
x1

α1α2α3

0
x1

α1α2α3
0

x2
α1α2α3

0
x3

α1α2α3
0

1
α2

G1
23 −

α2
1

α2
2

α3
G2

13 −
1

α2
G3

12 −
α2

α1α3
G1

23
1

α2
G2

13
α1
α2
3

G3
12 H1

1
α1

G2
13 −

1
α1

G3
12 −

α2
2

α2
1

α3
G1

23 −
α1

α2α3
G2

13
α2
α2
3

G3
12

1
α1

G1
23 H2

α1α2
α3
3

G3
12 −

α2
2

α1α2
3

G1
23 −

α2
1

α2α2
3

G2
13 −

1
α3

G3
12

1
α3

G1
23

1
α3

G2
13 H3

−
x3

α1α2
3

L1 −
x2

α1α2
3

L1 −
x1

α1α2
3

L1 0 0 0 −
1

α1
F2

−
x3

α2α2
3

L2 −
x2

α2α2
3

L2 −
x1

α2α2
3

L2 0 0 0 1
α2

F1



























,

EMC(S2) =























α3
2 G1

23 α3
1 G2

13 α2 x1 x2 α1 0
α2
3

2α2
M2

α2
3

2α1
M1

α2
1

α2
2

α3
G3

12 α1α2α3 G1
23 0 −α1 x3 0 α2

2 x3 −α2 M2

α1α2α3 G2
13

α2
1

α2
2

α3
G3

12 −α2 x3 0 0 −α1 M1 α2
1 x3

α1α2α3 G1
23 α1α2α3 G2

13 0 0 −α3 x3 α1α2 x3 α2α3 x1

α1α2α3 G3
12 α3

2 G1
23 α2 x2 0 α3 x1 α2

1 x2 −α1 M3

α3
1 G2

13 α1α2α3 G3
12 0 α1 x1 α3 x2 −α2 M3 α2

2 x1

0 0 0 0 0 −α1 L2 α2 L1























.

(4.21)

Here we write the entries of the matrices in terms of the linear and quadratic

terms (4.10) and (4.11) and the polynomials

H1 =

(

α2

α3
−

α2
3

2α2
2

)

x2
1

α1
+
α1 x

2
2

α2α3
−
α1 x

2
3

α2
2

+
x1x2

α3
−
α3 x1x3

α2
2

−
α1α3 x2x3

2α3
2

,

H2 = −
α2 x

2
1

α1α3
+

α2
3 x

2
2

2α2
1α2

+
α2 x

2
3

α2
1

−
x1x2

α3
−

(

α2

α2
3

−
α2α3

2α3
1

)

x1x3 +
α3 x2x3

α2
1

,

H3 =
α1 x

2
1

α2
3

−
α2 x

2
2

α2
3

+
x2

3

2α3
−

(

α2
3

2
+
α3

2

α3
−
α3

1

α3

)

x1x2

α1α2α3
+
α2

1 x1x3

α3
3

−
α2

2 x2x3

α3
3

,

M1 = α3 x1 + α1 x3 , M2 = α3 x2 + α2 x3 , M3 = α2 x1 + α1 x2 .

(4.22)

The U(1) R-symmetry representation and the equivariant representation for the ma-

trix factorization (4.21) for the brane, MC(S2), becomes

ρMC(S2)(θ) = Diag(12×2, e
−

2iθ
3 15×5, e

−
iθ
3 17×7) , (4.23)
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and

R
MC(S2)
0 = Diag(ω2k 12×2, ω

k 15×5) , R
MC(S2)
1 = 17×7 . (4.24)

For the ‘short’ brane, S3[2], the quiver diagram Fig. 2 reveals one bosonic open-

string states, Φ(X,S3[2]). By shifting the grades along the lines of eq. (2.21) this bosonic

open-string state is mapped into the cohomology group, Ext1(X̄[−2], S3). Then it

describes a fermionic open-string state stretching from the anti-D2-brane, X̄[−2], to

the ‘short’ brane, S3. Therefore the conifold monodromy acts upon the ‘short’ brane,

S3, as

QMC(S3) =

(

QS3
Φ(X,S3[2])

0 QX̄[−2]

)

, (4.25)

with the matrix (A.11) for Φ(X,S3[2]). We simplify this 6×6-matrix factorization with

an appropriate gauge transformation (2.2), and we subtract one trivial brane-anti-

brane pair (2.22) to arrive at the 5 × 5-matrix factorization:

JMC(S3) =













−α2L1 0 α1(α2
3x3−α2

2x2) α2
1α2x1−α3

3x2
α4
3

2α1
x1+

α3
3
2 x3−α2

2α3x2

α1L2 0 α1α2
2x2−α3

3x1 α2(α2
3x3−α2

1x1)
α4
3

2α2
x2+

α3
3
2 x3−α2

1α3x1

0 1
α1

G1
23 0 −α3x3 α2x2

0 1
α2

G2
13 α3x3 0 −α1x1

0 1
α3

G3
12 −α2x2 α1x1 0













,

EMC(S3) =















−
1

α2
F1

1
α1

F2 K1 K2 K3

0 0 α1x1 α2x2 α3x3

−
α1x1
α2α4

3

L2 −
x1
α4
3

L1 −
α1x1

α3
3

L2
1

α3
G3

12+
α1
α2
3

G1
13 −

1
α2

G2
13−

α1α2
α3
3

G1
12

−
x2
α4
3

L2 −
α2x2
α1α4

3

L1 −
1

α3
G3

12−
α2
α2
3

G2
23

α2x2
α3
3

L1
1

α1
G1

23+
α1α2

α3
3

G2
12

−
x3

α2α3
3

L2 −
x3

α1α3
3

L1
1

α2
G2

13+
α2
α2
3

G3
23 −

1
α1

G1
23−

α1
α2
3

G3
13 −

x3
α2
3

L3















.

(4.26)

The entries of this matrix factorization are abbreviated by the polynomials (4.10),

(4.11) and (4.5) and by

K1 = −
α3

3 x
2
2

2α1α
2
2

−
α3 x

2
3

2α1
+
α1 x1x2

α2
−
α2

3 x1x3

2α2
1

+

(

α2
2

α3
−

α2
3

2α2

)

x2x3

α1
,

K2 = −
α3

3 x
2
1

2α2
1α2

−
α3 x

2
3

2α2
+
α2 x1x2

α1
+

(

α2
1

α3
−

α2
3

2α1

)

x1x3

α2
−
α2

3 x2x3

2α2
2

,

K3 =
α1 x

2
1

α3
+
α2 x

2
2

α3
−
α2

3 x1x2

α1α2
−
α3 x1x3

2α1
−
α3 x2x3

2α2
.

(4.27)
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The U(1) R-symmetry representation of the transformed ‘short’ brane, MC(S3), which

is associated to the simplified factorization (4.26), is given by

ρMC(S3)(θ) = Diag(15×5, e
−

iθ
3 , e

iθ
3 , e−

iθ
3 13×3) , (4.28)

whereas the Z3-equivariant representation becomes

R
MC(S2)
0 = 15×5 , R

MC(S2)
1 = Diag(ωk, ω2k, ωk 13×3) . (4.29)

Now we turn to the analysis of the monodromy about the conifold point acting

on the three equivariant ‘long’ branes. The quiver diagram Fig. 2 shows again the

open-string spectrum, which is relevant to evaluate the conifold monodromy for the

‘long’ branes. The matrix representations of these open-string states are collected in

Appendix A.

First we consider the ‘long’ brane, L1. At a generic point in the open-string

moduli space there are no open-string states stretching between the pure D2-brane,

X , and the ‘long’ brane, L1. Therefore the monodromy about the conifold point

leaves the ‘long’ brane, L1, simply invariant:

MC(L1) = L1 . (4.30)

However, if we choose the open-string modulus such that the factorization (4.4) of

L1 becomes singular, i.e. if one of the open-string parameters, αℓ, in the factoriza-

tion (4.4) approaches zero, then, as discussed in ref. [17], the factorization of the

‘long’ brane turns into the exceptional matrix factorization (4.14) of the brane, X1.

Hence at this exceptional point in the open-string moduli space the ‘long’ brane, L1,

coincides with the pure D2-brane, X1, and as a consequence the (bosonic) identity

operator, 1X , and its fermionic Serre dual operator, ΩX , appear in the open-string

spectrum (cf. Fig. 2).8 Thus at this point in the open-string moduli space the conifold

monodromy acts upon the ‘long’ brane, L1 ≡ X1, as

QMC(X1) =





QX ΩX 1X

0 QX 0
0 0 QX̄



 . (4.31)

8 Note that as the bosonic and the fermionic open-string states arise simultaneously, the

index of the open-string spectrum remains invariant over the open-string moduli space.
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This factorization actually simplifies to again the factorization, QX1
, by applying a

gauge transformations (2.2), which allows us to drop eight trivial brane-anti-brane

pairs (2.22). Thus at all points in the open-string moduli space the relation (4.30)

holds because also the exceptional ‘long’ brane, X1, undergoes the conifold mon-

odromy unchanged.

The open-string spectrum between the D2-brane, X , and the ‘long’ brane, L2,

consists for all open-string moduli of three fermionic open-string states, Ψk
(X,L2)

, k =

1, 2, 3 (cf. Fig. 2), given in eqs. (A.1) to (A.3). Therefore with eq. (3.8) we find for

the conifold monodromy of the brane, L2, the factorization

QMC(L2) =







QL2
Ψ1

(X,L2) Ψ2
(X,L2) Ψ3

(X,L2)
0 QX 0 0
0 0 QX 0
0 0 0 QX






. (4.32)

Analogously to the previous examples due to gauge transformations (2.2) and due

to equivalences arising from trivial brane-anti-brane pairs (2.22) this 15 × 15-matrix

factorization simplifies to a 9 × 9-matrix factorization

JMC (L2)=







































x3 x1 x2 0 0 0 0 0 0

0 0 0 x2 x3 x1 0 0 0

0 0 0 0 0 0 x1 x2 x3

0
G2

13
α1

−

G1
23

α1

α3G2
13

α1α2
0 −

G3
12

α3
−

α3G1
23

α2
1

α2G3
12

α1α3
0

−

G2
13

α2
0

G3
12

α2
−

G1
23

α1

α1G3
12

α2α3
0 0 −

α1G2
13

α2
2

α3G1
23

α1α2

G1
23

α3
−

G3
12

α3
0 0 −

G2
13

α2
−

α3G1
23

α2
1

α1G2
13

α2α3
0 −

α2G3
12

α2
3

x1x2
α3

α2x1x3
α2
1

α3x2
1

α1α2

α3x1x3
α2
1

x2
1

α2

α2x1x2
α1α3

α2
3

x2
1

α2
1

α2
−

T3
α1

x2
2

α1

α1x2
2

α2α3

x2x3
α1

α3x1x2
α2
2

α3x2x3
α1α2

α1x1x2
α2
2

x2
2

α3

x2
3

α2

α2
1

x2
2

α2
2

α3
−

T1
α2

α1x2x3
α2
3

α2x2
3

α1α3

x1x3
α2

x2
3

α1

α1x1x3
α2α3

α2x2x3
α2
3

−
T2
α3

x2
1

α3

α2
2

x2
3

α1α2
3







































,

EMC (L2)=



























G3
12 −

α2
α1

G1
23 −

α1
α2

G2
13 0 −α2x2 α3x1 0 0 0

G1
23

α3
α2

G2
13 −

α2
α3

G3
12 α1x2 0 −α3x3 0 0 0

G2
13 −

α1
α3

G3
12 −

α3
α1

G1
23 −α1x1 α2x3 0 0 0 0

0 G2
13 0 0 −α1x1 α2x3 0 −α3x1 α1x3

0 G3
12 0 α3x1 0 −α2x2 α2x1 0 −α1x2

0 G1
23 0 −α3x3 α1x2 0 −α2x3 α3x2 0

0 0 G1
23 0 0 0 0 α2x3 −α3x2

0 0 G2
13 0 0 0 −α1x3 0 α3x1

0 0 G3
12 0 0 0 α1x2 −α2x1 0



























.

(4.33)
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In these matrices we introduce in addition to the polynomials (4.5) the quadratics

T1 = x2
1 −

α3
1 + α3

2

α1α2α3
x2x3 , T2 = x2

2 −
α3

2 + α3
3

α1α2α3
x1x3 , T3 = x2

3 −
α3

1 + α3
3

α1α2α3
x1x2 .

(4.34)

The U(1) R-symmetry representation for the matrix factorization (4.33) becomes

ρMC(L2) = Diag(13×3, e
−

2iθ
3 16×6, e

−
iθ
3 19×9) , (4.35)

whereas the Z3 equivariant representation turns out to be

R
MC(L2)
0 = Diag(ω2k 13×3, ω

k 16×6) , R
MC(L2)
1 = 19×9 . (4.36)

Finally let us turn to the conifold monodromy acting on the remaining ‘long’

brane, L3. From the Quiver diagram Fig. 2 we extract that there are three bosonic

open-string states, Φk
(X,L3[2])

, k = 1, 2, 3, given by eqs. (A.4) to (A.6). Similarly to the

analysis of the ‘short’ brane, S3, using eq. (2.21) we map these bosonic open-string

states to fermionic open-string states stretching between the anti-D2-brane, X̄ [−2],

and the ‘long’ brane, L3. Then, with slight abuse of notation for these fermionic

states, we write the conifold monodromy action upon the brane, L3, as

QMC(L3) =







QL3
Φ1

(X,L3[2])
Φ2

(X,L3[2])
Φ3

(X,L3[2])
0 QX̄[−2] 0 0
0 0 QX̄[−2] 0
0 0 0 QX̄[−2]






. (4.37)

With the help of gauge transformations and factorization equivalences this 15 × 15-

matrix factorization reduces to a 12 × 12-matrix factorization, which in terms of the

quadratic polynomials (4.5) and

G̃1
23 = G1

23 −
α2

2

α1α3
x2x3 , G̃2

13 = G2
13 −

α2
3

α1α2
x1x2 , G̃3

12 = G3
12 −

α2
1

α2α3
x1x2 ,

(4.38)
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can be written as:

JMC(L3) =





















































0 0 0 −
α2x3
α1α3

x2
α2

0 0
α3x1
α1α2

x3
α3

x1
α1

0 −
α1x2
α2α3

0 0 0
x1
α3

0 −
α3x2
α1α2

−
α1x3
α2α3

x2
α1

0 0 −
α2x1
α1α3

x3
α2

0 0 0 −
α1x2
α2α3

0
x3
α1

x1
α2

−
α2x3
α1α3

0 0
x2
α3

−
α3x1
α1α2

G1
23

0 −

α2
2

G3
12

α2
3

0 −x3 x2 0 0 0 0 0 0

G2
13

0 −

α2G1
23

α1
x3 0 −x1 0 0 0 0 0 0

G3
12

0 −

α2G2
13

α3
−x2 x1 0 0 0 0 0 0 0

−

α2G3
12

α1
G1

23
0 0 0 0 0 −x3 x2 0 0 0

−

α2
3

G1
23

α2
1

G2
13

0 0 0 0 x3 0 −x1 0 0 0

−

α3G2
13

α2
G3

12
0 0 0 0 −x2 x1 0 0 0 0

0 −

α1G3
12

α3
G1

23
0 0 0 0 0 0 0 −x3 x2

0 −

α3G1
23

α2
G2

13
0 0 0 0 0 0 x3 0 −x1

0 −

α2
1

G2
13

α2
2

G3
12

0 0 0 0 0 0 −x2 x1 0





















































,

EMC(L3) =


















































0 0 0 x1 x2 x3 0 0 0 0 0 0

0 0 0 0 0 0 x1 x2 x3 0 0 0

0 0 0 0 0 0 0 0 0 x1 x2 x3

α2x1x2 α3x2
1

α1x1x3 0 G3
12

−x2
2

−
α2x1x3

α3
0 0 0 −

α1x2
2

α3

α2G1
23

α1

α2x2
2

α3x1x2 α1x2x3 −G3
12

0 G̃1
23

−
α2x2x3

α3
0 0

α1G2
13

α3
−

α2
2

x2x3

α2
3

−

α2
2

G3
12

α2
3

α2x2x3 α3x1x3 α1x2
3

G2
13

−G1
23

−

α2
2

x2
3

α1α3
−

α2x2
3

α3
0 0 −

α2G1
23

α1
−

α2x1x2
α1

0

α3x1x3 α1x1x2 α2x2
1

0 −

α3G2
13

α2
−

α3x2x3
α2

−

α2
3

x2
1

α1α2
G3

12
−G2

13
0 −

α3x2
1

α1
0

α3x2x3 α1x2
2

α2x1x2 −

α3G2
13

α2
0 −

α2x2
3

α1
−x2

3
0 G1

23
0 −

α3x1x2
α1

0

α3x2
3

α1x2x3 α2x1x3 −

α2
3

G1
23

α2
1

α2G3
12

α1
−

α2
3

x1x3

α2
1

G̃2
13

−G1
23

0 0 −
α3x1x3

α1
0

α1x2
1

α2x1x3 α3x1x2 0 0 −
α1x1x2

α2
−

α2
1

x1x2

α2
2

−

α2
1

G2
13

α2
2

α3G1
23

α2
0 G̃3

12
−G2

13

α1x1x2 α2x2x3 α3x2
2

0 0 −

α1x2
2

α2
−

α1x1x3
α3

0 −

α1G3
12

α3
−G3

12
−

α2
1

x2
2

α2α3
G1

23

α1x1x3 α2x2
3

α3x2x3 0 0 −
α1x2x3

α2
−

α3x2
1

α2

α1G3
12

α3
0 G2

13
−x2

1
0



















































.

(4.39)

Furthermore, the U(1) R-symmetry representation reads

ρMC(L3) = Diag(112×12, e
iθ
3 13×3, e

−
iθ
3 19×9) , (4.40)

and the Z3 equivariant representation is given by

R
MC(L3)
0 = 112×12 , R

MC(L3)
1 = Diag(ω2k 13×3, ω

k 19×9) . (4.41)
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This completes the calculation of the conifold monodromy acting on the ‘long’

and ‘short’ branes. In the next section these results serve as our starting point to

analyze the remaining monodromies and in discussing global properties of the Kähler

moduli space.

4.3. D-brane monodromies of the ‘long’ and ‘short’ branes

With the analysis of the monodromy about the conifold point performed in the

previous section we can now discuss the remaining Kähler moduli space monodromies.

The monodromy about the Landau-Ginzburg point from the perspective of equivariant

matrix factorizations is straight forward as it simply shifts the equivariant label of the

brane. In practice this amounts to multiplying the equivariant Z3 representation of the

factorization with ω ≡ e
2πi
3 along the lines of eq. (2.16). Hence the Landau-Ginzburg

monodromy acts upon the defining data of the brane, P , simply by

MLG :





QP

ρP

RP (k)



 7→





QMLG(P )

ρMLG(P )

RMLG(P )(k)



 =





QP

ρP

ωkRP (k)



 . (4.42)

Here P represents any equivariant brane, in particular any of the ‘long’ and ‘short’

branes, Sa and La.

Along the lines of eq. (3.11) we combine the conifold and the Landau-Ginzburg

monodromy to deduce the action of the inverse large radius monodromy.9 Thus

together with eq. (4.42) we obtain for the inverse large radius monodromy of the

brane, P ,

M−1
LR :





QP

ρP

RP (k)



 7→





QM−1
LR

(P )

ρM−1
LR

(P )

RM−1
LR

(P )(k)



 =





QMC(P )

ρMC(P )

ωkRMCP (k)



 . (4.43)

9 In order to get the large radius monodromy one needs to compute according to eq. (3.11)

the inverse conifold monodromy. In this work we do not present this computation explicitly

as it does not lead to further insight compared to the computation of the inverse large radius

monodromy.
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Brane Pa chLR(Pa) MC(Pa) chLR(MC(Pa)) M−1
LR(Pa) chLR(M−1

LR(Pa))

L1 (1, 0) L1 (1, 0) L2 (1,−3)

L2 (1,−3) MC(L2) (4,−3) M−1
LR(L2) (1,−6)

L3 (−2, 3) MC(L3) (−5, 3) M−1
LR(L3) (−2, 9)

S1 (0, 1) S3[2] (−1, 1) S1 (0, 1)

S2 (1,−2) MC(S2) (3,−2) M−1
LR(S2) (1,−5)

S3 (−1, 1) MC(S3) (−2, 1) M−1
LR(S3) (−1, 4)

Table 1. Conifold and large radius monodromies acting on the ‘long’
and ‘short’ branes, La and Sa, of the two-dimensional torus together
with their RR charges.

The Landau-Ginzburg monodromy and the large radius monodromy does not

introduce new matrix factorizations, Q, but instead modifies the equivariant repre-

sentation, R, of the branes. The transformation behavior of the ‘long’ and ‘short’

branes is summarized in Table 1.

In this table we have also included the large radius RR charges. These charges

are computed by a set of disk correlators, where we insert a basis of RR ground states

in the bulk and where the brane data enters in the boundary condition of the disk.

In the context of matrix factorizations these disk correlators are computed by the

residue formula [47,48,33]

〈l;α|P 〉 =
1

rl!
ResWl

[

φα
l Str

(

(RP )l(∂QP,l)
∧rl
)]

. (4.44)

Here |P 〉 is the boundary state of the brane, P , and |l;α〉 denotes a basis of RR ground

states, which are labeled by the twisted sectors, l, whereas the label, α, distinguishes

further the RR ground states in each twisted sector. The integer, rl, denotes the

number of untwisted fields, xℓ, in each twisted sector, l. The details of the disk

correlator are explained in ref. [33]. For us, however, it is important to note that all

correlators (4.44) for rl 6= 0 vanish for both the cubic torus and the quintic Calabi-Yau
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hypersurface. Hence we only need to evaluate the correlators with rl = 0, for which

the residue formula reduces to [33]

〈l; 0|P 〉 = Str
[

(RP )l
]

. (4.45)

For the cubic superpotential (4.1) all untwisted fields vanish, i.e. rl = 0, in the

sectors, l = 1, 2, and hence the only potentially non-vanishing disk correlators on the

cubic torus are 〈1; 0|P 〉 and 〈2, 0|P 〉. Thus we readily obtain the RR charge vector,

chLG(P ),

chLG(P ) = (〈1; 0|P 〉 , 〈2; 0|P 〉) =
(

Str
[

RP
]

, Str
[

(RP )2
])

. (4.46)

Note that these charges are given in the basis which arises naturally at the Landau-

Ginzburg point in the Kähler moduli space. However, in order to gain some geometric

intuition we want to relate these charges to the large radius charge vector, chLR(P ),

chLR(P ) = (r, c1) . (4.47)

Here, r is the D2-brane charge and c1 is the D0-brane charge. Geometrically these

two quantities correspond to the rank and the first Chern class of the bundle date

associated in the large radius regime to the brane, P . The two charge vectors, chLG(P )

and chLR(P ), are related by the 2 × 2-transformation matrix, Ξ,

chLR(P ) = chLG(P ) · Ξ . (4.48)

Thus in order to calculate the large radius charges of any equivariant factor-

ization, we need first to determine the matrix, Ξ. We know that the pure D2-

brane in the large radius regime is represented by the brane, X1, and hence has

the charge, chLR(X1) = (1, 0). Furthermore, the matrix factorization, X2, is in the

same equivariant orbit and has according to refs. [16,17] the large radius charges,

chLR(X2) = (1,−3). By comparing with the Landau-Ginzburg charges (4.45),

chLG(X1) =
(

3 − 3ω2, 3 − 3ω
)

, chLG(X2) =
(

−3ω + 3ω2, 3ω − 3ω2
)

, (4.49)
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we readily determine the transformation matrix, Ξ, to be

Ξ =

(

1
3(1−ω)

ω2

3
1

3(1−ω2)
− 1

3(ω+1)

)

. (4.50)

With the explicit expression for the transformation matrix, Ξ, we can now compute

with eqs. (4.46) and (4.48) the large radius charges for all the factorizations collected

in Table 2.

Let us know take a closer look at the transformation behavior of the individual

branes listed in Table 2. In the previous section we have already seen that the ‘long’

brane, L1, is not affected by the conifold monodromy. Therefore the large radius

monodromy maps the ‘long’ brane, L1, to the ‘long’ brane, L2.

The ‘short’ brane, S1, is the pure D0-brane in agreement with its large radius

RR charges, and its open-string modulus parametrizes the position of the D0-brane

on the two-dimensional torus [16,17]. With respect to the large radius monodromy

the brane, S1, remains invariant. This is precisely the transformation behavior we

expect because the large radius monodromy corresponds to an integer shift of the B-

field. But on the point-like worldvolume of the brane the B-field has no support and

therefore the D0-brane, S1, remains unchanged. Note also the interplay of gradings

among the different monodromies. The conifold monodromy shifts the grade of S1 by

two to S3[2] (cf. eq. (4.19)), which is again compensated by yet another shift (2.19) of

−2 resulting from the Landau-Ginzburg monodromy. Hence the inverse large radius

monodromy (3.11), as arising from the composition of the other two monodromies,

does not modify the grading of the D0-brane, S1.

For all the branes listed in Table 2 we observe that the large radius monodromy

transforms the large radius RR charges as

⊗L−3 : (r, c1) → (r, c1 − 3r) . (4.51)

This transformation behavior is natural from the gauged linear σ-model point of

view, in which the large radius monodromy shifts the B-field of the cubic torus by

the two form, Θ, induced from the generator of H2(CP2,Z) of the ambient space,

CP2. Note, however, that the generator of H2(T 2,Z) is the two-form, 1
3Θ, instead
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of the induced two-from, Θ. Therefore the large radius monodromy in the linear σ-

model corresponds to tensoring with the line bundle, L3, where L is the line bundle

of the torus with first Chern number one. Hence, encircling the inverse large radius

monodromy is associated with the tensor product by the bundle, L−3, which generates

the transformation (4.51) for the RR charges.

Although the gauged linear σ-model favors a shift of the B-field induced from

the ambient space, we would expect that the large radius monodromy of the two-

dimensional torus is generated by tensoring with the line bundle, L. However, the

moduli space, as analyzed from the gauged linear σ-model, does not reveal the whole

structure of the Teichmüller space of the two-dimensional torus. The relationship to

the Teichmüller moduli space is further analyzed in the next section.

4.4. Teichmüller and gauge linear σ-model moduli space of the cubic torus

The Kähler moduli space of the two-dimensional torus is parametrized by the

fundamental domain of its Teichmüller space (cf. Fig. 3 (a)). Due to the identifications

in the fundamental domain the Teichmüller space has three singularities, namely a

Z4-orbifold point, P4, a Z6-orbifold point, P6, and the point, P∞, of infinite order

[34].

Here we are interested how these singularities generate monodromies acting upon

the RR charges of the toroidal B-branes. The monodromies, however, are most easily

determined on the mirror torus, where the B-branes with RR charges, (r, c1), are

mapped to A-branes realized as special Lagrangian submanifolds with winding num-

bers, (p, q) [49]. On the mirror side the monodromies are generated by encircling

the corresponding singularities in the complex structure moduli space, which, for the

torus, is identical to the Teichmüller space depicted in Fig. 3 (a). Thus we are able to

determine geometrically the effect of the monodromies by simply tracing the fate of

the winding numbers as we encircle the singularities in the complex structure moduli

space, and we obtain

P∞ =

(

1 −1
0 1

)

, P4 =

(

0 1
−1 0

)

, P6 =

(

0 −1
1 1

)

, (4.52)

with P 4
4 ≡ 12×2 and P 6

6 ≡ 12×2.

29



(a) (b)P∞ P∞ P∞P∞

P∞

P4 P4 P4P4

P6P6 P6P6P6P6

LR

C

Fig. 3: (a) The figure shows the fundamental domain of the Teich-
müller moduli space. Its boundaries are identified according to the
black arrows. These identifications generate the three singularities,
P4, P6, P∞, indicated in red. (b) Here we illustrate the Kähler
moduli space of the cubic torus as seen from the gauged linear σ-
model, which is a fourfold cover of the fundamental domain. In
blue we show the path associated to the large radius (LR) and the
conifold (C) monodromy in the gauged linear σ-model.

Finally we want to make the connection to the gauged linear σ-model Kähler

moduli space. In the previous section we have shown that the large radius monodromy

shifts the first Chern number by multiples of three. Hence, so as to generate the large

radius monodromy of the cubic torus we should encircle three times the singularity,

P∞, in the Teichmüller space. Furthermore, taking again a look at Table 1 we observe

that the conifold monodromy shifts the rank, r → r − c1, by the first Chern class,

c1. Thus we should also identify the conifold monodromy with the singularity, P∞.

However, compared to the large radius monodromy the roles of the rank, r, and the

Chern number, c1, are interchanged, and hence we identify the conifold point with the

singularity, P∞, which in the covering space of the Teichmüller space is S-dual to the

large radius singularity, P∞. To summarize we can view the Kähler moduli space of the

gauged linear σ-model of the cubic torus as the fourfold cover of the Teichmüller space

depicted in Fig. 3 (b), where three fundamental domains are related by translations

and where one fundamental domain is S-dual to one of the three others.

Let us now qualitatively relate the Teichmüller monodromies to the linear σ-

model monodromies. In Fig. 3 (b) the paths around the large radius and the conifold
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monodromy are also drawn and they gives rise to the relations MLR = P 3
∞

and

MC = P4P∞P
−1
4 . The Landau-Ginzburg monodromy from the linear σ-model point

of view must then be comprised of the monodromies around the singularities which

are traversed if we deform in Fig. 3 (b) the conifold contour into the large radius

contour. This procedure yields MLG = (P4P6)
3P 2

4P6P
−1
4 . Using the matrices (4.52)

we explicitly obtain:

MLR =

(

1 −3
0 1

)

, MC =

(

1 0
1 1

)

, MLG =

(

−2 3
−1 1

)

. (4.53)

It is easy to check that M3
LG ≡ 12×2 and that the matrices reproduce the RR charge

transformations listed Table 1.

5. D-brane monodromies of the quintic Calabi-Yau hypersurface

The quintic Calabi-Yau threefold serves as our second example in studying D-

brane monodromies. At the large radius point the quintic hypersurface is realized as

the zero locus of the quintic polynomial,

W (x) =

5
∑

i=1

x5
i − 5ψ x1x2x3x4x5 , (5.1)

in the complex four-dimensional projective space, CP4. The 101 complex structure

deformations of the quintic threefold are captured by homogeneous deformations of

the polynomial (5.1). For simplicity we exhibit here only the dependence on a single

complex structure modulus expressed in the algebraic variable, ψ.

The Kähler moduli space of the quintic Calabi-Yau threefold is complex one-

dimensional and has the structure alluded in section 3.1. In the Landau-Ginzburg

phase of the Kähler moduli space the degree five polynomial (5.1) becomes the super-

potential of the Landau-Ginzburg orbifold [14], where the Z5 orbifold group acts on

the Landau-Ginzburg chiral fields, xℓ, as

xℓ 7→ ωkxℓ , ω ≡ e
2πi
5 , k ∈ Z5 . (5.2)

Thus at the Landau-Ginzburg point of the quintic threefold we adequately represent

branes in terms of Z5-equivariant matrix factorizations of the quintic polynomial (5.1).
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5.1. Matrix factorization of the quintic threefold

First we introduce the canonical matrix factorization of the quintic superpoten-

tial (5.1). The homogeneous polynomial, W , factors as W = 1
5

∑

ℓ xℓ ∂ℓW , which

directly yields the canonical matrix factorization, QX ,

QX =

5
∑

ℓ=1

(

xℓπℓ +
1

5
∂ℓWπ̄ℓ

)

. (5.3)

Here πℓ and π̄ℓ, ℓ = 1, . . . , 5, are five pairs of boundary fermions, which obey

{πℓ, π̄k} = δℓk , {πℓ, πk} = {π̄ℓ, π̄k} = 0 . (5.4)

These fermions are explicitly realized as a 32×32-matrix representation of this Clifford

algebra, and they allow us to express the linear involution, σX , of the canonical matrix

factorization as

σX =

5
∏

ℓ=1

(π̄ℓ + πℓ) (π̄ℓ − πℓ) . (5.5)

The matrix, σX , is the chirality matrix of the Clifford algebra. If we choose a matrix

representation for the Clifford algebra (5.3) such that the involution, σX , is block

diagonal, i.e. σX = Diag(116×16,−116×16), then the 32× 32 matrix, QX , decomposes

into 16× 16 blocks according to eq. (2.6). We arrive at a 16× 16-matrix factorization

in terms of the matrix pair, (JX , EX).10

The next task is to determine the U(1) R-symmetry representation for the canon-

ical factorization. As the matrix factorization, QX , and the chiral fields, xℓ, have

R charges +1 and +2
5 the boundary fermions, πℓ and π̄ℓ, carry R charges, +3

5 and

−3
5 , respectively. Therefore along the lines of eq. (2.10) the representation, ρX(θ),

must act on the boundary fermions as

ρX(θ) πℓ ρ
−1
X (θ) = e

3iθ
5 πℓ , ρX(θ) π̄ℓ ρ

−1
X (θ) = e−

3iθ
5 π̄ℓ . (5.6)

10 Note that also the exceptional factorization (4.14) of the cubic torus is the canonical

factorization (5.3) of the homogeneous cubic Landau-Ginzburg superpotential (4.1) with

three boundary fermions [17,21].
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Up to an overall phase factor these conditions determine the U(1) R-symmetry rep-

resentation, ρX , to be

ρX(θ) = e
3
5 iθ(
∑

ℓ
πℓπ̄ℓ+132×32) . (5.7)

Then with eq. (2.15) we readily deduce the five equivariant Z5 representations, RXa ,

for the five branes, Xa, a = 1, . . . , 5, in the equivariant orbit of the canonical factor-

ization (5.3)

RXa(k) = ωak ω
3
5k(
∑

ℓ
πℓπ̄ℓ+132×32) σk

X . (5.8)

At the Gepner point in the complex structure moduli space the canonical matrix

factorization describes the L = 0 Recknagel-Schomerus branes [11]. One of these

corresponds to the pure D6-brane [1], and hence also at a generic point in the complex

structure moduli space the canonical matrix factorization contains the pure D6-brane

in its equivariant orbit.

Next we construct the matrix factorization of the quintic, which contains the D0-

brane in its equivariant orbit. Geometrically we describe the locus of the D0-brane

as the intersection point of four linear equations, Ls, in the ambient projective space,

CP4,

Ls = α5xs − αsx5 , s = 1, . . . , 4 . (5.9)

Generically the intersection of these four lines in CP
4 is not located on the hypersur-

face, W = 0. If, however, we constrain the parameters, αℓ, to also obey the quintic

hypersurface equation

0 =

5
∑

ℓ=1

α5
ℓ − 5ψ α1α2α3α4α5 , (5.10)

the intersection point is tuned to lie on the quintic hypersurface. Then the Nullstel-

lensatz ensures that for all parameters, αℓ, fulfilling eq (5.10), we can find four quartic

polynomials, Fs, s = 1, . . . , 4, such that [19]

W =
4
∑

s=1

Ls Fs . (5.11)

A view steps of algebra reveal that a possible choice for the quartics, Fs, is given by

Fs =
1

α5
5

4
∑

k=0

(αsx5)
4−k(α5xs)

k −
5ψ

αs
5αs

(

s
∏

k=1

αk

)(

4
∏

k=s

xk+1

)

xs−1
5 . (5.12)
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In the final step we use the factorization (5.11) of the Landau-Ginzburg super-

potential to construct again with boundary fermions the matrix factorization, which

is associated to the D0-brane at the intersection of the four complex lines (5.9)

QS =
4
∑

s=1

(

Lsζs + Fsζ̄s
)

, σS = −
4
∏

s=1

(

ζ̄s + ζs
) (

ζ̄s − ζs
)

. (5.13)

The four pairs of boundary fermions, ζs and ζ̄s, s = 1, . . . , 4, obey the Clifford algebra

{ζs, ζ̄t} = δst , {ζs, ζt} = {ζ̄s, ζ̄t} = 0 , (5.14)

and we represent these fermions by 16× 16-matrices. Hence choosing a gauge, where

σS becomes σS = Diag(18×8,−18×8), we obtain a 8 × 8-matrix factorization of the

matrix pair, (JS , ES).

To determine the U(1) R-symmetry representation, ρS, and the Z5-equivariant

representation, RSa , we repeat the construction applied to the canonical factorization

and we arrive at

ρS(θ) = e
3
5 iθ(
∑

s
ζs ζ̄s+116×16) , (5.15)

and with eq. (2.15) at

RSa(k) = ωak ω
3
5 k(
∑

s
ζs ζ̄s+116×16) σk

S . (5.16)

So far we have motivated the matrix factorization, QS, by geometrically building

a D0-brane. The resulting matrix factorization, however, models an orbit of equiv-

ariant branes in the non-geometric Landau-Ginzburg phase. Hence it is not obvious

that one of the branes, Sa, does indeed correspond to the D0-brane. However, by

construction the branes, Sa, have an open-string modulus parametrized by the pa-

rameters, αℓ, which are subject to the constraint (5.10). A closer look reveals that

the open-string variables, αℓ, are really projective coordinates, because a homogenous

rescaling, αℓ → λαℓ, merely generates a gauge transformation (2.2) of the factoriza-

tion, QS. Hence we observe that the open-string moduli space of the branes, Sa, is

the quintic threefold, which is the correct open-string moduli space of a D0-brane. In

the next section we will present further arguments in favor of this claim.
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5.2. D-brane monodromies on the quintic threefold

In this section we analyze the monodromies about the singularities in the Kähler

moduli space of the quintic threefold acting on the matrix factorizations, QX and QS.

Since this analysis is similar to the discussion presented in sections 4.2 and 4.3 we can

be brief here.

We have argued in the previous section that one of the branes, Xa, is the D6-brane

of the quintic, which we choose to denote by11

QX ≡ QX1
. (5.17)

At the conifold point in the Kähler moduli space the branes, X [n], become massless

[40], and hence the factorization, QX , triggers the transformation (3.8) generated by

the monodromy about the conifold point.

X1

X2

X3

X

X4[2]

X5[2]
55

1010

ΩX 1X

1 1

Ψ
k
(X,X2)

Φ
k,l

(X,X3)
Ψ

k,l,m

(X,X4[2])

Φ
k,l,m,n

(X,X5[2])

Hom(X, · )

Ext2(X, · )

Ext1(X, · )

Ext3(X, · )

Fig. 4: The quiver diagram displays the fermionic (red lines) and
bosonic (blue lines) open string-states stretching between the D6-
brane, X, and the other branes, Xa, in the same equivariant orbit.
The grades of the open-string states are distinguished by different
kinds of dashed lines.

11 Since only relative grades [35,36], and hence relative equivariant labels, of the branes

are physically relevant we are free to choose the D6-brane in the equivariant orbit of the

matrix factorization, QX . This fixes now the grades and equivariant labels of all the other

branes.
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First we determine the D-brane monodromies associated to the equivariant branes

of the canonical matrix factorization, QX . In order to compute the conifold mon-

odromy we calculate the relevant open-string states stretching between the D6-brane,

X , and the transported branes, Xa. The resulting cohomology elements are summa-

rized in the quiver diagram Fig. 4.

The bosonic boundary preserving operator, 1X , is simply the 32×32-identity ma-

trix. The remaining cohomology elements can directly be expressed with the boundary

fermions, πi and π̄j . In particular all the open-string states depicted in the quiver

diagram are generated by the fermionic open-string states

Ψk
(Xa,Xa+1)

= πk − x3
kπ̄k + ψ xk+1xk+2xk+3π̄k+4 , k = 1, . . . , 5 . (5.18)

The index of the variable, xk, and the boundary fermion, π̄k, should be thought of

taking values modulo 5. Note that these cohomology elements cannot be exact since

the associated matrices carry constant entries arising from the boundary fermion, πk.

The boundary changing operators (5.18) yield for a = 1 the five fermionic open-string

states, Ψk
(X,X2), and give rise to the other states shown in Fig. 4:

Φk,l
(X,X3) = Ψ

[k
(X,X2)Ψ

l]
(X2,X3)

,

Ψk,l,m
(X,X4[2]) = Ψ

[k
(X,X2)Ψ

l
(X2,X3)

Ψ
m]
(X3,X4)

,

Φk,l,m,n
(X,X5[2]) = Ψ

[k
(X,X2)Ψ

l
(X2,X3)

Ψm
(X3,X4)

Ψ
n]
(X4,X5)

,

ΩX = Ψ1
(X,X2) · · ·Ψ

5
(X5,X) .

(5.19)

Here the brackets, [. . .], indicate that the products are anti-symmetrized.

Now we have assembled all the ingredients to compute the conifold monodromy

and to eventually deduce the inverse large radius monodromy of the branes, Xa, in

the orbit of the canonical matrix factorization. For the conifold monodromy of the

brane, X1, we employ again eq. (3.8) and obtain

MC(X1) =





QX1
1X ΩX

0 QX 0
0 0 QX[−2]



 . (5.20)
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Due to the thirty-two constant entries arising from the operator, 1X , we can remove

after a gauge transformation (2.2) thirty-two trivial 2 × 2-matrix blocks (2.22) and

we obtain the simple relation

MC(X1) = X1[−2] . (5.21)

Thus the conifold monodromy acting on the brane, X1, neither changes its matrix

factorization nor modifies its equivariant label, but merely shifts its grade by −2.

This shift of the D6-brane grade with respect to conifold monodromy has also been

observed in ref. [28,30], where it was traced back to a simple pole in the period of the

D6-brane.

Then we immediately determine the inverse large radius monodromy of the brane,

X1, by applying according to eq. (3.11) a subsequent Landau-Ginzburg monodromy

M−1
LR(X1) = X2[−2] . (5.22)

In the same fashion we also derive with the open-string states, Ψk
(X,X2), the

conifold monodromy of the canonical brane, X2, and we find

MC(X2) =









QX2
Ψ1

(X,X2) · · · Ψ5
(X,X2)

0 QX · · · 0
...

...
. . .

...
0 0 · · · QX









, (5.23)

whereas the associated U(1) R-symmetry representation and the equivariant repre-

sentations become

ρMC(X2) = Diag
(

ρX(θ), e−
2iθ
5 ρX(θ), . . . , e−

2iθ
5 ρX(θ)

)

, (5.24)

and

RMC(X2)(k) = Diag(RX2(k), RX1(k), · · · , RX1(k)) . (5.25)

The presented 96×96-matrix factorization (5.23) is also reducible due to the constant

entries in the cohomology elements, Ψk
(X,X2). There are a total of 31 independent

constants, which allow us to rewrite the matrix factorization (5.23) to an equivalent

65 × 65-matrix factorization. In this work we do not use and hence do not state the

explicit form of the reduced matrix factorization.
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The inverse large radius monodromy of the brane, X2, adjusts the equivariant

representation of the brane, MC(X2),

RM−1
LR

(X2)(k) = Diag(RX3(k), RX2(k), · · · , RX2(k)) , (5.26)

whereas the matrix factorization, QM−1
LR

(X2)
= QMC(X2), and the U(1) R-symmetry

representation, ρM−1
LR

(X2)
= ρMC(X2), are not modified.

For the other branes, Xa, in the equivariant orbit of the canonical matrix factor-

ization the conifold monodromy and the large radius monodromy are derived analo-

gously.

S1

S2

S3

X

S4[2]

S5[2]
41

64

1

χ
k
(X,S2)

∆
k
(X,S3)

χ
k
(X,S4[2])

∆
k
(X,S5[2])

Hom(X, · )

Ext2(X, · )

Ext1(X, · )
∆(X,S1)

Fig. 5: The quiver diagram presents the fermionic (red lines) and
the bosonic (blue lines) open-string states stretching between the
D6-brane, X, and the branes, Sa. The different blue dashed lines
distinguish between the two grades of the bosonic open-string states.

Finally we want to discuss the monodromies of the branes, Sa, in the equivariant

orbit of the factorization, QS. For the monodromy about the conifold point we need

to calculate the open-string states between the D6-brane, X , and the branes, Sa. This

is achieved by directly evaluating the cohomology of the BRST operator (2.4) for all

possible charge levels (2.11) and equivariant labels (2.17). The result of this tedious

but straight forward computation is summarized in the quiver diagram Fig. 5. We do

not present the complicated expressions for the 16 × 32-matrix representation of the
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open-string states listed in the quiver because for the following analysis we mainly

need the multiplicities of the open-string states.

For the brane, S1, the quiver exhibits one bosonic open-string state, ∆(X,S1),

and hence the monodromy about the conifold point yields with eq. (3.8) the matrix

factorization

QMC(S1) =

(

QS1
∆(X,S1)

0 QX̄

)

. (5.27)

The U(1) R-symmetry representation and the Z5-equivariant representation become

ρMC(S1)(θ) = Diag
(

ρS(θ), e−iθρX(θ)
)

, (5.28)

and

RMC(S1)(k) = Diag
(

RS1(k), RX̄(k)
)

. (5.29)

This matrix factorization (5.27) is again reducible and thus further simplifies with

the help of gauge transformations (2.2) and by subtracting trivial brane-anti-brane

pairs (2.22). A details analysis reveals

MC(S1) = S5[2] . (5.30)

The shift in the grade and the equivariant label are determined by carefully keeping

track of the gauge transformations (2.2) acting on the representations (5.28) and

(5.29). Thus with eq. (2.19) we readily deduce for the inverse large radius monodromy

M−1
LR(S1) = S1 . (5.31)

The remaining branes, Sa, transform analogously with respect to the mon-

odromies and the analysis is parallel to many previously presented examples. There-

fore we immediately turn to the discussion of the RR charges to gain further insight

into the structure of the transformed matrix factorizations. As before we extract the

RR charges of the matrix factorizations by applying the residue formula (4.44). As

for the cubic torus, the residue formula (4.44) of the quintic hypersurface also reduces

to the simplified expression (4.45). Hence we are able to compute the RR charges

solely from the equivariant representations, RMC(Sa), which in turn are already de-

termined from the knowledge of the multiplicities of the open-string states depicted

in the quivers.
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For the quintic hypersurface we obtain non-vanishing disk amplitudes in the

twisted sectors, l = 1, . . . , 4, i.e. the potentially non-vanishing correlators with a

brane, P , are 〈1; 0|P 〉, . . . , 〈4, 0|P 〉. Therefore the Landau-Ginzburg charge vector,

chLG(P ), on the quintic threefold is given via eq. (4.45) by

chLG(P ) = (〈1; 0|P 〉 , . . . , 〈4, 0|P 〉) . (5.32)

The next task is to make the connection to the RR charges which are natural from a

geometric point of view. We denote these charges by the large radius charge vector,

chLR, of the quintic hypersurface

chLR(P ) = (d6, d4, d2, d0) . (5.33)

Here we use the integer basis introduced in ref. [32], where the integer, d6, denotes

the D6-brane charge whereas the lower dimensional brane charges are denoted by d4,

d2 and d0.

The Landau-Ginzburg charge vector (5.32) and the large radius charge vec-

tor (5.33) are linked with a linear transformation, which we now need to determine.

We have argued that the branes, Xa, in the orbit of the canonical factorization de-

scribe the L = 0 Recknagel-Schomerus branes, for which on the other hand the large

radius RR charges are recorded in ref. [32]. This allows us to determine the linear

transformation we are after. The resulting large radius RR charges of all the discussed

branes are collected in Table 3.

A closer look at Table 3 reveals that the brane, S1, is invariant with respect to

the (inverse) large radius monodromy (cf. also eq. (5.31)) and has the large radius

charge of a D0-brane. These properties show that the equivariant brane, S1, describes

the D0-brane as already anticipated in the previous section.

Finally we observe that the RR charges of all the branes transform with respect

to the (inverse) large radius monodromy as

⊗L−1 : (d6, d4, d2, d0) 7→ (d6, d4, d2, d0)







1 −1 5 −5
0 1 −5 5
0 0 1 −1
0 0 0 1






. (5.34)
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This transformation does not change the D6-brane charge, and it turns out that the

inverse large radius monodromy acts upon the bundle date of the brane by tensoring

with the line bundle, L−1 [32], where L is the line bundle associated to the generator

of H2(Quintic,Z). This is the expected transformation behavior associated to the

large radius monodromy because physically it corresponds to a shift of the B-field

by the generator of H2(Quintic,Z). For us the result also serves as a non-trivial

check on the computed multiplicities of the open-string states depicted in the quiver

diagrams Fig. 4 and Fig. 5.

Brane Pa chLR(Pa) MC(Pa) chLR(MC(Pa)) M−1
LR(Pa) chLR(M−1

LR(Pa))

X1 (1,0,0,0) X1[−2] (1,0,0,0) X2[−2] (1,−1,5,−5)

X2 (1,−1,5,−5) MC(X2) (6,−1,5,−5) M−1
LR(X2) (1,−2,15,−20)

X3 (−4,3,−10,5) MC(X3) (−14,3,−10,5) M−1
LR(X3) (−4,7,−45,50)

X4 (6,−3,5,0) MC(X4) (16,−3,5,0) M−1
LR(X4) (6,−9,50,−50)

X5 (−4,1,0,0) MC(X5) (−9,1,0,0) M−1
LR(X5) (−4,5,−25,25)

S1 (0,0,0,1) S5[2] (−1,0,0,1) S1 (0,0,0,1)

S2 (1,−1,5,−4) MC(S2) (5,−1,5,−4) M−1
LR(S2) (1,−2,15,−19)

S3 (−3,2,−5,1) MC(S3) (−9,2,−5,1) M−1
LR(S3) (−3,5,−30,31)

S4 (3,−1,0,1) MC(S4) (7,−1,0,1) M−1
LR(S4) (3,−4,20,−19)

S5 (−1,0,0,1) MC(S5) (−2,0,0,1) M−1
LR(S5) (−1,1,−5,6)

Table 3. For the quintic Calabi-Yau threefold we display the action
of the conifold and the large radius monodromy upon the branes,
Xa and Sa, together with their large radius RR charges. The
RR charges of the L = 0 Recknagel-Schomerus branes, Xa, have
been extracted from ref. [32] in order to calibrate the remaining large
radius RR charges.

Before we conclude this section we note that, in contrast to the cubic torus, for

the quintic hypersurface the large radius monodromy as seen from the gauged linear

σ-model coincides with the large radius monodromy in the Teichmüller space. This

is due to the fact that the Lefschetz hyperplane theorem ensures that in the gauged

linear σ-model of the quintic the generator of H2(CP4,Z) of the ambient projective

space, CP4, induces the generator of H2(Quintic,Z) on the quintic hyperplane [50].
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6. Conclusions

In the context of string compactifications we have probed the global structure

of the moduli space by transporting branes along closed loops in the Kähler moduli

space. Generically the brane probes were transformed along the path as governed by

the monodromies of the enclosed moduli space singularities. We chose the base point

of these closed loops to be located in the Landau-Ginzburg phase, in which the brane

probes were described by matrix factorizations. This required us to develop tools,

which were suitable to describe D-brane monodromies from a matrix-factorization

point of view.

In terms of matrix factorizations the monodromy about the Landau-Ginzburg

singularity of the Kähler moduli space arose canonically. Following a conjecture of

ref. [45] we realized the monodromy about the conifold point as a multiple tachyon

condensation process of the probe brane with the branes, which became massless at

the conifold locus. Finally we computed the action of the large radius monodromy by

composing the Landau-Ginzburg and the conifold monodromy. We explicitly demon-

strated our techniques on the cubic torus and the quintic Calabi-Yau hypersurface.

A complementary analysis is presented in refs. [28,29,30], where the base point for

the non-contractible loops is chosen in the large radius regime of the Kähler moduli

space. In these scenarios D-branes are modeled as complexes of coherent sheaves

[35,51,27], which are then transformed by Kähler moduli space monodromies. In this

context the conifold monodromy is also realized as a multiple tachyon condensation

process. However, the computation of monodromies is rather complicated because

generically the probe brane needs to be represented by a suitable complex. Thus

in certain situations the computation of the D-brane monodromies is simpler in the

language of matrix factorizations as we are able to compute the Kähler moduli space

monodromies in an algorithmic way.

There are several directions to be further pursued. Our techniques should also

apply for hypersurfaces in weighted projective spaces. Furthermore, since matrix

factorizations are also a good framework to study obstructed and unobstructed open-

string moduli it would be interesting to trace the fate of these moduli with respect to

the monodromy transformations alluded here. In this work we have evaded stability

issues, which definitely deserve more attention and should eventually be addressed.
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Appendix A. Cohomology elements of the ‘long’ and ‘short’ branes

Here we present explicitly matrix representations of the open-string states dis-

played in the quiver diagram Fig. 2 for the ‘long’ and ‘short’ branes of the cubic torus.

These matrices are determined by evaluating the BRST cohomology elements (2.9)

depicted in the quiver Fig. 2.

The resulting three fermionic open-string states, Ψk
(X,L2)

, stretching between the

D2-brane, X , and the ‘long’ brane, L2, are the cohomology elements of the BRST

operator, D(X,L2), and they are given by

Ψ1
(X,L2)

:







































ψ0 =





1
(

a−
α2

2

α1α3

)

x1 −
(

a−
α2

1

α2α3

)

x2 0

0 −α3

α1
x2 −α1

α2
x3 −α2

α3
x1

0 α2

α1
x3

α3

α2
x1

α1

α3
x2



 ,

ψ1 =







(

a−
α2

2

α1α3

)

α1x1 −α1 0 0

0 0 0 −α3

−
(

a−
α2

1

α2α3

)

α2x2 0 −α2 0






,

(A.1)

and

Ψ2
(X,L2)

:







































ψ0 =







0 α1

α3
x3

α2

α1
x1

α3

α2
x2

1 0
(

a−
α2

2

α1α3

)

x2 −
(

a−
α2

1

α2α3

)

x3

0 −α2

α3
x2 −α3

α1
x3 −α1

α2
x1






,

ψ1 =







−
(

a−
α2

1

α2α3

)

α2x3 0 0 −α2
(

a−
α2

2

α1α3

)

α1x2 0 −α1 0

0 −α3 0 0






,

(A.2)
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and

Ψ3
(X,L2)

:







































ψ0 =







0 −α1

α2
x2 −α2

α3
x3 −α3

α1
x1

0 α3

α2
x3

α1

α3
x1

α2

α1
x2

1 −
(

a−
α2

1

α2α3

)

x1 0
(

a−
α2

2

α1α3

)

x3






,

ψ1 =







0 0 −α3 0

−
(

a−
α2

1

α2α3

)

α2x1 −α2 0 0
(

a−
α2

2

α1α3

)

α1x3 0 0 −α1






.

(A.3)

Furthermore evaluating the grading (2.20) yields that these fermionic open-string

states arise as cohomology elements of Ext1(X,L2).

In the same fashion we deduce the three bosonic open-string states, Φk
(X,L3[2])

,

between the D2-brane, X , and the ‘long’ brane, L3[2]. They appear in the cohomol-

ogy (2.9) of the BRST operator, D(X,L3[2]), and turn out to be

Φ1
(X,L3[2])

:











































φ0 =











−

(

a−
α2
2

α1α3

)

α1 x2x3
α2α3

x1
α1

0 −
α1 x2
α2α3

(

a−
α2
2

α1α3

)

x2
3

α2
+

(

a−
α2
1

α2α3

)

α2 x1x2
α1α3

0 −
α2 x1
α1α3

x3

α2

−

(

a−
α2
1

α2α3

)

x2
2

α3
−

α3 x3
α1α2

x2
α3

0











,

φ1 =





1 0

(

a−
α2
1

α2α3

)

x2 −

(

a−
α2
2

α1α3

)

x3

0 0 0 0

0
α1 x2

α3

α3 x3
α2

α2 x1
α1



 ,

(A.4)

and

Φ2
(X,L3[2])

:











































φ0 =
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α2
3

α1α2

)

x2
3

α3
+

(

a−
α2
2

α1α3

)

α3 x1x2
α1α2

0 −
α3 x1
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x3
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−
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a−
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x2
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−

α1 x3
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x2
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−
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α2
3

α1α2

)

α2 x2x3
α1α3

x1
α2

0 −
α2 x2
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φ1 =





0
α2 x2

α1

α1 x3
α3

α3 x1
α2

1 0

(
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α2
2

α1α3

)

x2 −

(

a−
α2
3

α1α2

)

x3

0 0 0 0



 ,

(A.5)
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and

Φ3
(X,L3[2])

:
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−
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a−
α2
3

α1α2

)

x2
2

α2
−

α2 x3
α1α3

x2
α2

0

−

(

a−
α2
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α2α3
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α3 x2x3
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α3 x2
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x2
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+
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)

α1 x1x2
α2α3

0 −
α1 x1
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x3
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,

φ1 =







0 0 0 0

0
α3 x2

α2

α2 x3
α1

α1 x1
α3

1 0

(

a−
α2
3

α1α2

)

x2 −

(

a−
α2
1

α2α3

)

x3






.

(A.6)

These bosonic open-string states arise with eq. (2.20) as cohomology elements of

Hom(X,L3[2]).

Stretching between the D2-brane, X , and the ‘short’ brane, S2, we find the

fermionic open-string states, Ψk
(X,S2), in the cohomology (2.9) of the BRST operator,

D(X,S2). These open-string states are elements of Ext1(X,S2) and they read

Ψ1
(X,S2)

:























ψ0 =





1 −
a x1
2 +

α2 x2
α3

−

(

3a
2 −

α2
2

α1α3

)

α1 x3
α3

−a x2+
α2
1

x3

α2
3

0

0
α1 x1

α3
−

3a x2
2 −

(

3a
2 −

α2
1

α2α3

)

α2 x3
α3

−
α2 x1

α3
+

α1 x2
α3

−
α1α2 x3

α2
3

−x1



 ,

ψ1 =

(

U12
x1
α3

−
α1 x3

α2
3

−
α3
1
−α3

2
2α1α2α2

3

x3
3a x2
2α3

+
x3
2α1

α1 x1−a α3 x2 0 −α3 α2

)

,

(A.7)

and

Ψ2
(X,S2)

:























ψ0 =





0 −
α2 x1

α3
+

α1 x2
α3

+
α1α2 x3

α2
3

3a x1
2 −

α2 x2
α3

+

(

3a
2 −

α2
2

α1α3

)

α1 x3
α3

x2

1 a x1−
α2
2

x3

α2
3

−
α1 x1

α3
+

a x2
2 +

(

3a
2 −

α2
1

α2α3

)

α2 x3
α3

0



 ,

ψ1 =

(

U21 −
α3
1
−α3

2
2α1α2α2

3

x3
x2
α3

+
α2 x3

α2
3

−
x3
2α2

−
3a x1
2α3

a α3 x1−α2 x2 −α3 0 α1

)

.

(A.8)

with the quadratic polynomials

Uij = −
a x2

i

2α3
−
αi x

2
j

α2
3

+
αj x1x2

α2
3

+

(

α3
i

αj
−

α3
3

2αj
+ α2

j

)

xix3

3α3
3

−

(

α2
i

αj
−
α2

j

αi

)

a xjx3

2α2
3

.
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The bosonic open-string state, Φ(X,S1), in Hom(X,S1) is they only non-trivial

open-string state stretching between the D2-brane, X , and the ‘short’ brane, S1,

Φ(X,S1) :























φ0 =





a x1

2
− α2 x2

α3
+
(

3 a
2

−
α2

2

α1α3

)

α1 x3

α3
1 0 −α1

α3
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(
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α2
2

α1α3

)

α1 x3

α3
0 −1 α2

α3



 ,
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(

1
α3

−a x1

2α3
+ α2 x2

α2
3

− x3

2α2
−α1 x1

α2
3

+ ax2

2α3
+ x3

2α1

α3
1−α3

2

2α1α2α2
3
x3

0 α1 α2 α3

)

,

(A.10)

Finally between the D2-brane, X , and the ‘short’ brane, S3[2], we find in

Hom(X,S3[2]) the bosonic open-string state, Φ(X,S3[2]), which reads

Φ(X,S3[2]) :



























φ0 =





a x2
2

α3
− α1 x1x2

α2
3

0 x2

α3
−3 a x1

2α3
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(
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3
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(

3 a
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1
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)
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α2
1

2α2
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α2
2
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)

x3

α3
3

V12 V21 −x1x2

α2
3

1 a x1 −
α2 x2

α3

α1 x1

α3
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)

,
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with the quadratic polynomials

Vij = −

(

α2
i

αj
+
α2

j

αi
+

α3
3

α1α2

)

x2
j

2α3
3

+
αi x1x2

α3
3
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(

α2
j

αi
−
α2

i

αj
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2α3
3

−
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. (A.12)
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