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3 Laboratoire de Physique Théorique, Université Paris-Sud,

F-91405 Orsay, France
4 Physik Department T30, Technische Universität München,

85748 Garching, Germany

Abstract

In the context of flux compactifications, metastable vacua with a small positive cosmolog-
ical constant are obtained by combining a sector where supersymmetry is broken dynamically
with the sector responsible for moduli stabilization, which is known as the F–uplifting. We
analyze this procedure in a model–independent way and study phenomenological properties
of the resulting vacua.
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1 Introduction

Recent progress in string theory compactifications with fluxes [1] has facilitated construction of
string models with all moduli stabilized, zero or small cosmological constant, and broken super-
symmetry. In the model of Kachru–Kallosh–Linde–Trivedi (KKLT) [2], the complex structure
moduli and the dilaton are stabilized by fluxes on an internal manifold, while the Kähler (T )
modulus is stabilized by non–perturbative effects such as gaugino condensation. The Kähler
potential and the superpotential for the T–modulus are given by

K = − 3 ln(T + T ) , W = W0 − A e−a T , (1)

where W0, A and a are model-dependent constants. Minimization of the corresponding scalar
potential reveals that supersymmetry is unbroken at the minimum and the vacuum energy is
negative and large in magnitude. To achieve a small and positive cosmological constant in this
setup, KKLT introduced an anti–D3 brane whose contribution to vacuum energy can be adjusted
arbitrarily. However, such a contribution breaks supersymmetry explicitly. It was later suggested
in [3] that a similar uplifting effect could be achieved in the framework of spontaneously broken
SUSY by including the D–terms. This procedure however cannot uplift the KKLT minimum
due to the supergravity relation D ∝ F = 0 [4]. It can potentially be used to uplift non–SUSY
minima such as those at exponentially large compactification volume [5, 6].

One of the obstacles to realizing the simplest KKLT scenario in supergravity is posed by the
no–go theorem of Refs. [7, 8, 9] 1. It states that

if the modulus T is the only light field and its Kähler potential is K = −n ln(T + T )
(1 ≤ n ≤ 3), de Sitter (dS) or Minkowski vacua with broken supersymmetry are not possible
for any superpotential.

Thus, it is necessary to include additional fields in the system (or modify the Kähler potential
[11]) providing the goldstino which is necessary to make the gravitino massive. In this case, dS or
Minkowski vacua with spontaneously broken supersymmetry can be obtained due to the F–terms
of hidden matter fields [9] (a somewhat similar approach was considered in [12]). Since matter
fields are as generic as moduli in string constructions, this provides an interesting alternative
to common scenarios with moduli/dilaton dominated SUSY breaking. In this article, we will
follow our earlier work (LNR) [9].

Interest in this approach has been bolstered by recent work of Intriligator, Seiberg and Shih
(ISS) [13] on dynamical SUSY breaking in metastable vacua. They have found that metastable
vacua with broken supersymmetry are generic and realized even in simple systems like SUSY
QCD. These vacua are long–lived and can be combined with the KKLT sector to achieve a small
cosmological constant and acceptable supersymmetry breaking [14, 15, 16].

In this work, we analyze the F–term uplifting of the KKLT minimum in a model–independent
way and study SUSY phenomenology of the resulting vacua. Before we proceed, let us give a
few relevant supergravity formulae. The supergravity scalar potential is given by [17]

V = eG (Gi Ḡ Gī − 3) +
1

2
Re(fa)

−1 DaDa , (2)

where G = K + ln |W |2 with K and W being the Kähler potential and the superpotential,
respectively; fa is the gauge kinetic function, and Da are the D–terms. A subscript i denotes

1A generalization of this theorem can be found in [10].
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differentiation with respect to the i-th field. Gī is the inverse Kähler metric. The gravitino
mass is given by

m3/2 = eG/2 , (3)

and the SUSY–breaking F–terms are

F i = eG/2 Gī Ḡ . (4)

In what follows, we first review problems with the D–term uplifting and then focus on the
uplifting with the F–terms.

2 Problems with the D–term uplifting

There are two problems with the D–term uplifting scenario. First, supersymmetric minima
cannot be uplifted by the D–terms [4]. The reason is that, in supergravity [17],

Da ∝ 1

W
DiW , (5)

where DiW ≡ ∂iW + W∂iK. In supersymmetric configurations, 〈DiW 〉 = 0 and the D–terms
vanish (unless W = 0). Thus, only non–supersymmetric minima can potentially be uplifted.

Second, the D–term uplifting of non–supersymmetric vacua does not work either if the
gravitino mass is hierarchically small [18] (unless moduli are exponentially large). Indeed, for
matter on D7 branes, the gauge kinetic function is given by

f = T , (6)

and the D–term of an anomalous U(1) is

D ∝ E

Re T
+

∑

i

qi |φi|2 , (7)

where E is a constant related to the trace of the anomalous U(1) and φi are VEVs of fields
carrying anomalous charges qi. At the minimum of the scalar potential,

VT = 0 , (8)

which from Eq. (2) implies symbolically

m2
3/2

+ D2 + D = 0 . (9)

Here we have neglected all coefficients and assumed that there are no very large (1015) or
very small factors in this equation. Using m3/2 ∼ 10−15 (in Planck units) as favoured by
phenomenology, this equation is solved by

D ∼ m2
3/2

≪ m3/2 ∼ F . (10)

Thus, the D–term is much smaller than the F–terms and D2 ∼ m4
3/2

cannot uplift an AdS

minimum with V0 ∼ −m2
3/2

to zero vacuum energy. This mechanism can only work for a heavy
gravitino, e.g. m3/2 ∼ 1. The existing examples of the D–term uplifting confirm this conclusion
[19, 20, 21, 22] (for related work, see also [23, 24, 25]).
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3 F–term uplifting

It has been shown by LNR [9] that the F–term uplifting mechanism is viable and works for a
hierarchically small gravitino mass. The F–uplifting in its simplest form amounts to combining
a sector where supersymmetry is broken spontaneously in a metastable dS vacuum with the
KKLT sector. Since the T–modulus is heavy, the resulting minimum of the system is given
approximately by the minima in the separate subsectors. Then T gives only a small contribution
to SUSY breaking and the cosmological constant can be adjusted to be arbitrarily small. Let
us study this procedure in more detail.

3.1 SUSY breaking sector

Consider a (hidden sector) matter field φ with

K = φφ , W = W(φ) . (11)

Suppose for simplicity that the minimum of the corresponding scalar potential

V = eG (Gφ Gφ − 3) , (12)

is at real φ. The non–supersymmetric minimum is found from

Vφ ∝ G2
φ + Gφφ − 2 = 0 . (13)

Denoting this minimum by φ0, supersymmetry is broken by Fφ ∼ |W|Gφ

∣∣
φ0

. The vacuum
energy can be chosen to be positive,

V (φ0) > 0 , (14)

and arbitrarily small by adjusting W(φ). In this case, Fφ ∼ |W(φ0)| and, assuming that the
potential is not very steep, the mass of φ is typically of order |W(φ0)|.

3.2 KKLT sector

This sector consists of the T–modulus with the usual Kähler potential and the superpotential
induced by fluxes and gaugino condensation,

K = − 3 ln(T + T ) , W = W (T ) ≡ W0 − Ae−a T , (15)

with A ∼ 1, a ≫ 1. If the observable matter is placed on D7 branes, the SM gauge couplings
require Re T ≃ 2 at the minimum.

The scalar potential is

V = eG (GT GT GTT − 3) , (16)

and its SUSY minimum is determined by

GT = 0 . (17)

The solution is

T0 ≈ − 1

a
ln

W0

a
, (18)

where again we have taken T to be real. The corresponding vacuum energy is given by

V (T0) = − 3 eG ∼ − |W (T0)|2 . (19)
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3.3 KKLT + SUSY breaking sector

Now we combine the two sectors. The full Kähler potential and the superpotential are given by2

K = |φ|2 − 3 ln(T + T ) ,

W = W(φ) + W (T ) . (20)

The question is now how much the minimum of the system deviates from the minima of the
separate subsectors.

Consider the system in the vicinity of the reference point (φ0, T0). At T = T0, the superpo-
tential for φ is

W = W(φ) + W (T0) . (21)

Similarly, at φ = φ0 the superpotential for T is

W = W (T ) + W(φ0) . (22)

Thus, the constant terms in the superpotential shift relative to those of the original subsectors.
It makes sense to compare the true minimum of the system to the minima of the subsectors
with shifted superpotentials. For example, T0 should be defined as the minimum of the KKLT
subsector with the superpotential W (T )+W(φ0) and similarly for the φ subsector. This can be
done iteratively.

The total potential is now

V = eG (Gφ Gφ + GT GT GTT − 3) . (23)

Let us see if (φ0, T0) is a stationary point. We have

Vφ = Gφ V + eG ∂

∂φ
(GφGφ) + eG ∂

∂φ
(GT GT GTT ) ,

VT = GT V + eG ∂

∂T
(GT GT GTT ) + eG ∂

∂T
(Gφ Gφ) . (24)

Consider Vφ. It is zero because the first two terms represent the equations of motion for the
separate φ–subsector, and the third term is proportional to GT which is zero at T0. Consider
now VT . The first two terms are zero due to GT (T0) = 0. The last term however does not
vanish,

eG ∂

∂T
(GφGφ) ∼ m2

3/2
, (25)

where we have used Gφ,WT /W ∼ 1 at (φ0, T0). It is non–zero but small compared to VT T̄ ∼
a2m2

3/2
. Therefore, the (heavy) modulus shifts slightly from T0. Finally, the vacuum energy at

(φ0, T0) equals that of the φ–subsector from Eq. (14).
We see that the stationary point conditions are “almost” satisfied at (φ0, T0). Let us now

compute how much the true minimum is shifted compared to (φ0, T0). Suppose the true minimum
is at φ0 + δφ, T0 + δT . At this point,

Vφ(φ0 + δφ, T0 + δT ) = 0 ,

VT (φ0 + δφ, T0 + δT ) = 0 . (26)

2This setup can be realized for matter on D7 branes. The corresponding Kähler metric can be found in [26].
Following KKLT, here we assume that the dilaton and complex structure moduli have been integrated out and
neglect possible corrections to the Kähler potential [11] due to this procedure.
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The (φ, T ) system has been studied in detail in LNR [9], while here we will, for simplicity, treat
T and φ as real variables and expand this to first order in δφ, δT ,

Vφφ δφ + VφT δT = 0 ,

VT + VTT δT + VTφ δφ = 0 , (27)

where we have used Vφ(φ0, T0) = 0 as explained above. The solution is

δT =
VT

V 2
Tφ/Vφφ − VTT

,

δφ = −VTφ

Vφφ
δT . (28)

In the large a limit, δT ∼ 1/a2 and δφ ∼ 1/a .3

Supersymmetry is now broken by Fφ and F T with the latter giving a small contribution,

F T ∼ eG/2 WTT

W
δT ∼ 1

a
m3/2 . (29)

Finally, the cosmological constant can be chosen to be arbitrarily small by adjusting parameters
of the φ–subsector, i.e. W(φ).

3.4 Example

As a simple example, consider a combination of the KKLT and the Polonyi model [27]. The
superpotential of the Polonyi model is given by

W(φ) = c + µ2 φ , (30)

where c and µ2 are constants. A non–supersymmetric Polonyi vacuum is determined by

G2
φ + Gφφ − 2 = 0 . (31)

Choosing

G2
φ = 3 + ǫ , (32)

with ǫ ≪ 1, the vacuum energy is

V0 ∼ ǫ µ4 . (33)

The solution to first order in ǫ is given by

c ≈ µ2
(
2 −

√
3 −

√
3

6
ǫ
)

, φ ≈
√

3 − 1 +

√
3 − 3

6
ǫ . (34)

The mass of the Polonyi field is set by µ2.
This system can be used to uplift the AdS minimum of KKLT as explained above. Since

µ2 ∼ W0, the modulus is heavy compared to the Polonyi field. As a result, it shifts only slightly
from the original position and its contribution to SUSY breaking is suppressed. The resulting
vacuum energy can be made arbitrarily small by adjusting ǫ and without affecting other aspects
of the system.

The scalar potential for A = 1, a = 12, µ = 10−8 is displayed in Fig. 1.

3The relation δT ∼ δφ/a can also be understood from rescaling the variable T , T ′ = aT , which only affects
the overall normalization of V and implies δT ′

∼ δφ.
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Figure 1: Scalar potential of the KKLT + Polonyi model (in units of 104/µ4).

3.5 Relation to ISS

An interesting class of matter sectors with dynamically broken supersymmetry is provided by
ISS [13]. In this case, small W0 is generated dynamically through dimensional transmutation.
The ISS examples include SUSY QCD with massive flavours, whose dual is described by the
superpotential

W = h TrφΦ φ̃ − hµ2 Tr Φ . (35)

Here φa
i , φ̃̄

a, Φi
̄ are the quark and meson fields with 1 ≤ i, j ≤ Nf and 1 ≤ a ≤ N being the

flavour and colour indices, respectively. h and µ2 are (dynamically generated) constants.
This system possesses metastable vacua with broken supersymmetry and

V0 = (Nf − N)
∣∣h2 µ4

∣∣ . (36)

Such vacua can be used for uplifting the KKLT minimum along the lines described above. For
more details, see [14, 15, 16].

3.6 Remark on other schemes

Although we have focused our discussion on uplifting the KKLT minimum, it is clear that very
similar considerations apply to other schemes. Analogous systems arise in the heterotic string,
with the substitution K = −3 ln(T + T̄ ) → − ln(S + S̄) and f = T → S. The analysis of SUSY
breaking can be carried out in a similar fashion with the same qualitative conclusions.

A related analysis for M theory compactifications on G2 manifolds is given in [28].

4 Soft terms

The resulting pattern of the soft terms is a version of the “matter dominated SUSY breaking”
scenario [9]. F–term uplifting generally predicts heavy scalars with masses of order the gravitino
mass and light gauginos,

m1/2 ≪ m0 ∼ m3/2 . (37)
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The suppression of the gaugino masses comes from the fact that the gauge kinetic function is
independent of φ to leading order.

Let us now focus on the case 〈φ〉 ≪ 1. Allowing for the Kähler potential coupling between
φ and observable fields Qi,

K = − 3 ln(T + T ) + φφ + QiQi (T + T )ni

[
1 + ξi φφ + O(φ4)

]
, (38)

where ni are effective “modular weights”, we have [9]

Ma = Ms

[
αFLM + ba g2

a

]
, (39)

Aijk = − Ms [3αFLM − γi − γj − γk] , (40)

m2
i = (16π2 Ms)

2 [1 − 3 ξi] , (41)

with Ms ≡ m3/2/16π
2. Here we follow the notation of [29]. ba and γi are the beta–function

coefficients and the anomalous dimensions, respectively. The gaugino masses and A–terms
receive comparable contributions from the modulus and the anomaly [30, 31] as in Refs. [4, 32],
while the scalar masses are dominated by the F–term of the uplifting field φ. The parameter
αFLM of [29] controls the balance between the modulus and the anomaly contributions to Ma

and Aijk: at large αFLM the modulus contribution dominates, while at small αFLM the anomaly
provides the dominant contribution.

The modular weights have little effect on the soft terms as they only affect the A–terms.
Thus we have set them to zero. The important variables for phenomenology are αFLM and ξi.

An interesting feature of the soft terms is that the gaugino masses unify at a scale between
the electroweak and the GUT scales [33] although there is no new physics appearing there. This
is true in models where the non–universality in gaugino masses is given by the corresponding
beta–functions. In general, loop–suppressed contributions to the gaugino masses come also from
the Kähler anomalies [34, 35] and string threshold corrections [36]. When these are suppressed
(e.g. when 〈φ〉 ≪ 1), the “mirage unification” occurs. This, however, does not usually apply to
the scalar masses.

In what follows, we study SUSY phenomenology of models with the pattern of soft terms
given above.

5 Phenomenology

The variable string/GUT scale parameters in our scheme are

m3/2 , αFLM , ξi , tan β ,

while, for simplicity, we fix the sign of µ to be positive. Here ξi can be different for Higgses and
sfermions, but we assume it to be generation–independent. Further, we restrict ourselves to the
range 0 < αFLM < 30 and 0 ≤ ξi < 1/3.

The “matter domination” scheme has distinct phenomenology. Compared to “mirage me-
diation” extensively studied in Refs. [4, 37, 33, 29, 38, 39, 40], our scenario differs in the
scalar masses, which are now large and comparable to the gravitino mass. The controlled
non–universality in the gaugino masses and the A–terms makes it different from mSUGRA and
its extensions with non–universal Higgs masses. We find that there are considerable regions of
parameter space where the scheme is consistent with all phenomenological constraints.
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5.1 Constraints and observables

Certain regions of parameter space are excluded by absence of electroweak symmetry breaking
and a charged/coloured LSP. Among other constraints, the most important ones come from the
Higgs and chargino searches,

mh > 114GeV , mχ̃+ > 103GeV . (42)

Due to heavy scalars in our scenario, we expect the lightest Higgs to be very similar to the
SM Higgs, hence the LEP constraint mh > 114GeV applies. We further impose the b → sγ
constraint from the B–factories [41, 42], 2.33 × 10−4 ≤ BR(b → sγ) ≤ 4.15 × 10−4.

We also take into account the dark matter constraint. That is, we assume that the LSP is
stable, has thermal abundance and constitutes the dominant component of dark matter. Then
we impose the 3σ WMAP constraint on dark matter abundance 0.087 . Ωχ̃ h2 . 0.138 [43] and
exclude parts of parameter space. We also display parameter space allowed by a conservative
bound 0.03 < Ωχ̃h2 < 0.3. Note that the above assumptions may be relaxed which would open
up more available parameter space. For instance, the LSP abundance may be non–thermal or
the LSP may only constitute a small component of dark matter.

Having singled out favoured regions of parameter space, we consider prospects of direct and
indirect dark matter detection. Dark matter can be observed (“directly”) via elastic scattering
on target nuclei with nuclear recoil (see [44, 45]). This process is dominated by the Z and Higgs
exchange. Indirect dark matter detection amounts to observing a gamma–ray flux from the
Galactic center, which can be produced by dark matter annihilation [46, 47].

In our numerical analysis, we use the public codes SUSPECT [48], SOFTSUSY [49], Dark-
SUSY [50] and MicrOMEGAs [51].

5.2 Parameter space analysis

We start with the case ξi = 0 and tan β = 35. The allowed parameter space is shown in Fig. 2, in
yellow. The chargino and the Higgs mass constraints require m3/2 to be above a few TeV. A large
region is excluded due to no electroweak symmetry breaking (EWSB). This can be understood
by writing the EWSB condition in terms of the GUT input parameters. At tan β = 5, we have
[52]

M2
Z = − 1.8µ2 − 1.2m2

Hu
+ 5.9M2

3 + 1.6m2
q̃3

+ . . . , (43)

where mq̃3
is the third generation squark mass parameter. In the case of heavy scalars, the

dominant contribution is given by −1.2m2
Hu

+ 1.6m2
q̃3

, which must be positive. The coefficient

of m2
q̃3

decreases with tan β due to the sbottom loops and at a certain critical value electroweak
symmetry remains unbroken. Thus, at low tan β more parameter space is available.

Similarly, if we decrease the input value of m2
q̃3

, electroweak symmetry gets restored. This
means that increasing ξsf widens the region excluded by the “no EWSB” constraint.

The yellow region of Fig. 2 is favoured by dark matter considerations. There the LSP is a
mixed higgsino–bino and the correct relic density is achieved due to neutralino annihilation and
χ̃0

1χ̃
+
1 , χ̃0

1χ̃
0
2 coannihilation processes. The sample spectra for this region are given in Table 1.

To the left of the yellow region, the LSP relic density is below 0.03. This part of parameter space
is also viable if the LSP constitutes only a fraction of dark matter. To the right of the yellow
region, the relic density is too large. In principle, this could also be consistent with cosmological
constraints if the dark matter production is non–thermal.
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Prospects for indirect and direct detection of dark matter are presented in Fig.3. Concerning
the former, the gamma ray flux from the Galactic center is produced in this case by an s–channel
Z exchange or t–channel χ̃+

1 , χ̃0
2 exchange. We see that relatively light neutralinos, mχ̃0

1
. 300

GeV, can be detected by GLAST, a satellite based experiment to be launched in 2007, but are
beyond the reach of EGRET. The neutralinos can also be detected directly via elastic scattering
on nuclei dominated by the t–channel Z and Higgs exchange. CDMS II (2007) will probe part
of the parameter space, while ZEPLIN IV (2010) will cover the entire region allowed by WMAP.
The scattering cross section is significant mainly due to the Z–exchange contribution and the
higgsino–bino nature of the neutralino.

A B

tan β 35 35
α 23.8 11.9

m3/2 (TeV) 8 3

M1 625 125
M2 999 187
M3 2267 430

mχ̃0
1

594 112

mχ̃0
2

635 159

mχ̃+

1

627 151

mg̃ 2810 612

mh 127.1 121.1
mA 5972 2236
mH 5972 2236
µ 617 194

mt̃1
4483 1732

mt̃2
5477 2239

mc̃1, mũ1
8171 2293

mc̃2, mũ2
8172 2989

mb̃1
6240 2241

mb̃2
7249 2647

ms̃1
, md̃1

8170 2984

ms̃2
, md̃2

8172 2994

mτ̃1 7098 2657
mτ̃2 7568 2825

mµ̃1
, mẽ1

8001 2989
mµ̃2

, mẽ2
8003 2996

mν̃3
8003 2988

Ωh2 0.108 0.101

Table 1: Sample spectra. All masses are in GeV, except for m3/2 (in TeV).
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5.3 Dependence on tan β and ξi

For lower tan β, the “no EWSB” constraint relaxes, as explained above. The allowed region is
again on the edge of the “no EWSB” area (Fig. 4). An interesting feature, absent in mSUGRA,
is that M1(MZ) ≃ M2(MZ) is possible. In this case, strong coannihilation of bino–neutralinos
with wino–charginos (mχ̃0

1
∼ mχ̃+

1

) gives the relic LSP density consistent with WMAP. On the

other hand, the indirect and direct detection rates are somewhat lower (Fig. 5). The neutralinos
and charginos are light (. 200 GeV) and can be produced in collider experiments.

At tan β ∼ 50, the picture is similar to the tan β = 35 case (Fig. 6) except the detection rates
are now enhanced (Fig. 7). We do not observe the A–pole funnel for dark matter annihilation
since the scalars are too heavy in the considered parameter space.

Increasing ξHu,d
eliminates the “no EWSB” region (Fig. 8), as is clear from Eq.(43). In this

case, a gluino LSP region appears at small αFLM. Now the WMAP constraint is satisfied for
larger µ and the LSP is a bino–wino. Consequently, the detection rates are suppressed (Fig. 9).

For all ξi = 1/6, we essentially recover the plots for ξi = 0 and the same conclusions
(Figs. 10,11).

Making the scalars lighter, ξi = 1/3 − 10−2, changes the picture dramatically (Fig. 12).
The stau can be the LSP, similarly to the mSUGRA case. Close to the stau LSP region, χ̃0

1τ̃1

coannihilation is efficient and allows for an extra band in the parameter space consistent with
WMAP. In this region, χ̃0

1 is mainly a bino and the detection rates are suppressed (Fig. 13). The
points with significant detection rates correspond to the band on the left hand side of Fig. 12,
in which case χ̃0

1 is a mixed higgsino–bino.
For ξi = 1/3, we recover the “mirage mediation” soft terms [4], in which case the (suppressed)

anomaly and modulus contributions to the scalar masses have to be included. The corresponding
parameter space analysis can be found in [29, 40].

5.4 Summary

The “matter domination” scenario differs from the “mirage mediation” scheme and mSUGRA in
several phenomenological aspects. First, the scalars are usually much heavier than the gauginos.
This exacerbates the MSSM finetuning problem on one hand, but reduces the finetuning needed
to suppress excessive CP violation and FCNC, on the other hand4. The gauginos and higgsinos
are typically quite light and accessible to collider searches. The neutralino dark matter can also
be detected via the gamma ray flux from the Galactic center as well as elastic scattering on
nuclei.

The typical values of αFLM increase compared to mirage mediation due to the electroweak
symmetry breaking constraint. Also there are no charged or coloured tachyons. Non–universality
in gaugino masses allows for M1(MZ) ≃ M2(MZ), which is not possible in mSUGRA and leads
to efficient chargino–neutralino coannihilation.

6 Comments on cosmological problems

The class of models we study do not offer an immediate solution to the gravitino or moduli
problems [53]. The main point of these problems is that late decaying particles like gravitinos

4In our phenomenological study, we have have assumed that ξi and thus the scalar masses are generation–
independent. In a more general situation, this may not be the case and there is a danger of excessive FCNC.
However, these effects are suppressed (but not completely eliminated) due to multi–TeV scalar masses.
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and moduli spoil the standard nucleosynthesis (BBN), which has proven to be very successful.
One way to avoid these problems is to make gravitinos and moduli sufficiently heavy, 40 TeV
or so, such that they decay before the BBN. This is possible in our framework for the price of
increasing the sfermion masses as well. We note, however, that the above estimate is based on
the decay width

Γ ∼ m3
scalar

M2
, (44)

with M ∼ MPl. In practice, this identification may be too rough and, depending on the Kähler
potential and other factors, M can be close to MGUT. In this case, the moduli problem is less
severe and would not require a significant increase in the scalar mass. In such a scenario, the
late–time entropy production will change the picture of dark matter generation (cf. [54]).

A version of the above problem, the so called “moduli–induced gravitino problem”, was
recently pointed out in the context of the KKLT model with the anti-D3 brane uplifting [55, 56].
In this setup, supersymmetry is broken explicitly and mT ≫ m3/2. As a result, the branching
ratio for the T decays into gravitinos is of order one which leads to abundant gravitino production
and severe cosmological problems. In the context of spontaneously broken supergravity, such a
problem is usually absent [9, 57] since the uplifting field φ typically has a mass comparable to
m3/2,

mφ ∼ O(m3/2) . (45)

This is because, unlike W (T ), the uplifting superpotential is not very steep [14, 15, 16]. φ
dominates the energy–density of the Universe at late times, however its decay into gravitinos is
suppressed and the “moduli–induced gravitino problem” is absent.

7 Conclusions

Obtaining phenomenologically interesting vacua in flux compactifications is a difficult task.
One of the problems is that the simple models such as the KKLT predict the existence of
a deep AdS vacuum which then has to be “uplifted” to a dS/Minkowski vacuum by some
mechanism. Here we have advocated the possibility that such uplifting can be provided by hidden
matter F–terms, along the lines of our earlier work [9]. In this case, vacua with spontaneously
broken supersymmetry, small positive cosmological constant and hierarchically small m3/2 can
be obtained. This procedure leads to “matter dominated” supersymmetry breaking, with the
modulus contribution being suppressed. The resulting soft masses are characterized by light
gauginos and heavy scalars.

We have performed a parameter space analysis in this class of models. There are considerable
portions of parameter space consistent with all of the experimental constraints and accessible
to collider searches. We also find good prospects for direct and indirect detection of neutralino
dark matter in the near future.
Acknowledgements. This work was partially supported by the European Union 6th framework
program MRTN-CT-2004-503069 “Quest for unification”, MRTN-CT-2004-005104 “ForcesUni-
verse”, MRTN-CT-2006-035863 “UniverseNet” and SFB-Transregio 33 “The Dark Universe” by
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