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Abstract

Constructing shape models of complex articulated and deformable objects is a fundamental
capability that enables a variety of applications in computer graphics, biomechanics, arts
and entertainment. Current approaches require a significant amount of manual intervention
in the model construction process.

In this thesis, we present algorithms for learning models of shape that reduce the need
for human input. First, we describe an unsupervised algorithm for registering 3D surface
scans of an object undergoing significant deformations. Our algorithm does not use mark-
ers, nor does it assume prior knowledge about object shape, the dynamics of its deforma-
tion, or scan alignment. It is based on a probabilistic model, which minimizes deformation
and attempts to preserve geodesic distances and local mesh geometry. Second, we describe
an algorithm whose input is a set of meshes corresponding to different configurations of an
articulated object. The algorithm automatically recovers a decomposition of the object into
approximately rigid parts, the location of the parts in the different object instances, and the
articulated object skeleton linking the parts.

We also address the problem of learning the space of human body deformations from
3D scans. Unlike existing example-based approaches, our model spans variation in both
subject shape and pose. We learn a model of surface deformation as a function of the joint
angles of the articulated human skeleton. We also learn a separate model of the variation
between different body shapes. We show how to combine these two models to produce
realistic deformation for different people in different poses. Finally, we show how our
framework can be used for shape completion — generating a complete surface mesh given
a limited set of markers specifying the target shape. We use this capability to complete
partial mesh geometry and to animate marker motion capture sequences.
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Chapter 1

Introduction

Hamlet: Do you see yonder cloud that’s almost in shape of a camel?
Polonius: By the mass, and 'tis like a camel, indeed.

Hamlet: Methinks it is like a weasel.

Polonius: It is backed like a weasel.

Hamlet: Or like a whale?

Polonius: Very like a whale.

William Shakespeare (1564 - 1616), "Hamlet”, Act 3 scene 2

Computers are increasingly used for modeling and interaction with the physical world.
Thanks to decades of research in computer graphics, computers can be utilized as animation
and rendering tools to enable the creation of compelling virtual realities. A multi-billion
industry specializes in conjuring up, creating and packaging these realities in the form of
movies and computer games. As a result, billions of people have been transported to new
worlds of fantasy, adventure and learning. Computers are also utilized for the creation of
intelligent agents, which are becoming increasingly sophisticated in their ability to navigate
the environment and to interact with people.

The tasks of modeling and interaction with the physical world are critically dependent
on the ability of the computer to represent and reason about shape. When humans perform
these tasks, they are able to transform the photon impulses hitting the eye’s retina into a

1



2 CHAPTER 1. INTRODUCTION

symbolic representation of the world ("Ouch! The dog ate my chocolate!”). We tend to
think of the world in terms obbjects(dog, chocolate), which are entities with coherent
properties (dogs like chocolatelhapes one of the most fundamental properties, that is
used to describe the 3D surface geometry of objects. The ability to acquire and reason about
this geometry enables multiple practical applications in the entertainment, biomedical and
robotics industries which include animation of scenes and characters, motion capture and
analysis, and scene understanding.

Humans are able to perform sophisticated reasoning about shape on many levels. We
are able to recognize various objects atakses of objectsased on their shape, and many
artists and sculptors possess uncanny ability to reproduce the shapes that they have previ-
ously seen. We can reason about object classes from nature such as giraffes, jellyfish and
cobras, to name a few, and multiple human-made objects such as cars, chairs and text. Fur-
thermore, we can deal rather effortlessly with the signifistuaipe variatiorwhich may be
present in a particular object class. Consider the familiar shape of the human body, which
is remarkably diverse in spanning African pygmies and North American couch potatoes,
as well as males and females. Another common object, the chair, comes in an incredibly
rich set of shapes limited only by the designer’'s imagination, while somehow remaining
distinctly recognizable.

To make matters more difficult, the shape of each object can change (deform) over time.
In order to animate humans, snakes and puffer-fish, we need to be able to represent these
deformations. For many objects, the shape changes are often easier to understand if the
object is viewed as eollection of parts For example, we think of a human body in terms
of head, torso, arms and legs, while a chair can have a seat, legs and a back. For many
objects (giraffes, chairs), the configuration of the object parts relative to each other can
change significantly and account for most of the shape deformation. The parts themselves
can deform (when humans flex their muscles and cats stretch) and faithful models need to
capture these deformations as well.

Most state-of-the-art algorithms for shape modeling, animation and tracking bypass
the inherent complexity of the shape-modeling task by relying on significant amount of
human input. For example, algorithms for finding the correspondence between two shapes
often require that dozens of corresponding points on the shapes are specified by a human.
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Algorithms for shape tracking often assume that the shape model and its decomposition
into parts is provided, and rarely generalize to other instances in the object class. Shape-
completion algorithms often assume that the object is placed in a particular pose.

In this thesis, we present a framework for learning complex shape models from exam-
ple surfaces acquired with a 3D scanner. The framework consists of several algorithms,
based on the theory of probabilistic graphical models, which allow us to learn complex
shape models of different objects with minimal human intervention. First, we address the
fundamental problem of non-rigid registration and describe an unsupervised algorithm for
computing the correspondences between two drastically deforming surfaces. Then, we
show how to automatically decompose a shape into its constituent parts, and find the joints
between the parts. We also show how to combine the information from the registered sur-
faces and the part decomposition in order to learn the space of deformations for an entire
object class. We demonstrate this approach by learning the space of human body deforma-
tions spanning different body physiques and different poses. Finally, we show applications
of the learned shape models to popular tasks such as animation, shape completion and
tracking.

1.1 3D Shape Models

We will start by giving a brief overview of the main shape-modeling paradigms.

1.1.1 Artist-designed Models

Most 3D character models, which are used in movies and games, are designed by graphics
artists. The design process is knowncharacter modelingnd consists of several stages

(Fig. 1.1(a)). First, specialized software is used to model the surface geometry of the char-
acter, using many possible approaches such as subdivision surfaces, nurbs or constructive
solid geometry [46]. Other surface properties such as color, texture and reflection charac-
teristics may also be defined at this time. In the next stage of the processragiied, the
character may be fitted with a skeleton, which allows easy editing of its poses and move-
ment. The model can also be equipped with specific controls to make animation easier and
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[Sifakis et al. 2005] [Sifakis et al.2005]

[Allen et al.2002]

Figure 1.1: Different 3D modeling paradigms. (a) Artist-designed models are created by
specifying the geometry and defining the skeleton and the facial expressions of the charac-
ter. (b) Anatomical models simulate the deformation of the underlying muscle and tissue.
(c) Example-based models are learned from scans of real-world objects.

more intuitive. For example, the character Woody from the movie Toy Story has about one
hundred pre-defined facial expression controls and mouth shapes used for lip-synching.
Many memorable characters such as Yo®&hrek and Buzz Lightyear and some less
memorable ones such as Jar-Jar Binks have been generated in such a manner. The scope
of different characters that can be created with the existing tools for 3D animation is truly
astounding; the main limitation being the imagination of the designer. The other main
limitation is time. The process is very labor-intensive, and may take months and many
people to design a novel character. Specialized software helps to decrease design time for

lYoda is computer-generated in Star Wars episodes I-111 only.
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commonly-used models such as humans [94], but the process still can take many days.

1.1.2 Anatomical Models

A different paradigm for obtaining accurate surface deformation is based on anatomical
modeling of the major bones, muscles and other interior structures of the body (Fig. 1.1(b)).
As the body moves, the deformation of these underlying structures induces a corresponding
deformation of the skin that is wrapped over them. There is a large body of work on such
physically-realistic models, including Wilhelms and Gelder [124], Scheegteat [100],

and Aubel and Thalmann [9]. The primary strength of anatomical approaches is their ability
to simulate dynamics and object interactions in a realistic way. However, such detailed
physical models are difficult to construct, and computationally expensive to use. In each
animation frame, one must perform a physical simulation of the entire body anatomy, while
taking care to conserve muscle volumes, and stretch the skin appropriately.

1.1.3 Example-based Models

An increasingly popular approach is to learn shape models directly from examples, which
can be acquired with a 3D scanner (Fig. 1.1(c)). This approach has been used to model face
deformations [15, 120], human body deformations due to changes in pose [108, 123, 80]
and human body deformations between different people [2, 102]. Example-based ap-
proaches produce realistic models that closely mimic the appearance of the scanned ob-
jects. Constructing them requires relatively little human involvement. Finally, they are
considerably more efficient than anatomical approaches because they only model the ob-
ject’s surface but not its interior. These factors make example-based approaches the method
of choice for objects which can be easily scanned. Example-based approaches for model-
ing shape will be the focus of this thesis. They merit a more detailed description, which is
provided in the next section.
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1.2 Constructing a Deformation Model from Examples

Most example-based modeling methods use the same basic data-processing pipeline. The
process usually begins with a human-designed shape template of the object (Fig. 1.2(a)). In
the case when pose deformations are modeled, this template includes the articulated object
skeleton— a decomposition of the object surface into parts and the joints between these
parts. Depending on the actual surface representation, additional controls for deforming
the surface may be provided as well.

Then 3D scans of the object are acquired. In order to integrate the information present
in the scan surfaces, they need to be brought into correspondence — a process also known
asregistration Registration is usually performed between the object template and each
scan [1, 2]. The output is a mapping between every point on the template surface and its
corresponding point in the scan. Current registration algorithms need to be initialized with
a subset of the point-to-point correspondences between the model and each scan. These
correspondences can be obtained by placing markers on the scanned object (Fig. 1.2(b)) or
by having a human click on corresponding points in a special software tool. The number
of correspondences required is usually quite large — Adteal. [2] needed more than 70
matching point pairs for the registration of two human body scans. Accurate placement of
physical or virtual markers is usually time-consuming, and for full-body models can easily
exceed half an hour per subject.

Now we have a set of registered scans, which specify the deformations of the tem-
plate shape for a variety of object instances or poses. These deform#tiaresassoci-
ated with some intrinsic parametrization of the object template, producing the tuples
(X1, Y1),...,(X,,Y,). For example, if we are modeling pose deformations, the veéfors
will contain the joint angles of the articulated skeleton. If we are modeling the space of
human facial expression&; may correspond to the parameters of some lower-dimensional
subspace. Most commonly, these subspace parameters are obtained by peiffoimeing
pal Component Analysis (PCAh the deformation vectofs.

We can predict the deformations of new object instances by interpolating from nearby
examples (Fig. 1.2(c)). In particular, given a set of parametgrdefining a new shape
instance, we can obtain the shape template deformalidrs looking at the examples
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(@) (b)

= "%

Figure 1.2: The pipeline for learning a shape model from examples (example courtesy of
Allen et al.[1]). (a) A shape template for the object is defined, which includes an articulated
skeleton and a deformable subdivision template. (b) Markers are placed on the object’s
surface and scans of the object are acquired. (c) After the shape template is registered with
the scans, new examples can be generated by interpolation from existing ones.

whose parameter¥ are similar toX’. A variety of different methods exist, that differ
only in the details of representing the deformation, and in the way the interpolation is done
[70, 108, 123, 80, 102]. Many of these interpolation methods are very efficient, and can be
used for real-time animation.

1.3 Contributions

This focus of this thesis is on algorithms which allow us to learn complex models of shape
with little or no human supervision. We present novel algorithms for all stages of the
modeling process.
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Figure 1.3: Shapes of different people in different poses, synthesized from our learned
space of human body variations.

o Registration of 3D surfaces
We propose an unsupervised algorithm for 3D surface registration. When the sur-
faces undergo significant deformations, previous approaches rely on the presence of
markers on the scans, or on significant object-specific knowledge. In contrast, our
algorithm does not need markers, nor does it assume prior knowledge about object
shape, the dynamics of its deformation, or scan alignment. The algorithm registers
two meshes by optimizing a joint probabilistic model over all point-to-point corre-
spondences between them. This model enforces preservation of local mesh geometry,
as well as more global constraints that capture the preservation of geodesic distance
between corresponding point pairs. The algorithm applies even when one of the
meshes is an incomplete range scan; thus, it can be used to automatically fill in the
remaining surfaces for this partial scan, even if those surfaces were previously only
seen in a different configuration. Our algorithm has certain limitations — it does not
address the cases when there are significant changes in surface topology, nor does it
offer a way of preserving the volume enclosed by the surface.

o Articulated model recovery We address the problem of learning a complex artic-
ulated object models from registered 3D scans. The algorithm automatically recov-
ers a decomposition of the object into approximately rigid parts, the location of the
parts in the different object instances, and the articulated object skeleton linking the
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Figure 1.4: Animation of a motion capture sequence taken for a subject, of whom we have
a single body scan. The muscle deformations are synthesized automatically from the space
of pose and body shape deformations.

parts. The decomposition into parts is obtained by using the EM algorithm, using
a graphical model that explicitly enforces the spatial contiguity of each part. Al-
though the graphical model is densely connected, the object decomposition step can
be performed optimally and efficiently, allowing us to identify a large number of ob-
ject parts while avoiding local maxima. We demonstrate the algorithm on real world
datasets, recovering complex models with up to 18 parts, even in the presence of non-
trivial part deformations. To the best of our knowledge, this is the first algorithm to
recover such complicated articulated models in a completely unsupervised manner.

o Modeling the space of human body shape$Ve introduce a data-driven method
for building a human shape model that spans variation in both subject shape and
pose. The method is based on a representation that incorporates both articulated
and non-rigid deformations. We learnpase deformation modehat derives the
non-rigid surface deformation as a function of the pose of the articulated skeleton.
We also learn a separate model of variation based on body shape. Our two models
can be combined to produce 3D surface models with realistic muscle deformation
for different people in different poses, when neither appear in the original set of
examples (see Fig. 1.3). We show how the model can be used for animation and
shape completior— generating a complete surface model given a limited set of
markers that specify the target shape (Fig. 1.4). We present applications of shape
completion to partial view completion and motion capture animation.
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1.4 Thesis Outline

Below is a summary of the rest of chapters in this thesis.

Chapter 2. Surfaces and transformations: We discuss and contrast the basic surface rep-
resentations, including point clouds, meshes and sign distance maps. Then we review
rigid surface transformations, and describe different representations of rotation such
as twists and quaternions. We review how to compute the optimal alignment between
two corresponding point sets.

Chapter 3. Probabilistic graphical models: We introduce and compare the Bayesian net-
work and Markov network formalisms. Then we discuss inference algorithms for
answering conditional probability and maximum a-posteriori (MAP) queries. We
describe in detail the Belief Propagation algorithm and its performance on singly-
connected and loopy graphs. We also present a linear programming algorithm for
inference in Associative Markov networks. We describe maximume-likelihood pa-
rameter estimation for Bayesian networks when the data is fully observed. We also
describe the Expectation-Maximization algorithm for parameter learning in the pres-
ence of hidden variables and missing data.

Chapter 4. Surface registration: We define the problem of surface registration, and de-
scribe the Non-rigid Iterative Closest Point (non-rigid ICP) paradigm for addressing
it. We analyze the failures of non-rigid ICP and propose a novel algorithm for unsu-
pervised surface registration, which works even when the surface undergoes drastic
deformation. We describe this Correlated Correspondence algorithm and evaluate it
experimentally on several real-world datasets. Finally, we present applications of the
algorithm to the problems of partial view completion and interpolation between two
registered scans.

Chapter 5. Recovering articulated object models:We define the problem of articulated
model recovery. We present a novel algorithm for partitioning the object into ap-
proximately rigid parts and evaluate it experimentally. Then we describe a way of
recovering the joints between the parts. We present an application of the learned
models to the problem of articulated model tracking.
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Chapter 6. Learning deformable models of human shape\We describe a method for learn-
ing the space of deformations for an entire object class. In particular, we show how
to learn the space of human shapes which spans changes in pose and physique. We
present applications of the space to the problems of animation and shape completion.

Chapter 7. Conclusions and future directions: We review the main contributions of the
thesis and summarize their significance, applicability and limitations. We discuss
extensions and future research directions not addressed in the thesis.

1.5 Previously published work

Most of the work described in this thesis has been published in conference proceedings.
In particular, the Correlated Correspondence algorithm for surface registration and its ap-
plication to animation and partial view completion was published in Anguelov, Srinivasan,
Koller, Thrun, Pang and Davis [6]. The method for articulated object recovery was pub-
lished in Anguelov, Koller, Pang, Srinivasan and Thrun [4]. Finally, the method for mod-
eling human deformations and its applications for animation and shape-completion was
published in Anguelov, Srinivasan, Koller, Thrun, Rodgers and Davis [7]. The algorithm
for articulated object tracking was submitted as a conference abstract [5], along with a
separate experimental validation study [84].
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Chapter 2
Surfaces and Transformations

In this chapter, we describe the basics of 3D surface models: how to represent surfaces
and how to manipulate them in three-dimensional space. This discussion provides the
foundation for the shape-modeling algorithms, which are the contribution of this thesis.
We also introduce the standard notation for various surface properties, which will be used
in the subsequent thesis chapters.

First, we present standard 3D surface representations sydirdaloudsandmeshes
which are the representations of choice in our learning algorithms. We will motivate
briefly their advantages over other surface representations, swsignesl distance maps
andsplines

Then we discuss how to apply rigid transformations to our surfaces. We place particular
emphasis on different ways of parameterizing rotations in three dimensional space. We
introduce the standanghit quaternionandexponential mapepresentations of rotation and
discuss the relative benefits of each. We also describe how to compute the optimal rigid
alignment between two clouds of corresponding points.

2.1 3D Surface Representations

Ideally, 3D surfaces are continuous manifolds with an infinite number of degrees of free-
dom, requiring an equally infinite number of parameters for their representation. However,
most practical applications require only a certain degree of modeling accuracy. In addition,

13
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current 3D sensors provide only a finite amount of readings, in the form of point samples
describing the surface. Thus, a discretization of the continuous 3D surface at an appro-
priate resolution is sufficient for our purposes. Below we present several tractable ways
of discretizing the surface. In general, there are two classes of discretizaiapsicit
representations model the surface directly. Receintigiicit representations in the form of
scalar fields have also gained popularity [33, 69]. These fields assign values to all points in
3D space — surfaces are obtained by looking at the isosurfaces of the field.

2.1.1 Explicit Representations

3D acquisition devices have become a popular source for the creation of 3D geometric data.
They provide information about object shape in terms of unstructured clouds of sample
surface readings. These readings are obtained either by performing matching in stereo
data, or by emitting rays and measuring the time of travel from the sensor to the object
and back. Each reading usually contains information about the coordinates of a point on
the scanned surface. Usually, an estimate of the normal vector to the surface the point
can also be obtained. This can be done either in a post-processing step by interpolation
from adjacent sensor readings [79] or by using shape-from-shading and photometric stereo
information [125]. The resultingoint cloud which contains the surface readings and the
point normals, is the simplest representation of the surface.

Definition 2.1.1 A point cloud is a description of the surfac& as a collection of sensor
readings, where each reading contains the coordinate of a surface point, and an estimate
of the surface normal at that point. The point cloud is denote@#s= (VX, NX).

Here, VX = (x1,...,zn,) is a set of 3D surface point coordinates, whNe* =
(n1,...,ny, ) are the corresponding unit-length normal vectors. An example point cloud
can be seenin Fig. 2.1.

Point clouds are very useful for representing 3D sensor data. However, they provide
only incomplete information about the underlying continuous surface. Most importantly,
point clouds do not explicitly model surface connectivity, and hence, topology. Many dif-
ferent continuous surfaces can be a plausible fit to the samples of a point cloud. The shape
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uncertainty is further increased by measurement noise, which cannot be avoided in any
physical acquisition process.

We find it useful to define another standard surface representation catieshavhich
explicitly models surface connectivity.

Definition 2.1.2 A mesh .M~ is a tessellation of a continuous 3D surfa&einto a set of
polygons. It can be represented as a collection of points and polygehs:.= (VX, PX).

Here,VX = (z1,..., 7y, ) represents the coordinates of the polygon vertices. The set
of polygons covering the surface is denoted®Y = (p1, ..., pa, ). In general, polygons
containing an arbitrary number of vertices can be used. Without loss of representation
power, we will assume tha®X only contains triangles. This assumption simplifies the
notation and streamlines the treatment of meshes; its only drawback is a slight increase in
model size. Every trianglg;, is a defined as a set of three natural numiégrs, p2 ., ps « ),
corresponding to the indexes of the triangle points in thelist An example of a surface
represented by a triangle mesh is displayed in Fig. 2.1.

The mesh representation defined above is sufficient for estimating the normal vectors
to the surface. For example, the normg)| at trianglep;, can be estimated by taking the
cross-product of the triangle edges:

u
Mo = T = (@ = k) X (ks = ) (2.1)

To avoid ambiguity, convention requires that the vertices of each triapglee specified in
a counter-clockwise order (the opposite order flips the direction of the normal). The normal
n,, at a pointz; can be estimated by simply averaging the adjacent triangle normals.

We will also define the set of mestdgese X, which contains the edges of all mesh
triangles, without repetition. Formally, this can be represented as follows:

EX = (e | Ipr € M¥ij € prii < j) . (2.2)

The set of mesh triangleBX and edgeg X both contain essentially the same information
about surface connectivity. For several machine learning tasks, either of these sets can be
used. For example, surface deformation can be quantified by looking at the deformation



16 CHAPTER 2. SURFACES AND TRANSFORMATIONS

o0
s
PRI

PO T N S

a) Surface b) 5000 Point Cloud ¢) 500 Point Cloud

d) 5000 Point Mesh e) 500 Point Mesh

Figure 2.1: Surface discretization using point clouds and meshes.

of the edge<™ (in the method of Khnelet al.[52]), or by looking at the deformation of

the trianglesPX (in the method of Sumner and Popoyi11]). In general, edges connect
pairs of points rather than triples, and can be more efficient in combinatorial search methods
(see Chapter 4). On the other hand, triangles are more convenient for expressing certain
specialized constraints about the mesh surface. These design choices will be elaborated
later when we introduce specific probabilistic models.

Meshes are very general representations — they can approximate any continuous surface
arbitrarily well given a fine enough polygon tessellation. The surface connectivity infor-
mation they contain is useful for a variety of purposes, such as extraction of high-level
topological information about the surface, visualization, and editing of surface shape or
appearance. Still, meshes tile the surface with a set of planar patches, and therefore are
piecewise-linear surface representations. The resulting surfaces are only CO-continuous
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Figure 2.2: Signed distance map of a chair. The image on the right shows a cross-section
of the chair, illustrating how the signed distance function protrudes into the object interior.

(non-differentiable at the triangle edges). In order to obtain nice smooth-looking shapes, a
large number of triangles may be needed.

For this reason, many of the geometry editing tools use surface models that preserve
a higher-order of surface continuity. These models are also knowpla®s— models of
piecewise quadratic, cubic or higher-order polynomials that pass through a set of interpo-
lation nodes and keep the derivative (and possibly, the second derivative of the surface)
continuous everywhere. Among the many spline modelsplinesand Bezier surfaces
are especially popular [46]. How to use these representations successfully in a machine
learning setting is largely an open research question. These models come with an increased
degree of complexity, as higher degree polynomials are used to represent the surface model.
This causes the optimization problems for important tasks such as shape-completion and
animation to become considerably more difficult for splines than for meshes.
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2.1.2 Implicit Representations

The most popular implicit surface representation isdigmed distance map (SDNDO03].

The SDM is a function that measures, for every point in 3D space, the distance to the
nearest surface of the object. The distance is positive on the outside, and negative on the
inside. Fig. 2.2 illustrates the SDM of a particular object. The SDM is represented over
a discrete grid and can be efficiently computed from a mesh using just two passes over
the grid [69]. It is also easy to extract any of the SDM isosurfaces [74]. For example, the
isosurface containing all points in space for which the signed distance is zero corresponds
to the original mesh surface.

The advantage of the SDM for representing object models is twofold. First, the SDM
is defined everywhere in 3D space relative to an object. This property facilitates general-
ization, as it makes it straightforward to relate SDM representations of different objects to
each other. Second, the SDM is smooth, which is essential for smooth interpolation be-
tween objects, and for well-behaved shape averaging. For the above reasons, SDMs have
been used for a very popular scan merging algorithm by Curless and Levoy [33], as well
as for CT-scan segmentation [69].

Unfortunately, signed distance maps also have several drawbacks. First, the SDM has to
be defined for the entire 3D space, which tends to make it a more computation and memory-
intensive representation than meshes. Second, averaging of SDMs produces reasonable
surfaces only for largely convex shapes, and does not work for articulated objects such as
humans. Finally, SDMs do not explicitly model the surface, making it difficult to model
and enforce surface properties such as smoothness and contiguity.

For all of the reasons stated above, we will focus on meshes as our surface representa-
tion of choice for the rest of this thesis.

2.2 Rigid Body Transformations

Consider an object moving in the three-dimensional world. This movement can be de-
scribed in terms of a series tinsformations Each transformation is a map, which de-
scribes the displacement of all object points between two moments in Ratationand
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Figure 2.3: Rotation of a coordinate system around its origin and around the .aXise
directions of the rotated main axes becomer,,r;. These three orthonormal vectors
comprise the columns of the rotation matfdwhich was applied to the coordinate system.

translationare the simplest transformations, which preserve the object shape. We will use
the termrigid transformationto denote any combination of rotational and translational mo-
tion. Because rigid transformations preserve the object shape, they can be expressed very
compactly. Each object point is rigidly transformed into poing; as follows:

11 T2 T13 ty
yi =T (r;)) = R-x; +1, R=1 17y ro m3 |, t=1|1 |- (2.3)
r31 T3z T33 t3

Above, T denotes the rigid transformatioR, is a matrix that accounts for the object rota-
tion, andt is a vector corresponding to the object translation.

The rotation matrix? above has special properties. The best way to visualize this ma-
trix is to consider the rotation of a particular coordinate frame around its origin (Fig. 2.3).
The columns ofR are three orthonormal vectors, r», 73 which correspond to the direc-
tions of the three principal coordinate axes after the rotation. Since the vectossrs
form a right-handed frame, we further have the condition that the determindhimist
be 1. Formally, the space of all rotation matrices is denoted as follows:

SOB3) ={ReR*?| RTR = I,det(R) = 1}. (2.4)
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The matrix representation of rotation, which we introduced so far, contain8 = 9
entries. However, these 9 entries are not free parameters because they have to satisfy the
orthonormality constraint®” R = I. There are in fact 6 such constraints for the 9 entries,
suggesting that we need a total of 3 free parameters in order to represent rotation.

2.2.1 Exponential Coordinates for Rotation

Here we will introduce an explicit parametrization for the space of rotations which uses
only three parameters. Each rotation can be encoded with a three-dimensional vector
w = w1, ws,ws]?. Such a vector, known as @xponential maphas a clear and intuitive
interpretation. The direction of the vectorrepresents the axis around which the rotation
will take place (see Fig. 2.3). The magnitule|| of the vector corresponds to the angle of
rotation around that axis.

Given an exponential map, the corresponding rotation matriX(w) can be uniquely
determined. In order to define this mapping, we will first introduce the concepskd\a-
symmetric matrix

Definition 2.2.1 A skew-symmetric matrix U is a matrix of size3 x 3 for which the
equationU” = —U holds. Each skew-symmetric matrix has 3 free parameters. =
[ul,u2,u3}T is a 3-dimensional vector containing these parameters, the corresponding
skew-symmetric matrix is defined as follows:

0 —Us U9
ﬂ\: U3 0 _Ul E R3X3. (25)
—U2 (75} 0

The space of all skew-symmetric matrices is commonly denoted &s= {u € R3*? |
u € R3}.

A 3-dimensional vector can be mapped to a rotation matfiXw) by taking the expo-
nent of its corresponding skew-symmetric matdix

~2 ~n

T (2.6)
n!

Rw)=exp(@)=T+0+ 5
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This equation is the reason for the vecioto be calledexponential maplt is also some-
times referred to as thexponential coordinatesf the rotation.

Of course, an infinite series is not a practical way of obtaining rotation matrices from
the exponential coordinates. An efficient way of doing this is provided by the following
useful theorem:

Theorem 2.2.2 (Rodrigues’ formula) Givenw € R3, the matrix exponentiaR(w) is
given by:

~ ~2
~ W

R(w) = exp(@) =1 + ol sin((|wl]) + e (1 — cos([jwl]), (2.7)
wherew is a3 x 3 skew-symmetric matrix, defined as in Eqn. (2.5).

The reverse is also possible: we can express each rotation mRaimixs exponential
form. Intuitively, this is true because each rotation matrix can be realized by rotating around
some axisv by angle||w||. However, many ways of doing this are possible, therefore the
mapping fromR to some parametets € so(3) is not one-to-one. To see why, recall that
rotation by angl@r + 6 has the same effect as rotationthyA compact way of performing

this inverse mapping is provided in the next theorem.

Theorem 2.2.3 (Logarithm of SO(3)) For any R € SO(3), there exists (a not necessarily
unique)w € R? such thatk = exp(@). The inverse of the exponential map is denoted as
w = log(R). The exponential map parameters are given by

T32 — T'23
kuzcosl(““e(m‘l), A S (S T
2 Jwl - 2sin((lw]])
T21 — T'12

wherer;; are corresponding entries from the rotation matfix as defined in Eqn. (2.3).

The exponential coordinates introduced in this section provide a simple and intuitive
parametrization of rotation matrices. One of its important uses of this representation is that
it provides a simple algebraic way of "linearizing” the rotation matrix (in other words, for
obtaining a locally linear estimate of the space of rotation matrices). Recall Egn. (2.6),
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which maps exponential coordinates to rotation matrix parameters. If we take only the first
two terms from that series, we obtain the following linear approximation:

Ro(w) ~ I + 5. (2.9)

This approximation is most accurate for matrices numerically similar to the identity matrix
I = R(0), and its predictions worsen ds|| increases. To obtain a good local estimate of
rotation in the vicinity of some other set of exponential coordinatege can compose the
rotation matrices as follows:

Ry(w) = (I + ©)R(V). (2.10)

This algebraically simple formula is frequently used in problems where optimization over
rotation is required. The gracious reader will see examples of this further on in this thesis.

2.2.2 Quaternions

Here we will briefly describe an alternative representation of rotation in termsiof
quaternions A more extensive discussion of quaternions can be found iet\d& [75].

Definition 2.2.4 The group of unit quaternions contains all vectors from a 4-dimensional
unit sphere:
S ={geR" | lgl*=a) + ¢l + & +¢; =1} (2.11)

Unit quaternions are a popular representation of rotation in terms of 4 parameters and
a constraint. A rotation around axis= |w;,ws,ws] by angler is represented by the unit
guaternion

q= [0 1 @2 q3)" = [cos(r/2) sin(r/2)w; sin(r/2)w, sin(r/2)ws]”. (2.12)

In intuitive terms, the relative size of coefficiept encodes the amount of rotation, while

the vector[q; ¢» ¢3]7 points along the axis of rotation. Because of this, it is easy to see
that the unit quaterniong and —q correspond to the same rotation matrix. In fact, it can

be shown that each rotation matrix can be described with exactly 2 such quaternions, and
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consequently that the gro is a double covering of the group of rotatiofi®(3). Com-
pare this to the exponential coordinate representation, where each rotation matrix can be
associated with an infinite amount of exponential maps (all related by periodicity).

There exists a straightforward mapping from unit quaternions to rotation matrix param-
eters:

Theorem 2.2.5 A unit quaterniony is associated with the following rotation matrix:

W+aG—aé—a 2(ae — 909s) 2(q143 — qog2)
R(Q) = 2(Q1Q2 + C]o%) Q(z) + qg - Q% - q§ 2((]2@3 - QO(h) (2.13)
2(q193 — qo42) 20 +90n) G+E -G -4

The most remarkable thing about this mapping is that each matrix coefficient can be rep-
resented in as a second degree polynomial function in terms of the quaternion parameters.
This property comes in very handy in some optimization problems.

2.3 Aligning Two Corresponding Point Clouds

For example, consider the very useful problem of aligning two point clouds, when the
point-to-point correspondences between them are known. It turns out that using the unit
guaternion representation of rotation, this problem can be solved in a straightforward man-
ner [13]. Below we briefly describe the solution. For simplicity, we will assume that point
cloudsPX andPY have the same number of pointsand that we know point; corre-
sponds tay;, x2 to 5 and so on. The objective is to find the rigid transformatiofunit
guaternions; and translatiort) that best aligns the corresponding points. This objective
can be written as:

N
min F(q,t) = > [R(@)z; +t —yill*, st [lgl* = 1. (2.14)
i=1
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First, the translation vectdrcan be expressed simply as the difference between the point

cloud centroids
N

N
= % Zy - R(Q)% > = py — R(g)px. (2.15)

=1
We can substitute farin the resulting Lagrangian function:
L(g) = F(g,t) + A1~ |lgl*) =

N
= ZHR px) + (py —y) P+ 201 = g5 — 4t — 63 — 43)-

We expand the first term in the Lagrangian:

Z IR (q) px) + (py —wi)||? =
= Z{ — 1x)" R(0)" R(q) (s — pix) + 2y — yi) (wi — px) " R(Q)" + (v — wi)" (v — i)} =
= Z{(«'Bi — pix)" (i — px) + 2(py — ) (@i — px) " R(@)" 4+ (v — )" (ny — wi)}

Above we used the fact that rotation matrices are orthonormal and ienge= 1. The
resulting Lagrangian is onlimear in terms of the rotation matrix parameters, and only
guadraticin terms of the quaternion parametergrecall the rotation matrix definition
in Egn. (2.13)):

D 20y =y (@i — px) " R(@)" + (s — x) " (@ = ) + (o — )" (v — 92)} +

+ Ml—q—al — 6 — a3). (2.16)
Now, when we take the derivativ&./0q we obtain an equation of the form:

Aq = \q, (2.17)
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whereA is a symmetrict x 4 matrix and\ is a positive scalar. The largest eigenvector of
matrix A corresponds to the quaterniapshich minimize our objective.
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Chapter 3

Probabillistic Graphical Models

In a world of shifting shapes and imprecise sensors, we need to be able to deal with the
underlying uncertainly of everything that surrounds us. Probabilistic graphical models pro-
vide a means of encoding the inherent structure of the world’s complex environments in a
compact fashion. They are representations of the joint probability distribution over a set
of variables, and their structure can be utilized to perform efficiently the tasks of reasoning
and learning. In particular, the theory of graphical models provides us with the capability to
reason about the assignments to a large number of variables simultaneously. This capability
allows us to tackle difficult combinatorial problems such as registration and segmentation,
which will be explored in depth later in this thesis.

In this chapter, we will present the basics of the probabilistic framework that under-
lies our models. We will briefly describe two different representations of uncertainty,
directed and undirected graphical models, which are both used in our algorithms. Then
we present the computational tools which we will employ for reasoning and learning in
such networks. We will describe inference methods such as belief propagation, and lin-
ear programming relaxations for maximum-a-posteriori inference in an important subclass
of Markov networks. We will also review maximume-likelihood learning and describe the
expectation-maximization algorithm for learning in networks that contain hidden variables.
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3.1 Bayesian Networks

We are often interested in modeling tjmént probability distribution P(X’) over a set of
variablest = { X}, ..., Xy}. Each variableX; can take a set of possible values, which is
called thedomainof X;, and is denoted agom(X;). In our notation, thenstantiationof
variableX; to some value:; € dom(X;) will be denoted as\; = ;.

Assuming the variables iA’ are discrete, the joint distribution can be represented sim-
ply as a table, which associatepebability value P(X = z) with each instantiation
{X =z} ={X; =2,..., X, = x,}. Given this table, we can answer different kinds of
gueries about the variables. Most often, we are interested in asking conditional probability
queries, of the form: give me the probabili}(Z = 2 | Y = y), for any subsety andZ
of the complete set'. The answers can be computed simply by summing the appropriate
probabilities in our table:

= = ) PX ==«
PZ=z|Y=y) = = Sl — (3.1)

where the notatiop C z is used to express that the instantiatiois part of the instantia-
tion . The problem with this representation is that a distribution dvdsinary variables
requires a table containi)’ — 1 independent parameters.

Joint probability distributions can also be represented as a product of conditional proba-
bility distributions. Aconditional probability distributiofCPD) P(X | V) defines the con-
ditional probabilitiesP? (X = x | Y = y) for all possible values € dom(X),y € dom(Y).
ACPDP(X | V) over a set of discrete variables is a table containing the conditional prob-
abilities for all possible assignments to the variableg’iand)’. Joint probability distri-
butions can be represented in terms of conditional probability distributions using the chain
rule:

P(Xy,Xs,...X,) = P(X1)P(Xo | Xq)... P(X,, | X1,... X0n1) (3.2)

The chain rule is a mathematical equivalence; for binary discrete variables we still need to
specify2”¥ — 1 independent parameters in the conditional probability tables.

Above we showed that as the number of variables in the domain grows, the general dis-
tribution representations very quickly become intractable. This can be addressed by using
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the Bayesian NetworkBN) framework, which can encode the qualitative properties of the
domain, resulting in much more compact representations of joint probability distributions.

3.1.1 Conditional Independence

The Bayesian network formalism is based on the notiocoofditional independencéVe
explain this concept using the classical example from Pearl’s book [90]. The setting for
the example is a simple domain, in which a house alarm (A) can be triggered either by
burglary (B) or by an earthquake (E). If the alarm is triggered by any of these causes or
spontaneously, a call (C) from the neighbor can be expected. In addition, an earthquake is
usually followed by a radio report (R).

There is inherent structure in this domain, which the general probability distribution
representation (joint or conditional probability tables) does not capture. For example, the
events of burglary (B) and earthquake (E) are generally deemed to occur independently of
each othé. Our belief that the neighbor will call (C) is independent of a cause that might
trigger the alarm if we already know that the alarm (A) was activated. Similarly, if the
alarm (A) has been activated, the radio report (R) of an earthquake may change our belief
whether burglary (B) occurred, but is no longer relevant if we actually felt the earthquake
(E).

The concept otonditional independencalows us to formalize these properties.
Definition 3.1.1 We say thatt’ is conditionally independentof ) givenZ if
P(X|Y,Z)=P(X | Z) whenP(Z)>0
and we denote this statementBy= (X 1L Y | Z).

We can represent a subset of conditional independence assumptions associated with a par-
ticular domain using a directed graph.

IThe recent events connected with the hit of hurricane Katrina on New Orleans cast some doubt on the
lack of connection between natural disasters and increased criminal activity.
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Earthquake Burglary

Non
Descendant

Descendant

@) (b)

Figure 3.1: (a) An example of a simple Bayesian network structure for the Alarm do-
main. This network structure implies several conditional independence staterf¥énts:
B),(ALR|B,E),(RLADB,C|E),and(C L B,E,R | A). (b) Markov indepen-
dence statements in a Bayesian netwdfkis independent of all its non-descendant nodes
in the graphg, given its parent nodes.

Definition 3.1.2 Let G be adirected acyclic graph (DAG) whose vertices correspond to
random variablest = {X;,..., Xy}. We say thgj encodes a set dflarkov inde-
pendence statementsEach variableX; is independent of its non-descendants, given its
parents inG.

VX, (X; L NonDescendantsy, | Pa;) (3.3)
and we denote the set of these statemenkda&ov(J).

The DAG corresponding to our Alarm example is displayed in Fig. 3.1(a), while Fig. 3.1(b)
illustrates the concept of the Markov independence statements.

Using the rules of probability, we can infer additional independence statements from
MarkoVG). For example, in Fig. 3.1, we can say thiat | R | E). This follows from
(R L A,B,C | F) = (R L A | FE) and theSymmetry of Independenpeoperty of
conditional probabilities. Similarly, it is easy to see that all the independence statements
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we made in the case of the burglary alarm domain follows directly from the Markov in-
dependence statements encoded in the graph from Fig. 3.1(a). The set of conditional in-
dependence statements encoded by the DAG structure is fairly easy to elicit using a set
of graph-theoretic criteria, known asseparation We will omit a detailed discussion of
d-separation here, but refer the reader to Pearl’s book [90].

3.1.2 Model Definition

We can now formally define the Bayesian network model.

Definition 3.1.3 A Bayesian network3 = (G, 6) is a representation of a joint probability
distribution over a set of random variables = {X;,..., Xy}, consisting of two com-
ponents: A directed acyclic grapfi whose vertices correspond to the random variables
and that encodes the Markov independence assumptanisov(G); a set of parameters
¢ that describe a conditional probability distribution (CPIP)X; | Pa;) for each variable
X; given parents in the grapBRa;. The probability distribution defined by the graghand
parameterg) can be written as follows:
P(Xi,...,Xy) = [[ P(Xi | Paf). (3.4)
=1

Eqn. (3.4) is known as thehain rule for Bayesian network3he CPDs in this product
are smaller than those in the original chain rule from Egn. (3.2). As an example, consider
the joint probability distributionP(B, E, R, A, C) represented in Fig. 3.1(a). By the chain
rule of probability, without any independence assumptions:

P(B,E,R,A,C) = P(B)P(E | B)P(R | B,E)P(A | B,E,R)P(C | B,E,R, A,C)

Assuming we have binary event variables, this representation requites4+8+16 = 31
parameters. Taking the conditional independencies into account we can write

P(B,E,R,A,C) = P(B)P(E)P(R | E)P(A| B, E)P(C | A)
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which only required + 1 + 2 + 4 + 2 = 10 parameters. More generally,dfis defined
over N binary variables and its in-degree (i.e., maximal number of parents) is bounded by
K, then instead of representing the joint distribution with— 1 independent parameters

we can represent it with at mogt — 1) N independent parameters.

3.2 Markov Networks

Bayesian networks are an appropriate fit for many domains, which can benefit from their
directed graph structure. This is often the case for domains whose variables are representing
cause and effect relationships between events. Bayesian networks whose links follows the
causal structure are usually compact and intuitive (although Baysian networks themselves
make no claim to encode causal relationships). In other domains, there is no natural way
to exploit the link directionality of Bayesian networks. For example, surfaces are complex
manifolds in 3D space, for which the surface directionality notion is largely irrelevant in
the vast majority of cases, and can even be a nuisance.

In this section, we review undirected graphical models knowNaskov networksor
Markov random field§MRFs) [53, 90]. MRFs offer an alternative approach for encoding
independence structure in joint probability distributions. We introduce them using a simple
example, and will then generalize it into a formal MRF definition.

In our example, we will define a distribution over the possible segmentations of a sur-
face into K regions. We want this distribution to prefer segmentations in which adjacent
pointsp, andp; are assigned to the same region. The surface is represented as a discrete
sampling of points, in which adjacent points are connected by links. Eachypagasso-
ciated with a discrete variabl&; which can takei values, assigning the point to one of
the respective regions. To represent our preference that adjacent points are assigned to the
same region formally in the model, we will associate a measure, calbedeatial with
pairs of variableg.X;, X;).

Definition 3.2.1 Let) be a set of random variables, and l&tm ()) be their joint domain.
A potential (or factor) ¢/(Y) is a mapping fromlom()) to R*.

This notion is very similar to that of a probability function, in the sense that each assignment



3.2. MARKOV NETWORKS 33
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W(XZ'X5):X :\v(X5,XB)
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‘V(X7:Xs)

(a) (b)

Figure 3.2: (a) A Markov network for our surface partitioning problem. The surface is
represented by 9 points, connected in a grid. (b) Conditional independence in the Markov
network: variableX is independent of the rest of the network variables, given its immediate
neighbors.

is mapped to a score correlated with our belief about its likelihood. Unlike probability
distributions, potentials do not need to be normalized. In our example, the potential assigns
higher preference values to cases when adjacent pgiatglp; belong to the same region.

A plausible potential for théd = 2 case is displayed below:

Xi X | (X, X))

1 1 10

1 2 1 (3.5)
2 1 1

2 2 10

As we will see shortly, Markov random fields represent joint probability distributions
in terms of a product of such potentials. Each potential is associated with a fully-connected
group of variables, called elique The set of connections between the variables of all
cliques induces an undirected grajgh This graph can be used to encode a set of condi-
tional independence assumptions in the underlying distribution.
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Definition 3.2.2 Let!/ be an undirected graph whose vertices correspond to random vari-
ables¥ = {X;,..., Xy}. We say thé/ encodes a set dflarkov independence state-
ments Each variableX; is independent of all other variables in the network, given all its
neighbors inA:

VX, (X; L{X\ X;} | Neighbors(X;)) (3.6)
We denote the set of all such independence properti&aalsov(l/).

As a consequence of this definition, tMarkov blanketMByx, of each variableX; in
the graph is simply the set of its neighbors in the graph. Fig. 3.2(b) illustrates a specific
example of the Markov blanket concept in undirected graphs.

We are now ready to formally define the concept of Markov networks.

Definition 3.2.3 A Markov network (or Markov random field) 7 = (U, V) is a rep-
resentation of a joint probability distribution over a set of variables= {X;,..., X},
consisting of two components. The undirected gidpias vertices that correspond to the
variables, and encodes a set of Markov independence assumptavkev(/). The set of
potentialsV is associated with cliques in the graph, and is used to define the distribution

1
P(X) =~ H e(Xe) (3.7)
The valueZ is the normalization factor (also known as tpartition function ), defined as

z=) 1[v(x.). (3.8)

A Markov network is a factored representation of a joint probability distribution as a prod-
uct of small local factors. A subset of the class of Markov networks, calkdvise
Markov networks, contains factors only over single variables and pairs of variables. Pair-
wise Markov networks will be sufficient for the problems tackled in this thesis. An ex-
ample of a pairwise Markov network for our surface partitioning example is displayed in
Fig. 3.2(a).
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Figure 3.3: (a) A model combining directed and undirected links, foisadiace partition-
ing with evidencexample. Different evidencEg is generated depending on which region
of the surface it is linked to (determined by the variabh}ys (b) The Markov network
encoding the same conditional independencies.

3.2.1 Incorporating Directed Potentials

Despite the fact that in this dissertation we will be reasoning about surfaces, which are
more intuitively modeled with Markov networks, there is cause-and-effect structure in our
models as well. All the algorithms in this thesis are based prohabilistic generative
framework— for each problem, we define a probabilistic model which describes our beliefs
about how the world works and how the evidence provided to the algorithm was obtained.
The cause-and-effect relationships between events in the world and the evidence are nat-
urally represented using conditional distributions (which are usually part of the Bayesian
network definition). For this reason, throughout this thesis our graphical models will be
defined in terms of both undirected potentials and conditional distributions. Probabilis-
tic graphical models that combine directed and undirected interactions are ca#ad
graphs[20]. However, the mixed models that we will be exploring in this thesis are easily
converted to Markov networks — hence, we will not be exploring in detail the machinery
of chain graphs.
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In our models, a set of variables that define a surface prior are connected with undi-
rected edges. We have another set of variablem which each variabl&’; is connected
using a set of directed links a single parent € X. An example of such a model is
displayed in Fig. 3.3(a). In this extension of the original surface partitioning example
from Fig. 3.2(a), each evidence variablgis connected to only a single surface variable
X; in the graph. The conditional probabilitigY; | X;) capture the fact that different
regions of the surface tend to produce different evidence. The joint probability distribution
becomes

PX=z,Y=y) = PX=x)PY=y|X=x) (3.9
Z%chw] [170 >]

Note that the partition functioty, is defined by sum over all assignmentsXo(as in

Eqgn. (3.8)). The conditional probabilitie3(Y; | X;) do not contribute to the partition
function, becausg_, P(y; | X;) = 1, and can be factored out. The joint probability
distribution remains unchanged if these conditional probability tables are treated as poten-

tials in a Markov network. The equivalent Markov network for our example on surface
partitioning with evidence is displayed in Fig. 3.3(b).

3.3 Inference

Inference is a fundamental task in graphical models. Both the Bayesian and the Markov
network formalisms represent joint probability distributions, and contain sufficient infor-
mation to answer any question about these distributions. We caroadkional probability
queries in which we want to comput&() | Z = z), the probability of a set of variables

Y given some evidenc€ = 2. We can also asknaximum a-posteriori (MAPueries,
which ask for the most likely assignment to all the non-evidence variables. Here we want
arg maxy P(Y | Z), and we will assume that if there are several most-likely assignments
any of them will suffice.

In this section, we will describe several inference algorithms that are used in this thesis.
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Because the algorithms for answering conditional probabilities and MAP queries differ, we
will introduce them separately. First, in Sec. 3.3.1 we give a general overview of the prob-
lem of answering conditional probability queries, and review a specific inference algorithm
for solving the problem. In Sec. 3.3.2 we review a specific inference algorithm for the
problem, calledBelief Propagation The problem of answering MAP queries is discussed
separately in Sec. 3.3.3. There we introduce a special subclass of Markov networks, called
associativeMarkov networks, for which MAP-inference can be performed efficiently. We
describe two specific algorithms for inference in associative Markov networks (based on
linear programming relaxation and minimum-cuts in a graph, respectively).

3.3.1 Answering Conditional Probability Queries

As an example of a conditional probability query, consider the task of evaluating the prob-
ability of getting a call from our neighbaP(C') in the Alarm network from Fig. 3.1. By
the complete probability formula

P(C)= ) P(bea,rC)
b,e,a,r
We can improve on this by utilizing the decomposition of the joint probability in the
Bayesian network:

P(C)=> P(Cla)> P(e)> P(b)P(alb,e) Y P(rle). (3.10)

The resulting equation allows us to compute the probability much more efficiently, using
dynamic programmingWe can sum the variables in order (from right to left), and keep the
summation results in intermediate cliques. This process is knowar&ble elimination
and it allows us to avoid computing the same summations multiple times. Most exact
inference algorithms (e.gJunction Treege.g., [59] andBucket Eliminatior[38]) exploit
the above idea.

It has been shown, however, that the general inference problem in Bayesian networks
is NP-hard [30] (in fact, it is #P-complete). The related problem of performing inference
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in a Markov network is also NP-hard. The difficulty of the problem is correlated to the
structure of the underlying graphical model. For example, exact inference takes linear time
for graphical models whose underlying graph is a tree (such graphs are alsosoadjkyd
connectell The difficulty of the inference task tends to increase as the underlying graph
structure gets more complex. In some graphical models with many cycles, exact inference
is infeasible.

Sometimes we may be willing to accept an approximate answer. In these cases, we
resort to approximate inference methods. These include instance or particle based meth-
ods such a&ibbs samplingdsee [88] for an overview of inference sampling techniques),
variational approximation method such as Mean Fieldapproximation (see [61] for an
introduction) and-oopy Belief Propagatiofe.g., [86] and references within). While these
methods have shown great success in different scenarios, like exact inference, approximate
inference in general is also NP-hard [34] and choosing the best method of inference for a
particular task remains a challenge. In the next section, we will review the Belief Propaga-
tion method which will be used later in this thesis.

3.3.2 Belief Propagation

The Belief Propagation (BPalgorithm was originally proposed by Pearl [90]. It performs
exact inference in singly-connected graphical models, but also provides good empirical
results on graphical models with cycles [86] (in those cases, it is knovuo@zy Belief
Propagation (LBP). In this section, we describe a special case of the algorithm, which
can be executed on pairwise Markov networks. This is not a strong restriction, because all
graphical models can be converted to such Markov networks [127]. Furthermore, it will be
sufficient to restrict our attention to cases when all variables in the network are discrete.
The input to this variant of the Belief Propagation (BP) algorithm is a Markov network
JF with discrete variables, containing single and pairwise potentials; ) andy; ;(X;, X;),
respectively. We are interested in obtaining the marginal belgfs;) for all variables
X; € X. Inthe BP algorithm, this goal is accomplished by scheduling a set of local com-
putations, in which variables semdessage$o their neighbors in the network in order to
update their beliefs. These messages are tables associated with the edges of the Markov
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Figure 3.4: Belief Propagation operations. a) lllustration of the belief upidate) =
ki (@) I | jeneighbors(x;) My—i(2:). D) lllustration of the message update;_,;(z;) =

> Vi) Vi (@i, %5) [ e pueighborsx, i M- (T5)-

network. We will usen,_.;(X;) to denote the message sent by nafj¢o update the belief
of its neighborX;.

At any point in time, the BP algorithm maintains an estimate of the marginal probabil-
ities at all Markov network nodes. We call such estimdteliefsand use;(x;) to denote
the estimate of the probability thaf;, = x;. Naturally, we require thaExi bi(x;) = 1.
The entire set of beliefs associated with a néges denoted as;(.X;). The beliefs can be
computed from the incoming messages sent by the node’s neighbors using the following
belief updateule:

bi(xi) = k() H mj—i(T;). (3.11)

j€Neighbors(X;)
Here,;(z;) denotes the single potential associated with n&gdewhich also needs to be

factored in. The normalization constantensures that the beliefs sum to 1. The belief
computation process is illustrated in Fig. 3.4(a).

The messages themselves are computed from the following recursive message update
rule (which is also known as tifeum-productule):

mj_i(z;) = Z V()i j (4, 75) H miy—j(2;) (3.12)

ke{Neighbors(X ;)\ X;}
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Algorithm Belief Propagation

Input: Pairwise Markov networkF.

Output: P(X;) for all variablesX; in F.
1: Start with uniform messages;_.;(x;) = 1 and belief$,(z;) = 1.
2: Recompute the messages:

(i) = Z Vi ()¢ (i, 5) I1 Mg ()

ke{Neighbors(X;)\i}

3: Compute the new node beligfg X;):

j€Neighbors(X;)

4: If for somewx;, |b'(x;) — bi(x;)| > €, repeat steps 2 and 3 using the new messages and
beliefs.
5: return Beliefsb(X;).

Figure 3.5: Belief Propagation algorithm with parallel message updates.

In this equation, the right-hand size includes the messages from all neighboyeréept
X;. Thisisillustrated in Fig. 3.4(b). Intuitively, the messageg..;(x;) conveys information
from nodeX; and its neighbors to nods;.

The Belief Propagation algorithm is defined in Fig. 3.5. In each BP stage, we compute
the messages in the network using the update rule from Eqgn. (3.12). Because the rule is
recursive, during the computation we use the old estimates of the messages remaining from
the previous stage. Given a new set of messages, we can estimate the beliefs at the network
nodes using Eqn. (3.12). The process is repeated until the updates stop changing the beliefs
in the network. The algorithm may not converge in some cases, in which case we stop after
a predefined maximum number of iterations. A discussion of the some of the algorithm’s
convergence properties can be found in Yedatial.[127].

Different versions of the algorithm are possible, depending on the way message updates
are scheduled. The updates can be done in parallel (where all messages are estimated at
the same time), or in a sequence (where the each subsequent update uses the message
estimates available at that moment). Sequential message updates offer some computational
savings as well as better convergence, but require the algorithm designer to come up with
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an appropriate order for computing the messages. In this thesis, we use BP with parallel
message updates.

3.3.3 MAP Inference

MAP inference is the problem of answeringaximum a-posterioqueriesarg maxy, P() |
{X\)V}). Here we give a brief overview of the problem, and describe a special subclass of
Markov networks, callecdssociativeMarkov networks, in which efficient inference with
performance guarantees is possible. Then we describe two different algorithms for infer-
ence in associative Markov networks, which are used in this thesis.

First, we revisit our favorite Alarm network example. Assume we know that the Alarm
ison(A = a,), and the neighbor didn’t callC' = ¢;). The most likely joint assignment to
the remaining variables can be computed in a straightforward manner:

P(b,r e, a1,co)

arg Iglﬁlg( P(b,r,e | ay,co) = arg rl??z( Plar.c0) = arg rl??z{ P(b,r e, a1,c)

Above we used Bayes’ rule and the fact ti#qu, ¢o) is constant relative to therg max
variables. As a result, the answer can be obtained from a full joint probability table, by
looking up the most probable entry consistent with the evideheea,, C' = ¢.

In general Markov and Bayesian networks, MAP inference is NP-hard [32]. Because
the problems are related, many inference techniques for answering conditional probability
gueries can be modified to answer MAP queries. For example, reca8uheproduct
message update rule for BP, defined in Eqn. (3.12). It can be changed to the following
max-productule:

i) = max by () (w4, 25) 11 My (2;) (3.13)
ke{Neighbors(X;)\i}
The BP algorithm using this rule is known esx-producBP, and produces exact answers
to MAP queries for singly-connected networks. While it can also be used to obtain in
approximate answers in general loopy graphs, in our experience it is less likely to converge
to a good local minimum than the originm-producBP from Sec. 3.3.2.
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Another way to keep inference tractable and efficient is to limit the form of the poten-
tials in the network. Below we describe an important subclass of models, eabediative
Markov networkg$114].

Definition 3.3.1 Anassociative Markov network(AMN) contains discrete variables with
K labels and arbitrary-size clique potentials with parameters that favor the same labels
for all variables in the clique. In particular, for a cliqueover variablesXy, ..., X, we
have

Neifoy = =2, =k
Qﬁc(l‘c):{ '

1 otherwise

with the additional requirement thatc, k& \* > 1. Potentials of this form will be called
attractive potentials.

AMN potentials can be used to capture positive interactions, in which connected (associ-
ated) variables tend to have the same label. In particular, they are a natural fit for our surface
partitioning model from Fig. 3.2(a). The model for our surface partitioning example, which
contains only pairwise potentials, is also known asgéeeralized Potts modg3].

Inference in such networks has been studied extensively. For binary-valued Potts mod-
els, Greiget al. [50] show that the MAP problem can be formulated as a min-cut in an
appropriately constructed graph. Thus, the MAP problem can be solved exactly for this
class of models in polynomial time. Féf > 2, the MAP problem is NP-hard but a method
based on a relaxed linear program guarantees a factor 2 approximation of the optimal so-
lution [17, 63]. Below we describe two different inference methods for MAP inference in
AMNSs, which are used further in this thesis.

LP Inference

The MAP problem in AMNs can be expressed as an integer linear program [63]. We
associate binary variableg with each nodeX; and labelk. The case when nodg; has
valuek is expressed by setting® = 1, andVy. pf = 0. We also associate binary
variablesi* with each clique: and labelk, which represent the case when all variables in
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the clique are assigned that label. The MAP objective (expressed in terms of log-likelihood)
can be represented by the followingeger program(IP):

K K
max Y plogti(mi=k)+Y > plogtelre=k)  (3.14)

r; k=1 ceC k=1

K

s.t. pk e {0,1}, Veed, k; Zule, Vr; € X;
k=1
/ﬂjﬁuf, Veel, x; € X, k.

Note that, in the definition above, the natural constraint= A,_.x" is replaced with
the linear inequality constraintg® < u*. This works because we have only attractive
potentials in the network cliques, for whitbg ¢.(x. = k) > 0. Therefore, at optimum we
haveu® = min, ;¥, but since the.* variables are binary and discrete, this is equivalent to
the statement! = A, uF.

We can obtain a linear relaxation of the integer program from Eqn. (3.14), by replacing
the integer constraintg® € {0, 1} with the linear constraintg® > 0. The resultindinear
program (LP) can be solved using any standard LP package, such as CPLEX [92]. The
LP solution can be used to obtain solutions for the original IP. It can be shown that in the
binary-valued case, the LP is guaranteed to produce an integer solution.

Theorem 3.3.21f K = 2, for any associative Markov netwotk, the LP relaxation
of Eqn. (3.14) is guaranteed to produce an integer solution. Therefore, optimizing the
LP produces the optimal solution for the MAP inference problem in that network.

See [114] for the proof. This result states that the MAP problem in binary AMNSs is
tractable, regardless of network topology or clique size. In the non-binary gase %),

the linear program can produce fractional solutions and we use a rounding procedure to get
an integral solution.

Theorem 3.3.31f K > 2, and/ is the log-likelihood obtained by solving the LP relaxation
of Eq. (3.14), there exists a rounding procedure for the LP result that produces integer
solutions with log-likelihood of at leagy2 for pairwise AMNs, and/T for AMNs whose
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largest cliques are of siz&'. Therefore, rounding the LP solution produces a solution
within a factor of1 /T of the optimal MAP objective.

See [114] for the proof and a description of the rounding procedure. Although artificial
examples with fractional solutions can be easily constructed by using symmetry, it seems
that in real data such symmetries are often broken. In fact, in all our experiments with
K > 2 on real data, we have not encountered fractional solutions.

Min-cut Inference

Instead of using an LP solver, the objective in Egn. (3.14) can be optimized using efficient
min-cut algorithms. It has been long known that for pairwise AMNs with= 2, the

MAP inference problem can be reduced to the problem of finding the minimum-cut in an
appropriately constructed graph [50]. Thus, the MAP problem can be solved exactly for
this class of models using efficient minimum-cut algorithms in polynomial time.

In pairwise AMNs with K > 2, inference can be performed using the local search
algorithm calledr-expansiorby Boykovet al.[16]. Here we give a brief overview of the
approach; we refer the reader to the work of Boykbal.[16] for a detailed discussion. For
the purposes of this thesis, itis sufficient to limit the discussion to pairwise AMNSs, although
the a-expansion method can be generalized to AMNs with arbitrary-sized cliques [114].

The a-expansion algorithm performs a series of expansion moves in order to optimize
the MAP objective. In particular, consider an existing labelingf the variables and a
particular labek € {1,..., K'}. A k-expansion from the current labelingis allowed to
reassign some of the those label#td hek-expansion move is essentially an optimization
of the MAP-objective over two labels — it either allows a variable to retain its current label,
or to switch to labek. This optimization is similar to performing MAP inference in a two-
class AMN. Similarly, it can be also reduced to the problem of finding a minimum-cut
in a graph [16]. Thex-expansion algorithm cycles through all labélsn either a fixed
or random order, performing expansion moves which find new labelings of higher log-
likelihood. It terminates when there is no expansion move for any lalieht produces a
labeling with higher log-likelihood.

Theorem 3.3.4 Thea-expansion algorithm converges (V) iterations, whereV is the
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number of AMN variables.

The proof of this theorem can be found in Veksler’s thesis [118]. As noted by Bagkov
al. [16], and as we observed in our experiments, the algorithm terminates after a few itera-
tions with most of the improvement occurring in the fiest 4 iterations.

The a-expansion algorithm converges to a local minimum of the MAP objective. The
guality of this local minimum is described in the following theorem [118]:

Theorem 3.3.5 For MAP inference in pairwise AMNs witR' > 2, the a-expansion algo-
rithm converges to a factor df/2 of the optimal MAP objective.

This guarantee is identical to the one that can be obtained for the results of the linear
programming relaxation method, which we described earlier in this section.

In our experiments, we found the-expansion algorithm to be very efficient. For our
problem,thex-expansion method performed up to 15 times faster than direct optimization
of the linear program using the CPLEX solver, and is therefore our preferred method of
MAP inference in associative Markov networks.

3.4 Parameter Learning

In many problems, we are given a set of observations, and want to learn about the struc-
ture of the domain that generated these observations. More formally, we are interested
in inducing the underlying distributio* over properties, events and our evidence in the
domain. Probabilistic graphical models are a natural and compact way of representing the
distribution P*. Hence, the task of learning reduces to one of estimating the structure and
parameters of a probabilistic graphical model from data.

During learning, we face a fundamental problem: rather than having accéss tw
equivalently to an infinite number of samples generated by it, we are given arfaiitig
setof samplesD = {«[1],...,x[M]}, that are independently drawn frofff. Using the
limited knowledge available to us viR, our goal is to somehow learn a model that best
approximates”*. This may require us to take into account particular phenomena that arise
in D and are solely due to its finite nature. In particular, one should be very careful about
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the problem obverfitting we can learn a model that fits the training data perfectly and yet
has poor generalization performance on new samples from the distribution.

The problems which we address in this thesis are a subset of the complete learning
task, because the structure of the probabilistic model is known beforehand. Therefore, here
we need to discuss only methods fiarameter learningdf models with known structure.
Moreover, it will be sufficient to limit our discussion to the learning of Bayesian networks
with discrete variables. First we describareximum likelihoodapproach for learning
the conditional probability parametefis which assumes that @mpletetraining set is
available (all variables in all examples were observed). Then we describxpleetation-
Maximizationalgorithm, which can be used for parameter estimation in cases with missing
data and hidden variables, and discuss the complications that arise in that scenario.

3.4.1 Maximum Likelihood

Themaximum likelihood estimatiqiMLE) approach is widely used in all fields of learning.
At its core is the intuition that a good model is one that fits the @ateell. In other words,
we prefer models that are likely to have generated the data.

Definition 3.4.1 Thelikelihood function, L(6 : D), is the probability of the independently
sampled instances @ given the parameterizatioth

M
L6 :D) =[] Plx[m] | 0) (3.15)
m=1
whereP(z[m] | 6) is the probability of ther’th complete instance given the parameter of
the network. The log of this function is known asltigelikelihood:

((6:D) =) log P(x[m] | 0) (3.16)

In the MLE approach, we want to choose paramefgtgat maximize the likelihood of the
data:
6= max L (0 : D) (3.17)
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Eqn. (3.17) describes optimization in a high dimensional space even for relatively simple

network structures since we need to jointly optimize over the parameters of all the condi-

tional probability distributions. As in the case of representation and inference, the Bayesian
network representation offers a decomposition of this optimization task. We can use the de-
composition property of Eqn. (3.4) to write

M
L(o:D) =[] Palm]|0) (3.18)

m];l N

= T IIPGlm] [ wlm], 0xea) (3.19)
mN:I 22;4

= [1 | I Pl | wilm). 6xe.,) (3.20)
z;l m=1

= [ILixp. : D) (3.21)

wherefx, p,, are the parameters that encode the conditional probability distributidi of
given its parent®a; and

M
Li(Ox,pa, : D) = | | P(ilm] | wi[m], 6x,pa,) (3.22)
m=1
is thelocal likelihood functionfor X;. Thus, the global optimization problem is decom-
posed into significantly smaller problems, where we optimize the parameters of each con-
ditional probability distributionP(X; | Pa;) independently of the rest. In the case of
Bayesian networks with discrete variables, the parameters can be estimated in closed form:

A Slx;, uy]

Ovijg; = =——— 3.23
CE1|U1 le S[x“ Ui]’ ( )

whereS|z;, u;] denotes the empirical counts of the instangegm| = x;, ujjm| = w;} in
the dataset.
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L(o/D)
L(e/D)

(@) (b)

Figure 3.6: lllustration of likelihood optimization using: (a) Gradient Ascent that proceeds
in the direction of maximal change; (b) the Expectation Maximization (EM) algorithm
that locally approximates the likelihood using a concave function and then optimizes this
concave lower-bound.

3.4.2 Expectation-Maximization

In the case of missing data, each training samte] = {o[m], H[m|} contains a set of
observed variable®|[m] = o[m], but also a set of variable)g[m| whose values are not
provided to us. In this section, we assume that the variablég[in| are discrete. It is
usually assumed that these values missing at random- given the observationgm],
there is no correlation between the fact that the varighles] are not observed, and their
actual values.

Definition 3.4.2 The log-likelihood function in the case of missing data is:

00 :D) = log>» P(h[m],olm] |0). (3.24)

m=1 hlm]

This is the objective we are interested in optimizing. Unfortunately, here there is no
closed-form solution for the maximum-likelihood estimate of the paramétei&his re-
sults from the fact that the different parameters become correlated in the presence of miss-
ing data. The correlations between the parameters preclude us from decomposing the gen-
eral problem into local estimation problems. Consequently, the optimization needs to be
performed in very high-dimensional space. Furthermore, the parameter space typically
contains many local maxima. When some of the variables are hidden (not observed in any
of the training instances), we also face the problem of multiplicity of both global and local
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maxima that arises from possible permutations of the values of these variables.
TheExpectation Maximizatio(EM) algorithm [39, 67] is a popular approach for learn-
ing with missing data. EM and its variants are typically used when the local distribution
functions are in thexponential familyj29] and sufficient statistics exist. The idea of EM
in Bayesian networks with discrete hidden variables is straightforward: since parameter
estimation is easy when the data is complete, we first complete the training set using the
current model parameters, and then use this completed set to update the parameters them-
selves. The resulting model is then used to repeat the data completion step and the process
is repeated until convergence.
Before we introduce the EM objective function, we define two helper quantities. We
useQ(H) to denote some posterior distribution over the missing variables:

QM) = [[ @Hm) = [] P(H| O =0,0), (3.25)

whereH = {H]1],..., H[M]} is the set of missing variables, while = {O]1],..., O[M]}
are the observed variables. We also define the log-likelihood of a completed daiaiget
in which all hidden variables are instantiated to some set of valueq A [1],. .., h[M]}:

(6 :0,h) ZlogP [m] | 9). (3.26)

Given these definitions, it is easy to write the EM objective, which is the expected log-
likelihood:

Eq [log £(6 - 0, )] ZZQ 1) log P(h[m],o[m] | 6). (3.27)
m=1 hlm]
In optimizing this objective, the EM algorithm begins with some initial parameter as-
signment®, which can either be chosen randomly or using some other approach. Then it
alternates between the following two steps:

o IntheExpectation stefE-step), we use the current parameter estintétescompute
the posterior distribution®'* (h[m]) = P(h[m] | o[m], 0?).
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o In the Maximization stegM-step), we find the parametefs™ which maximize the
expected log-likelihood_"_, hm Qt“( [m]) log P(hlm],o[m] | §). Because in
the M-step we are using a completed dataset, this optimization reduces to comput-
ing a maximume-likelihood parameter estimate, which can usually be done in closed
form. The details of the optimization depend on the specific definition of the condi-
tional probability distributions in the model.

It is fairly straightforward to show that both the E-step and the M-step cannot de-
crease the expected log-likelihood objective from Eqn. (3.27). Furthermore, a fundamental
link between this objective, and the log-likelihood objective in Eqn. (3.24) was proven by
Dempsteet al. [39]:

Theorem 3.4.3 (Dempsteet al) During any consecutive iteratioisandt + 1 of the EM
procedure we have

(0 . D) > £(0' : D).
Moreover,

(0" D) —£(0" : D) > Egreraq) [€(0" 0, h)] — Egrae) [€(0" = 0, )]

This theorem shows that each iteration of EM improves the log-likelihood until conver-
gence to a (typically) local maximum. Furthermore, we are guaranteed that an increase
in expected log-likelihood results in at least as large an increase of the log-likelihood. It
can also be shown (see [39]), that the expected log-likelihood is a concave function which
lower-bounds the actual log-likelihood. For each setting of the model parandétéhe

EM algorithm maximizes this lower bound, as illustrated in Fig. 3.6.

In this thesis we will also mention a version of EM, calleatd-EM, which is sometimes
used for simplicity and speed. The algorithm makes hard assignments for the vakables
unlike the soft posterior assignmeii@$# ) done in standard EM. Hard-EM maximizes the
following log-likelihood function over both the parametérand the data-set completions
h of H:

(6 :o,h) ZlogP [m] | 0). (3.28)
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In the hard E-step, we compute the most likely assignments for the missing vartables
using the current parameters:

R = arg mgxf(@t 20, h). (3.29)
Then, in the M-step we use the assignmeits, to re-estimate the parametéras follows:
6" = arg meaxé(ﬁ s o, b, (3.30)

The well-known K-means clustering algorithm is an instance of hard-EM, while its soft
EM counterpart is used to learn Gaussian mixture models [14].

Similar to standard gradient descent methods [14], the EM algorithm also suffers from
the problem of local maxima and its performance depends on the initial starting conditions.
A straightforward method often used to cope with this is simply to run EM from multiple
starting points and choose the best of the local maxima solutions. While there are no guar-
antees as to the number of random restarts needed for an effective solution, this method,
and EM in general, can be surprisingly effective and is being used in a large number of
practical applications.
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Chapter 4
Correlated Correspondence Algorithm

In this chapter, we address the fundamental problemoofrigid 3D registration which

is the problem of finding the point-to-point correspondences between two deforming sur-
faces. Non-rigid registration is an essential capability for the task of example-based learn-
ing of deformable models. The examples are usually meshes (or point clouds) produced by
3D scanners, which capture the deformable shapes from which we are to derive a model.
These meshes are often missing parts of the surface, usually have different topologies, and
can capture a variety of shapes in different configurations. The registration task is crucial
for obtaining a common parametrization of all the scan examples before information from
all of them can be aggregated by the learning process. Because we are often interested in
learning shape models for object classes with significant intra-class deformations, or mod-
els of objects with significant pose changes, it is desirable that the registration algorithm
can handle those cases successfully with minimal human intervention.

The registration problem requires search in the space of possible alignments between
two surfaces. This problem is easiest when we deal with rigid surfaces, because the space
of alignments has only six degrees of freedom. Another relatively easy case occurs when
the deformation between the two surfaces is rather small — then we can assume that a point
in one surface can only match to a few nearby points in the other. In the presence of large
deformations, such an assumption is no longer warranted, and the set of potential matches
for a point in one surface includes all points in the other. Local surface appearance can be
used to prune these large sets of potential point-to-point matches. However, usually it is

53
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not distinctive enough, and not persistent enough in the presence of deformation to allow
significant pruning. Therefore, in the general case, determining the correspondence for all
object points results in a combinatorially large search problem.

The existing algorithms for deformable surface registration make this problem tractable
by assuming significant prior knowledge about the objects being registered. Some rely on
the presence of markers on the object [2, 111], while others assume prior knowledge about
the object dynamics [72], or about the space of nonrigid deformations [69, 15]. Algorithms
that make neither restriction [105, 52] simplify the problem by de-correlating the choice of
correspondences for the different points in the scan. However, this approximation is only
good in the case when the object deformation is small; otherwise, it results in poor local
maxima as nearby points in one scan are allowed to map to far-away points in the other.

In this chapter, we present a novel algorithm calBmirelated Correspondencerhich
can be used to register significantly deforming surfaces in an unsupervised manner. The
algorithm can produce reasonable results even in the absence of prior knowledge about
object deformations and initial surface alignment. Its only limitation is its assumption that
the surfaces being registered do not undergo significant topology changes. The algorithm
is based on a probabilistic model over the set of possible point-to-point correspondences,
which prefers registrations that match similar-looking surface areas, minimize surface de-
formation and preserve distances along the surface. The search in the combinatorial space
of correspondence assignments is done using probabilistic inference [128], which produces
a registration which (approximately) maximizes the score of the probabilistic model.

The rest of this chapter is organized as follows. First, we formally define the problem
of non-rigid registration. Then we describe an important class of non-rigid registration
algorithms, calledNon-rigid Iterative Closest Point (Non-rigid ICRIgorithms. These
algorithms (e.g. [105, 28, 2, 52, 111]) simplify the registration problem by assuming that
the choice of correspondences for different scan points can be de-correlated. We examine
the cases when this assumption leads to poor registrations, and derive insights which will be
used to obtain th€orrelated Correspondence (C@lgorithm. Then we describe in detalil
the CC algorithm, and demonstrate successful registration in several datasets containing

1The moniker lterative Closest Point’ is borrowed from the famous algorithm for registration of rigid
bodies by Besét al.[13].
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different objects and exhibiting different kinds of deformation.

Finally, we demonstrate two applications for our unsupervised registration capability.
In our first application, we show how a partial scan of an object can be registered onto
a fully specified model in a different configuration. The resulting registration allows us to
use the model to “complete” the partial scan in a way that preserves local surface geometry.
In our second application, we produce believable animation sequences by interpolating
between two poses of an object. Both of these applications can be done in an unsupervised
way, using the results of the Correlated Correspondence algorithm.

4.1 Traditional Non-rigid Surface Registration

4.1.1 Problem Definition

The registration problem is one of determining point-to-point correspondences between
two surfaces. We assume we are given a complete model of the surface of the object,
which we will call themodel mestand will denote as\I*. We are also given a model

of the surface in a different configuration. This surface is usually a mesh acquired with a
3D range scanner. We refer to it as@an mestand denote itM#. The scan mesh can

be a complete, or partial model of the surface (scanners generally fail to acquire the entire
surface due to occlusion and reflectance problems).

The goal of registration is to match the corresponding parts of the two meshes, and
to bring those parts together with minimal deformation. The registration problem can be
defined formally in terms of a generative process, which is displayed in Fig. 4.1. The model
meshM~X is first deformed using a non-rigid transformati®nThis transformation places
the points and polygons of the mesh in a new configuration producing the transformed mesh
MY = 6(M*X). The points)? of the transformed mesh are then resampled to generate
the scan mesh poinig?. The resampling process is guided by a set of correspondence
variablesC. Each pointz; in the scan mesb\MZ is associated with a correspondence
variablec,. This variablec, has a discrete domain containing all model point indexes
{1,..., Nx}. Settingc;, = ¢ picks pointy; to generate scan point.

Our generative model of registration is fully specified when we define the probability
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Figure 4.1: The generative process of registration. First, a non-rigid transformation is ap-
plied to the model mesim~, producing the transformed versigrl¥’, which contains the

same points and polygons, but placed in new locations. Then, the transformed surface is
resampled, producing the scan mest?. The resampling is guided by the set of corre-
spondence variableS — each pointz;, in meshZ is associated with a correspondence
variablec;, that specifies which point in¥ generated it.

distributions involving the deformatiof and correspondencés First, we need to assign

a penalty for deformation, in the form of the conditional distribut®(® | M™). This
distribution will assign high likelihood to cases with small deformation, and low likelihood
otherwise. Many different choices are possible [105, 52, 2], but we omit giving a precise
definition of this probability score until the next section. Second, we need to associate a
probability distribution with the resampling step. Most existing approaches assume each
scan point is generated from its corresponding point in the transformed model with Gaus-
sian noise. In particular, we define the conditional probability:

Pz | o = i,91) = N (21595, Xc) (4.1)

whereY. is a diagonaB x 3 matrix specifying the Gaussian variance. Finally, we assume
uniform prior distributionP(C') over the correspondence variables, reflecting the lack of
prior information about the correspondences.

Given the probabilistic model described above, the registration problem can be cast as
likelihood maximization — finding the most likely set of values for thendC' given the
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original meshes\* and M?#:
argmax P(0,C | M*, M?) = argmax P(M? | C,0)P(6 | M*)P(C).  (4.2)
o,C e,C

The equality above follows from Bayes’ rule. Now we are ready to summarize our discus-
sion in the following definition:

Definition 4.1.1 Thenon-rigid registration of model mesb\* and scan mesiM? re-

covers correspondencés between the meshes and the non-rigid transformatiotiat

align the meshes and minimizes the amount of the necessary deformation of model mesh
MX,

4.1.2 Non-rigid Iterative Closest Point Algorithm

Defining the generative model allows us to score different instantiations of the deforma-
tion © and correspondencés. However, the space of possible deformations is infinite,
while the set of possible assignments to the correspondence variables is exponential. A
standard way to search this space isua-rigid Iterative Closest Point (non-rigid ICP)
algorithm [52, 111, 105], which is an adaptation of the Iterative Closest Point method of
Beslet al.[13] used for aligning rigid objects.

This algorithm starts with a reasonable initial estimate of the deformé&tjand tries
to maximize the objectivivg P(C, © | M*, M?Z). Unfortunately, this is difficult to do in
closed form, because of the complex correlations between the vartalaedC. Instead,
all non-rigid ICP algorithms are based on the insight that it is much easier to optimize
the log-likelihood by iteratively optimizing either' or ©, while keeping the other set of
variables fixed.

The algorithm can be viewed as an instance of hard Expectation-maximization (for a
refresher please refer to Sec. 3.4.2). It aims to maximize the log-likelihgol(C, © |
MX . M%), This objective is optimized by iterating between two steps. The hard E-step
solves for the most likely assignment for the corresponde@Gessuming? is fixed; in
other words, forarg max, P(C' | ©, M*, M#). Given the transformatio®, the trans-
formed meshMY is uniquely determined. With this in mind, it is easy to infer from the
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Algorithm Non-rigid Iterative Closest Point
Input: MeshesM~* and M?, initial alignmento*.
1: while MY = ©(MX) and MZ not sufficiently closelo
2. Hard E-Step: Given©®, compute the set of correspondencés
For each scan point,, find the nearest point in MY, and set;, = i.

3.  M-step: GivenC, compute a new transformation estiméte
Solve forarg maxg log P(© | C, M, M?).
4: end while

a

return deformed mestMY = ©(M*) and correspondencés

Figure 4.2: A description of the Non-rigid ICP algorithm.

probabilistic model that the correspondence variable assignments are conditionally inde-
pendent of each other given a known deformatidand the scan meshi?. Thus, the

E-step objective can be optimized independently for each correspondence variable. In the
M-step, the correspondences computed in the E-step are used to update the deformation
© = argmaxg P(© | C, MX, M%), and the process is iterated until convergence. The
Non-rigid ICP algorithm is displayed in Fig. 4.2. The algorithms is often used in con-
junction with a simulated-annealing style strategy which starts with a strong penalty on
deformation and gradually decreases it in subsequent iterations. Such a strategy is more
likely to produce a good solution.

A soft version of EM has also been explored by the work of Chui and Rangarajan [28],
which maintains distributions over the variablés(instead of taking the most likely as-
signment) at an increased computational expense. Both the soft and the hard EM versions
converge to a point where changing correspondences or deformation alone cannot improve
the joint likelihood.

A specific instance of the Non-rigid ICP algorithm is described in the papeébhklet
al. [52].

4.1.3 Local Maxima of Non-rigid ICP

Non-rigid ICP is only guaranteed to get to a local maximum of the energy in Eqgn. (4.2). As
displayed in Fig. 4.15, an attempt to register two different puppet poses yields a monstrous
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Model X ScanZ Rigid Alignment
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Figure 4.3: Non-rigid ICP fails to deal with large deformations. Model mesh (a) is reg-
istered with Scan mesh (e). Meshes (b)-(d) are intermediate Non-rigid ICP results, each
subsequent result was produced by weakening the prior on link deformations. The algo-
rithm is initialized with the best rigid alignment between the model and scan meshes, shown
in (f). De-correlating the correspondence assignments in the E-step causes points on the
same leg in the model mesh to be mapped to two different legs in the scan mesh.

result — the right puppet arm turns into a head, and a new head grows from the left shoul-
der. Such a poor local maximum is due in large part to an inability to obtain a good initial
transformation estimate. The best rigid alignment between the two meshes is displayed on
the right of Fig. 4.15. Using it in conjunction with the Non-rigid ICP algorithm causes the
poor result.

Non-rigid ICP uses the transformation estimate to decorrelate the correspondence vari-
ables — each scan point is assigned its nearest transformed model point. The de-correlation
assumption makes non-rigid ICP computationally tractable even for large model meshes.
However, this assumption is clearly incorrect when the transformation estimate is poor.
The rightmost picture in Fig. 4.15 demonstrates that two points which lie on the same
leg in the scan mesh get associated with thifterentlegs in the model mesh. This prob-
lem is never corrected in subsequent iteration of non-rigid ICP, as poor transformation and
correspondence estimates reinforce each other.
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Figure 4.4: lllustration of the Correlated Correspondence model. Setting the valaes

andc; = j picks a model mesh link that matches the scan meshlipk;). Single poten-

tials ¢(cx) compare the local surface appearance of the possible point matches. Pairwise
potentials¢(cy, ¢;) quantify the deformation of suitable matching links, and ensure they
satisfy geodesic distance constraints.

4.2 Correlated Correspondence Algorithm

The main insight from Sec. 4.1.3 is that in the absence of a good alignment hypothesis, the
correspondence variables associated with the scan mesh pointsratated An example

of this correlation is the requirement that nearby points on the scan mesh should be mapped
to nearby points on the model mesh. Determining the correspondence for all object points,
while taking into account their correlations, results in a combinatorially large search prob-
lem. The idea behind our algorithm is to explicitly model the correlations between the
correspondence variables, and to search for a consistent solution directly in the resulting
combinatorial space.

We view non-rigid registration as the task of finding a deformable embedding of the
scan mesh\1Z into the model mestiviX. Unlike most other embedding methods [40,
116, 10], our algorithm can be used to register a partial scan to a complete model. Usually
the meshes obtained by 3D scanners have holes caused by occlusion and self-occlusion,
which makes this property desirable in practice. The embedding is defined by providing a
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Figure 4.5: The induced Markov network encoding the correlations between the correspon-
dence variables.

complete assignment to all correspondence variables(c,, . . ., cx). If the dependencies
between the correspondence assignment are modeled correctly, we can make sure that the
embedding avoids the problems exhibited by Non-rigid ICP in Fig. 4.3.

In order to find a consistent embedding, we need to define a model that captures the
correspondence variable correlations. For this task, we use a pairwise Markov network
(see Chapter 3). The network contains single potentiéts) which prefer embeddings
that match similar-looking areas in the two surfaces. The network also contains probabilis-
tic potentialsy(cy, ¢;) associated with pairs of correspondence variabtgsc;). These
potentials model the variable correlations that enforce a preference for embeddings that
minimize surface deformation, and conform to geodesic distance constraints. The result-
ing Markov network is a model of a joint probability distribution of the fopfC') =
211 ¢(ck) [ 1 ¥(ck, &) which contains only single and pairwise potentials. A sketch of
the Correlated Correspondence model is displayed in Fig. 4.4, while the induced pairwise
Markov network is displayed in Fig. 4.5.

The task of registration is thus reduced to one of performing probabilistic inference in
the Markov network, in order to find the most likely joint assignment to the entire set of
correspondence variablés The inference problem for a general Markov network is NP-
hard, but extensive literature on approximate Markov net inference is available. We apply
the algorithm calledoopy belief propagation (LBFL28], which is an efficient search in
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the exponential space of correlated variable assignments (see Chapter 3.3.2). In contrast,
the Non-rigid ICP algorithm requires that an initial alignment hypothesis for the entire
surface is given to the algorithm. Generally, there are exponentially many such hypotheses,
and the non-rigid ICP algorithm lacks a mechanism to perform efficient search in that space.

4.3 Probabilistic Model

In this section, we describe in detail our probabilistic model of registration, which takes the
form of a Markov network over the correspondence variables. This network contains the
following kinds of pairwise and single potentials:

1. Singlelocal surface signature potentials;(cy, ¢;), which prefer to match similar-
looking parts of the surface.

2. Pairwisedeformation potentialg,(cy, ¢;), which encode a preference for small de-
formation during the embedding.

3. Pairwisegeodesic distance potentials, (cx, ¢;) and¢(cx, ¢;), which enforce ap-
proximate preservation of geodesic distance during the embedding.

Below we describe how to define and compute each of these potentials in detail.

4.3.1 Local Surface Signatures

We encode a set of potentials that correspond to the preservation of local surface properties
between the model mesh and scan mesh. The use of local surface signatures is important,
because it helps guide the optimization in the exponential space of assignments. We mainly
experimented with spin-image features [60], although other features can be used as well.
A spin-image is an oriented histogram associated with a paantthe surface; an example

is displayed in Fig. 4.6. The point normaldefines the plané&,, tangent to the surface

at p. Each pointg in the neighborhood of is associated with two statistics: the signed
distances betweeng and the pland’, and the distance from p to ¢’s projection in the
planeT,,. The spin-image is a 2D histogram, which partitions the space of possithel



4.3. PROBABILISTIC MODEL 63
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Figure 4.6: Spin images are two-dimensional histograms computed at an oriented point
on the surface mesh of an object.

[ values into bins, and counts how many neighboring surface points fall in each bin. When
the surfaces around scan and model points are similar, we expect their spin-images to be
similar as well.

The spin-image signatures are invariant to surface rotations around the point normal
(since the statistics and are invariant to such rotations). As a result, spin-images offer
an efficient way of comparing the surfaces around two points without requiring their rota-
tional alignment, which is usually unknown. We compress the spin-images using principal
component analysis (PCA) to produce a low-dimensisigiiatures, of the local surface
geometry around a point Two low-dimensional signatures, ands,, can be compared
simply by using their L2 distancet; , = ||s,, — s, ||. Our surface similarity potentials are
defined as a Gaussian distribution over these distances:

VYs(cr, = 1) = N(dig; 0, Eg),

whereoyg is a diagonal covariance matrix.

In our experience, we found spin-images to be highly efficient features, which per-
formed well for registration of articulated objects. In that case, the surface around the
joints undergoes significant deformation, but the rest of the surface is usually deformed
only slightly, comparable to the spin-image resolution. The spin-images were sufficient to
obtain high-quality registrations in this case.
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Figure 4.7: a) lllustration of the link deformation process b) The CC algorithm which uses
only deformation potentials can violate mesh geometry. Near regions can map to far ones
(segment AB) and far regions can map to near ones (points C,D).

There are limits as to how well features, such as spin-images, can perform in a com-
pletely unsupervised setting. For example, when we register scans of human bodies, we
need to deal with large deformations in some parts of the shape, and small deformations
in others. Whenever the resolution of the spin-image bins was small relative to the de-
formation, we got poor results. Increasing the spin-image resolution impaired the feature
accuracy in areas which don't deform as much (human head and fists). This suggests that in
the presence of additional knowledge, we can adapt the size and scale of the local surface
signatures for different parts of the scan and achieve even better registration results.

4.3.2 Deformation Potentials

We want our model needs to encode a preference for embeddings ofwtéshto mesh
MX that minimize the amount of deformati@ induced by the embedding. In order to
quantify the deformation amount, we borrow ideas from the modeladiridlet al. [52].

We model deformation using pairwise potenti@lgcy, ¢;) between the correspondence
variables associated with adjacent scan mesh points (points connected by an.g¢fe in
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We introduce a separate potential associate with eaclt éu¢jee scan mesh. The defor-
mation potential is a table, assigning values for each pogsinlieassignment to its corre-
spondence variables. Because of this, there is a distinct benefit of using pairs of variables
(instead of triples or larger groups). A particular valugc, = i,¢; = j) in the potential
table denotes the preference given to the assignmesti, ¢, = j. Intuitively, the value
corresponds to the amount of deformation that model €dge incurs to transform into
scan edgek, [).

Importantly, the set of possible matches for scan €dgg is not limited only to the set
of model mesh edgeS*. That set of edges is sparse and local, and therefore insufficient
to cover the space of deformations we want. Instead, we will allow any two points in the
model meshM™ to implicitly define a matching link for edget, ).

To quantify the amount of deformation, we treat the model mesh links as springs, which
resist stretching and twisting at their endpoints. Consider a particular modét link Its
stretching is easily defined by looking at changes in the link ledgth Link twisting,
however, is ill-specified by looking only at the Cartesian coordinates of the points alone.
Similar to Hahnelet al.[52], we attach an imaginatpcal coordinate systerno each point
on the model (see Fig. 4.7(a)). This local coordinate system allows us to quantify the
amount of link twisting: no twisting occurs if the orientation of the link endpoints in their
neighbors’ coordinate systems is preserved. This orientation will be captured by defining
the unit vectord,_.;, which describes the orientation of poinf in the local coordinate
system of pointz; (and similarly, we can defing;_;):

. u
lull

dij u=R; (r; —x;). (4.3)
Above, R; is the matrix describing the rotation of the coordinate system centered on point
x;. For simplicity, we will assume that in the original model mesh the rotation is simply
the identity matrix/.

The set of deformation-related parameters for a particular model link are denoted as
er; = (lij,dinj,d;;), and are displayed in Fig. 4.7. After applying a non-rigid defor-
mation © to the mesh, the local coordinate systems associated with the mesh points are

2We will also refer to mesh edges lisks, to emphasize the variable correlations they entail.
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rotated, and the edge parameters are transforme@ﬁpt@ (L5, Jiﬂj, cfjﬂi). Our model
penalizes stretching and twisting independently:

P(eZ; ] €)= Pllij | lig) P(dij | ding) P(dj | dj). (4.4)
Furthermore, we assume a zero-mean Gaussian noise model for each parameter:
P(li; | i) = N(lijili g 07), P(di; | dij) = N(di~j;dij, Sp).  (4.5)

Prior information can be introduced into this model in the form of link-specific standard
deviation parameters; and covariance¥ . However, such information is usually not
readily available, so in our experiments we assume all links share the same parameter
values.

In order to quantify the deformation induced by the embeddihgve need to include
a potentiak),(cy, ¢;) for each Iinke,ﬁl € £Z. Every potential valuey(c, = i,¢; = j)
captures the amount of deformation needed to transformeffpmm link e,il. The precise
value is defined as follows:

wd(ck = i,Cl = ]) = P(€kz’l ’ efj) (46)

Unfortunately, we cannot directly estimate the quanfitfe;/, | e;;), since the link
parameters,i , depend on extra information about the local coordinate systems, which is
not given as part of the input. The key issue is estimating the (unknown) coordinate system
rotations. In effect, this rotation is an additional latent variable, which must also be part of
the probabilistic model. To remain within the realm of discrete Markov networks, allowing
the application of standard probabilistic inference algorithms, we discretize the space of
the possible rotations, and fold it into the domains of the correspondence variables.

For each candidate mateh = 7, we need to select a small set of candidate rotations,
that are consistent with local geometry. We do this by aligning the local surface patches
around the points; andz;. For each patch, we run PCA on its point cloud to obtain the
direction of its largest eigenvector. For a particular candidate point njatch, ), we align
the point normals and eigenvector directions to obtain two opposite candidate alignments.
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We additionally refine the alignments using rigid ICP. The current implementation performs
well using only two candidate rotation alignments per pair. A larger number of candidate
alignments per pair can be easily computed, but we did not see the need for doing this in
practice.

Using these alignment estimates, we extend the domain of each correspondence vari-
ablec,. Each value in the domain encodes a matching panidta particular rotation from
the precomputed set for that point. Given assignments to the correspondence variables in
this extended domain, the quantiti€$e, | ¢;;) and all the values of the deformation
potentials can be computed.

We point out that the Correlated Correspondence algorithm can easily incorporate dif-
ferent deformation models. Most implementations of Non-rigid ICP use a carefully chosen
definition of deformation, which can be easily linearized and results in a least-squares op-
timization objective. The probabilistic inference employed by the Correlated Correspon-
dence algorithm does not rely on the continuity or differentiability of the deformation-
scoring function. Different models of deformation can be introduced without need for
changing the optimization algorithm, simply by replacing the values in the deformation
potentials.

4.3.3 Geodesic Distances

Our proposed approach raises the question as to what constitutes the best constraint be-
tween neighboring correspondence variables. The literature on scan registration — for
rigid and non-rigid models alike — relies on preserving the Euclidean distance. While the
Euclidean distance is meaningful for rigid objects, it is very sensitive to deformations, es-
pecially those induced by moving parts. For example, in Fig. 4.7(b), we see that the two
puppet legs are fairly close together, allowing the algorithm to map adjacent points in the
scan mesh to the two separate legs, with minimal deformation penalty. In the complemen-
tary situation, especially when object symmetries are present, two distant yet similar points
in one scan might get mapped to the same region in the other. For example, in the same
figure, we see that points in both an arm and a leg in the scan mesh get mapped to a single
leg in the model mesh.
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We therefore want to introduce constraints that preserve the distance along the mesh
surface (geodesic distance). Our probabilistic framework can treat such constraints as cor-
relations between pairs of correspondence variables. We encoelgraess preservation
constraintwhich prevents adjacent points in mest” to be mapped to geodesically dis-
tant points inM~. For adjacentpoints z;, z; in the scan mesh, we define the following
potential:

0 diStGeodesic(xi7 Z'j) > ap

Un(or =i,0=j) = { (4.7)

1 otherwise

wherep is the scan mesh resolution ands a constant, chosen to Bé.
The farness preservatiopotentials encode the complementary constraint. évery

pair of pointsz;, z; whose geodesic distance is more ti3aron the scan mesh, we have a

potential:

0 distgeodesic(Ti, ;) < Bp

_ (4.8)
1 otherwise

where/ is also a constant, chosen toba our implementation. The intuition behind this
constraint is fairly clear: it;, z; are far apart on the scan mesh, then their corresponding
points must be far apart on the model mesh.

4.4 Optimization

In the previous section, we defined a Markov network, which encodes a joint probability
distribution over the correspondence variables as a product of single and pairwise poten-
tials. Our goal is to find a joint assignment to these variables that maximizes this proba-
bility. This problem is one of standard probabilistic inference over the Markov network.
However, the Markov network is quite large, and contains a large number of loops, so that
exact inference is computationally infeasible. We therefore appiy-product loopy belief
propagation (LBP{see Sec. 3.3.2), which is an approximate inference method that has been
shown to work in a wide variety of applications. Running LBP until convergence results
in a set of probabilistic assignments to the different correspondence variables, which are
locally consistent. We then simply extract the most likely assignment for each variable to
obtain a correspondence.
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4.4.1 Dealing with Farness Preservation Potentials

One complication arises from the form of our farness preservation constraints. In general,
most pairs of points in the mesh are not close, so that the total number of such potentials
grows as?(Nz?), whereN is the number of points in the scan mesh. This can easily be
the bottleneck of the algorithm, because the number of all other potentials scales linearly
with the number of scan mesh points. However, rather than introducing all these potentials
into the Markov net from the start, we can introduce them as needed. First, we run LBP
without any farness preservation potentials. We can easily check whether the solution
violates a set of farness preservation constraints. This is done efficiently by checking if
nearby points in our solution on the model mesh are indeed nearby on the scan mesh as
well. If this is not true in all cases, we add the geodesic potentials associated with the
violated constraints and rerun BP. In practice, this approach adds a small number of farness
preservation constraints.

4.4.2 Dealing with Local Minima of Loopy Belief Propagation

In some cases LBP inference may converge to a local minimum of the energy defined by
the Markov network — there may be another solution with a higher log-likelihood than
the one found by the algorithm. In practice we observed that this can happen when the
object shape contains symmetries. These cases most frequently include the presence of
several identical object parts such as chair legs or car tires. Another popular case is that
of planar (or mirror) symmetry, which is also frequently observed in many objects such
as people, cars and chairs. To deal with the local minima problem, we need to run LBP
with different starting conditions, which will cause the algorithm to explore different parts
of the energy landscape. Below we are going to describe how to provide these different
starting conditions in a completely unsupervised manner. In general, the algorithm below
is not very efficient, hence we ran it only in the case when straightforward application of
LBP got stuck in a local minimum.

Our CC algorithm provides the capability to embed the scan mesh, which can contain
any subset of the surface, into the model mesh. Thus, it also provides the capability to
embed any subset of the scan mesh into the model mesh, as well. We consider breaking up
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Algorithm MultipleStartingHypotheses

Require: Part sizeR, K embeddings per part.
Output: A set of N starting hypotheses for LBP.
1: Find a set of scan mesh paits = (py, ..., ps).
2. Find the pointz¢ on the scan mesh surface, which is nearest to the mesh centroid.
3:  Compute the geodesic distance npfrom z to all mesh points.
4:  Get a set of extrema points = (vy, ..., vg) that correspond to local maxima
of Dg with non-trivial support.
5. Each parp, then contains the subset of the surface within a ragliasound
extremum point;.
6: Use the CC algorithm to find different embeddings of each paitinto the model
mesh, and their likelihood.
7: Find the set ofV highest-likelihood hypotheses which embed all parts into the model
in a non-overlapping way. If no such hypotheses exist return

Figure 4.8: Algorithm for providing multiple starting hypotheses for loopy belief propaga-
tion

the scan mesh into parts, and using CC to find several different embeddings for each part.
In the extreme case when the part contains a single point, and the embedding algorithm
needs to only consider its local surface signature, there is a lot of ambiguity and hence
many possible matches in the model. On the other hand, we expect that object parts of
a non-trivial size will have only a few good candidate matches. Our algorithm will thus
rely on computing the embeddings of a few medium-sized scan mesh parts. From these,
we can obtain several high-scoring hypotheses that embed all parts into the model in a
non-overlapping way. Each such hypothesis can then be used to initialize a different run of
LBP inference. At a high level of abstraction, this approach is similar to RANSAC-style
algorithms [44], only we are looking to use entire subsets of the scan mesh as features. The
algorithm is sketched in Fig. 4.8 in more detail.

Each embedding hypothesi#’, obtained with the algorithm above, contains a candi-
date match point’ in the model for each extremum poirit. We initialize LBP for each
hypothesis, by requiring that the extrema points are embedded in the vicinity of the matches
found by the algorithm in Fig. 4.8 (this is accomplished by allowing each poitat match
only points neat’ in the model mesh). We compare all LBP results obtained using the
different initialization hypotheses, and pick the solution with the highest log-likelihood.
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Coarse Sampling Fine Sampling

a) Original scan mesh

d) Feature on scan mesh  e) ~250 matching model f) ~100 matching model
points points

Figure 4.9: lllustration of the mesh subsampling process. The top row displays the sub-
sampling of the (a) scan mesh points at a (b) coarse resolution and (c) fine resolution. The
bottom row displays the decimation of the correspondence domain, associated with (d) a
point on the subject’s nose. (e) The coarse subsampling phase covers the model mesh with
250 possible matches for that point. (f) The fine subsampling phase uses the coarse solution
to restrict the correspondence domain to about 100 points on the head.
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4.5 Surface Subsampling

In the previous two sections, the problem of non-rigid registration was reduced to one
of performing inference in a Markov network over the correspondence variébles
practice, we are often faced with the task of registering very large meshes that contain tens
of thousands of points and polygons. For such meshes, our algorithm can still be directly
applied since we can build very large Markov networks, and perform LBP inference to
compute the correspondence assignments. However, this direct scheme has the following
drawbacks:

1. Large Markov networks occupy a substantial chunk of computer memory, and LBP
in them takes a long time and many iterations to converge.

2. The CC algorithm computes an embedding of the scan mesh points into the model
mesh points. For this embedding to make sense, we implicitly assumed that the point
sampling of the model mesh surface is denser than that of the scan mesh surface.
Otherwise, our solution can have many scan points mapped to the same model point.

3. In practice, we observed that as the Markov network size keeps increasing, at some
point the solution quality tends to worsen. This is due to the fact that a growing
number of variables in the network also causes a growing number of possible local
minima where LBP inference can get stuck.

Our solution for this is to subsample the set of scan mesh points and the domains of
their associated correspondence variables. In practice the benefits of such an approach
outweigh the considerations that in the process we may be ignoring some of the original
information about surface geometry. Many algorithms in computer vision (e.g. [64, 105])
have benefited from such a subsampling approach.

Our implementation employs a coarse-to-fine subsampling strategy. First, we subsam-
ple the scan mesiM? to about 60-100 points. Then we appropriately subsample the
domains of the correspondence variables as well. The LBP inference is run on the resulting
Markov network which embeds the subsampled point set into the model mesh. Our second
iteration of the algorithm uses a finer-resolution subsampling resulting in about 200-250
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scan mesh points. Their correspondence domains are then decimated in a way, which uses
the coarse registration results.

Below we describe the subsampling process in more detail. We would like to point
out that the approach we present is one of many reasonable choices, and is simply a pre-
processing step to our registration algorithm.

4.5.1 Subsampling the Scan Mesh

Our goal is to take the mesh? and obtain a sparse set of points covering its surface,
along with a set of links connecting these points.

First, we describe a simple and efficient way of subsampling the set of mesh péints
We assign @reference scorg, to each scan mesh poigt, which describes the desirability
of that point. We would like to keep points where the surface is distinct; by a simple rule of
thumb, these are points in areas of high mesh curvature. We also prefer points that are far
from the mesh boundaries, where spin-image features and surface normals are not as accu-
rate. We use a very simple method to obtain likely high-curvature points. The preference
score for each scan point is defined as the ratio between the area of mesh triangles incident
to the point and the length of the triangle edges that do not contain the point. While this
simple rule of thumb was enough for our purposes, more sophisticated mesh curvature esti-
mation methods [68, 3] can be used as well. We assign these preference scores to all points
2, that lie at least a distangefrom the scan mesh boundary. The points that are close
to the mesh boundary are assigned a uniform negative score, rendering them most unde-
sirable. Given the scores, we use a simple algoriBwhsampleMeshPoirts1Z, B, d)
(described in Fig. 4.10) that greedily covers the mesh with high-preference points, while
ensuring they are spaced at least a distalacapart. The results of applying this algorithm
to the scan mesh of Fig. 4.9(a) at two different resolutibnare displayed in Fig. 4.9(b,c).

Having determined the subsgtof points to keep, we also need to determine the links
between them. We keep only links between adjacent points in the surface. Connecting
non-adjacent surface points can impair our capability to deal with articulated models, and
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Algorithm SubsampleMeshPoint§ M, B, d)

Require: MeshM, preference score8 = (by,...,by), distancel.
Produce: A subsetS of the mesh points, spaced at ledstpart.
1: Construct a heapl = {(b1,21),. .., (b, zx)} Of score-point tuples.
2: Allocate a bit arrayU of size N, set all bits tdfalse.
3: while H not emptydo

4:  Extract the highest-scoring pdi, z;.) from H.

5. if U[k] = false then

6: S=8Uz.

7 Ulk] = true.

8 for all pointsz; within a distancel from z, along the surface af1 do
9 SetU]l] = true.

10: end for

11:  endif

12: end while

Figure 4.10: Simple algorithm for subsampling the mesh points

is more computationally expensive. We chose to keep the links consistent with the Delau-
nay triangulation over the points ifi. Delaunay triangulations result in few sliver trian-

gles [37], which are undesirable because they contain short edges that can in some cases be
flipped by the registration algorithm. In obtaining the triangulation, we use the distances
along the surface of the scan mesh. We point out that the CC algorithm can also be used
with a set of links that does not correspond to a valid triangulation of the mesh surface.

4.5.2 Subsampling the Domains of the Correspondence Variables

Since each correspondence variahléas2 x Ny values in its domain (corresponding to

the Nx model mesh points, with two orientations for each), we get a substantial computa-
tional benefit from decimating these domains for large meshes. Subsampling the surface of
meshM~ using standard software such@slim [47] is not appropriate in this case. The
reason for this is that standard mesh subsampling solutions naturally focus on obtaining
good polygon tessellations of the surface, which can result in a very non-uniform point
sampling. This is a problem for our registration algorithm, which essentially embeds one
set of point samples into another. Consider planar areas in the original model mesh, which
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will be tessellated with very few polygons(and hence, very few points as well) by the stan-
dard approaches. If the areas deform, that may cause the scan mesh to be much more
densely sampled in the same regions. This causes a problem for our registration algorithm,
which will try to embed a densely sampled surface region into a sparsely sampled one. We
previously discussed the requirement that for good algorithm performance, the point sam-
pling of the model surface is denser than that of the scan simfatsurface areasBelow

we describe a solution that achieves this requirement.

We are going to decimate the values in the domain of each correspongeseqarately,
using the local surface appearance of its associated point. For each possible assignment
¢, = i, we compute the its local signature scéfe= log,(c, = i). We then execute the
greedy algorithmSubsampleMeshPoirfts1*, B*, 2d,) from Sec. 4.5.1. The algorithm
greedily prunes the domain of, and as a result, we obtain the a subset of the mesh points
which locally maximizes the signature scores, and is spaced at%légsiistance apart.
Recall that the scan mesh was subsampled using the resolution pardgmetsEng the
same algorithm. Our decimated domains cover the entire model mesh, to ensure that we
do not miss the correct solution as a result of this pre-processing step. In the presence
of additional domain knowledge, the correspondence variable domains can be decimated
further.

In practice, during the first subsampling phase of the algorithm that leaves 60 scan
mesh points, we end up with correspondence domains containing about 250 points, with
2 alignments per point (Fig. 4.9(e)). In the fine subsampling phase, we end up with about
100 possible model point candidates, because we restrict the solution to be close to the
correspondences found during the first phase (Fig. 4.9(f)).

4.6 Experimental Results

We applied our registration algorithm to three different datasets, containing meshes of a
human arm (7 meshes), wooden puppet (7 meshes) and a CAESAR dataset of whole human
bodies (10 meshes), all acquired by a 3D range scanner. The meshes were not complete
surfaces, but several techniques exist for filling the holes (e.g., [35]).

We ran the Correlated Correspondence algorithm using the same probabilistic model
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Figure 4.11: Results obtained by running the CC algorithm on pairs of scans in a com-
pletely unsupervised fashion. The algorithm finds 200-300 matching point pairs, which are
displayed as colored spheres on the meshes — matching points are assigned the same color.
Select correct and incorrect correspondences were numbered, and highlighted in yellow or

red, respectively.
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and the same parameters on all data sets. We use the coarse-to-fine subsampling strategy,
outlined in Sec. 4.5. Our spin-image features contain 12 bins, the total spin-image

size is1.2 x d},, whered}, is the resolution of the scan mesh features at the coarse scale

of subsampling. The spin-images are compressed using PCA, of which we keep the first
15 principal components. The standard deviations of our Gaussian distributions are set as
follows: 0, =0.7x dz,Xp =0.7-1,3s = (1.2 x e1) - I, wheree, is the size of the largest
eigenvalue in the PCA used to compress the spin-images/ andhe identity matrix.

We run Loopy belief propagation, and as a result obtain the point-to-point correspondences
between the two meshes. We did not use the multiple-initializations strategy from Sec. 4.4.2
unless explicitly stated.

The Correlated Correspondence algorithm successfully aligned all mesh pairs in our
human arm data set containing 7 arms. The most difficult registration case, when the arm
goes from a completely extended to a bent position, is displayed in Fig. 4.11(a). In the
puppet data set we picked one of the meshes to be the template mesh, and registered it
to the remaining 6 puppets. The algorithm correctly registered 4 out of 6 scan meshes to
the model mesh. One of those correct registrations is displayed in Fig. 4.11(b). In the
two remaining cases, the algorithm produced a registration where the torso was flipped, so
that the front was mapped to the back. This problem arises from ambiguities induced by
the puppet symmetry, whose front and back are almost identical; one of these problematic
cases is displayed in Fig. 4.12. However, in both of these cases, our probabilistic model
assigns a higher likelihood score to the correct solution. Thus, the incorrect registration is
a consequence of local maxima in the LBP algorithm. Using the approach in Sec. 4.4.2, we
re-ran loopy BP for all puppets several times, with different initializations. This modified
algorithm correctly registered the template mesh to all the remaining ones in the dataset.

We also applied the CC algorithm to 6 pairs of human body scans from the CAESAR
dataset. It performed well in challenging cases involving both articulated motion and de-
formations (Fig. 4.11(c)), as well as body shape deformation and (small) changes in scale
(Fig. 4.11(d)). The algorithm made only one significant error, which is located around
the belly-button in Fig. 4.11(c) and is highlighted in red. No multiple initializations were
needed in these cases.
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Model Front Scan Front Scan Back

Figure 4.12: lllustration of a local minimum found by the algorithm, which is due to the
symmetry of the puppet shape. The front of the puppet in the model mesh to the back of
the puppet in the scan mesh.

Overall, the algorithm performed robustly in a variety of cases, producing close-to-
optimal registrations even for pairs of meshes that involve large deformations, articulated
motion or both. The registration is accomplished in an unsupervised way, without any
prior knowledge about object shape, dynamics, or alignment. In the experiments above we
demonstrate that the algorithm performance is fairly robust to the parameter settings, as we
used the same settings for all the experiments.

Our unoptimized implementation of the CC algorithm ran on an Intel Xeon 2.4 GHz
platform. The running times on the examples from Fig. 4.11 are displayed in the table
in Fig. 4.13. The results show that it takes significantly longer to compute spin-images and
the Markov network potentials (denoted @stupin the table) than to run LBP inference.

Also, the variable domains during tiiene Subsamplinghase are smaller, since they are
computed using the result from the coarse phase. Hence, that phase of the algorithm runs
faster despite having to deal with many more correspondence variables. We believe that an
optimized implementation on a parallel hardware architecture can run in close to real-time.
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Arm | Puppet| Caesarl Caesar2

Spin Images 97s | 49s 42s 48s
Coarse Subsampling

Setup 145s| 99s 118s 121s

LBP 45s | 75s 55s 43s
Fine Subsampling

Setup 82s | 53s 70s 108s

LBP 22s 6s 8s 14s

Figure 4.13: Running times of the CC algorithm.
4.7 Applications

4.7.1 Obtaining Morphs

The set of correspondences obtained by the CC algorithm can be used to morph the model
mesh onto the scan mesh. We used the corresponding point pairs as markers in the non-rigid
ICP algorithm of Hahnelet al. [52]. In one example, we ran the CC algorithm to register

a pair of puppet scans for which direct application of non-rigid ICP failed (Fig. 4.3). The
correspondences obtained with the CC algorithm were sufficient to obtain a good morph
(displayed in Fig. 4.15), although with a small defect on the right shoulder (inset). We also
computed morphs for a set of arms, and display some of them in Fig. 4.14.

4.7.2 Partial View Completion

The Correlated Correspondence algorithm allows us to register a partial scan of an object
to a known complete surface model of the object. We can then use non-rigid ICP to morph
the template mesh onto the partial scan. The result is a mesh that matches the scan surface,
while completing the unknown portion of the surface using the template geometry.

We take a partial mesh, which is missing the entire back part of the puppet in a particular
pose. The resulting partial model is displayed in Fig. 4.16(a); for comparison, the correct
complete model in this configuration (which was not available to the algorithm), is shown
in Fig. 4.16(b). We register the partial mesh to a model of the object in a different pose
(Fig. 4.16(c), and compare the completions we obtain (Fig. 4.16(d), to the ground truth
represented in Fig. 4.16(b). The result demonstrates a largely correct reconstruction of the



80 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

Figure 4.14: Arm morphs obtained automatically by registering the model mesh (center) to
a set of meshes representing different arm poses.

complete surface geometry from the partial scan and the deformed template.

We also registered the partial mesh to a different object model (Fig. 4.16(e) in a more
extreme pose. This registration results in a different completion (Fig. 4.16(f), which re-
tains some of the model shape in the right shoulder area. The example demonstrates that
the choice of model can affect the completion quality, particularly in the places that are
occluded in the partial view. The example also demonstrates the limitations of an approach
that relies on @ingle shape template for its completions.

We also used the CC algorithm to hole-fill Cyberware human body scans. Unlike the
previous CC results, which were obtained in a completely unsupervised manner, here we
used 4 additional markers to resolve the problem of body symmetries. We hole-filled 70
scans of the same person in a variety of poses. Several shape-completions and the model
template used to obtain them are displayed in Fig. 4.17. The figure demonstrates that the
shape-completion process produces reasonable results for a very rich set of poses using a
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Model Data

ICP ICP+SI CC

Figure 4.15: Registration results for two meshes. Nonrigid ICP and its variant augmented
with spin images get stuck in local maxima. Our CC algorithm produces a largely correct
registration, although with an artifact in the right shoulder (inset).

single template model. Cyberware scans are acquired from four different points of view
simultaneously and therefore contain only fairly small holes. The extensive partial view

surface data minimized the effect of the original template shape prior and constrained it to
fit the local surface in practically all cases.

4.7.3 Animation

Our second application generates smooth and believable animations by interpolating be-
tween a pair of registered meshes. When the meshes undergo significant deformations, sim-
ple linear interpolation of the mesh point locations produces incorrect results (Fig. 4.18).
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Figure 4.16: Partial view completion results. The missing parts of the surface were es-
timated by registering the partial view to a complete model of the object in a different
configuration.

Traditional animation techniques circumvent the problem by utilizing additional knowl-
edge, usually in the form of an articulated skeleton underlying the surface [1, 123, 80].
Some of those approaches can also end up with significant interpolation artifacts [70]. In
this section, we will present an approach that can handle relatively large deformations and
yet is purely data-driven, using no external information except the meshes themselves.

We wish to interpolate between two registered meshes: the sourcemésand the
target mesb\Y’, which have the same mesh topology. The key idea in our solution is to use
an alternative mesh parametrization. As described in Sec. 4.3, meshes with the same topol-
ogy asM™ can be described using a set of local coordinate system rotdtions. , ¢y, ),
and edge length and twisting parametgrs, d;_.;, d;—.;). The above parameters are suffi-
cient to recover the point locations of the original mesh, except for a translational degree
of freedom. This degree of freedom can be removed by specifying the location of a single
point on the mesh.

A linear interpolation of the above parameters produces believable animations for many
articulated objects. The main problem with point location interpolation in Euclidean space
is that link lengths get foreshortened in the process. Preserving the link lengths is at the
core of the current representation, which tends to produce better animationscL[et 1]
be the linear interpolation coefficient, whese= 0 corresponds toV~, anda = 1 to
the target mestM¥ . The interpolated parameter values are a function ahd are listed
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Cyberware scans

Completions

Figure 4.17: Hole-filling of human body scans. The missing parts of the surface were
estimated by registering the scans to a complete model of the object in a different configu-
ration.

in Fig. 4.19.

Having described how to interpolate the relevant parameters, we will now discuss how
to use them in reconstructing a mesi®. First, the values of the interpolated parameters
for somea € (0,1) do not have to define a consistent mesh. The mesh point locations
impose consistency constraints on the parameter values, but our interpolation method treats
each parameter separately and essentially ignores these constraints. These constraints thus
have to be enforced during the mesh reconstruction step. We do this by solving for the
point locations that satisfy the parameter settings in the best least-squares seiise. If
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Point Interpolation in Euclidean Space
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Figure 4.18: lllustration that point interpolation in Euclidean space produces undesirable
limb foreshortening effects (top). On the other hand, our interpolation technique produces
reasonable results even for strongly deforming scans (bottom).

{v1,...,vN, } denote these point locations, our objective becomes:

arg min Z (Uj — ’Ui_>j)T(’Uj — Uz'_>j) + (’Ui — 'Uj_n')T(’Ui — Uj_n') (49)

(e

Visg = vy 12, R(E2) d2

1—]

(4.10)
(4.11)

whereR(t$) is the rotation matrix induced by the twist. The objective in (4.9) forces the
point locations of the reconstructed mesh to be placed in accordance with the local edge
parameter predictions, defined in (4.10). The above objective is similar to the logarithm
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Interpolation parameter Source mesh valueTarget mesh value
t? = CYti 0 tl

l;),éj = (1 — Oé)lid' + OélNZ'J' . li,j NlNi,j

d;-);j = ﬁ; u = (1 — Oé)diﬂj + OéC{iﬂj diﬂj C%iﬂj

dia_,j = ﬁ; u = (1 — Oé)di_,j + CYdi_,j di_,j di_)j

Figure 4.19: Interpolated quantities for animation between two scans.

of the non-rigid deformation estimate in (4.4), and can be solved by any suitable least-
squares solver. As discussed, we can remove the translational degrees of freedom by setting
v = (0,0,0)7.

Some of our results are displayed in Fig. 4.20. There we demonstrate reasonable ani-
mations between two poses of a puppet, an arm and entire human bodies, which undergo
significant deformations. All the animations were produced automatically from pairs of
meshes, registered with the Correlated Correspondence algorithm. No knowledge of the
articulated object structure was used in producing these animations. Our algorithm is ap-
plicable whenever the point coordinate system rotations are less that 180 degrees. Our
interpolation tries to find the shortest rotation path, and whenever 180 degrees of rotation
are exceeded the correct path is no longer the shortest. In this case, although the source
and the target meshes are still faithfully reconstructed, the interpolated meshes may cause
some object parts to fold upon themselves.

Finally, we note that while our choice of mesh parametrization is one of the simplest
options resulting in good animations, several other choices are possible. However, we
believe that the information contained in the local coordinate system alignments is essential
for obtaining good interpolations and any reasonable method for animation must maintain
it.

4.8 Related Work

Surface registration is a fundamental building block in computer graphics. The classical
solution for registering rigid surfaces is the Iterative Closest Point algorithm (ICP) [13,
24, 98]. It is based on the insight that while solving for the correspondences and for the
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Figure 4.20: Animation frames generated by interpolating pairs of scans, which were reg-
istered with the Correlated Correspondence algorithm.
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transformation simultaneously is quite difficult, solving for each in turn (while holding the
other fixed) is much simpler. Recently, there have been many approaches that extend the
ICP paradigm to non-rigid surface and image models [105, 28, 52, 2, 19].

These algorithms differ mainly in their definition of surface deformation. The most
related approaches define deformation relative to a template shape, usually represented as
a mesh. Alleret al[2] look at the affine transformations that move the model mesh points,
and introduce a rather weak prior that requires that the transformations of adjacent points
are similar. Sumneet al.[111] enforce a similar smoothness on the deformation of adja-
cent mesh polygons, but strengthen the prior by requiring that the original polygon shape
and orientation are also preserved. Shelton [105] treats the model mesh links similar to
Hahnelet al,, but defines all link displacements in the same global coordinate system. Chui
and Rangarajan [28] use a deformation model call&draplate spling(originally devel-
oped by Wahba [121]). This model is defined for a point set (hence does not exploit the
topology information contained in a mesh) and defines a measure based on the Euclidean
distances between all point pairs. While all the above algorithms perform well for a large
set of template deformations, they are not designed to deal with articulated body parts such
as arms. Arms can be placed in a variety of different configurations relative to the global
coordinate system, but most of the local appearance remains unchanged (and ideally will
not be penalized by the deformation model). To capture this, one needs to penalize dis-
placements relative to the local coordinate frames on the surface, which is doréhbglIH
et al[52]. None of the above algorithms model local coordinate systems, however, and
penalize all parts of the surface for deviating from the original template. This idea of local
coordinate systems was only recently explored in the computer graphics community by the
work of Lipmanet al[73] on rotation-invariant mesh editing.

Another set of approaches assumes that a set of previously registered meshes of the
same object is available in order to define a measure of surface deformation. They ap-
ply principal component analysis (PCA) either to a set of registered meshes [15, 2] or to
aligned volumetric representations such as active level sets [69]. Registration for this class
of approaches is also done by iterating between finding the correspondences and finding
the rigid alignment and the principal components describing the shape deformation. Un-
fortunately, the types of deformations that can be encoded through linear PCA interpolation
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over points in Euclidean space is quite restricted — these approaches often work well for
largely convex objects, but have problems with articulated object parts. All these models
are applicable only when a set of registered surfaces is available.

All approaches mentioned above can be viewed as instances of the Non-rigid ICP reg-
istration framework. As discussed in Sec. 4.1.3, all these algorithms are likely to end in
poor local maxima in the absence of a good initial alignment hypothesis. Several strategies
for avoiding these undesirable local minima have been used to address this issue.

The local maximum problem is usually circumvented by assuming that select point-
to-point correspondences, or markers, are provided to help the algorithm [1, 2]. These
markers can be obtained by placing distinct textures on select areas of the scanned objects,
or — even more frequently — by having a human pick corresponding points between the
surfaces. In a preprocessing step, the model surface is deformed to fit the markers in order
to obtain an acceptable initial transformation estimate. After this, the standard non-rigid
ICP algorithm can be applied. A drawback of this solution is that a non-trivial amount of
human effort is required for marker placement. For example, the work of &lieh [2],
which registers scans of humans with different physiques, uses more than 70 markers for
each pair of scans.

In the absence of markers, several other techniques have been found to alleviate the
problem of incorrect initialization. [105] performs registration in a multi-resolution pyra-
mid, and employs local features, such as color (other features such as curvatures, surface
normals and spin-images can be helpful as well). Performing soft-EM, which maintains
beliefs over the correspondence estimates [28] can lead the algorithm to a better local max-
imum at an increased computational expense. While generally helpful, these techniques
generally cannot resolve the cases when significant object deformation is taking place.

Several algorithms which represent alternative registration paradigms are worth men-
tioning as well. Belongieet al. [11] register 2D shape templates by using shape context
features and casting the registration problem as relatively easier bipartite matching prob-
lem (rather than the general NP-complete graph matching problem). Since the geometric
relationships between the points are only captured via the features (and are ignored in the
bipartite matching) this approach can cause poor registrations in challenging cases. Kim-
mel et al. [40] construct bending-invariant surface signatures, by embedding the surfaces
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in a low-dimensional Euclidean space, where the original geodesic distances are preserved
as much as possible. Two shapes can be compared (and coarsely registered) by aligning of
the signatures in the Euclidean space. However, this framework cannot incorporate surface
features which help accurate registration, and can only register complete surface models.
Finally, we should mention discriminative algorithms for human pose detection in com-
puter vision [109, 81, 104]. These algorithms rely on hundreds of supervised examples
to learn a mapping from object appearance to the angles of a known articulated skeleton.
Given a new instance of the same object, this mapping function can provide a reasonable
estimate of the skeleton pose. Unlike our algorithm, these discriminative approaches can
only be applied after a set of training examples have been obtained beforehand.

Our algorithm is most closely related to combinatorial algorithms for deformable tem-
plate matching in computer vision. The idea that many objects can be represented in
terms of a set of parts arranged in deformable configurations has been around since the
1970's [45]. Since then, different kinds of spatial priors (that capture the relationships be-
tween the object parts) and associated strategies for object detection in images have been
proposed.

A popular set of approaches define a joint Gaussian model over the object part locations
in the image, which captures explicit dependencies between all pairs of parts [21, 22, 43].
Detection algorithms that use these models until very recently have relied on search heuris-
tics, which limit the number of parts that computationally feasible models can contain (for
example, the models of Fergasal.[43] contain 6 parts).

Tree-structured graphical models have also been very popular. They have primar-
ily been used for detection and localization of articulated objects such as human bod-
ies [56, 58, 107], consisting of rigid parts connected by joints. Such algorithms assume
that the articulated model is provided, and that its spatial dependency graph has no loops.
Under these conditions, efficiedynamic programming (DPinethods can be applied to
find the globally optimal (or nearly optimal) part placement. The main challenge for such
algorithms lies in keeping the domains of the correspondence variables tractable. This can
be done by defining a 2D template model, which has fewer degrees of freedom [56], or
by assuming that a set of detectors has been predefined for all articulated parts [107], or
both [58]. Tree-structured graphical models have also been used for localizing deformable
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2D shapes in images [42]. The algorithm is limited to a special class of 2D shapes that
consist of triangles whose adjacency graph is a tree. Unfortunately, general 3D meshes
induce graphs that contain loops and do not allow exact optimization methods such as DP
to be applied.

Dynamic programming techniques are subsumeblddief propagation (BP3— an opti-
mization technique that provides good empirical solutions on a variety of graphical models
with loops. Before our publication, Coughlan and Ferreira [31] employed loopy belief
propagation for detection of 2D loopy curves in images. At the time of writing this the-
sis, loopy graphical models are becoming the state-of-the-art for detection of objects and
classes of objects in images. These models are optimized either with loopy belief propa-
gation [65, 66], or integer programming [12]. However, all of the approaches address the
problem of 2D object detection in images, and cannot be easily extended to the problem of
deformable 3D registration. In the field of computer graphics and 3D modeling, discrete
graph optimization methods such as loopy belief propagation are not yet popular — we
hope that our algorithm contributes toward the adoption of these methods.

4.9 Conclusion

The contribution of this chapter is an algorithm for unsupervised registration of non-rigid
3D surfaces in significantly different configurations. The algorithm was not provided with
markers or other cues regarding correspondence, and makes no assumptions about object
shape, dynamics, or alignment. Our results show that the algorithm can deal with artic-
ulated objects subject to large joint movements and with non-rigid surface deformations.
We show the quality and the utility of our registration results by using them as a starting
point for compelling computer graphics applications: partial view completions and anima-
tions obtained by interpolation between registered scans. Importantly, all these results were
generated in a completely unsupervised manner from pairs of input meshes.

The main limitation of our approach is the fact that it makes the assumption of (approx-
imate) preservation of geodesic distance. Although this assumption is desirable in many
cases, itis not always warranted. In some cases, the mesh topology may change drastically,
for example, when an arm touches the body. We can try to extend our approach to handle
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these cases by trying to detect when they arise, and eliminating the associated constraints.
However, even this solution is likely to fail on some cases. A second limitation of our ap-
proach is that it assumes that the scan mesh is a subset of the model mesh. If the scan mesh
contains clutter, our algorithm will attempt to embed the clutter into the model. We feel that
the general nonrigid registration problem becomes under-specified when significant clutter
and occlusion are present simultaneously. In order to obtain reasonable solutions in such
cases, we would need to make some assumptions about the object deformation space.

The most straightforward way of extending our algorithm is to design more sophisti-
cated local surface signatures. Spin-images are features that are very efficient to use, and
we demonstrated that they perform well in a variety of cases. However, spin-images are
sensitive to choice of histogram resolution and invariant to mirror symmetries, which con-
tributed to our problem of local minima for objects possessing such symmetries, such as
humans. In these cases, more sophisticated features such as shape contexts [11] and in
particular features based Earthmover’s distance [91] are possible. Earthmover’s distance
(EMD) is a metric which is particularly useful for general shape comparison, and has been
used for contour matching [49] and color histogram matching [97]. If used appropriately, it
can address the two technical drawbacks of spin-images — difficulty of choosing the appro-
priate histogram resolution, and inability to directly model occlusion. The main challenge
lies in making the feature computationally tractable. Recent work of Irety&l. [57],
which shows how to perform efficient lookup of similar EMD shapes using projections
into L1-distance space and locality-sensitive hashing, may lead to an efficient EMD feature
comparison strategy.

The ability to register pairs of scans without making object-specific assumptions pro-
vides an automatic way of dealing with novel object shapes. There are limitations as to
what can be accurately learned about an object from just two registered scans. However,
this capability is a necessary step for obtaining an entire collection of registered scans of
the same object. The set of registered scans can be used as the foundation for learning
models of object shape and dynamics. For example, we can learn the deformation penalty
associated with the different model links, and bootstrap the algorithm to obtain even better
registrations. Also, we can learn the correlations between the deformations of different ob-
ject parts, which helps the tasks of animation and shape-completion. The possibilities and
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implications of learning deformable object models will be explored further on in Chapter 6
of this thesis.



Chapter 5
Recovering Articulated Object Models

Articulated objects consist of approximately rigid parts, which are linked by joints to form

an object skeleton; examples include the human body, most animals, office chairs, cars
and many others. Articulated models have been used for popular tasks such as charac-
ter animation [70, 1, 80] and object tracking in video [55, 18, 129, 107] and in 3D data
streams [72, 25]. In the vast majority of applications, the articulated skeleton structure and
its parameters need to be specified by hand. In this chapter, we describe an algorithm that
can recover complex articulated models from 3D scans in a completely unsupervised man-
ner. This capability eliminates the need for human effort during the model construction and
provides insight into the structure of different objects.

Given registered 3D scans of an object in different configurations, our algorithm au-
tomatically recovers a decomposition of the object into approximately rigid parts, as well
as the location of the parts in the different object instances. The joints linking adjacent
object parts are then obtained using a post-processing step. An overview of the approach
is given in Sec. 5.1. In Sec. 5.2, we show how we can segment the object surface using a
graphical model that captures the spatial contiguity of parts. We describe an Expectation-
Maximization algorithm, which iterates between finding a decomposition of the object into
rigid parts, and finding the location of the parts in the object instances. In Sec. 5.3, we show
how to use the resulting segmentation to estimate the locations of the joints connecting the
parts. We test the algorithm on real world datasets, and show that we can successfully
obtain complex models containing many parts, even in cases when the surfaces undergo

93
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Registered Scans
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Figure 5.1: Overview of articulated model recovery. The algorithm is given a set of regis-
tered scan instances. (a) First, it segments the surface of the template mesh into approxi-
mately rigid parts and estimates their location for all instances. (b) Using the segmentation
and the part location estimates, the joints between adjacent parts are estimated.

non-trivial deformation. Finally, we describe a simple method for tracking the acquired
articulated models in 3D data streams, which is useful for capturing the natural kinematics
of humans and animals.

5.1 Framework Overview

In this section, we will introduce our notation for dealing with articulated models, and
define the task of articulated model recovery from 3D scans. Then we give a general outline
of our approach.

5.1.1 Articulated Models

Articulated models consist of a set of rigid parts connected by joints and provide a conve-
nient representation for a rich set of real-world object shapes. These involve many man-
made objects such as vehicles, office chairs, laptops, and flip-top cell phones, which indeed
consist of fairly rigid parts. Articulated models are also useful for modeling the shape of
many natural objects, such as humans and other animals, for which the part deformations
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are relatively small. The use of articulated models for such objects is twofold. In track-
ing applications we may want a representation that simply ignores subtle part deformation
effects for simplicity and computational reasons. In animation applications, articulated
models account for a large part of the deformation of an object. The more subtle defor-
mations can be correlated to the parameters of the articulated skeleton, which provide a
natural low-dimensional representation for the space of object configurations.

Below we provide precise definitions for concepts related to articulated models. We
start with the fundamental notions B§jid part andjoint, then define the termarticulated
modelandarticulated model pose

Definition 5.1.1 Arigid part P, is a subset of the mesh surface whose shape is preserved
over time. IfMX is the original mesh defining the object shape’, = (VX, £X) contains

a subse®X of the original mesh points, as well as the edggsC £ connecting these
points.

Definition 5.1.2 A joint g¢,, € R?® is a point constraining the motion of two adjacent
rigid parts P,, and P,,. The existence of a joint, ,,, imposes a constraint on the rigid
transformations/;,, andT,,, which can be applied to its incident parts:

Intuitively, a jointg,, ., is a point that moves with both paR, and partP,, simultaneously.

Definition 5.1.3 An articulated model (or skeletor) S* = (M*,P¥X G¥) is an object
shape representation, consisting of the following components:

o A meshM~* defining the object shape.
o Asetof rigid partsP* = (P)X,..., P ) defined on the mesht*.
o A set of jointsG* between pairs of adjacent parts.

Since at any moment in our discussion we will have no more than a single articulated
model, we will simplify the notation, and denote it simply & = (M*,P,G). We
find it useful to define the mapping = (b4, ..., by, ), Which encodes the assignment of
surface mesh points to rigid parts. Setting= p assigns mesh point; to rigid partp.
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Figure 5.2: Probabilistic generative model for segmenting the template surface into rigid
parts. The parts of template shap€® are transformed by their respective rigid transforms,
and then are resampled to generate the points of oh¢$h

Definition 5.1.4 An articulated modepose(or transformation) 7" = (71,...,Ty,) iSa
placement of all skeleton parts in space. Arigid transformation méiyis associated with
each rigid partP,; the set of transformations must be consistent with the joint constraints,
which are defined in Eqgn. (5.1).

We would like to point out that deformable models are in effgtitulated models with
very many rigid parts For the deformable models introduced in Sec. 4, each mesh edge
can be thought of as a separate rigid part. As a result of this, there are natural parallels
in the use of deformable and articulated models. Nevertheless, the language of articulated
models will prove useful, as it allows us to define meaningful regions on the object surface
and their relationships.

5.1.2 Recovering Articulated Models

Here we will describe the problem of recovering an articulated from a set of scans. We start
with a set of regular scans1”:, ..., MP~, represented as meshes, and corresponding to
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different configurations of the same object. From these we can obtain a set of registered
scansM?t, ... M?~ as follows. First, we pick the scan with the most complete surface
MP1 to be our template meskiX. Then, we use the Correlated Correspondence algorithm
presented in Chapter 4 to automatically register this template with all the remaining meshes
in our dataset. We provide the obtained mesh correspondences to the mettidthefet
al. [52], which then morphs the template mesh onto each scan. As a result, we obtain a
set of scan meshes1?:, ..., M?#~ which have the same mesh topology. In particular,
each pointz;i in scan mesh\% corresponds to point; in the template mesiX. This
step of bringing meshes into correspondence is only a pre-processing step to the algorithm
presented in this chapter, which is independent of the particular registration method used.
Our goal is to recover an articulated modef = (MX P G) from our registered
scans. In doing so, our algorithm has to deal robustly with noisy scan readings and small
errors introduced by the registration process. Furthermore, we want to be able to recover
articulated models of real-world objects such as humans and animals, for which the ar-
ticulated model assumptions in Defn. refdefn:articulated-model hold only approximately.
Our solution is based on the language of probabilistic models, which allows us to deal with
these issues in a principled manner. Our strategy for obtaining an articulated model consists
of the following successive steps:

1. Partition the template mesh surfaté” into contiguous rigid parts, which can be
posed to fit well the scan instances.

2. Given the rigid parts and their positions, estimate the set of articulated model joints.

This strategy is visualized in Fig. 5.1. It is motivated by the fact that we do not really need
to know the joint locations in order to partition the mesh into rigid parts. The next two
sections describe in detail how to perform each of the above steps.

5.2 Segmentation into Rigid Parts

In this section, we describe a solution to the combinatorial problem of segmenting the sur-
face of the template mesi into approximately rigid parts. We describe a probabilistic
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graphical model which defines our objective function and then show how to optimize this
function efficiently.

5.2.1 Probabilistic Model
Generating the Instance Meshes

First, we describe the generative process that transforms the template\rhesiito the
instance meshe&t?:, ..., M?~. We assume that the surface/of* is made up of the set
of P =(1,..., Np) rigid parts. Each template mesh paintis associated with a part label
b; which denotes the rigid part to which the point belongs. Each part laleen take one
of Np possible values.

The template mesh is associated with a set of articulated model transforni@tions, 7.
For each scan instanégthere is a different set of rigid part transformatidris= (77, ..., T, ).
All points assigned to payt share this set of transformations for that instance. More pre-
cisely,y; = T, (v;) = Rj x; + s;,, wherey; denotes the transformed locationof in
instance;, andR is a rotation matrix whiles is a translation vector.

We want to model objects which are not perfectly rigid, so we allow the point locations
zi in the meshes\1”% to deviate from these predicted locations. We assume that each point
Iocationz;'. is generated frony;'. by a Gaussian process:

P(2 | yi) = N (2} g}, diag(o?)) (5.2)

whereo? is the variance, chosen to be a multiple of the resolution of riesh In the

above equation, we used the assumption that mesiesand M#: are registered, hence

scan pointz;i corresponds to template mesh poyjlt The part of the generative model
described here, which transforms the template mesh into a scan mesh instance, is captured
by the black edges in Fig. 5.2.

Introducing Part Contiguity Constraints

So far, our model allows a part to be composed of an arbitrary set of points interspersed
throughout the mesh. What we actually want is that each part is comprised of a set of points
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Figure 5.3: Puppet segmentations obtained with two different initialization strategies.
(A),(a) Template mesh. (B) Initialization obtained by clustering the rigid point transfor-
mations using Gaussian Mixture Modeling, different parts are color-coded. (b) Initializa-
tion obtained by randomly dividing the mesh into small patches of similar size. (C),(c)
Results of our part segmentation algorithm initialized with the initialization from (B),(b)
respectively. (D),(d) Estimated skeleton joints.

in a connected region.

We choose to enforce this preference by usiofi contiguity constraintsThese con-
straints penalize cases when neighboring points in the template mesh have different part
labels. More formally, we define two labels and b, to be neighboring if their corre-
sponding points:; andx;, are connected by an edge M. Soft contiguity constraints
are probabilistic potentiaks(b;, b,) between all neighboring pairs of part labéjsandb;.

They are displayed with red edges in Fig. 5.2.

The simplest way to enforce contiguity constraints is with the following potential:

exp{N(1—7)} : b =10

5.3
exp{NT} o by # by (5:3)

¢1(bj, b) = {
whereN is the number of scan instances ane 0.5. These potentials introduce a sepa-
rate penalty for each mesh edge that spans different rigid parts. We chose that the potential
strength grows with the number of example scAhswith the goal of balancing it against
the likelihood terms in Egn. (5.2), whose number grows linearly WitHn all experimen-
tal results, except when explicitly stated, we will be using this kind of soft potential.

More sophisticated contiguity potentials are also possible. For example, we can enforce
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a preference that rigid part boundaries are placed in the areas that undergo larger surface
deformation. Consider the model mesh liak, x;,). Since the template mesh is registered

to all instance meshes, link deformation is easy to estimate. We could use the link defor-
mation measure defined in Eqn. (4.4), but we opted for an even simpler measure. We look
atthe dot-produotzfj ng, Of the link endpoint normals. The same quantity can be estimated

in all scan instances. Let; ;, denote its variance over the meshes. Our contiguity potential
will prefer to place boundaries at a link whose point normals twist relative to each other,
resulting in a large variance; ;.

exp{Nmax(l — Ao, 7)} : bj =10y

(5.4)
exp{NT} ©oby # by

¢1(bj, by) = {

wherer < 0.5.

The soft contiguity constraints (from either of the alternative definitions above) bias
us toward a partitioning of the template mesh into contiguous regions. Importantly, they
introduce an implicit preference for models which have fewer parts: the more parts there
are, the more edges there are between mesh parts, the larger the penalty introduced by the
pairwise contiguity potentials. Finally, the soft contiguity constraints induce a probabilistic
model which can be optimized efficiently (as we will shortly discuss).

However, the soft contiguity constraints can still allow each part to be comprised of
several disjoint components. For example, if the arms of an office chair always get raised
and lowered together, they can be assigned to the same part by this model. Such results can
be preferable in some situations but they are not appropriate for recovering an articulated
object skeleton: the notion of a joint between parts is not well-defined when each part
consists of several disconnected regions on the template mesh. In order to model the object
articulation correctly, we need to disallow such cases. We explicitly detect them during the
optimization, and assign a different part identity to each separate region. We discuss this
straightforward procedure in more detail in Sec. 5.2.2.



5.2. SEGMENTATION INTO RIGID PARTS 101

18 0
©
c o
=1 o
o 15 o -3000
L £
o °
5 x
o 12 S -6000 -
5 S
S o S -9000
IS o
] =
z
6 T T T T T T T '12000 T T T T T T T
6 9 12 15 18 21 24 27 30 6 9 12 15 18 21 24 27 30
Initial Number of Parts Initial Number of Parts

Figure 5.4: Graphs showing the number of parts of the final model and the log-likelihood
score using initialization with different number of parts in the puppet dataset.

Expressing the Model as a Markov Network

Ignoring the hard contiguity constraints, the framework described in Sec. 5.2 defines a
Markov networlover the part label. The Markov network encodes the joint distribution
over these variables as a product of single and pairwise potentials:

Pr(8) = 5 [T or0) [T 6(05.0) 55)

whereZ is a normalization constant.

The singleton potentiaks,(b;) correspond to the probabilities that a template point
generates its corresponding points, . . ., zn,;, as follows:

N
or(b; =p) = [[ P} | b = p,T}). (5.6)
=1
The potential values depend Bhthe set of rigid part transformations. The pairwise poten-
tials in the Markov network correspond to the soft contiguity constraints, which are defined
in (5.3) or (5.4).
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5.2.2 Optimization

We want to find a joint assignment to the part lab8land the transformatioris which
maximizes the log-likelihood of the model:

n NX
log P(B,T) = const + » _ logé(b;, by) — o QZZHZ T [wllI? (5.7)
(j,k)eEX =1 j=1
where Ny is the number of points in meshgg*, M?%t, ... M?%~. Note that our objec-

tive is defined as optimizing both the part assignment and transformations simultaneously,

rather than marginalizing over the (hidden) part assignment variables. A hard assignment

of points into parts is very appropriate for our application, and it also allows the use of

efficient global optimization steps, as we discuss below. Note that the hard contiguity con-

straints are not accounted for in the above equation, and have to be enforced separately.
The objective in (5.7) is non-convex in the set of varialiie§’. We optimize it using

hard Expectation-Minimization (EMjo find a good assignment f@, 7" in an iterative

fashion. EM iterates between two steps: Histepcalculates a hard assignment for all part

labels3 given an estimate of the transformatichisThe M-stepimproves the estimate for

the parameter$’ using the label# obtained in the E-step.

E-Step

Our goal in the E-step is to find the MAP assignment to the part labels maximizing (5.7) for
a given set of transformatiofis It turns out that this is an instance of the Uniform Labeling
problem [63], which can be expressed as an integer program. Following Kleinberg and
Tardos [63], we introduce indicator variables for the event; = p, and associated the
constraints;, € {0,1} andZ]f:1 bj, = 1 with them. These integer constraints imply that
we have only a singlg for whichb;, = 1, and the others are dll The log-cost associated
with a particular single potential can then be expresse@?zsl c(4,p) - bj, where

ZHZ Ti plzj] JII” (5.8)
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Theseparation cosbf an edge in mesiM X can also be defined in terms of the variables
b;,. The difference between the labels of the edge endpoints can be expressed as

1 <& 1 &
k= 5 > lbjp — biy| = 3 >
p=1 p=1

where o, = |bj, — bry|. The cost associated with an edge is therefdrek) - a;x,
where depending on the definition of the soft contiguity potential, we can hayg:) =
N(1—27)o0rsy(j, k) = Nmax(l — Aj;, —7,0).

We can now rewrite our optimization problem as an integer program:

Nx P
max ZZC] p) - bjp + Z Qg
Jj=1 p=1 (5,k)eEX

Zb]’pzl, j:{l,,Nx}

X
Qg = Za]kpu ]7 e &

Qjkp = bjp — by, (k) €EEX . pEP
Qjkp = by — bjp, (4, k) EEX,pEP
bjpe{071}7 ] { NX} pep

In general, solving an integer program optimally is NP-hard. However, we can define a
linear programming relaxation of the above problem by replacing the integrality constraints
bjp € {0, 1} with b, > 0. This relaxation allows fractional solutions for the labglsThe
linear program can be solved very efficiently by a solver such as CPLEX.

For problems of this type, Kleinberg and Tardos [63] describe a method for rounding the
fractional solution, losing at most a factor of 2 in the objective function. In our experiments
we did not need to perform this rounding because the relaxed linear formulation always
returned integer solutions. In this case, we are guaranteed that our solution is the optimal
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assignment of template mesh points to parts, which maximizes (5.7) given a set of rigid
transformationd’.

The inference can also be performed using a procedure proposed by Beiydo\ 6],
which employs a multiway-cut algorithm augmented with an iterative procedure called
alpha-expansionThis algorithm still provides the quality guarantees enjoyed by the linear
programming formulation above, and our experiments showed that it performs about 10
times faster in practice. Our final implementation uses this algorithm for maximum effi-
ciency. More information about how to perform inference in Markov networks is provided
in Sec. 3.3.3.

As we discussed in Sec. 5.2.1, our soft contiguity constraints allow a part to consist of
several disconnected regions on the surface of the template mesh. However, we can easily
detect such cases by examining the part labels returned by the Markov network inference.
Whenever a part is made of several disconnected regions, we break it up and assign each
region to a separate part. This step satisfies our preference that each rigid part is a single
connected component of the surface, while preserving the value of the objective function
in Eqn. (5.7).

M-Step

The goal of the M-step is to find the set of rigid part transformatibnshich maximize
the log-likelihood in (5.7), given the part label assignméhtsupplied by the E-step. The
objective function decomposes into a separate equation foﬂ@ach

Nx
argrin > I(bj =p) - ||z — i) (5.9)
P ]:1

where/(-) is the indicator function. This problem is isomorphic to the registration problem
studied extensively in the ICP literature. We adapt the canonical solution to this problem,
proposed by Besl and Mckay [13], where 3D rotations are represented as quaternions, and
a closed form estimate @f, is obtained by solving a small system of linear equations.
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Figure 5.5: Four different poses from the puppet dataset display the 15 rigid parts and the
articulated skeleton, both of which are recovered automatically.

5.2.3 Initializing the Model

The optimization criterion for our model is a complex non-convex function in terms of the
transformationg” and part label#3. Our hard EM algorithm is only capable of getting to

a local minimum of this function. Therefore, it is dependent on a good starting point. Here
we address the problem of providing the EM algorithm with a good starting point.

Obtaining Transformation Estimates

One way of initializing the algorithm is by performing clustering in the space of rigid
transformations, as suggested by Cheeira.[25]. Since the correspondences between the
template mesiM* and all instance meshgg % are known, we can estimate the local rigid
transformation between a poinf and its counterparij.. To do so, we look at small local
patches centered af andz}, and assume that the local transformation between the patches
is rigid. Using ICP [13], the optimal rigid transformatia)p registering these patches can

be computed. Everyj'. can be represented as a vector in 6 dimensional Euclidean space.
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Each pointz; becomes associated witisuch vectors, corresponding to its transformation

in each instance mesh. The resulting stacked vectors can then be clustered by applying
adaptive PCA [8], a variant of Gaussian Mixture Modeling. The cluster labels serve as an
initial set of part labels to the points. A result of this step is demonstrated in Fig. 5.3(B).

As it does not exploit the connectivity of the mesh surface, it can serve as initialization to
our main algorithm, but is not good enough by itself.

Using a Matlab implementation of adaptive PCA available on the web [8], clustering
a set of 7 puppet poses (4000 points each) into 15 rigid parts takes about an hour on a
Sun Blade 2000 dual-processor machine. Surprisingly, this pre-processing step becomes
the bottleneck of the whole part-finding pipeline. Here we propose a more efficient way of
initializing the model that gives comparable or even better results than clustering.

The main insight we will exploit is that the soft contiguity constraints introduce a pref-
erence for models which have fewer parts: The more parts there are, the more edges there
are between mesh parts, the larger the penalty introduced by the pairwise contiguity poten-
tials. Thus, we can start the model with a large number of possible parts, and redundant
part hypotheses will be automatically pruned.

We therefore initialize the model by dividing the mesh into small surface patches, all of
which have approximately the same area. This is done by uniformly subsampling the mesh,
and assigning each point on the original mesh to the nearest point on the subsampled mesh.
All points on the original mesh that are given the same assignment are grouped together
to form a patch. This process takes a fraction of a second, compared to an hour for our
previous initialization scheme.

When the subdivision into patches is fine enough, some rigid parts will contain patches
that lie completely inside them, and the transformations for those patches from the model
mesh M~ to the morphed meshest? will closely approximate the corresponding trans-
formations for the actual rigid parts. Using the patches as initial part assignments for our
algorithm, we get a good starting point for the first M-Step.

Determining the Initial Number of Parts

The idea of initializing the algorithm by subdividing the surface of mégh into patches
leads to the question of how many initial patches are necessary. In principle, it is sensible
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to choose an initial number of patch®&$% to be larger than the actual number of rigid parts

we expect. The large¥p is, the more likely it is to get a patch that lies completely inside a
rigid part. As we discussed, our model encodes a preference for having fewer parts, so that
redundant part hypotheses are pruned automatically. Indeed, our experiments (Fig. 5.4)
show that, initially, as we increase the number of model p&gtsthe number of selected

parts increases; but once the optimal number of parts is reached, incrdasingher does

not increase the number of parts found.

In the case of rigid objects, the final number of parts found by our algorithm is gener-
ally the correct number of parts in the articulated objects. When the object parts undergo
some non-rigid deformations, the number of parts found depends on the tradeoff between
allowing more deformation within a part and splitting into more parts to preserve part
rigidity. These preferences depend on the edge potental the variance?.! As their
ratio x = o2/ log(7) increases, we allow instance mesh point to deviate more from their
predicted locations.

5.2.4 Simulated Annealing

When« is large, the problem becomes less constrained, with multiple possible solutions
that are plausible and have similar scores. This large hypothesis space makes the relaxed
integer program considerably more difficult to solve, especially in the absence of good
transformation estimates. To address the problem, we start with a low vaiyamd grad-

ually increase it in subsequent algorithm iterations. The intuition behind this approach is
that we separate the error due to random initialization from the error due to non-rigidity.
During the early stages of the algorithm, there is a great deal of error due to random initial-
ization; we therefore start with a smaller-than-desiketieavily penalizing discrepancies
from the rigid part assumption. As a side effect, our algorithm will tend to split a non-rigid
part into several rigid parts, resulting in more parts than we want. As the algorithm con-
verges, the noise from random initialization becomes less significant, so we can gradually
relax the rigidity assumptions and anneal the value;ahis process results in the merging

LFor this discussion, we will assume that we are using the simpler soft contiguity potential from Eqn. (5.4).
In the case when our contiguity potential depends on link deformation, there are additional link deformation
parameters to be considered.
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Figure 5.6: Four different poses from the arm dataset display four (approximately) rigid
parts and the articulated skeleton, both of which are recovered automatically

(and modification) of parts, and the elimination of unnecessary part hypotheses.

5.3 Estimating the Skeleton Joints

Once we obtain the part labels for every point in a mesh, it is easy to recover the joint
between two adjacent rigid parts. We adapt the solution by Cheualg[25]. Suppose we
want to find the joint between two adjacent partasndg. Let the coordinates of the joint

in the model mesh be, ,. Since the joint belongs to two object parts simultaneously, it
should satisfy the equation:

T;<gp,q) = T;(gp,q), i=1...N (5.10)
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Putting together the equations for all instance mesfgss the solution to the follow-
ing problem:

N
argmin Z HTg(gp,q) - Tqi(gp,q)H2 (5.11)
Ipa =1
The rigid part transformatioﬁf’;,T; are known from the previous stage in our algorithm,
this equation is a particularly easy least-squares problem.

Sometimes, the solution to the above equation can be an entire subspace of points.
Suppose the joint only allows one degree of movement, such as the knee joint of a human
leg. Then any point on the line perpendicular to the plane of allowed movement is a solution
candidate. We chose to resolve this problem by introducing an additional regularization
term, which likes to place the joint close to where the two parts meet (and inside the body).
We require that the joint is close to the centrejgd, of the set of points that lie on the
boundary between the two pagtsand ¢ in meshA*. Theng,, is the solution to the
following least-squares problem:

N
arg minz I T5(9p0) = Tia(9p) 1? + VN Gpig — cpall? (5.12)
9Ip.q i=1
With the above formulation, we can compute the joint between any two adjacent parts
on the template surface, which completes our automatic recovery of the sk&leten
(MX,P,G).

5.4 Experimental Results

We applied our algorithm to meshes from three different datasets. In one data set, we used
a range scanner based on temporal stereo [36] to acquire a set of seven different complete
surface meshes of a wooden puppet in different positions. Each mesh was constructed from
ten range scans taken from different viewing angles, composed using the method of Curless
and Levoy [33], and subsampled to contaid000 points and 8000 triangles.

We automatically aligned one puppet mesh to the remaining six meshes in our puppet
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Figure 5.7: lllustration of annealing on the Arm dataset. The sequence above is obtained
by starting with lowx, and gradually increasing it after each iteration of EM, until our
desiredx is reached. The algorithm anneals part hypotheses and eventually converges at
four parts (D). Setting the value afto be too large (E) focuses more on the soft contiguity
constraints and less on the underlying geometric structure. This results in partitions which
reduce the number of links between parts.

dataset using the Correlated Correspondences algorithm (Chapter 4). We experimented
with both initialization approaches described in Sec. 5.2.3. Results shown in Fig. 5.3
demonstrate that both initialization methods performed equally well. However, the method
where we initialize the M-step by partitioning the mes#* into small surface patches

is preferable because of its simplicity and overwhelming computational advantage. The
correct model containing 15 parts was found whenever the number of surface patches in
the initialization was equal to or greater than 16 (Fig. 5.4). More instances of the final
model superposed onto the recovered articulated skeleton are displayed in Fig. 5.5. To our
knowledge, this is the first implementation that estimates such a complex skeleton from
real world data with very few poses, in a completely unsupervised way.

Our second data set consisted of eight meshes of a human arm, acquired and used by
Allen et al. [1]. We used a standard hole filling technique (unpublished implementation
similar to [35, 71]) to fill the scan holes in a pre-processing step. This dataset is more
challenging than the puppet dataset because the arm undergoes significant deformations
as it bends, so that it is not purely an articulated model composed of rigid parts. Fig. 5.7
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demonstrates the progress of our algorithm as the paramet@ncreased, until we end up
with four parts, which is the intuitively correct number of parts for the arm (see Fig. 5.6).
The patrtition of the object depends on the exact setting of the paramétee Fig. 5.7 D

and E). Setting the value efto be too large over-emphasizes the soft contiguity constraints.
The part boundaries are shifted to a configuration minimizing the number of links between
parts, ignoring the underlying geometric structure (Fig. 5.7 E). Our results on the arm
dataset suggest that, even in the presence of significant non-rigidity like twisting of the
forearm and bulging of the biceps, our algorithm performs quite well.

Our third dataset was the most challenging, as it contains 65 scans of a particular indi-
vidual placed in a variety of poses, which was acquired with a Cyberware WRX scanner.
These meshes were all registered with the Correlated Correspondence algorithm, aided
with a few handpicked markers for each mesh. Each of the registered meshes contains 12K
points and 25K polygons, and exhibits non-trivial muscle deformation (see Fig. 5.1 for ex-
amples). Our unoptimized implementation easily scales to a dataset of such size, and takes
about three minutes to obtain the articulated model. We experimented with our two differ-
ent soft contiguity potentials, which were defined in equations (5.3) and (5.4). In Fig. 5.8
(1a) and (1b), we show the rigid parts obtained by using the first potential, which penalizes
all links that lie on part boundaries by the same amount. The algorithm automatically finds
an intuitive decomposition of the object into 17 articulated parts, including a compelling
decomposition of the human torso itself. Upon closer inspection, however, one can see
that there are non-intuitive artifacts near some part boundaries (top left insets). The main
cause is that our rigid transformation estimdtesre most inaccurate near part boundaries,
where the deformation is usually the largest. As a result, points on the top of the thigh
and at the bottom of the neck get assigned to the closer, yet intuitively incorrect articulated
part. (We confirmed this hypothesis, by starting from the result in Fig. 5.8 (1a) and (1b),
and executing several more iterations by a version of our EM algorithm which ignores the
soft contiguity potentials. The boundary was still placed in a similar, visually suboptimal
place.) In addition, our first soft contiguity potential introduces a bias toward shorter part
boundaries. This is confirmed by the results — the part boundaries in the top insets are
shorter than those of their counterparts at the bottom.

Our second soft contiguity potential prefers to place the part boundaries in areas which
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2a)

Figure 5.8: Results of the algorithm on the human dataset. (1a) and (1b) Segmentation into
parts obtained using the soft contiguity potential from Eqgn. (5.3). The different parts are
color-coded. (1c) Recovered joints between adjacent parts on the surface. (1d) Recovered
tree-shaped skeleton. (2a) and (2b) Segmentation into parts using the soft contiguity po-
tential from Eqn. (5.4). (2c) Recovered joints between adjacent parts on the surface. (2d)
Recovered tree-shaped skeleton.
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undergo larger deformation. Using this potential with a setting\ of 2 recovers an
articulated skeleton consisting of 18 parts — Fig. 5.8 (2a) and (2b). In particular, the
buttock and crotch area are split into two separate parts. From the bottom row insets we
can see that this potential produces an intuitively better-looking segmentation. In particular,
this potential clearly fixes the problem with the upper thigh boundaries and produces a
considerably more symmetric partitioning of the upper chest. It is not as biased towards
short part boundaries, which can be seen by looking at the neck and the upper thighs. The
resulting model contains the parts one would expect, and nice intuitive boundaries between
them.

We applied our joint estimation algorithm to the two segmentation results. In Fig. 5.8
(1c) and 2c, we show the joints between all adjacent parts on the template surfaces. In com-
puting the joints, we use a very small value for the parametershow the locations of the
joints as predicted by the rigid transformations. Interestingly, the resulting skeleton is not
tree-shaped in both cases. While this is not necessarily a problem in example Fig. 5.8 (1c),
it may be undesirable for two reasons. As the result in Fig. 5.8 (2c¢) shows, some parts can
become adjacent as a result of noise in the meshes, and small errors by the algorithm, re-
sulting in extra joints. Whether these extra joints are meaningful depends on the particular
application (for example, they might be useful for animating articulated models). The pre-
cise criteria on when to keep certain joints should be defined with a particular application
in mind, and are outside the scope of this chapter.

Still, many tracking and detection algorithms (e.g., [18]) require a tree-shaped articu-
lated structure, which allows the definition of part motion in terms of kinematic chains. By
introducing a post-processing step, which is allowed to merge parts, and to remove joints
which cause a fairly large error in Eqn. (5.12), we obtain the tree-shaped models shown
in Fig. 5.8 (1d) and (2d). The spine is not completely straight in both cases — the small
error most likely is a result of the fact that the algorithm was run on a set of random (and
hence non-symmetric) poses. But overall, the results are very satisfactory. To the best of
our knowledge, this is the first algorithm to recover such complex articulated models in a
completely unsupervised manner.
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a) Visual hulls

b) Tracked articulated
model

c) Comparison to ground truth
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Figure 5.9: Tracking an articulated model in visual hull sequences. (a) The camera setup
and the visual hulls obtained by shape-from-silhouette computation. (b) Tracking results
by our algorithm c) The algorithm quality was compared to the ground truth obtained by
tracking photoreflective markers on the body of the walking subject. The algorithm recov-
ers well both degrees of freedom at the knee.
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5.5 Articulated Model Tracking

The capability to capture articulated motion has many possible applications. They include
biomechanical applications such as human gait analysis, where tracked human motions
can be examined to diagnose gait abnormalities and joint diseases. They also span en-
tertainment applications, where the movement of popular actors can be captured for use
in movies and games. Currently, these tasks are done with commercial motion capture
systems[82, 83], which attach optical or magnetic markers on the person whose motion
is to be tracked and use triangulation on the positions of the markers to achieve tracking.
Although these systems generally produce very good results, they are invasive and difficult
to use.

In recent years, researchers have proposed a variety of vision-based systems for tracking
human body motion in video sequences and silhouette image sequences (e.g., [95, 48, 18,
23, 106, 78, 107] among many others). All of these algorithms (with the exception of
the work by Cheungt al. [25]) assume that an articulated model of the tracked object is
available before the start of the algorithm. Such models are usually human-designed, and
often use cylinders to approximate the shape of the human body parts. The method in this
chapter provides an automatic way of recovering accurate articulated models, which can
reduce human effort substantially. In this section, we will demonstrate the suitability of our
recovered articulated models for the task of capturing articulated object kinematics.

We describe a simple algorithm which can be used to track our articulated models.
The algorithm is an extension of the standard Iterative Closest Point algorithm [13, 52],
which enforces the joint constraints during tracking. While it is a variation of existing
approaches, the exact formulation, to the best of our knowledge, is novel. Some previous
approaches for tracking articulated models (e.g., [25, 18]) enforce hard constraints on the
kinematic structure (joints of the skeleton must be preserved). Our approach allows small
movement at the joint, which is penalized in least-squares terms. As a result we obtain a
more anatomically correct model, and an objective function that can be optimized in an
efficient and straightforward manner. Our formulation can be used in a straightforward
way even when the skeleton structure contains loops. In contrast, the vast majority of the
tracking algorithms assume that the skeleton is tree-shaped and would require significant
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modification if that assumption is violated.

5.5.1 Probabilistic Model

We are interested in tracking an articulated ma8€lin 3D shape-from-silhouette data
(for a detailed discussion of shape-from-silhouette estimation, please refer to Géteung
al. [26]). The output from the shape-from-silhouette estimation is a sampling of the object’s
surface at each point in timeg which can be represented as a 3D point cl@ifd. These
point clouds can be obtained using different shape-from-silhouette techniques [26, 85].

Our goal is to compute an alignmefit that brings the articulated model surface into
close alignment with the point clou?: (from this point on, we omit the subscripfor
the benefit of clear notation). Our generative model assumes that each scan,peint
generated from its corresponding paintin the appropriately posed articulated model. To
express this formally, we associate a correspondence varighlgh each pointz;, in the
point cloudP?. Settingc, = j selects a corresponding poinf in the skeleton mesh
M¥X. Because the shape-from-silhouette techniques are based on background subtraction
in video [26], they tend to produce many spurious readings, which have to be explicitly
dealt with in the model. We do this by associating an additioaétlity variable v, with
each pointz,, which accounts for cases when the reading is generated by noise in the
acquisition process. Ifi, = 1, the pointz;, is generated from some matching paintas
follows:

Pz | oy = 1,00 = 3, Ty, 75) = N (2 Ty, (), X)) (5.13)

Intuitively, this equation specifies that pomtis generated from its corresponding template
mesh pointz;, transformed by}, in accordance with the current skeleton posey, I 0,
the pointz, is generated from our noise model, which is a uniform distribution on point
locations:

P(zg |vp=0) =« (5.14)

In addition, we assume a uniform prié¥ vy ) for all validity variables and a uniform prior
P(cy) for all correspondence variables.
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In posing the articulated model, our generative model needs to enforce the joint con-
straints as well. We treat the joints as elastic bands, which are allowed to stretch at a cost.
Our joint mismatch is associated with the amount of band stretching at the joint, and is
defined as

Uo(Ty T, | %) = o0l (Ty(0pa) ~ To0p)" 25" (Ty(00) ~ Tolgp))} (5.15)

The penalty is related to our definition of a joint in Eqn. (5.10). The covariance majrix
can be estimated from data, but in our experiments, we set it to the same value for all joints.

5.5.2 Optimization

The goal of tracking is to recover the poséof the model that best first the point cloud
PZ in each sequence framieOur Expectation-Maximization algorithm aims to optimize
the following expected log-likelihood for each frame (superscrigiitted):

Epcvisx.pzry [log P(C,V,T | 8%, P?)] (5.16)

Our iterative solution will alternate between an E-step which computes the probabilities
P(C,V | 8%,PZ T), and an M-step which uses these probabilities to optimize the objec-
tive in Eqn. (5.16).

E-step

It is fairly straightforward to see that the probabil®(C, V | S*,PZ T) decomposes into
a separate estimation for each scan pgjnt

P(vg, cx | 21, T,8%) o< Pz | gy 4, T, 8™ ) Plug, cx | SX,T) (5.17)
= P(Zk | Uk,Ck,T, SX)P(Uk)P(Ck) (518)
= P(’Zk ’ Uk,Ck,T, SX) (519)

In this derivation, we used Bayes’ rule to obtain (5.17) and conditional independence as-
sumptions in the probabilistic model to obtain (5.18). The final expression in (5.19) follows



118 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

from the fact that the distribution8(v,) and P(c;) are uniform in our model.
Now, we can define the E-step probabilities:

qk,j = P(Uk = 1,Ck :] | Zk7T, SX) 0.8 P(Zk | Vg = 1,Ck = j, Tbj,Ij) (520)
qko = Plup =0 2z, T, SX) x P(z | vy = 0)

The conditional distributions on the right hand side are defined in Egn. (5.13) and Egn. (5.14)
and can be readily computed. The resulting values can be normalized to ghtaindg;, ,
forj ={1,..., Nx}.

The straightforward treatment of the E-step probabilities above ignores the issue of
efficiency. Naively computingVy probability values for each scan point is unnecessary,
especially because most of the probability mass is capturedasy ¢ ;, corresponding
to the nearest model point, ang,. The vast majority of the remaining, ; values are
infinitesimally small and can be ignored.

M-step

In the M-step, we are given the expectatignand are interested in finding the pose pa-
rameters that optimize the objective in Eqn. (5.16). First we expand the quantity inside the
expectation:

P(T,V,C | 8*,P?) o« P(P*|V,C,T,S*)P(V,C | T,S*)P(T | §¥)
= P(P?|V,C,T,S*)P(T|S¥). (5.21)

Here we made the same assumptions as the ones discussed in the derivation of Eqn. (5.17).
Using this result, and expanding Eqn. (5.16), the M-step objective becomes:

arg min Z Z G (2 — T (1)) B3 (21 — i, (25)) (5.22)
kg

T

+ Z (T5(9p.q) — Tq(gp,q))T 231 (T(9p.a) — To(9pag))

(p,g)eGX

Using the definition of rigid transformatidfi,(z;) = R(r,)x; + t,, we can express the
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objective directly in terms of the twist rotation parametgrand translation vectors:

arg min Z MaX g, (2 — R(ry, )x; — )" St (2 — R(ry, )z; — ty,) (5.23)
k

T8

+ Z (R(7p)gpq + tp — R(rq)gpq — tq)T 57 (R(1p)gpg +tp — R(rq)gpq — tq)

(p,9)€GX

When we use the standard linearization of rotafitin,) ~ (I+w,)R(rg¢) (see Sec. 2.2.1),
the above objective reduces to a least squares problem over the translation paraameters
the exponential map parametersfor a total of6 x Np variables, and can be solved very
efficiently.

5.5.3 Experimental results

We experimented with this algorithm on several human movement sequences. The se-
guences were provided to us by the Stanford Biomotion Laboratory, which specializes in
studying diseases of the human knee. In our first experiment, the articulated model was
obtained from a single scan of the subject. The 15 rigid parts, and the 14 joints connecting
them were defined by a human (the process took about an hour). Seven cameras placed
around the viewing volume (shown in Fig. 5.9(a) provided images, in which background
differencing was performed in order to obtain silhouettes. The silhouettes were used to
construct a 3D visual hull [85]. Our algorithm was applied to the point clouds that were
obtained from the visual hulls. For each new frame in the sequence, the algorithm was
initialized with the position obtained in the previous frame. The algorithm produced ex-
cellent results, shown in Fig. 5.9(b). The knee movement in that sequence was compared
to ground truth, obtained using photoreflective markers and standard motion capture hard-
ware. Our estimates proved close to the ground truth, especially for the main degree of
freedom at the knee, denoted as flex/extension in Fig. 5.9(c)-1. The algorithm performed
reasonably well in recovering even the second degree of freedom at the knee, denoted as
abduction in Fig. 5.9(c)-2. In contrast, some methods (e.g., Chetusdg27]) assume that

there is a single degree of freedom at the knee.

We then acquired a more difficult data set using the subject, whose articulated model
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b) Tracking results

Figure 5.10: Tracking an automatically recovered articulated model in point cloud data. (a)
The camera setup and the point cloud obtained for a particular frame by using the shape-
from-silhouette method of [27]. b) The results of our algorithm for some frames in the
sequence, superposed on the point clouds in those frames (shown in red).



5.6. RELATED WORK 121

was recovered automatically in Sec. 5.4. This sequence was obtained using an 8-camera
setup, shown in Fig. 5.10a. Background subtraction was less successful in this dataset, due
to faster camera shutter speed settings, and use of dark clothing. As a result, the com-
puted visual hulls exhibited large errors. We opted for the shape-from-silhouette method of
Cheunget al.[26], which uses additional image color cues. Our automatically recovered
model was tracked in the resulting point cloud sequence. Unfortunately, ground truth was
not available for this dataset, therefore we could only verify the results by observation. The
results are shown in Fig. 5.10(b), and demonstrate that even when the point clouds are fairly
sparse and inaccurate, our simple algorithm can track reasonably well. The only significant
error in this algorithm can be seen in the left wrist, whose joint performs some unnatural
rotations. This problem arises because our model does not constrain the rotations of the
joints, and this can become a problem with noisy data. Introducing such a joint rotation
constraint is a subject of future work.

5.6 Related Work

Because articulated models are used widely in animation and tracking applications, there
has been work in the past to automate their acquisition. For example, many applications
can take a predefined skeleton, and update the parameters of the individual joints using
image sequences [18, 78] or 3D data [48, 1]. The work of Tayehak [115] can estimate
tree-shaped skeleton models, but assumes that the rigid parts and their transformations are
provided. The work of Songt al.[110] demonstrates recovery of articulated human mod-

els from tracked 2D features in video streams. These models are represented in terms of
decomposable triangulated graphs — a limited class of graphs, unsuitable for representing
3D shapes and articulation in 3D. Additionally, recovering articulation in 2D is consid-
erably more challenging, due to the information loss arising from the projection of a 3D
scene to 2D. As a consequence, the models recovered using such procedures tend to be
very sparse (containing about a dozen points and triangles), and are fairly far from being
realistic human models [110].

Our approach is most directly related to the work of Cheangl. [25], which shows
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how to estimate articulated object models from 3D Shape-From-Silhouette (SFS) data, aug-
mented with information about object color. They report recovering an articulated human
model with 9 parts. However, their algorithm was applied only to sequences where a single
body part is moving at a time. Each sequence contains two articulated parts, and allows
the estimation of a single human joint. The final articulated model is generated by combin-
ing the joints estimated in all the two-part sequences. Despite the important cue of color
information, they did not demonstrate simultaneous recovery of multiple parts.

We believe that the reason for this limitation is the presence of local maxima in their
approach, arising for two reasons. First, they solve for the point correspondences between
the input meshes while solving for the articulated model. The approach is a generaliza-
tion of thelterative Closest Point (ICPalgorithm [13] to multiple rigid parts. However,

ICP is known to be prone to local maxima (see a discussion of the problems with ICP in
Chapter 2). The additional degrees of freedom provided by the possible part decompo-
sitions make the problem more severe. By contrast, we take a two-phase approach, first
solving the correspondence problem using a non-rigid registration technique that allows
large deformations, and then learning the articulated object model. Our approach has the
potential limitation of ignoring information about coherent part motion in solving the reg-
istration problem. Nevertheless, its ability to circumvent many local maxima appears to
significantly offset that potential disadvantage.

A second source for local maxima arises from the choice of constraints enforcing that
parts are contiguous regions of the object surface. The approach of Cheahd25]
enforces part contiguity with discrete constraints between assignments to mesh points and
their neighbors. This type of model does not allow the application of efficient global opti-
mization steps. By contrast, our algorithm enforces part contiguity using soft probabilistic
constraints, which allow us to violate these constraints locally as long as it is maximizing
the log-likelihood of the model as a whole. Moreover, we can apply efficient global opti-
mization methods to determine the optimal part decomposition. These two properties allow
us to be less sensitive to initialization, and to avoid local maxima even if a large number of
parts is present.

Our algorithm is also related to segmentation approaches, designed to partition image
(or video) input from a scene into coherent regions. Standard segmentation approaches
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compute local features at all image points, and cluster these features to obtain a segmenta-
tion [122, 87, 76]. While good image segmentations usually contain spatially contiguous
clusters, they do not usually correspond to a highly distinctive group of feature vectors,
and can be missed by the above feature-space clustering approaches. Some early methods
attempt to enforce a measure of spatial contiguity by using a strategy called superpixels.
They perform a finely-grained initial segmentation, and compute feature vectors directly
from these regions [96, 41]. This can be problematic if the superpixels themselves cross
boundaries of objects, and still exhibits the original problem because clustering in super-
pixel feature space may not produce contiguous regions.

Expectation-Maximization methods have been applied to the problem of clustering with
spatial constraints. The technique proposed by Weiss and Adelson [126] appears to be one
of the first such approaches. More recently, Markov Random Fields have been applied to
the problem as well (e.g., [77, 132]). Most of the existing approaches use soft class mem-
bership in the E-step, however this causes the inference task to become intractable. This has
forced the use of approximate inference methods such as mean field approximations [126],
Iterated Conditional Modes [132] and Hidden Markov Measure Fields [77]. In contrast,
the algorithm presented in this chapter computesrhgimum-a-posteriogstimate of the
E-step part labels. This allows inference to be performed with the multiway graph-cuts
algorithm, which is very efficient and produces solutions whose score is within a factor
of the optimal score. The algorithm most similar to our approach is the work of Zabih
and Kolmogorov [130] on image segmentation. Their method, developed at the same time
as ours, models spatial image contiguity with pairwise associative potentials. The image
segmentation is obtained using an EM-algorithm, whose E-step uses a graph cut algorithm
to segment the image. The difference between the two methods is mainly in the model
optimized in the M-step: our algorithm is designed to segment 3D objects into rigid parts,
while theirs focuses on 2D image segmentation.
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5.7 Conclusion

We describe an algorithm which automatically recovers articulated object models given a
set of registered 3D meshes of the object in different configurations. The algorithm iter-
atively estimates the part assignments for all points on the template surface, and the rigid
transformations of all object parts. Once the part assignments are recovered, the joints are
estimated by articulation constraints. We apply the algorithm to three challenging real-
world datasets, containing a large number of parts, deforming parts, or both. We demon-
strate that the algorithm can recover complex articulated models even from a small number
of example meshes, and that it easily scales to large datasets as well. In all experiments,
our algorithm not only recovers the parts and joints, but also figures out the optimal number
of parts automatically. For the first two datasets (puppet and arm), the articulated models
were constructed completely automatically, starting with the original scans, and without
making any object-specific assumptions.

In our approach, we have decoupled the registration algorithm from the algorithm which
recovers the articulated object structure. While ideally both steps could be executed simul-
taneously, this decoupling allows us to apply robust global inference strategies during the
registration process (e.g., the Correlated Correspondence algorithm) and during the in-
ference step partitioning the object surface into parts. The ability to perform robust and
efficient global inference is very important, because it helps us to circumvent many local
maxima during both steps. Our approach can be bootstrapped in a fairly straightforward
way to use the computed rigid parts and their transformations to improve the registration.
However, there was little to be gained from such bootstrapping on these data sets given the
quality of our initial registration results.

There are many interesting directions in which this work can be extended. For exam-
ple, it would be interesting to automatically learn a model of the allowable deformations
at different joints, and to incorporate these joint limits in our markerless motion capture
application. Probably the most compelling extension would be to model the deformations
that the object parts undergo, in addition to their rigid motion. This extension would allow
us to obtain realistic-looking shapes, and is addressed in the next chapter of this thesis.



Chapter 6

Learning Deformable Models of Human
Shape

In this chapter, we describe a data-driven method for constructing a deformable model of
the human body. Such a model, which spans deformations due to changes in both human
pose and physique, has a variety of possible uses. It can be used for producing compelling
animations of different realistic characters in computer games and movies. It can also be
used for automatic tracking and analysis of the movement of different people, with appli-
cations to clinical diagnosis and rehabilitation. While human bodies will be our particular
example, we attempt to keep the methodology general enough so that many other shapes
can be modeled in a similar manner.

Learning a complex deformable model from range scans presents several difficult chal-
lenges. The fundamental tasks of scan registration and articulated model acquisition have
already been explored in depth in Chapter 4 and Chapter 5 of this thesis, respectively. The
main focus of this chapter is on modeling deformation. The deformation space which we
are interested in modeling is complex — we come in a variety of sizes and girths, can be
male and female, and our bodies themselves deform as a result of changing our pose or
flexing our muscles. This raises the following interesting question: what is a suitable shape
representation that can capture all this variation?

In the previous chapter on articulated models, we represented shape in terms of a col-
lection of rigid body parts, connected by joints. While the resulting models are compact
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and easy to use, they lack the power to model muscle deformations, and changes in shape
due to different body physiques. On the other hand, the deformable models we presented in
Chapter 2 and Chapter 4 are based on the appearance of a single shape template. In these
models, each link is allowed to deform independently of the others, and as a result, they
cannot capture the correlations between the deformation of different parts on the surface.
Some examples of correlations that we would like to capture are that long legs probably
mean long arms, bodies tend to be symmetric, and lifting the arm causes the pectoral mus-
cles to stretch.

The problem of modeling human bodies from examples has already received significant
attention in the computer graphics literature. Recent approaches represent the deformation
of an example shape in terms of the displacements of its points from some generic tem-
plate shape. For example, approaches that model deformations due to changes in pose
[70, 108, 1, 123, 80] represent deformation as point displacements relative to an underly-
ing articulated model. On the other hand, approaches that model body shape deformation
across different humans [2, 102] compute point displacements relative to an average shape.
Unfortunately, it is difficult to combine two of the above approaches in order to obtain an
integrated model of human poaadbody shape variation (which may explain why no such
model had been proposed up to this point). The main challenge lies in finding a good way
to combine two distinct deformation models based on point displacements. Point displace-
ments are vectors and cannot be multiplied in a meaningful way. Adding them ignores an
important notion of scale — pose displacements learned on a large individual cannot be
added to the shape of a small individual without undesirable artifacts.

In this chapter, we introduce the SCAPE method (Shape Completion and Animation of
PEople) — a data-driven method for building a human shape model. Our model is based on
a representation of deformation that allows us to model pose and body shape deformation
separately, and combine them in a natural way to produce 3D surface models with realistic
muscle deformations of different people in different poses.

The pose deformation component of our model is acquired from a set of dense 3D scans
of a single person in multiple poses. A key aspect of our pose model is that it decouples
deformation into a rigid and a non-rigid component. The rigid component of deformation
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Pose variation

Body-shape variation

Figure 6.1: Human shape deformations can be decomposed along two axes, corresponding
to variations due to pose and body shape. These can be arranged in a matrix as shown.
We use examples from a column and a row from this matrix to train separate models of
pose and body shape deformation. The two models can be combined, which allows us to
generate shapes corresponding to various people in various poses.

is described in terms of a low degree-of-freedom rigid body skeleton. The non-rigid com-

ponent captures the remaining deformation such as flexing of the muscles. In our model,
the deformation for a body part is dependent only on the adjacent joints. Therefore, it is
relatively low dimensional, allowing the shape deformation to be learned automatically,

from limited training data.

Our representation also models shape variation that occurs across different individuals.
This model component can be acquired from a set of 3D scans of different people in differ-
ent poses. The shape variation is represented by using principal component analysis (PCA),
which induces a low-dimensional subspace of body shape deformations. Importantly, the
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model of shape variation does not get confounded by deformations due to pose, as those
are accounted for separately. The two parts of the model form a single unified framework
for shape variability of people. The framework can be used to generate a realistic complete
surface mesh given only a succinct specification of the desired shape — in our case, 33
angles of the human skeleton and 20 eigen-coefficients describing the body shape.

We apply our model to two important graphics tasks. The first is partial view comple-
tion. Most scanned surface models of humans have significant missing regions. Given a
partial mesh of a person for whom we have no previous data, our method finds the shape
that best fits the observed partial data in the space of human shapes. The model can then be
used to predict a full 3D mesh. Importantly, because our model also accounts for non-rigid
pose variability, muscle deformations associated with the particular pose are predicted well
even for unobserved parts of the body.

The second task is producing a full 3D animation of a moving person from marker
motion capture data. We approach this problem as a shape completion task. The input
to our algorithm is a single scan of the person and a time series of extremely sparse data
— the locations of a limited set of markers (usually between 50 and 60) placed on the
body. For each frame in the sequence, we predict the full 3D shape of the person, in a pose
consistent with the observed marker positions. Applying this technique to sequences of
motion capture data produces full-body human 3D animations. We show that our method
is capable of constructing high-quality animations, with realistic muscle deformation, for
people of whom we have a single range scan.

The rest of this chapter proceeds as follows. In Sec. 6.1 we briefly describe our pipeline
for acquisition and pre-processing of the example meshes which are used to train our mod-
els. In Sec. 6.2 we show how human body deformations are represented and learned in
our model. Finally, in Sec. 6.3, we demonstrate how our model can be applied for com-
pelling shape-completion applications, including partial view completion and producing
3D animations from marker motion capture sequences.
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a) Cyberware scans  b) Place 4-10 <) CCalgorithm: d)Nonrigid e) Articulated f) Deformable
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Figure 6.2: The mesh processing pipeline used to generate our training set. (a) We acquired
two data sets spanning the shape variability due to different human poses and different
physiques. (b) We select a few markers by hand, mapping the template mesh and each of
the range scans. (c) We apply the Correlated Correspondence algorithm, which computes
numerous additional markers. (d) We use the markers as input to a non-rigid registration
algorithm, producing fully registered meshes. (e) We apply a skeleton reconstruction algo-
rithm to recover an articulated skeleton from the registered meshes. (f) We learn the space
of deformations due to pose and physique.

6.1 Data Acquisition and Preprocessing

The SCAPE model acquisition is data driven, and all the information about the shape is de-
rived from a set of range scans. This section describes the basic pipeline for data acquisition
and pre-processing of the data meshes. This pipeline, displayed in Fig. 6.2, consists largely
of a combination of previously published methods. The specific design of the pipeline is
inessential for the main contribution of this chapter; however, we demonstrate that most of
the processing in the pipeline can be done using methods presented in this thesis, which
minimize the need for human involvement.
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Range ScanningWe acquired our surface data using a Cyberware WBX whole-body
scanner. The scanner captures range scans from four directions simultaneously and the
models contain about 200K points. We used this scanner to construct full-body instance
meshes by merging the four scan views [33] and subsampling the instances to about 50,000
triangles [47]. Using the process above, we obtained two data s@isseadata setvhich
contains scans of 70 poses of a particular person in a wide variety of posesbadg a
shape data setvhich contains scans of 37 different people in a similar (but not identical)
pose. We also added eight publicly available models from the CAESAR data set [2] to our
data set of individuals.

We selected one of the meshes in the pose data set to bentiptate meshall other
meshes will be callethstance meshed he function of the template mesh is to serve as a
point of reference for all other scans. The template mesh is hole-filled using an algorithm
by Daviset al. [35]. In acquiring the template mesh, we ensured that only minor holes
remained mostly between the legs and around the armpits. The template mesh and some
sample instance meshes are displayed in Fig. 6.2(a). Note that the head region is smoothed
in some of the figures, in order to hide the identity of the scan subjects; the complete scans
were used in the learning algorithm.

CorrespondenceThe next step in the data acquisition pipeline brings the template
mesh intocorrespondencwith each of the other mesh instances. Current non-rigid regis-
tration algorithms require that a set of corresponding markers between each instance mesh
and the template is available (the work of Alletal.[2] uses about 70 markers for registra-
tion). We obtain the markers using the Correlated Correspondence algorithm (Chapter 4).
The CC algorithm computes the consistent embedding of each instance mesh into the tem-
plate mesh, which minimizes deformation, and matches similar-looking surface regions.
To break the scan symmetries, we initialize the CC algorithm by placing 4-10 markers by
hand on each pair of scans. The result of the algorithm is a set of 140-200 (approximate)
correspondence markers between the two surfaces, as illustrated in Fig. 6.2(c).

Non-rigid Registration Given a set of markers between two meshes, the task of non-
rigid registration is well understood and a variety of algorithms exist [1, 52, 111]. The task
is to bring the meshes into close alignment, while simultaneously aligning the markers.
We apply the non-rigid ICP algorithm described in Chapter 2 to register the template mesh
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with all of the meshes in our data set. As a result, we obtain a set of meshes with the
same topology, whose shape approximates well the surface in the original Cyberware scans.
Several of the resulting meshes are displayed in Fig. 6.2(d).

Recovering the Articulated SkeletonAs discussed in the introduction, our model uses
a low degree-of-freedom skeleton to model the articulated motion. We construct a skeleton
SX for our template mesh automatically, using only the meshes in our data set. We use
the algorithm from Chapter 5, which automatically recovers a decomposition of the object
into approximately rigid parts, the location of the parts in the different object instances, and
the articulated object skeleton linking the parts. The experiment was already discussed at
length in that chapter, and the results are shown in Fig. 5.8. As discussed, we obtain an
articulated model with 18 parts, which is displayed in Fig. 5.8(2c). The algorithm broke
both the crotch area and the chest area into two symmetric parts, resulting in a skeleton
which was not tree-structured. To facilitate pose editing, we combined the two parts in
each of these regions into one. The result was a tree-structured articulated skeleton with 16
parts, displayed in Fig. 6.2(e).

Data Format and AssumptionsAs a result of our preprocessing, we obtain a data set
consisting of a model mesN and a set of instance meshés¥ = {MY1 ... MYV},
All of these meshes have the same set of points and triangles as the model mesh, albeit in
different configurations. We also compute the alignments of the rigid parts of our model
S* to all the mesh instances. For each pawe compute its rigid alignmefit! in instance
7, simply by using the known point correspondences in the meshes. The rigid alignment
for each part is computed separately using the alignment method originally proposed by
Beslet al.[13] and described in Sec. 2.3. In computing the alignment, the joint constraints
between the parts are ignored. As will be seen shortly, we will only be using the rotation
component?; of these transformations for our model of human deformation.

The data acquisition and pre-processing pipeline provides us with exactly this type of
data; however, any other technique for generating similar data will also be applicable to our
learning and shape completion approach.
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Figure 6.3: Overview of the SCAPE model. We model how template triangleget
transformed to generate a new human shape instance. Our model accounts for several
sources of triangle deformation: non-rigid muscle deformat@pdue to changes in pose,
non-rigid body shape deformatioii$, accounting for changes between different humans,
and articulated part rotatiorf®. The transformations are represente@ as3 matrices and

are applied in order, which preserves proper deformation scaling. Our model correlates
the values of matrice®, to the nearby joint angles, and leans a low-dimensional linear
manifold for the values of matrices,,.

6.2 Human Shape Model

This section describes our model of human shape, in which deformations due to changes
in pose and body shape are modeled separately. First, we show how these models can be
combined to produce complete surface meshes of different people in different poses. Then,
we describe in detail how to represent and learn the two models, accounting for pose and
body shape variation.
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6.2.1 Model Overview

We want to model the deformations which align the templ&té with each mesh\¥i

in the data set, which corresponds to some pose of a particular human. We will model the
deformations for each triang}e of the template in a way, which was inspired by the work

of Sumner and Popo#i[111] on mesh deformation transfer. In our model, we will account
for the polygon deformations arising from three separate sources:

1. Rigid transformationg: resulting from placing the articulated model in a different
pose.

2. Non-rigid transformationg resulting from changes in pose, such as bulging of the
muscles, and sticking out of elbows.

3. Non-rigid transformation® accounting for changes in body shape between different
individuals.

The above transformations are modeled in term3 gf3 matrices, which are applied in
order to transform the template triangle into its counterpart in mesh inst&tice Let
trianglep,, contain the point$zy 1, zx 2, 1 ,3). We apply our deformations in terms of the
triangle’s local coordinate system, obtained by translating paintto the global origin.
Thus, the deformations will be applied to the triangle edges= = ; — zx1, j = 2, 3.

First, we apply & x 3 linear transformation matrig) to the triangle. This matrix,
which corresponds to a non-rigid pose-induced deformation, is specific to each triangle
pr and each posd1¥i. Then, we apply a linear transformation matfi§, which is also
triangle-specific, and accounts for deformations between the shape of different individuals.
The deformed triangle is then rotatedﬂym, the rotation of its rigid part in the articulated
skeleton. Here)[k] denotes the body part associated with triangle The same rotation
will be applied to all triangles that belong to that part. Combining the three transformation
matrices, we write:

vy = Ry DiQi0r g, J = 2,3. (6.1)

The triangle deformation process is sketched in Fig. 6.3. A key feature of this model is
that it combines an element modeling the movement of the rigid skeleton, with an element
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that allows for arbitrary local deformations. Importantly, the application of consecutive
transformation matrices to each triangle maintains proper scaling of pose and body shape
deformation.

The order in which the matrices are applied matters. Multiplying a véchyra linear
matrix produces different results depending on the direction of the vector. Let’'s examine the
order of deformatiord),, D, vy, ;. If Dyvy, ; is a vector with a significantly different direction
thanwy, ;, the effect of applying matrix), to D,vy, ; is different from applying?y to vy ;.
This is undesirable, as it means that changes in body shape influence the effects of the
pose model. Because it is advantageous to multiply the vegtdirst by the matrices that
change its direction least, and body shape deformations are usually orders of magnitude
larger than pose deformations, we chose the ofgJ€p,. in the paper. At this stage, we do
not have conclusive experimental evidence as to which matrix order yields better results.
The rotation matrix?, ), associated with the articulated model orientation, can change the
direction of a vector it multiplies arbitrarily much, therefore it is important Ry, to be
the last one in the multiplication order.

Given a set of transformation matric€s D for all template triangles, and the rotations
of all the articulated part&, our method’s predictions can be used to synthesize a mesh for
that pose. For each individual triangle, our method makes a prediction for the edges of
asRy Dk QrUr,;- In general, the predictions for the edges in adjacent triangles are not con-
sistent. We solve for the set of point locatians. . ., yx that minimize the reconstruction
error for the predicted triangle edges:

arg minz Z | Rogpg Di @i — (i — y1) 1 (6.2)

YbroUN- g =23
Note that, as translation is not directly modeled, the problem has a translational degree of
freedom. By anchoring one of the point$in each connected component of the mesh) to a
particular location, we can make the problem well-conditioned, and reconstruct the mesh.
The objective can be decomposed along each dimension of the ppnetsulting in three
separate least-squares problems. In particular, let the column ve¢tgrs y. contain the

1See the paper of Sumner and Pojditi11] for a very related discussion on mesh reconstruction from a
set of deformation matrices. In their reconstruction formulation, the reconstruction error is defined over the
transformation matrices themselves, which results in a much larger least-squares problem.
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x, y andz coordinates of the poing?, respectively. The objective can be easily expressed
in terms of three separate problems of the following form:

argmin || Ay, — b, ||, argmin||Ay, —b,|*>,  argmin||Ay. — b.|]*. (6.3)
Yz Yy Yz

Importantly, the sparse matrix is the same for all three subproblems; furthermore, the
values ofA does not depend on the valuesofQ, or k. The vector$,, b,, b, are the only
guantities above that depend on the values of the transformation mdiricgandR.

In order to solve the above subproblems, we need to compute

y. = (ATA) AT, y, = (ATA) ATy, y. = (ATA) A D, (6.4)

These three subproblems require performing the same matrix invetdfam) !, which
needs to be computed only once. Computing the inverse, using the sparse matrix package
umfpack takes approximately 1 second on a 2.4 GHz Intel Xeon processor for meshes
consisting of 25K polygons.

Once the inverse has been computed, we can animate in close to real time, because a
change in the matriceB, D and( only induces a change in the vectadtsb,,b.. The
new shape can be computed by multiplying those vectors with the precomputed matrix
(AT A)~'AT. Thus, our model can be used for real-time animation of synthesized or cached
motion sequences.

6.2.2 Pose Deformation Model

So far, we showed that given a set of transformation estindatasd D, we can reconstruct
complete human meshes. Now we show how we can learn deformation models, which can
provide these estimates.

Learning the Model

We showed how to model pose-induced deformations using a set of maf¥ickes the
template trianglep,. We want to predict these deformations from the articulated human
pose, which is represented as a set of relative joint rotations. We learn a regression function
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for each trianglep,, which predicts the transformation matric€ as a function of the
rotations of its two nearest jointsry,, , andAry,, ,. These two joints can be grouped to
form the 6-dimensional vectakr,, = (Aryy, |, Ay, ,)" . By assuming that a matrig;,

can be predicted in terms of these two joints only, we greatly reduce the dimensionality of
the learning problem.

The joint rotations are computed easily from the absolute rotation matrices of the two
rigid parts adjacent to that joint. If those rotations @& gand 1z;, then the relative joint
rotation matrix is sSimplyA R; ; = R!'R;. Joint rotations are conveniently represented with
their exponential map coordinates (see Sec. 2.2.1). Briefly/ldenote any x 3 rotation
matrix, and letn;; be its entry ini-th row and;j-th column. The exponential magdor the
joint angle is a 3D vector, and can be computed from the following formula [75]:

mg3za — 1M23
0 tr(M) —1
= . mis —ms |, 0 =cos ! & .
2sin(6) 2
mo1 — M2

The direction of the exponential mapepresents the axis of rotation, and its magnitude
represents the rotation angle about that axis. We denote the exponential map parameters of
a joint rotation matrixA R asAr.

Each joint rotation can be thus specified using three parameters, so altogether we are
predicting from the vectof\ry,,, which has six parameters. Adding a term for the constant
bias, we associate7ax 1 regression vecta, ;,,, with each of the 9 values of the matiix

and write:
Arl’)[k]

| ] LLm=1,2,3 (6.5)

qll;:,lm = az,lm ) [
Thus, for each trianglg,, we have to fit9 x 7 entriesa, = (ag;, : [,m =1,2,3). The
reconstruction of the entire matrix is denoted@s = Qak(ATZ[k]), whereQ,, (Ar) is a
shorthand for the operation which predicts all the entries of a métrisom the rotation
parameterg\r, and arranges them appropriately.

Our goal now is to learn these parameters,,. If we are given the transformation
Q: for each instancé1”? and the rigid part rotation®&’, solving for the regression values
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Figure 6.4: A plot of the eigenvalues obtained by performing PCA on the joint angles of the
human pose examples. Each joint contributes three different eigenvalues, whose magnitude
describes the amount of joint rotation, and whose associated eigenvectors describe the joint
rotation axes. The red line shows our chosen cut-off point for ignoring rotational degrees
of freedom, for which observed rotation was small.

(using a quadratic cost function) is straightforward. It can be carried out for each triangle
k and matrix valuey ;,, separately:

arg minz ([Ar" 1ag i, — q}%ylm)z . (6.6)

ak,lm i

In practice, we can save on model size and computation by identifying joints which
have only one or two degrees of freedom. Allowing those joints to have three degrees of
freedom can also cause overfitting in some cases. We performed PCA on the observed
angles of the joints\r?, removing axes of rotation whose eigenvalues are smaller than
0.03. The associated entries in the vecipy,, are then not estimated. The value 0.03
was obtained by observing a plot of the sorted eigenvalues (Fig. 6.4). We found that the
pruned model minimally increased cross-validation error, while decreasing the number of
parameters by roughly one third.

To train our pose model, we only use the instance mesh&swhich correspond to dif-
ferent poses of the human in the template (hence, all matfi¢esll be identity and will
be ignored in the discussion below). The rigid part rotations, and hence the joint rotations
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are computed as part of our preprocessing step. Unfortunately, the transforndgjtifors

the individual triangles are not known. We estimate these matrices by fitting them to the
transformations observed in the data. However, the problem is generally underconstrained.
We follow Sumneret al.[111] and Allenet al. [2], and introduce a smoothness constraint
which prefers similar deformations in adjacent polygons that belong to the same rigid part.
Specifically, we solve for the correct set of linear transformations with the following equa-
tion for each mesb1¥::

arg min Z Z | Ry Qi — vi s[> +

{Q1,..Q%} k j=23
wy Y I(blka] = blk]) - 1Q), — Q4,117 (6.7)
k1,k2 adj
wherew, = 0.001p andp is the resolution of the model mesk. Above, I(-) is the
indicator function. The equation can be solved separately for each rigid part and for each
row of the) matrices.

Given the estimate@ matrices, we can solve for the (at mo$t) 7 regression param-
etersa,, for each triangle:, as described in Eqn. (6.6).

Application to Our Data Set

We applied this method to learn a SCAPE pose deformation model using 65 training in-
stances from our pose data set. The learned model contains 33 free joint angle parameters
(out of possible 45). Fig. 6.5 shows examples of meshes that can be represented by our
learned model. Note that these examples do not correspond to meshes in the training data
set; they are new poses synthesized completely from a vector of joint rotdtiomsing

Eqn. (6.5) to define th® matrices, and Eqn. (6.2) to generate the mesh.

The model captures well the shoulder deformations, the bulging of the biceps and the
twisting of the spine. It deals reasonably well with the elbow and knee joints, although
example (k) illustrates a small amount of elbow smoothing that occurs in some poses. The
model exhibits an artifact (flat surface) in the armpit area (I), which is caused by hole-filling
in the template mesh.
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Figure 6.5: Examples of muscle deformations that can be captured in the SCAPE pose
model.

(k) o
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Comparison to Non-linear Regression

Our simple regression performs remarkably well in reconstructing the body shape for a
large variety of poses. However, it is a model with limited expressivity, and may pro-
duce visibly suboptimal shapes in some cases. Intuitively, these cases should include some
extreme angle configurations, which are close to the joint limits. We examined all the
reconstructions produced by our model, and found such an instance, in which the arm
was close to the body, and twisted about 45 degrees. This instance was already displayed
in Fig. 6.5(1), and exhibits an unnatural widening of the shoulders.

This instance motivated us to compare our results to a more complicated regression
model, which can capture non-linear deformation effects. Many model choices are possi-
ble, but we picked Support Vector Machine (SVM) regression. For detailed description of
the regression model, please refer to the tutorial ofo8apf and Smola [101]. Just like
in the linear case, we learn predictofé ), which map joint angles to the values of the
matrices():

qiylm =f (Ariw) I,m=1,23. (6.8)

In our implementation, this mapping is done in non-linear feature space, using a radial basis

72
_llz==]

function kernelK (z,2’) = e 2?  with a setting ofy = 2.5. We use a separate regressor
for each valuey ,,,, although a solution that regresses on entire groups of parameters is
also possible.

Fig. 6.6(a) shows that the non-linear regression model fixes the widening of the shoul-
ders artefact. However, in most cases the difference between the shapes reconstructed by
the non-linear and the linear models is hardly visible (Fig. 6.6(b)). Fig. 6.7(a)-(b) show that
the non-linear regression model, which has a greater expressive power, produces smaller
reconstruction errors (defined in Eqn. (6.2)) on the training set. However, using 5-fold
cross-validation, we determined that the non-linear regression model provides only min-
imal improvements in the prediction for unseen shapes. Fig. 6.7(c)-(d) shows the point
distance errors (distance between corresponding points on the ground truth and recon-
structed shape) decrease minimally when non-linear regression is used. In those cases,
reconstruction errors even tended to slightly increase when non-linear regression was used.
The reasons for such limited generalization capability of the non-linear regression model



6.2. HUMAN SHAPE MODEL 141

(@) Poor linear regression example
1. Ground Truth 2. Linear Regression 3. Non-linear regression

s

(b) Other examples (linear / non-linear regression)

b FRY X

Figure 6.6: Comparison of linear and non-linear pose regression. In this particular pose
example (a)-1, the linear regression model produces a "widening” of the shoulders (a)-2,
which is fixed by a non-linear model (a)-3. (b) In the vast majority of reconstructions the
difference between the linear and the non-linear regression is hardly visible.
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Figure 6.7: Numerical comparison of linear and non-linear regression for modeling pose
deformation. (a)-(b) Non-linear regression performs noticeably better in decreasing the
reconstruction errors on the training set. (c)-(d) Non-linear regression did not contribute to
a noticeable improvement in generalizing to new examples.

can be twofold. One reason is that our regression model needs to be trained with more ex-
amples. Another, and more likely reason, is that the shape examples used for training and
testing have some errors introduced by our data-processing. These data-processing errors
prevent the model from achieving higher scores on unseen testing examples.

Overall, for all reconstructions except the one we discussed above, the differences be-
tween the linear and non-linear models are barely discernible with a naked eye. Because
our linear model results in a formulation which is considerably more efficient to train and
to use for the tasks of animation and shape-completion, the discussion in the rest of the
chapter will focus on that model.
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Figure 6.8: The first four principal components in the space of body shape deformation

6.2.3 Body-Shape Deformation

The SCAPE model also encodes variability due to body shape across different individuals
in terms of the transformation matricé®. We now assume that the scans of our training
set MY correspond to different individuals.

Learning the Model

To map out the space of body shape deformations, we view the different mafrices
arising from a lower dimensional subspace. For each example mesh, we create a vector of
size9 x N containing the parameters of matricBé. We assume that these vectors are
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generated from a simple linear subspace, which can be estimated by using PCA:
D' =Dy,(8") = UB" + p (6.9)

whereU 3 4 i is a (vector form) reconstruction of tiex N matrix coefficients from

the PCA, andJ + 1 is the representation of this vector as a set of matrices. PCA is
appropriate for modeling the matrix entries, because body shape variation is consistent and
not too strong. We found that even shapes which are three standard deviations from the
mean still look very much like humans (see Fig. 6.8).

If we are given the affine matrice®;, for eachi, k we can easily solve for the PCA
parameters/, ;, and the mesh-specific coefficients However, as in the case of pose
deformation, the individual shape deformation matri€gsare not given, and need to be
estimated. We use the same idea as above, and solve direcly,faith the same smooth-
ing term as in Eqgn. (6.7):

argmin » > || Riyy DiQi0k,; — vi |7 +ws > 1Dy, — D, > (6.10)
Dr E =23 k1,ko adj

Importantly, recall that our data preprocessing phase provides us with an esfiffate
the joint rotations in each instance mesh, and therefore the joint afgfesFrom these
we can compute the predicted pose deformatighs- Qak(ATZ[k]) using our learned pose
deformation model. Thus, the only unknowns in Egn. (6.10) are the shape deformation
matricesD;. The equation is quadratic in these unknowns, and therefore can be solved
using a straightforward least-squares optimization.

Application to Our Data Set

We applied this method to learn a SCAPE body shape deformation model using the 45
instances in the body shape data set, and taking as a starting point the pose deformation
model learned as described in Sec. 6.2.2. We used only the top 20 principal components
found in our PCA decomposition of the shape space. Fig. 6.8 shows the mean shape and the
variation of the first four principal components. These components represent very reason-
able variation in weight and height, gender, abdominal fat and chest muscles, and bulkiness
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Figure 6.9: A variety of body shapes produced by the SCAPE model. The input to the
model is a concise description of the shape in the form of joint angles and PCA body
coefficients.
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a)

Figure 6.10: Deformation transfer by the SCAPE model. The figure shows three subjects,
each in four different poses. Each subject was seen in a single reference pose only

of the chest versus the hips.

Our PCA space spans a wide variety of human body shapes. Put together with our pose
model, we can now synthesize realistic scans of various people in a broad range of poses.
Assume that we are given a set of rigid part rotatiGand person body shape parameters
(. The joint rotationsk determine the joint angleA R. For a given triangley, the pose
model now defines a deformation mat€) = Q,, (Aryy). The body shape model defines
a deformation matrix), = Dy, (). As in Eqgn. (6.2), we solve for the verticég* that
minimize the reconstruction error:

EulY]=> ) 1 RogDuu(B) Qay (Aroisg )ik — (i — yra) |1 (6.11)

E =23

Using this approach, we can generate a mesh for any body shape in our PCA space in any
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pose. Fig. 6.9 shows some examples of different synthesized scans, illustrating variation in
both body shape and pose. We can also apply pose deformations to shape of subjects, for
whom we have a single scan only. This capability, called deformation transfer, is demon-
strated in Fig. 6.10. The above figures show that realistic muscle deformation is achieved
for very different subjects, and for a broad range of poses.

6.3 Shape Completion

6.3.1 Shape Completion Overview

So far, we have focused on the problem of constructing the two components of our SCAPE
model from the training data: the regression paraméters £ = 1, ..., My} of the pose
model, and the PCA parametérs. of our body shape model. We now show how to use the
SCAPE model to address the task of shape completion, which is the main focus of our work.
We are given sparse information about an instance mesh, and wish to construct a full mesh
consistent with this information; the SCAPE model defines a prior on the deformations
associated with human shape, and therefore provides us with guidance on how to complete
the mesh in a realistic way.

Assume we have a set of markeéfs= zq, ..., z;, which specify known positions in
3D for some points, ..., z; on the model mesh. We want to find the set of poimg’
that best fits these known positions, and is also consistent with the SCAPE model. In this
setting, the joint rotation$? and the body shape parametérare also not known. We
therefore need to solve simultaneously fet*’, R, and3 minimizing the objective:

L

>0 R Do u(8) Qay (Arups ) 0ik — (e — i) +wz Y Iy — al*,  (6.12)

k j=2,3 =1
where the first term represents the reconstruction errorugns a weighting term that
trades off the fit to the markers against the reconstruction error.

A solution to this optimization problem is@mpleted mesi¥ [Z] that both fits the

observed marker locations and is consistent with the predictions of our learned SCAPE
model. It also produces a set of joint rotatiaRsnd shape parametess Note that these



148 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

parameters can also be used to produgeealicted meshM?[Z], as in Sec. 6.2. This
predicted mesh is (by definition) constrained to be within our PCA subspace of shapes;
thus it generally does not encode some of the details unique to the new (partial) instance
mesh to be completed. As we shall see, the predicted me%w] can also be useful for
smoothing certain undesirable artifacts.

Egn. (6.12) is a general non-linear optimization problem to which a number of existing
optimization techniques can be applied. The approximate solution method, which we used
for our SIGGRAPH paper and in our implementation, is described below. Then in Sec. 6.4
we describe another, mathematically more elegant way of optimizing this objective.

Our specific implementation of the optimization is intended to address the fact that
Eqn. (6.12) is non-linear and non-convex, hence is subject to local minima. Empirically,
we find that care has to be taken to avoid local minima. Hence, we devise an optimization
routine that slows the adaptation of certain parameters in the optimization, thereby avoiding
the danger of converging to sub-optimal shape completions. In particular, optimizing over
all of the variables in this equation using standard non-linear optimization methods is not a
good idea. Our method uses an iterative process, where it optimizes each of the three sets
of parametersi, 3, andM?Y) separately, keeping the others fixed.

The resulting optimization problem still contains a non-linear optimization step, due to
the correlation between the absolute part rotatiBrend the joint rotationg\ R, both of
which appear in the objective of Eqn. (6.12). We use an approximate method to deal with
this problem. Our approach is based on the observation that the actual joint rofations
influence the point locations much more than their (fairly subtle) effect on the pose defor-
mation matrices via\ R. Thus, we can solve faR while ignoring the effect om\ R, and
then update\ R and the associated matric@g (A R). This approximation gives excellent
results, as long as the value AfR does not change much during each optimization step.
To prevent this from happening, we add an additional term to the objective in Eqn. (6.12).
The term penalizes steps where adjacent parts (parts that share a joint) move too differently
from each other.
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Figure 6.11: Obtaining a reasonable starting point for the shape-completion process. We
place a few markers by hand and then run the Correlated Correspondence algorithm, which
produces~ 100 — 150 markers. We use the markers on each object part to solve for a good
rigid alignment for that part. As a result, we obtain an initial set of part rotations, which
are used to initialize our shape-completion optimization.

Specifically, when optimizingz, we approximate rotation using the standard approxi-
mation R"®" ~ (I + £)R%Y, wheret = (,, t,, t3) is anexponential mapand

0 —t3 to
—1 1 0

Let ¢, denote the exponential map for a partThe term preventing large joint rotations
then is SimpIy>_ 1) pj2) aasy e — 2oz 1.

We are now ready to describe the overall optimization technique applied in our work.
This techniques iteratively repeats three steps:
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o We updateR, using the following equation:

argmin > > ||(I +HR™DQ;x — (v — v1s)” (6.14)
t & j=2,3
+wr Z [ts) — topzg|?
B[1],b[2] adj

HereD = Dy, () according to the current value 6f Q) = Q,, (Ar) whereAr is
computed fromRk°9, andwy is an appropriate trade-off parameter.

After all rotationsR are thus updated, we recompute the joint anglesccordingly.

o We updateM? to optimize Eqgn. (6.12), wittk and3 fixed. In this case, th® and
@ matrices are determined, and the result is a simple quadratic objective that can be
solved efficiently using standard methods:

L
arg min Z Z IRDQV; s — (i — yre)|* + wz Z lys — 2 (6.15)
=1

Y15--YNx E j=2,3

o We updates to optimize Eqn. (6.12). In this cas&, and the() matrices are fixed,
as are the point positions1¥, so that the objective reduces to a simple quadratic
function of ;.

arggnin S IR (UB + 1), Q05x — (e — y1.6) 1 (6.16)
k j=2,3

This optimization process converges to a local optimum of the objective in Eqn. (6.12).
The surface reconstruction step from Eqn. (6.15) can be executed very efficiently, as long
as the set of matching paifg;, z;) remains unchanged during the iterations (as is the case
described here). Similar to our approach for solving Eqn. (6.2) earlier, this objective de-
composes into three subproblems, requiring the computation of the same matrix inverse,
which can be precomputed once and then used in all iterations of the above algorithm.
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(iii)

Figure 6.12: Examples of view completion, where each row represents a different partial
view scan. Subiject (i) is in our data set but not in the this pose; neither subjects (ii) and
(i) nor their poses are represented in our data set. (a) The original partial view. (b) The
completed mesh from the same perspective as (a), with the completed portion in yellow.
(c) The completed mesh from a view showing the completed portion. (d) A true scan of the

same subject from the view in (c).



152 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

6.4 An Alternative Optimization Approach

Here we describe an alternative optimization scheme for the shape-completion objective
defined in Eqn. (6.12). Briefly, the shape-completion task is: given a set of méfkers

21, ..., zr, Which specify known positions in 3D for some poinis . .., z; on the model
mesh, recover the body shape parametgrsigid part rotationsk? and the mesh point
locationsY which minimize the objective:

L

> IRy Dugn(8) Qa (Aroi) B — (g — wr) 1> +wz > My — *. (6.17)

k j7=2,3 =1

The main difficulty in the above equation is that it features both the absolute rigid part
rotations R, and the relative joint rotation&r,, in the same product. These entities
are correlated, since changing the absolute rotations also changes the joint angles. Our
optimization scheme in Sec. 6.3.1 ignores the effect of this correlation, and solves directly
for the absolute rotations while assuming the angles get preserved.

The key to avoiding that approximation is to use only the relative joint rotations. Here
we assume that our articulated model is tree-structured. Then, we can pick one of our parts
as a root, and represent the absolute rotations in terms of a sequence of joint angle rotations
(going outwards from that root). For example, for a part which/igoints removed from
the root, we can write this as follows:

Ryjry = R(Arypar) - - - R(AT0,1) Rroot (6.18)

In such a manner, all absolute rotations can be replaced in the objective. Now, let us
solve for an update of the exponential map parameters of a specific joint rofatjomo
simply the notation here we will just denote itas= Ar;. The update can be expressed
asu; = u; + t;, whereu; is the new estimate of that rotation, afyds the update for which
we will be solving.
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The rotation matrix around that joint can be expressed as follows [75]:

R() = 1+Jg+%+...+(€%+... (6.19)
- 1+m+(ui‘£\—!ti)2+... (6.20)
= {I+@+(Q§!)2+"'}+E+M+"' (6.21)
= R(ui)+ﬂ+w+... (6.22)

Since our update step is chosen to be small, we can use the following linear approximation:

~ ~

2

Our goal is to iteratively optimize the rotation parametérsf each joint, while holding
the others fixed. We will define several quantities in the objective from Eqn. (6.17) to make
the dependence arf more explicit. First, we will assume that the rotation matrix associ-
ated with parameterg appearsn-th in the kinematic chai®( Ay ar) - - - R(AT,1) Rroot
for polygonp,.. We denote this rotation matrix @4 «;) to emphasize this dependence. We
also define:

Ak = R<A7ab[k},mfl> e R(Arb[k],l)RrootDU,u<ﬁ) (624)
By = R(Arypa) - RIAT ] me1)- (6.25)

Intuitively, matrix A, denotes the product of rotation matrices that come befjrg) in

the kinematic chain (pre-multiplied by the body shape deformation matrix, which does not
depend onu}). Matrix By, on the other hand, contains product the rotation matrices that
come afterR(u}). These quantities can be substituted into the shape completion objective,
as follows:

L

> IBRR(u) Ak Qa, () k — (yik — yra) 1> +wz Y v — 21> (6.26)

E j=23 =1
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Above we introduce another expressioy, (u;) to show that the pose deformation ma-
trix may be (a linear) function of the rotation parametefs In many cases, in will be
independent ofi; altogether, but we will ignore this in the current notation.

Replacingu; = u; + t; andd ; = (y;x — y1.,) in the above equation, we obtain our
new objective:

L
> Y D IBRR(u; + ) A Qay (i + )05 — dijlI* +wz Yl — 2l (6.27)

k j=23 =1

This new objective needs to be minimized for the paramejees follows:

argtmin Z Z ||BkR(UZ + t,)Ak Qak (ul + ti)i)\ng — dk7j||2. (628)

i E j=2,3

We use the identity?” R = I, which is valid for all rotation matrices, in expanding this
expression. In particulatA, R(u}))T Ay R(u}) = I, which eliminates second order depen-
dence on the matriXe(u}). After some tedious algebraic transformations resulting from
expanding the norm, we obtain the following expression:

argtmin Z Z @\Jjjk Qak (UZ + tz)TAgAk Qak (uz + tz')i]\jk + (629)

¢ k j=2,3

2d£j(R(ui 4 t3) Ak Qay, (Ui + 1:)Vj 1. (6.30)

The important thing to notice in this complicated expression, is the fact that it is at most
a quadratic expression in termsf First of all, we use the linear approximation of the
rotation matrixR(u; +1t;) from Eqn. (6.23). Second,, (u; + t;) is a linear function of the
updatet;. Therefore, we can obtain the valuetplising simple least-squares optimization

of the equation above.

Given that we now have a way to solve for the rotation of each joint separately, our
entire optimization schedule consists of a set of phases, where we solve for each joint
rotationu; (as well as for the orientation of the rof,.;) separately, then for parameters
(3, and finally for the shap¥, each time while holding all other parameters fixed.
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6.4.1 Partial View Completion

An obvious application of our shape completion method is to the task of partial view com-
pletion. Here, we are given a partial scan of a human body; our task is to produce a full 3D
mesh which is consistent with the observed partial scan, and provides a realistic completion
for the unseen parts.

Our shape completion algorithm of Sec. 6.3 applies directly to this task. We take the
partial scan, and manually annotate it with a small number of markers (4—10 markers, 7 on
average). We then apply the CC algorithm [4] to register the partial scan to the template
mesh. The result is a set of 100—-150 markers, mapping points on the scan to corresponding
points on the template mesh. This number of markers is sufficient to obtain a reasonable
initial hypothesis for the rotation®& of the rigid skeleton. We then iterate between two
phases. First, we find point-to-point correspondences between the partial view and their
nearest neighbor points in our current estimate of the surfdéé¢Z]. Then we use these
correspondences as markers and solve Egn. (6.12) to obtain a new estithate of the
surface. Upon convergence, we obtain a completion rdeisHZ|, which fits the partial
view surface as well as the SCAPE model. The steps of the partial view completion process
are shown in Fig. 6.11.

We would like to point out that every time we re-compute the point-to-point corre-
spondences between the meshes, the set of matching paig that are provided to the
shape-completion algorithm changes. This change necessitates the re-computation of a ma-
trix inverse necessary for the solution of Eqn. (6.15), which takes about one second in our
implementation. Thus, our partial view completion implementation is not real-time.

In Fig. 6.12, we show the results of this algorithm in completing three partial views of

different humans. Row (i) shows partial view completion results for a subject who is present

in our data set, but in a pose that is not in our data set. The prediction for the shoulder blade
deformation is very realistic; a similar deformation is not present in the training pose for
this subject. Rows (ii) and (iii) show completion for subjects who are not in our data set,

in poses that are not in our data set. The task in row (ii) is particularly challenging, both
because the pose is very different from any pose in our data set, and because the subject
was wearing pants, which we cut out (see Fig. 6.12(ii)-(d)), leading to the large hole in the
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original scan. Nevertheless, the completed mesh contains realistic deformations in both the
back and the legs.

6.4.2 Motion Capture Animation

Our shape completion framework can also be applied to produce animations from marker
motion capture sequences. In this case, we have a sequence of frames, each specifying
the 3D positions for some set of markers. We can view the set of markers observed in
each frame as our inpuf to the algorithm of Sec. 6.3, and use the algorithm to produce a
mesh. The sequence of meshes produced for the different frames can be strung together to
produce a full 3D animation of the motion capture sequence.

Note that, in many motion capture systems, the markers protrude from the body, so
that a reconstructed mesh that achieves the exact marker positions observed may contain
unrealistic deformations. Therefore, rather than using the completed #ési| (as in
our partial view completion task), we use the predicted rrmﬁ[Z]. As this mesh is
constrained to lie within the space of body shapes encoded by our PCA model, it tends to
avoid these unrealistic deformations.

We applied this data to two motion capture sequences, both for the same subject S.
Notably, our data set only contains a single scan for subject S, in the standard position
shown in the third row of Fig. 6.2(a). Each of the sequences used 56 markers per frame,
distributed over the entire body. We took a 3D scan of subject S with the markers, and
used it to establish the correspondence between the observed markers and points on the
subject’s surface. We completed this scan using the algorithm from Sec. 6.4.1 to obtain the
body shape parametesdor that subject; these parameters will be held constant during the
rest of the optimization. We then applied the algorithm of Sec. 6.3 to each sequence frame.
In each frame, we used the previous frame’s estimated Ros® a starting point for the
shape-completion optimization.

The animation was generated from the sequence of predictedM&{ﬁf]. Using our
(unoptimized) implementation, it took approximately 3 minutes to generate each frame.
Fig. 6.13 demonstrates some of our results. We show that realistic muscle deformation was
obtained for subject S (Fig. 6.13(c)). Additionally, we show that motion transfer can be
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performed onto a different subject in our data set (Fig. 6.13(d)) and that the subject can be
changed during the motion sequence (Fig. 6.13(e)).

6.5 Related Work

The recent example-based approaches for learning deformable human models represent
deformation by point displacements of the example surfaces, relative to a generic template
shape. For modeling pose deformation, the template shape is usually assumed to be an
articulated model. A popular animation approach calidnning(described in Lewigt

al. [70]) assumes that the point displacements are generated by a weighted set of (usually
linear) influences from neighboring joints. A more sophisticated method was presented by
Allen et al. [1], who register an articulated model (represented as a posable subdivision
template) to scans of a human in different poses. The displacements for a new pose are
predicted by interpolating from a set of example scans with similar joint angles. A variety

of related methods [70, 108, 123, 80] differ only in the details of representing the point
displacements, and in the particular interpolation method used. Models of pose deforma-
tion are learned not only from 3D scans, but also by combining shape-from-silhouette and
marker motion capture sequences [99]. However, none of the above approaches learn a
model of the shape changes between different individuals.

To model body shape variation across different people, Adteal. [2] morph a generic
template shape into 250 scans of different humans in the same pose. The variability of
human shape is captured by performing principal component analysis (PCA) over the dis-
placements of the template points. The model is used for hole-filling of scans and fitting a
set of sparse markers for people captured in the standard pose. Another approach, by Seo
and Thalmann [102], decomposes the body shape deformation into a rigid and a non-rigid
component, of which the latter is also represented using PCA over point displacements.
Neither approach learns a model of pose deformation. However, they demonstrate pre-
liminary animation results by using expert-designed skinning models. Animation is done
by bringing the space of body shapes and the skinning model into correspondence (this
can be done in a manual or semi-automatic way [54]), and adding the point displacements
accounting for pose deformation to the human shape. Such skinning models are part of
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Figure 6.13: Motion capture animation. (a) Subject wearing motion capture markers (b)
motion capture markers in a single frame (c) An animation of a subject based on a motion
capture sequence, with the markers from which the animation was derived superimposed
on the meshes. (d) An example of motion transfer to a different subject in our data set. (e)
Animation based on motion capture, but where we change the body shape parameters in
PCA space as we move through the sequence.
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standard animation packages, but since they are usually not learned from scan data, they
usually do not model muscle deformation accurately.

An obvious approach for building a data-driven model of pose and body shape defor-
mation would be to integrate two existing methods in a similar way. The main challenge
lies in finding a good way to combine two distinct deformation models based on point dis-
placements. Point displacements cannot be multiplied in a meaningful way; adding them
ignores an important notion of scale. For example, pose displacements learned on a large
individual cannot be added to the shape of a small individual without undesirable artifacts.
This problem has long been known in the fields of deformation transfer and expression
cloning [89]. In thinking how to address it, we were inspired by the deformation transfer
method of Sumner and Popévjlll], which shows how to retarget the deformation of
one mesh to another, assuming point-to-point correspondences between them are available.
The transfer maintains proper scaling of deformation, by representing the deformation of
each polygon using & x 3 matrix. It suggests a way of mapping pose deformations onto
a variety of human physiques. However, it does not address the task of representing and
learning a deformable human model, which is tackled in our work.

Multilinear models, which are closely related to our work, have been applied for mod-
eling face variation in images [117]. A generative model of human faces has to address
multiple factors of image creation such as illumination, expression and viewpoint. The
face is modeled as a product of linear appearance models, corresponding to influences of
the various factors. Multilinear approaches have also been used to model 3D face defor-
mation [120]. However, this work uses point displacements from a template shape as a
representation of face deformation. We believe our representation of deformation, based
on modeling the polygon transformation matrices, is more suitable for the task. It is the
subject of interesting future work to compare the two representations in the context of face
expression modeling. Of course, our method cannot be applied directly for face modeling,
because we correlate the deformations of an individual to the underlying skeleton angles,
while a significant part of the face deformations is purely muscle-based (the jaw movement
being the exception). However, it is not difficult to modify our approach by learning a suit-
able space of facial expression deformations (by doing PCA over the face expressions of a
particular individual, for example).
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Our shape-completion application is related to work in the area of hole-filling. Surfaces
acquired with scanners are typically incomplete and contain holes. A common way to
complete these holes is to fill them with a smooth surface patch that meets the boundary
conditions of the hole [33, 35, 71]. These approaches work well when the holes are small
compared to the geometric variation of the surface. Our application, by contrast, requires
the filling of huge holes (e.g., in some experiments more than half of the surface was not
observed; in others we are only provided with sparse motion capture data) and we address it
with a model-based method. Other model-based solutions for hole filling were proposed in
the past. Kahleret al.[62] and Szeliski and Lavade [113] use volumetric template-based
methods for this problem. These approaches work well for largely convex objects, such as
a human head, but are not easily applied to objects with branching parts, such as the human
body. While the work of Alleret al.[2] can be used for hole-filling of human bodies, it can
only do so if the humans are captured in a particular pose.

Marker motion capture systems are widely available, and can be used for obtaining
high-quality 3D models of a moving person. Existing animation methods (e.g. [1, 102]) do
not utilize the marker data and assume the system directly outputs the appropriate skeleton
angles. They also do not handle body shape variation well, as previously discussed. Both
of these limitations are lifted in our work.

6.6 Discussion and Limitations

This chapter presents the SCAPE model, which captures human shape deformation due
to both pose variation and to body shape variation over different subjects. Our results
demonstrate that the model can generate realistic meshes for a wide range of subjects and
poses. We showed how the SCAPE model can be used for shape completion, and cast two
important graphics tasks — partial view completion and motion capture animation — as
applications of our shape completion algorithm.

Our current approach requires a set of scans of a single person in different poses to
learn the space of pose deformations. Once we have done this, we can use scans of dif-
ferent people in different poses to learn the space of body shapes. We currently do not
provide a method to learn both spaces from a random mix of scans from different people
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in different poses. Our assumption on the training set structure is not particularly restric-
tive, and it simplifies our data collection and learning procedures. We could try to learn
our model from a non-uniform data set, by iterating between estimating either the pose or
the body shape model while keeping the other one fixed. This process would result in a
local minimum in the joint space of deformations. We cannot predict how good this local
minimum would be; it depends specifically on the training data we are given, and on the
search method used.

The pose deformation in our model is determined by regression from adjacent joint
angles. We found that the linear regression model provides surprisingly good animation
results, and simplifies the task of shape completion. For many instances of partial view
completion, a more accurate model may not be necessary, because our solution is allowed
to deform outside of SCAPE space in order to fit the observed surface. Thus, partial view
data can correct some of the (fairly small) errors resulting from the assumption of a linear
regression model. When the SCAPE model is used purely for animation, the linear regres-
sion model is not sufficient for obtaining high-quality meshes in all cases. We demonstrated
that in such cases, non-linear regression approaches can be used.

The SCAPE model is focused on representing muscle deformations resulting from ar-
ticulated body motion. Deformations resulting from other factors are not encoded. One
such factor is deformation resulting from pure muscle activity. Thus, the model is not ex-
pressive enough to distinguish between a flexed bicep muscle and a lax one in cases where
the joint angle is the same. For the same reason, it is not appropriate to deal with faces,
where most of the motion is purely muscle-based. Another factor leading to muscle defor-
mation is tissue perturbations due to motion (e.g., fat wiggling), which our model also does
not represent.

Currently, our framework includes no prior over poses. Thus, when encountering oc-
clusions, we cannot use the observed position of some body parts to constrain the likely
location of others. Our model can easily be extended to encompass such a prior, in a modu-
lar way. For example, in the case of static scans, a kinematic prior such as that of Grochow
et al[51] could simply be introduced as an additional term into our optimization. When
animating dynamic sequences, we can use a tracking algorithm (e.g., a Kalman filter) to
generate a pose prior for any frame given all or part of the observation sequence.



162 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

Finally, we note that our approach is purely data driven, generating the entire model
from a set of data scans. Human intervention is required only for placing a small set of
markers on the scans, as a starting point for registration. Thus, the model can easily be
applied to other data sets, allowing us to generate models specific to certain types of body
shapes or certain poses. Moreover, the framework applies more generally to cases where
surface deformation is derived from articulated motion. Thus, if we could solve the data
acquisition problem (e.g., using shape from silhouette [131]), we could use this framework
to learn realistic deformation models for creatures other than humans.



Chapter 7
Conclusions and Future Directions

In this final chapter, we summarize the contributions of this thesis, discuss a number of its
limitations, and present some challenges and future research directions that build on top of
the work in this thesis.

7.1 Summary

We present a framework for learning complex shape models from range scan data. The
framework consists of several algorithms, based on the theory of probabilistic graphi-

cal models, which allow us to learn complex shape models of different objects and ob-

ject classes with minimal human intervention. We also describe applications of these al-
gorithms, as well as the learned models, to the tasks of tracking, animation and shape-
completion.

7.1.1 Unsupervised Registration

We present an algorithm for unsupervised registration of two non-rigid 3D surfaces. Our
Correlated Correspondence algorithm can register surfaces that undergo significant defor-
mations, without making prior assumptions about initial alignment, or object shape and
dynamics. It performs efficient combinatorial search in the space of possible surface align-
ments, preferring registrations that preserve the surface appearance and geometry. We
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demonstrate successful registration for articulated objects subject to large joint movements,
as well as for other kinds of non-rigid surface deformations. In contrast, previous surface
registration algorithms avoid tackling the combinatorial nature of the non-rigid registration
problem, and as a result are more prone to becoming stuck in poor local minima in such
cases. We show the quality and the utility of our registration results by using them as a
starting point for compelling computer graphics applications: partial view completion and
interpolation between pairs of scans.

7.1.2 Recovering Articulated Models

We address the problem of learning a complex articulated object models from registered
3D scans. The algorithm automatically recovers a decomposition of the object into ap-
proximately rigid parts, the location of the parts in the different object instances, and the
articulated object skeleton linking the parts. The decomposition into parts is obtained by
using the Expectation-Maximization algorithm, using a graphical model that explicitly en-
forces the spatial contiguity of the object’s parts. Although the graphical model is densely
connected, the object decomposition step can be performed optimally and efficiently, al-
lowing us to identify a large number of object parts while avoiding local maxima. We
demonstrate the algorithm on three real world datasets, recovering complex models with
up to 18 parts, even in the presence of non-trivial part deformations. Our algorithm not only
recovers the parts and joints, but also figures out the optimal number of parts automatically.
We also describe an efficient algorithm, which can be used to track the recovered models
in shape-from-silhouette data.

7.1.3 Learning the Space of Human Body Shapes

Finally, we present a method named SCAPE, which learns a model of human shape de-
formation due to both pose variation and to body shape variation over different subjects.
Most methods for modeling deformations represent them in terms of point displacements
from a shape template. However, it is difficult to combine such displacement-based mod-
els in a way that scales deformations correctly. We address this problem by representing
deformations as consecutidex 3 matrices that deform the polygons of the mesh. Our
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pose deformation model derives the values of these deformation matrices as a function of
the skeleton pose. Our body shape deformation model induces a low-dimensional space
over another set of polygon transformation matrices, associated with the deformations oc-
curring between people with different physiques. The two models can be combined in a
natural way to produce 3D surface models with realistic muscle deformation for different
people in different poses, when neither appear in the original set of examples. We also
show how the SCAPE model can be used for shape completion, and cast two important
graphics tasks — partial view completion and motion capture animation — as applications
of our shape completion algorithm. We demonstrate shape-completion and motion capture
animation results for a variety of different people and poses.

7.2 Extensions and Open Problems

It is our hope that this thesis demonstrates the utility of probabilistic models for studying
key problems in the shape modeling domain. Here we describe several possible extensions
to our work, and discuss some exciting directions for future research. Some of the most
straightforward extensions were already discussed in the relevant chapters.

7.2.1 Real-time Implementations

Our current unoptimized implementation of the Correlated Correspondence algorithm for
non-rigid registration takes about two minutes to register a pair of scans. Because of the
size of the induced Markov network in which we perform inference, the algorithm cannot
be made to run in close to real time on current single-processor machines. However, the
algorithm is ideally suited for a distributed multi-processor architecture. The computation
of the Markov node and edge potentials can be executed in parallel. Moreover, loopy belief
propagation consists of simple local updates of the beliefs over each variable, which can
be executed in parallel as well, even asynchronously. Therefore we believe, that an imple-
mentation of the Correlated Correspondence algorithm on a distributed parallel system can
run in close to real-time.
Another interesting direction is to optimize the partial view completion application of
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SCAPE from Chapter 6.4.1. In our current implementation, updating the point-to-point
correspondences between the human body model and the scan, or the strength of these
correspondences, leads to a recomputation of the matrix inverse, necessary for solving the
equation Eqgn. (6.15). In practice, the cost of this computation is about one second. In-
tuitively, this cost is excessive, because even though point-to-point correspondences tend
to change little between iterations, we are doing the entire work of computing the matrix
inverse from scratch. Therefore, an interesting direction of exploration is to find a suitable
way of exploiting the previous matrix values in the new computation. The most straight-
forward way is to use the conjugate gradient algorithm, although in some cases it tends to
converge too slowly. A different direction would try to exploit the structure of the matrix,

as Sumneet al.[112] have done for a related problem.

7.2.2 Registration in the Presence of Clutter and Occlusion

One of the main limitations of our Correlated Correspondence algorithm is its assumption
that the scan mesh is a subset of the model mesh.nbacdutterassumption is essential in
making the algorithm tractable, because it allows us to avoid reasoning about cases when
points or edges in the scan mesh have no counterparts in the model. It is also important
for another reason. When we refrain from imposing an object-specific shape prior, and
both occlusion and clutter are present in the scene simultaneously, the registration problem
becomes ill-defined. In the presence of significant deformation, there are too many different
possible ways of aligning surfaces in such cases. We consciously chose the no-clutter
assumption as a way to constrain this space, without making the algorithm object-specific.
When prior object-specific knowledge is available, we can tackle cases when both oc-
clusion and clutter are presentin the scene. Of particular interest is the problem of detecting
the pose of an articulated model in a range scan that contains both clutter and occlusions.
The Correlated Correspondence methodology cannot be used directly in such cases, be-
cause in the presence of occlusion, articulated parts can be placed even in parts of the scene
where no corresponding surface is available. Thus, enumerating all possible part locations
is no longer feasible. In a separate work (currently in submission), we show how to ex-
tend our methodology in order to address this case. Our approach starts by using low-level
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spin-image based detectors to suggest possible part placement hypotheses. However, the
detectors are not guaranteed to find good hypotheses for all object parts. Therefore, we
introduce a separate hypothesis-enrichment phase, in which the original part location hy-
potheses are used to generate likely placement suggestions for their neighboring parts. The
set of expanded part domains can be used to construct a Markov network, which scores
the quality of the part placements and enforces the articulated model constraints. Unlike
the Correlated Correspondence model, here we explicitly allow some parts to be completely
missing in the scene. The resulting model can be optimized using loopy belief propagation,
to obtain the most likely object con figuration in the scene.

7.2.3 SCAPE for Markerless Motion Capture

Markerless motion capture is a compelling application, enabling the acquisition of human
motion trajectories for use in entertainment (games and movies) and clinical applications
(human movement analysis). Current applications require the placement of photoreflective
markers on the tracked object, which is a precise and very time-consuming activity, as
well as installation of specialized hardware (infrared cameras), which makes the systems
expensive.

In Chapter 5 we described an algorithm for tracking rigid bodies in shape-from-silhouette
data, which can be used for human motion acquisition. However, the algorithm has several
important limitations. The most important one is that the algorithm currently requires that
the articulated model for the specific person being tracked is available. Obtaining such an
articulated model is very time-consuming in most cases, limiting the impact of the applica-
tion. Another limitation of that model is that it treats the human body parts as completely
rigid, and cannot account properly for their deformations.

Both of these problems are addressed in our SCAPE model of the human body. We be-
lieve that using the SCAPE template for tracking in shape-from-silhouette data will enable
the automatic motion capture of different people, and increase the accuracy of the track-
ing relative to that produced by tracking purely articulated models. The optimization of
the SCAPE model in this case is very similar to our partial view completion application
from Sec. 6.4.1. Further work on making the partial view completion run in real time will
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only make this application even more compelling.

7.2.4 Towards an Integrated Model of the Human Body

In Chapter 6 of this thesis, we learn a human appearance model that captures the body
deformations due to changes in physique and pose. However, many exciting aspects of
the human modeling task are yet to be addressed. Below we describe briefly some of the
possible new directions.

o Modeling the correlations between pose and body shape deformations

Our SCAPE model decouples the pose deformation model and the body shape defor-
mation model. This design choice greatly simplifies the mathematical formulation,
improves the identifiability of the model from data, and makes the learning algorithm
more efficient. However, it also prevents us from capturing phenomena where there
is a strong correlation between body shape and muscle deformation. For example,
as the same muscle deformation model is used for all people, we do not capture the
fact that more muscular people are likely to exhibit greater muscle deformation than
others, and, conversely, that muscle deformation may be obscured in people with sig-
nificant body fat. To address this, we need to learn a model that explicitly captures
this dependence between body shape and pose deformations. There are different
possible ways for modeling these correlations, the most straightforward of which is
an extension of our model, where the pose deformations are dependent on the body
shape parameters. A necessary prerequisite for learning such a model is the avail-
ability of a dataset that contains scans of multiple people, in which each person is
captured in several different poses.

o Integrating body and face models

The space of human shapes is not complete without incorporating an accurate model
of the most expressive body part — the face. There is an extensive body of work on
shape modeling, both in image and 3D data. One of the latest methods, by &ftlasi

al. [119], uses multi-linear models to model 3D face deformation. Their work uses
point displacements from a template shape as a representation of face deformation.
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Our representation of deformation, based on modeling the polygon transformation
matrices, could be more suitable for the task. It would be very interesting to use it in
conjunction with multi-linear models, and to compare the results to those obtained
by Vlasic et al.

o Informed models of kinematics and dynamics

Another interesting direction is to add a temporal dimension to the shape model-
ing task. The movement of a person causes a set of body deformations, such as fat
wiggling and muscle contractions. Knowledge about the movement can help in pre-
dicting the body deformations more accurately. The main limitation to exploring this
idea is the difficulty of real-time range data acquisition. One avenue for exploration
would be to track and refine our SCAPE model in shape-from-silhouette data [26].
Another possibility is to use recent advances in real-time scanning technology, such
as the work of Zhanegt al.[131] on real-time acquisition of face scans.

Also, our SCAPE framework currently does not include a temporal prior over poses.
Such a prior can be very useful in tracking scenarios, where we can reason about the
position of occluded body parts using the position and velocity of the observed parts.
Learning of such kinematic priors for 3D articulated models has been addressed in
the work of Grochowvet al[51], as well as the work of Sminchisesetal [109]. Our
current model can be easily extended to encompass such a prior, in a modular way.
The benefits of such a combination for the tracking task are yet to be explored.

7.3 The Challenge Ahead

We have presented a framework for learning complex shape models, which consists of
several algorithms for performing key shape modeling tasks with minimal human interven-
tion. We hope that our methods demonstrate the utility and applicability of probabilistic
graphical models for addressing key problems related to reasoning about object shape. We
are looking forward to applying our methods for other different object and object class
modeling problems.

In the future, we expect an explosion in the amount of available range scan data, and
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an integration of range data with camera input, which will bring about an expanded set of
learning problems and applications. We hope that continued research, of which the meth-
ods presented in this thesis are but a start, will help tackle these evermore sophisticated
learning problems on the way to creating autonomous robotic agents, and compelling vir-
tual realities.
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