Graph-based Concept Weighting for Medical Information Retrieval

Bevan Koopman

Guido Zuccon, Peter Bruza, Michael Lawley, Laurianne Sitbon

Document Representation for IR

Document Representation for IR

Document Representation for IR

Why Medical IR?

- Vocabulary mismatch
 - hypertension \approx high blood pressure
- Interdependence between terms

(Patel et al, 2007)

Bag-of-Concepts Model for Medical IR

Convert Terms to Concepts

"human immunodeficiency virus" "T-lymphotropic virus" "HIV" "AIDS"

Convert Terms to Concepts

"human immunodeficiency virus"

"T-lymphotropic virus" 86406008
"HIV"
"AIDS"

Convert Terms to Concepts

"esophageal reflux"

235595009 Gastroesophageal reflux
 "esophageal reflux"
 196600005 Acid reflux or oesophagitis
 47268002 Reflux
 249496004 Esophageal reflux finding

"esophageal reflux" 235595009 Gastroesophageal reflux "I96600005 Acid reflux or oesophagitis 47268002 Reflux 249496004 Esophageal reflux finding

Index & retrieval on "bag-of-concepts" (Koopman et al, 2012)

Graph-based Term Weighting

Example Medical Doc

"The patient is a 32-year-old female with a past medical history significant for a prior history of peptic ulcer disease who presents with a complaint of right lower dental pain. The patient states that she was started on recent dental procedures, on a right lower molar, over the past few months, including a recent root canal, at which time she had a temporary filling placed."

Document Term Graph

 $w(t, d) = idf(t) * S(v_t)$

 $w(t, d) = idf(t) * S(v_t)$

 $R(d,q) = \sum w(t,d)$ $t \in q$

Graph-based Concept Weighting

 $w(c, d_c) = idf(c) * S(v_c)$ $R(d_c, q_c) = \sum w(c, d_c)$ $c \in q_c$

Concept c $w(c, d_c) = idf(c) * S(v_c)$ $R(d_c, q_c) = \sum w(c, d_c)$ $c \in q_c$

• Document is a graph of SNOMED CT concepts

- Document is a graph of SNOMED CT concepts
- SNOMED CT ontology is also a graph

- Document is a graph of SNOMED CT concepts
- SNOMED CT ontology is also a graph
- Concepts "connectedness" in SNOMED CT indicator of importance in medical domain

 Adjust original concept weight by the "background" importance of concept in medical domain:

 $w(c, d_c) = idf(c) * S(v_c) * \log(|\mathcal{V}_s(c)|)$

 $w(c, d_c) = idf(c) * S(v_c) * \log(|\mathcal{V}_s(c)|)$ document

 $w(c, d_c) = idf(c) * S(v_c) * \log(|\mathcal{V}_s(c)|)$ document corpus

 $w(c, d_c) = idf(c) * S(v_c) * \log(|\mathcal{V}_s(c)|)$ document corpus domain

Empirical Evaluation

Test Collection

- TREC 2011 Medical Records
 Track
 - I00,866 clinical records
 - 34 clinical queries + qrels
- Entire collection converted to SNOMED-CT concepts using MetaMap

Baselines + Models • terms-tfidf

• terms-tfidf

concepts-tfidf

- terms-tfidf
- concepts-tfidf
- terms-graph

- concepts-tfidf
- terms-graph

- terms-tfidf
- concepts-tfidf
- terms-graph

- concepts-graph
- concepts-graphsnomed

• terms-tfidf

concepts-tfidf

• terms-graph

concepts-graph

 concepts-graphsnomed

Bpref, Precision@10

Retrieval Results

Run	Bpref	Prec@10
terms-tfidf	0.4722	0.4882
concepts-tfidf	0.4993	0.5176
terms-graph	0.4393	0.4882
concepts-graph	$0.5050 \ (+15\%)$	$0.5441 \ (+11\%)$
concepts-graph-snomed	$0.5245 \ (+19\%)$	0.5559 (+14%)

Query reduction.

$w(c, d_c) = idf(c) * S(v_c) * \log(|\mathcal{V}_s(c)|)$

Query reduction.

$w(c, d_c) = idf(c) * S(v_c) * \log(|\mathcal{V}_s(c)|)$

• 34 queries, 448 query concepts

Query reduction.

$$w(c, d_c) = idf(c) * S(v_c) * \log(|\mathcal{V}_s(c)|)$$

- 34 queries, 448 query concepts
- 127 (28%) excluded

Effect of Reduction

% excluded concepts (IV(c)I=1) for each query

 Concept-based representations show improvements over terms representations

- Concept-based representations show improvements over terms representations
- Graph-based concept representation further improves over bag-of-concepts

- Concept-based representations show improvements over terms representations
- Graph-based concept representation further improves over bag-of-concepts
- Injection of domain knowledge provides further improvements & robustness

- Concept-based representations show improvements over terms representations
- Graph-based concept representation further improves over bag-of-concepts
- Injection of domain knowledge provides further improvements & robustness
- Integrating formal background knowledge into data-driven approaches to IR

TREC Medtrack'I2

Run	infAP
terms-tfidf	0.1685
concepts-tfidf	0.2027
terms-graph	0.1394
concepts-graph	0.2072
concepts-graph-snomed	0.2123