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Abstract—In this paper, we present a publicly available dataset
for the evaluation of indoor positioning algorithms that use mag-
netic anomalies. Our dataset contains IMU and magnetometer
measurements along with ground truth position measurements
that have centimeter-level accuracy. To produce this dataset,
we collected over 13 hours of data (51 kilometers of total
distance traveled) from three different buildings, with sensors
both handheld and mounted on a wheeled robot, in environments
with and without changes in the placement of objects that affect
magnetometer measurements (“live loads”). We conclude the
paper with a discussion of why these characteristics of our dataset
are important when evaluating positioning algorithms.

Index Terms—Magnetic Localization, Indoor Localization,
Dataset, Comparison of Methods

I. INTRODUCTION

Magnetic anomalies are variations in the Earth’s magnetic
field that can be used for indoor positioning of both smart-
phones and robots. In indoor environments, the absence of
a global navigation satellite system necessitates alternative
positioning methods. Some indoor localization strategies for
smartphones (such as Qualcomm’s Lumicast [1]) require in-
frastructure specifically for the purpose of positioning. In
the case of Lumicast, a set of light fixtures must broadcast
positioning signals using visible light communication (VLC).
Wi-Fi based positioning, beyond requiring the presence of
a number of access points, can also require knowing the
position of these access points and can suffer inconsistent
fingerprints due to blockage from users or other pedestrians
[2]. In many cases, a localization solution that does not require
such infrastructure is desired.

Several sensors used in robot or smartphone localization
that do not require infrastructure like VLC lights or the use
of access points include magnetometers, cameras, and Li-
DAR. Magnetometers offer several advantages to both camera
and LiDAR localization. In robotic applications, there are
some scenarios where cameras may not be allowed due to
security and privacy concerns [3]. Performance of camera-
based positioning can also be significantly degraded due to
low lighting or smoke [4]. Magnetic field-based positioning
systems, consisting of an inertial measurement unit (IMU) and
magnetometer, have a cost advantage over other sensors com-
monly used for localization [5]. Table I compares the cost of a

TABLE I
COST COMPARISON OF SENSORS USED FOR LOCALIZATION

Sensor Example Cost Source
Smartphone IMU InvenSense MPU-6500 $3.50 [6]

Magnetometer NXP MAG3110 $1.46 [7]
Camera mvBlueFOX-MLC200w $310.00 [8]
LiDAR Velodyne PUCK VLP-16 $7999.00 [9]

magnetometer that can be found on a robot or smartphone with
an IMU, camera, or LiDAR system. Magnetometers, moreover,
are ubiquitous on mobile robot platforms and smartphones.

The use of magnetometers to localize a smartphone or robot
indoors is becoming common. For example, companies such
as IndoorAtlas have developed indoor positioning solutions
using magnetic anomalies [10]. With respect to localization
algorithms, methods exist to localize smartphones in a building
using pedestrian dead reckoning (PDR) and a magnetic field
[11]–[14]. There also exist methods for localizing smartphones
using Wi-Fi and magnetic maps together [2], [15]–[18]. For
example, when comparing methods for Wi-Fi surveying and
localization with a magnetometer-based approach, Gao and
Harle [16] found that magnetic signals were particularly useful
for detecting loop closure with smartphones. Magnetometers
have also been used to position cleaning robots, cars, and
unmanned ground vehicles (UGVs) [4], [5], [19]–[21].

Considering the growing popularity of positioning with
magnetic anomalies, it is necessary to establish publicly
available datasets so that these methods can be compared.
The first dataset presented for the purpose of evaluating
positioning algorithms based on magnetic anomalies was the
UJIIndoorLoc-Mag dataset of Torres-Sospedra et al [12]. This
dataset collected magnetic field and IMU measurements from
a smartphone in a 15×20 meter office space. Another dataset,
presented by Barsocchi et al [22], was developed to compare
approaches to positioning methods using inertial sensors and
Wi-Fi to methods using inertial sensors and magnetometers.

Our primary contribution is to present a new, publicly
available dataset—the Magnetic Positioning Indoor Estimation
(MagPIE) dataset1—that can be used to further benchmark and
study approaches to magnetic and inertial positioning. This
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http://bretl.csl.illinois.edu/magpie


dataset provides magnetometer, IMU, and ground truth posi-
tion and orientation measurements collected in 723 separate
trials over a total duration of more than 13 hours, a total
distance of more than 51 kilometers, and a total area of more
than 960 square meters. We describe the system, methods, and
experiments used to produce this dataset in Sections II-IV.

The MagPIE dataset has three characteristics that differen-
tiate it from what has been available previously:

• Data were collected from multiple buildings with a large
total test area (960 square meters of floor space in three
different buildings compared to, for example, 185 square
meters in one building [22]). We show in Section V-A
that methods of indoor positioning may perform quite
differently in different buildings.

• Data were collected with sensors that were both handheld
(as in prior datasets) and mounted on a wheeled robot
(new to our dataset). We show in Section V-B that
indoor positioning algorithms are, by necessity, different
in these two cases, because of the presence or absence of
well-defined steps into which IMU measurements can be
segmented.

• Data were collected both with and without changes in the
placement of objects that may affect magnetometer mea-
surements. Prior datasets were based on the assumption
that all magnetic anomalies are constant over time (i.e.,
are “dead magnetic loads”), while our dataset is based
on the assumption that certain magnetic anomalies are
only temporary (i.e., are “live magnetic loads”). We show
evidence in Section V-C that supports this assumption.

Our dataset can provide a benchmark for testing magne-
tometer map surveying, localization, SLAM, and loop closure
approaches. It can also be used to improve algorithms for PDR
or gravitation tracking (such as Sarkka et al [23]).

II. DATA COLLECTION: SYSTEM

A. Sensing Platforms

As our sensing platform, we used a Motorola Moto Z Play
smartphone collecting magnetometer data at approximately 50
Hz and accelerometer and gyroscope data at approximately
200 Hz. The Allan standard deviation plots—which describe
the angle and velocity random walk, bias instability, and rate
random walk—of accelerometers and gyroscopes on the smart-
phone are shown in Figures 1 and 2. These plots were created
from a 3908 second static test, and data used to produce them
have been provided on the dataset website. The Allan standard
deviation plots shown can be used to tune Kalman filtering
approaches to positioning with this dataset (see El-Sheimy
et al [24]). The norm of magnetometer measurements on the
smartphone were found to have a standard deviation of 0.495
µT . The Motorola Moto Z Play was used for both pedestrian
and UGV tests.

B. Ground Truth

The position and orientation estimates produced by an
application using Google’s Tango API on a Lenovo Phab 2
Pro were taken to be the ground truth measurements for our

Fig. 1. Smartphone accelerometer Allan standard deviation, which describes
the sensor’s velocity random walk, bias instability, and rate random walk.

Fig. 2. Smartphone gyroscope Allan standard deviation, which describes the
sensor’s angle random walk, bias instability, and rate random walk.

dataset. As a way to assess our ability to use Google’s Tango
as a source of ground truth for this application, we mapped and
then localized our Phab 2 Pro inside a motion capture arena.
We then computed the absolute trajectory error (ATE), as
described by Sturm et al [25]. The root mean square absolute
trajectory error over five different trials is shown in Table II.
Figure 3 shows our two smartphones arranged for the UGV
and walking case.

III. DATA COLLECTION: METHODS

Each trial of our dataset was collected according to the
pipeline outlined in Figure 4. First, our test areas were
mapped using the Google Tango application. Subsequently,

TABLE II
ROOT MEAN SQUARE ATE OF GROUND TRUTH POSITION ESTIMATE

Trial RMS ATE (cm)
1 2.92
2 3.13
3 4.20
4 4.19
5 3.52



Fig. 3. The UGV platform with the Motorola Moto Z Play and Lenovo Phab
2 Pro (left) and our walking device (right).

we collected data on our smartphone and UGV outside to
account for magnetometer biases. Immediately, prior to col-
lecting all relevant magnetometer, accelerometer, gyroscope,
and ground truth data, we kept our Motorola Moto Z Play still
for approximately thirty seconds for coarse quasi-stationary
initialization to be performed. While in between obtaining
data for individual trials, we occasionally collected additional
data for magnetometer calibration. Offline, we compared all
magnetometer calibrations to ensure that significant biases
were not inadvertently introduced during testing.

A. Mapping with Tango
We used Google Tango’s API to create an application that

can map an area and subsequently localize our Lenovo Phab 2
Pro in that map. In all cases, in order to ensure a higher quality
map, we added visual features (in the form of fiducial markers
called AprilTags [26]) to the test area prior to mapping. We
explored each area and provided multiple opportunities for
drift in the map to be corrected through the identification of
loop closures. Each map of the environment was saved in an
area description file. That file was then used to localize our test
devices. Fiducial markers remained in the scene throughout
this mapping process as well as during all subsequent tests.

B. Calibrating Magnetometers
Prior to our tests, we collected data to compute the hard

iron offset vector, bm, and soft iron matrix, Λ, of our mag-
netometers. These offsets were applied to raw magnetometer
measurements as described by [27]:

mc = Λ(mraw − bm). (1)

A triad of uncalibrated and orthogonal magnetometers cre-
ate an ellipsoid when spun about a point. The hard iron offset
describes how far from the origin the center of that ellipsoid
is, while the soft iron offset matrix describes the eccentricity
of the ellipsoid. Equation 1 projects raw magnetometer mea-
surements onto a sphere centered at the origin with a radius
of approximately 53 µT , since this is roughly the magnitude
of Earth’s magnetic field in Urbana, IL.

C. Initialization
Prior to each test, we kept our test devices still for ap-

proximately thirty seconds to allow for the computation of
the initial orientation of the device relative to the plumb-bob
gravity vector, which we call quasi-stationary initialization.
In particular, we computed coarse estimates of the initial
orientation of the device by claiming that the direction cosine
matrix (C) of the IMU’s frame of reference in terms of the
local frame of reference, which is NED, as described by
Savage [28]:

C =
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where

C(1,1) = C(2,2)C(3,3) − C(2,3)C(3,2)

C(1,2) = C(2,3)C(3,1) − C(2,1)C(3,3)

C(1,3) = C(2,1)C(3,2) − C(2,2)C(3,1).

Here C(i,j) refers to the element of C on the ith row and
jth column, aSF is the specific force vector measured by our
accelerometers (in m/s2) and (·)x, (·)y , and (·)z are the x, y,
and z components of the contained vector respectively.

IV. DATA COLLECTION: EXPERIMENTS

Leveraging the structure of previously used datasets (i.e. the
UJIIndoorLoc-Mag dataset [12]), we separated our collection
process into training and testing trials. Typically, we would
anticipate that training trials are used to generate magnetic
maps, while testing trials are used to assess how well proposed
algorithms localize within these generated maps. To accommo-
date differing use cases, we performed tests for walking with a
handheld phone (as if one was texting) and for a UGV. Finally,
we conducted two different testing scenarios: one without any
imposed changes to the magnetic field of the building (dead
load cases) and a second set with objects (or live loads) added
to the scene that change the magnetic field of the building.

A. The buildings and trial descriptions

We collected data in portions of three different buildings
on the UIUC campus: the Coordinated Sciences Laboratory
(CSL), Talbot Laboratory, and Loomis Laboratory. These
buildings are depicted in Figure 5, and the portion of each
building used in our dataset contain approximately 195, 295,
and 470 square meters of area respectively. The number of
training and testing trials for each building, platform, and test
scenario are described in Table III. The table also reports the
average density of magnetometer training measurements over
the relevant area of the associated building in the dataset.
Histograms of the time and distance traveled over all trials in
the dataset are presented in Figure 6. In total, over 13 hours
and 51 kilometers of data have been collected. On average,
each test case was approximately 90 seconds and 101 meters
long. The shortest test case by time was 21 seconds, and
the shortest test case by distance traveled was 23 meters. In



Fig. 4. The pipeline for collecting data for the MagPIE dataset. We first map each test area with our Lenovo Phab 2 Pro. Then the magnetometers are
calibrated. The test device is subsequently held stationary, so that an initial estimate of the device’s orientation can be computed. The data presented in the
publicly available dataset is then collected. Throughout our tests, the magnetometer is calibrated again to ensure that biases were not inadvertently introduced.

(a) Coordinated Science Laboratory

(b) Talbot Laboratory

(c) Loomis Laboratory

Fig. 5. We collect data for mapping and localization in portions of three
buildings: the first floor of the UIUC’s Coordinated Sciences Laboratory, the
third floor of Talbot Laboratory, and the first floor of Loomis Laboratory.

addition, the longest test case by time was approximately 245
seconds, and the longest test case by distance was 297 meters.

B. File Descriptions

We structued our dataset such that each test or training
trial contained five files: Initial DCM#.txt, Output accel#.txt,
Output gt#.txt, Output gyro#.txt, Output mag#.txt. The initial
DCM files were the result of the coarse quasi-stationary
initialization. The first column of the accelerometer, ground
truth, gyroscope, and magnetometer files have been made to

TABLE III
NUMBER OF TRAINING AND TESTING CASES AND DENSITY OF TRAINING

CASES (IN MEASUREMENTS PER SQUARE METER)

Building and Num. Train Num. Dead Num. Live Mag.
Platform Cases Load Cases Load Cases Density

CSL UGV 93 11 10 1615.1
CSL WLK 100 11 11 530.1

Talbot UGV 100 11 11 944.5
Talbot WLK 99 11 11 417.6
Loomis UGV 99 11 11 1907.2
Loomis WLK 100 12 11 4397.0

Fig. 6. Histograms of the distance traveled and time span of all trials.

contain the time stamp of each measurement in seconds. The
accelerometer, gyroscope, and magnetometer data have been
made to list, in their subsequent columns, measurements along



Fig. 7. Directory tree of the MagPIE dataset. Directories for walking trials
are labeled WLK. Dead load test cases are labeled Outlier Free and live load
test cases are labeled With Outliers.

the body-frame’s x, y, and z axes (in that order and in m/s2,
rad/s, and µT respectively). The ground truth data has been
made to list position and quaternion information respectively
in subsequent columns. Our data was arranged in the file
structure shown in Figure 7.

V. DISCUSSION

Our dataset has three characteristics that differentiate it from
what has been available previously: data were collected from
multiple buildings with sensors that were both handheld and
mounted on a wheeled robot both with and without changes
in the placement of objects that affect magnetometer measure-
ments. In this section, we discuss the ways in which indoor
positioning algorithms depend on these three characteristics to
motivate their inclusion in our dataset.

A. Differences Between Buildings

Previous datasets—such as the UJIIndoorLoc-Mag dataset
or the dataset from Barsocchi et al [22]—only use data from
one building in their dataset. Using the method presented by Li
et al [2], we use training data and Gaussian process regression
(GPR) to generate two sets of maps: Talbot UGV maps and
Loomis UGV maps. Then, we compare the percent of the
global maximum likelihood estimate (MLE) and local maxi-
mum a posteriori (MAP) estimate above a set of thresholds
over all dead load test cases associated with each scenario.
Finally, we compute the same estimates over all live load test
cases for the Talbot UGV segment of the dataset. As a result,
we see that there is a significant difference between two of our
buildings, which motivates the inclusion of multiple buildings
in our dataset.

1) Mapping with Gaussian Process Regression: We gener-
ate a map with GPR for each element of the magnetic field vec-
tor in the Google Tango frame of reference using our training
magnetic field measurements and the ground truth locations
and orientations of those measurements. We construct this
map with the help of the GPML toolbox [29]. We take as
our GPR kernel the squared exponential function and we also

(a) x-Direction Field

(b) y-Direction Field

(c) z-Direction Field

Fig. 8. Map of expectation of the magnetic field vector computed using
Loomis Laboratory UGV training data and Gaussian process regression.

assume a constant mean function. Our Loomis UGV dataset
contains more than 444,000 data points for training our GPR
algorithm, and our Talbot UGV dataset contains more than
475,000 data points for training. Due to memory limitations,
we compute hyperparameters and a heat map using 75,000
randomly selected training points with 2,220 induced points
and a variational free energy approximation [30]. The resulting
GPR approximation computes a map of the expectation of the
measurement from a calibrated magnetometer at any given
point on the map as well as its variance. The map of the
expectation of calibrated magnetometer measurements for the
Loomis UGV case is shown in Figure 8. From the figure, the
range of magnetic field measurements modeled by the map
can be seen. Clearly, magnetic anomalies are present in the
scene and can be quite large relative to Earth’s magnetic field.



TABLE IV
PERCENT OF MEASUREMENTS AT OR ABOVE MAXIMUM LIKELIHOOD

ESTIMATE OR MAXIMUM A POSTERIORI THRESHOLD

Threshold (×10−5) 1.036 0.948 0.781 0.566 0.433

Loomis UGV Global MLE % 2.0 2.5 3.3 4.4 6.0
Talbot UGV Global MLE % 0.5 1.0 2.0 5.6 11.2
Talbot UGV Global MLE % (Live) 1.1 1.4 2.7 6.2 11.6

Loomis UGV Local MAP % 10.8 11.6 16.3 25.1 34.5
Talbot UGV Local MAP % 49.6 55.6 64.2 76.6 83.1
Talbot UGV Local MAP % (Live) 51.7 57.8 69.4 84.4 90.5

2) Localization: Using the framework from Li et al [2],
we take as our state vector, θ, the two dimensional map
position and an azimuth angle. Given calibrated magnetometer
measurements, we search over a grid of states in the map to
find the maximum likelihood estimate using Bayes’ formula

p(θ|mc) =
p(mc|θ)p(θ)
p(mc)

(3)

where the probability generated by the maps enable the
computation of p(mc|θ) using the multivariate Gaussian model

p(mc|θ) =
exp

(
− 1

2
[mc − µb(θ)]

T Q−1(θ) [mc − µb(θ)]
)

(2π)
3
2 |Q(θ)| 12

(4)

where µb(θ) are the mean values from the maps produced
through Gaussian process regression and Q(θ) are the associ-
ated covariances from these maps. As with Li et al [2], p(mc)
is a normalizing factor since it is not a function of the state.
We compute a global MLE every half meter along all test
trajectories. We then, following the same approach as Li et
al [2], include a prior, p(θ), at the true state with a standard
deviation of 3m to compute a local MAP estimate for all the
test trajectories.

We compute, for the Loomis and Talbot UGV cases, the
percent of tested points with a global MLE and local MAP
estimate beyond a set of given thresholds in Table IV. While
it is important to point out that such a map can be improved
(with a resulting improvement in corresponding MLE and
MAP estimation results), it is clear from the table that for our
given mapping approach, there does exist a difference between
the results associated with two of the buildings in our dataset.
This result motivated collecting data from multiple buildings
in the MagPIE dataset.

B. Differences Between Platforms

Indoor pedestrian positioning algorithms often use PDR [3],
[11], [14]–[18]. Robots must use a numerically integrated
inertial navigation system (INS) or an INS complemented
by a dynamic model of the robot [31]. Rather than grow-
ing with time as an INS does, PDR error grows with the
number of steps, which provides substantial advantages for
a positioning algorithm operating with a pedestrian. PDR
avoids time-related error growth by identifying steps taken and
turns made by the pedestrian and associating a stride length
with each step. From the perspective of a smartphone, steps
produce a very noticeable pattern that enable PDR. Figure

Fig. 9. Steps made by pedestrians cause a clear pattern that can be leveraged
by PDR, which can be seen as a sinusoid in the z-direction of the ground truth
measurements (top) and accelerometer measurements (middle) during a small
portion of the MagPIE dataset. As a comparison, a segment of the z-direction
of accelerometer measurements of a UGV trial is also included (bottom).

9 shows a segment of the ground truth measurements (top)
and accelerometer measurements (middle) in the z-direction
from a small walking segment of our dataset. It is clear
that steps result in sinusoidal motion on the smartphone in
both the ground truth and in accelerometer measurements.
For comparison, measurements from a UGV’s accelerometers
(bottom) do not have such a pattern. Due to the difference
between pedestrian and UGV motion and the implications with
respect to positioning algorithms, we choose to include both
platforms in our dataset.

C. Differences Between Live Load and Dead Load Cases

In previous literature on localization and mapping based on
magnetic anomalies, it has been assumed that the magnetic
fields in buildings are constant over time. It is stated by Wang
et al [3] that “anomalies are reasonably stable in a long period
of time.” In addition, Li et al [2] state that there exist “long
temporal persistence in terms of direction and intensity” of a
building’s magnetic field. While Frassl et al [4] acknowledges
that distortions in a building’s magnetic field may occur due
to moving objects like elevators or furniture, the field in a
building still “appears to be stable over long periods of time.”
It is stated by Akai and Ozaki [21] that the “stability of the
disturbed magnetic field over long periods of time has already
been demonstrated.” Finally, Robertson et al [32] also states
that magnetic fields in buildings are “temporally stable.”

Rather than assuming that the magnetic field in a building
is static, we include test cases in our dataset wherein we move
objects along the test trajectory that are meant to change the
building’s magnetic field. Thus, a positioning method may
compare performance in the presence of larger innovations.
Toward that end, we select eight potential candidate “live
magnetic loads” that may alter the magnetic field in a building.
We then place our UGV on rails and drive down a hallway
twenty times: ten times without any object in the hallway



and then a second ten with a given object in the hallway.
The results are shown in Figure 10. Based on this, we use
a computer cart, an industrial fan, a table and chairs, and a
toolbox to change the magnetic field in approximately half
of our UGV test trials. Performing a similar routine for our
walking case, we choose to include a table and chairs and a
computer cart in approximately half of our walking test trials.

Relative to the size of the map or the number of points sam-
pled along the test trajectories in our localization algorithm,
the number of distortions produced by the live magnetic loads
are few. Thus, because test trajectories between live load cases
and dead load cases are not kept constant, it is not surprising
that live loads do not dominate the results produced in Table
IV. However, as shown in Figure 10, this segment of the
dataset may be important for comparing positioning algorithms
that look to reject such outliers. Thus, while we present
evidence that these live magnetic loads cause differences in
the magnetic field of a building, more work must be done
to understand their impact on localization algorithms. Due to
these results, and the need for further study, we include live
loads in our dataset.
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(a) Computer Cart (b) Magnitude of magnetic field near computer cart. (c) Bicycle (d) Magnitude of magnetic field near bicycle.

(e) Computers Turned On (f) Magnitude of magnetic field near computer which
are turned on.

(g) Industrial Fan (h) Magnitude of magnetic field near fan.

(i) Cart with Refriger-
ator and Microwave

(j) Magnitude of magnetic field near cart with
kitchen items.

(k) Metal Trash Can. (l) Magnitude of magnetic field near metal trash
can.

(m) Table and Chairs (n) Magnitude of magnetic field near table and chairs. (o) Toolbox (p) Magnitude of magnetic field near toolbox.

Fig. 10. We consider a UGV proceeding down a hallway 20 times. Ten times without a potential “live magnetic load” present (red tube of sample paths)
and ten times with a set of potential “live magnetic loads” in the hallway (blue tube of sample paths). The pictures and plots above display these selected
candidate live magnetic loads and the corresponding norm of the magnetic field as a function of the distance down the hallway for the 20 trials. Several of
these candidates clearly alter the magnetic field in the hallway.


