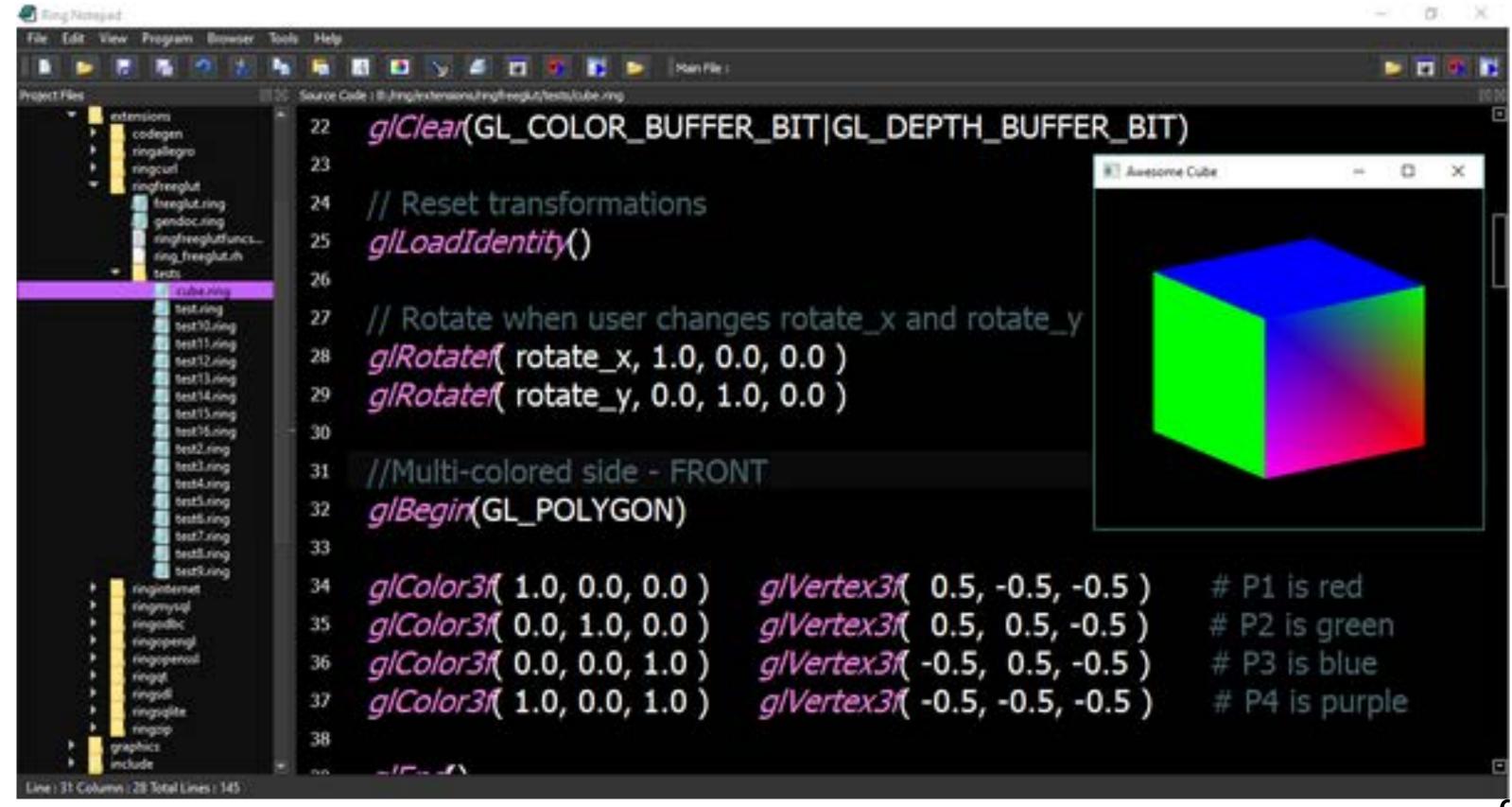
Transformations

Computer Graphics CMU 15-462/15-662

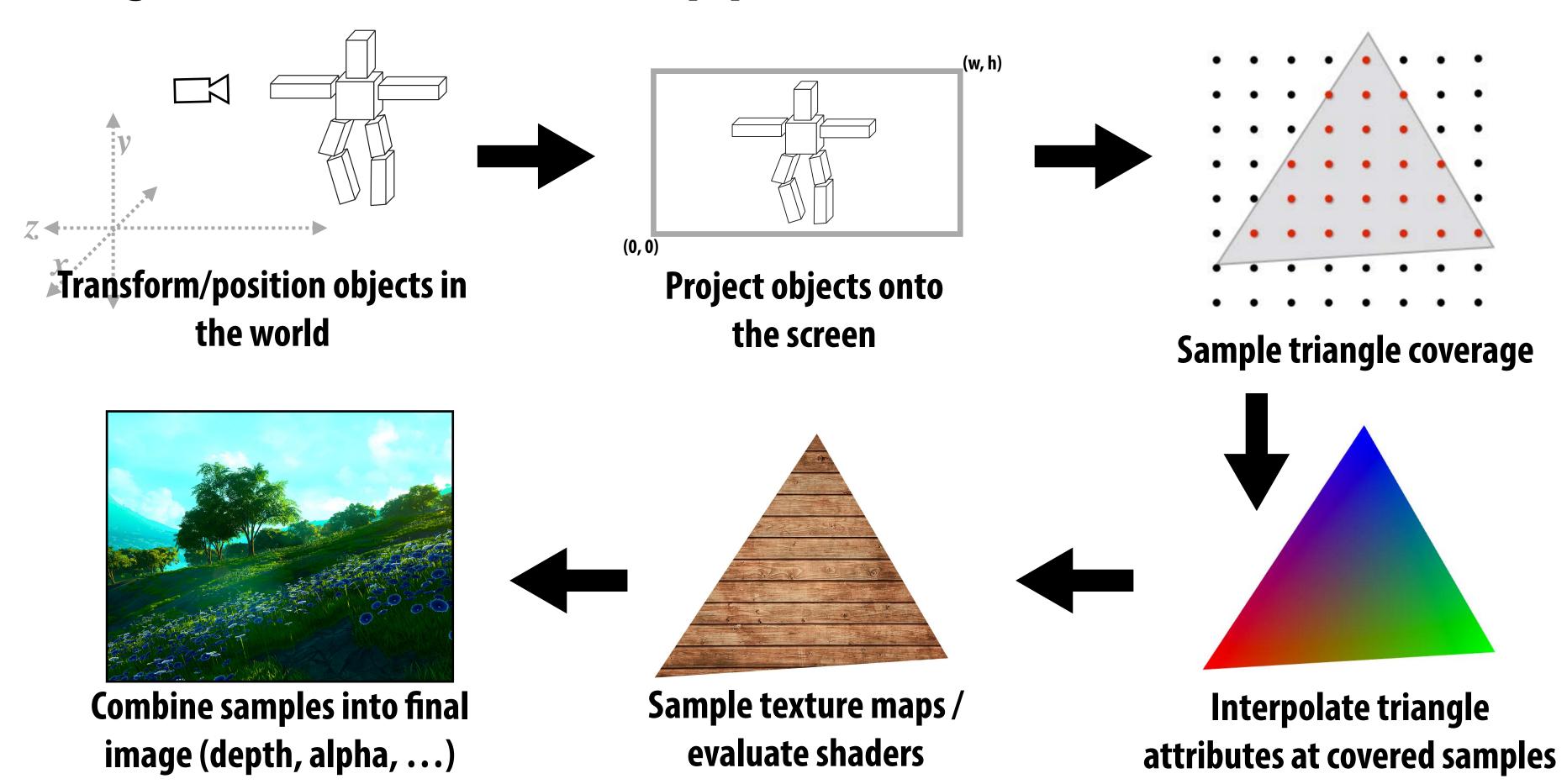
Recitation Monday (2/10): Graphics APIs

- Review some basic OpenGL needed for A1
- Thursday from 5pm 6:30pm
- **■** GHC 4215

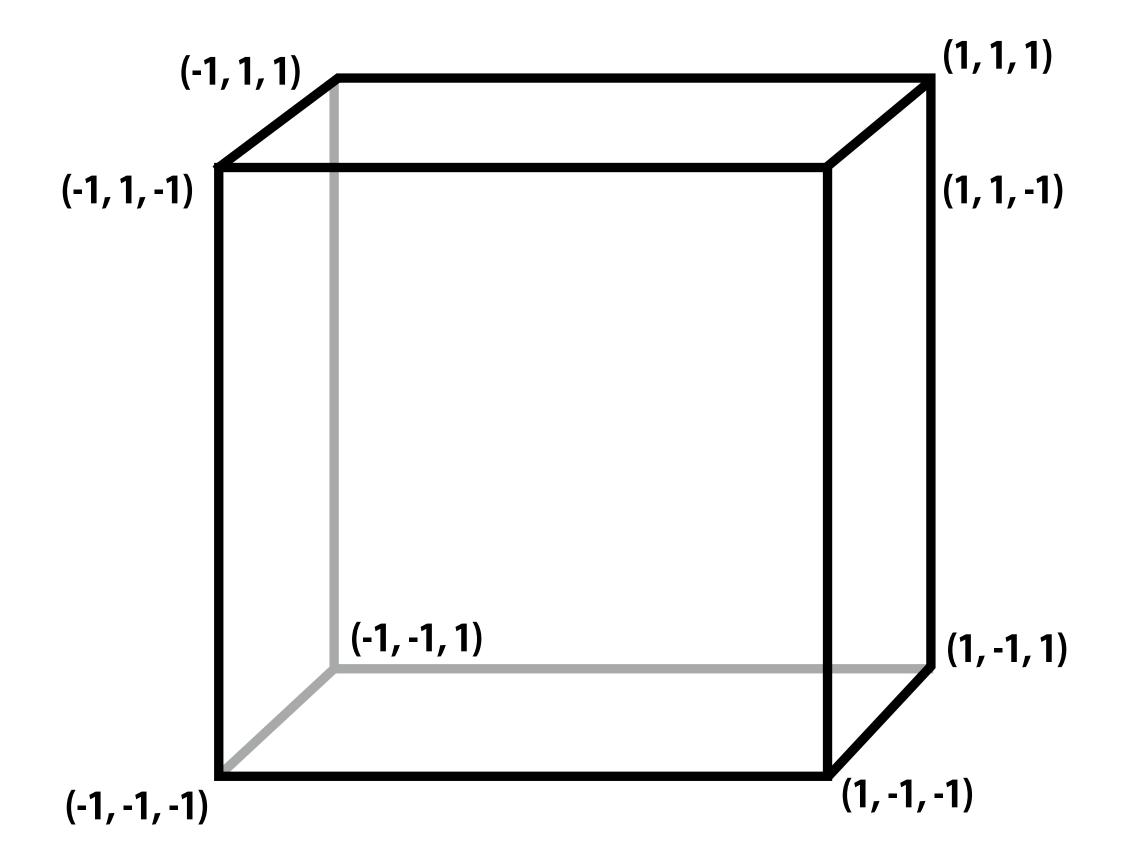


The Rasterization Pipeline

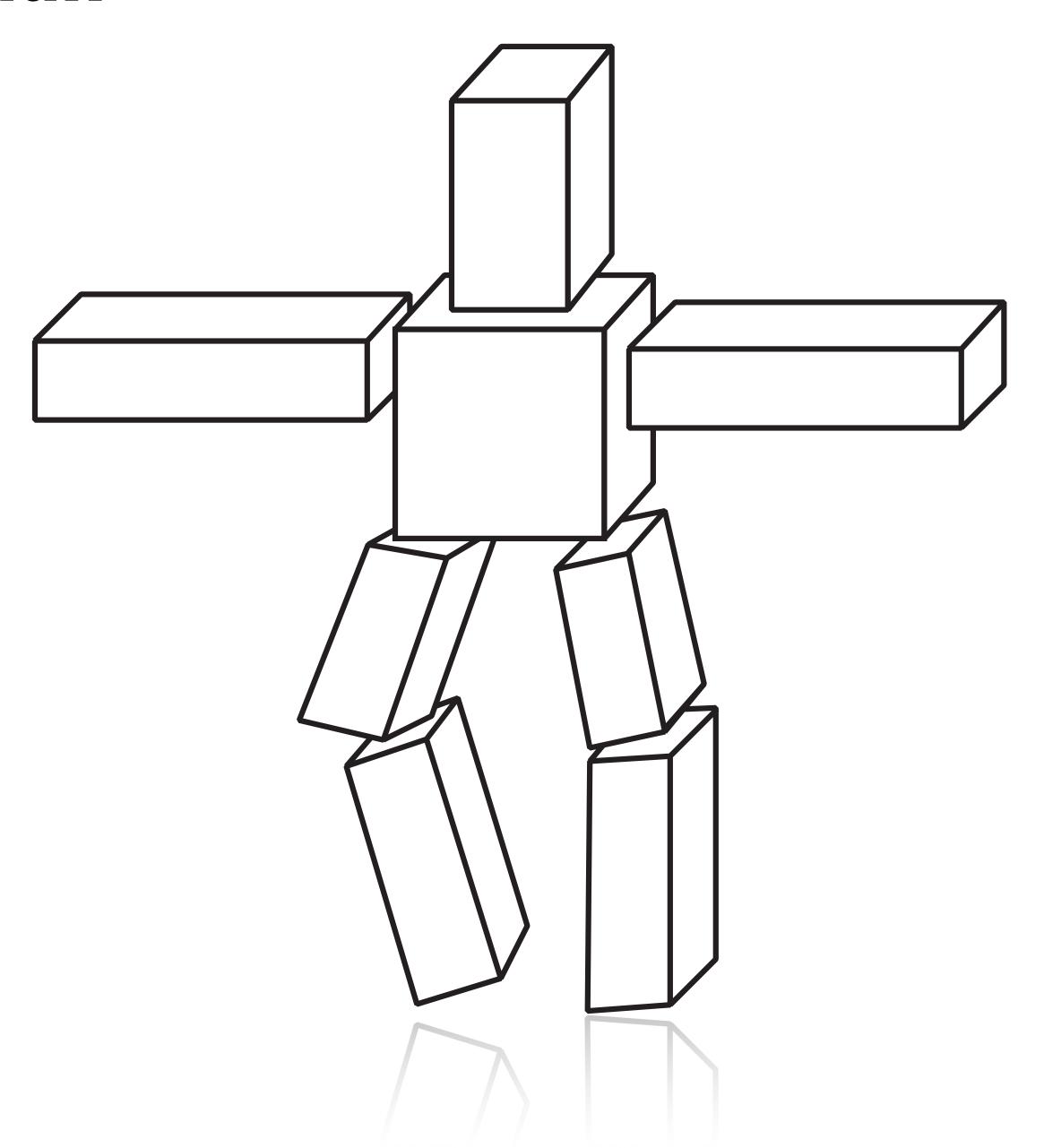
Rough sketch of rasterization pipeline:



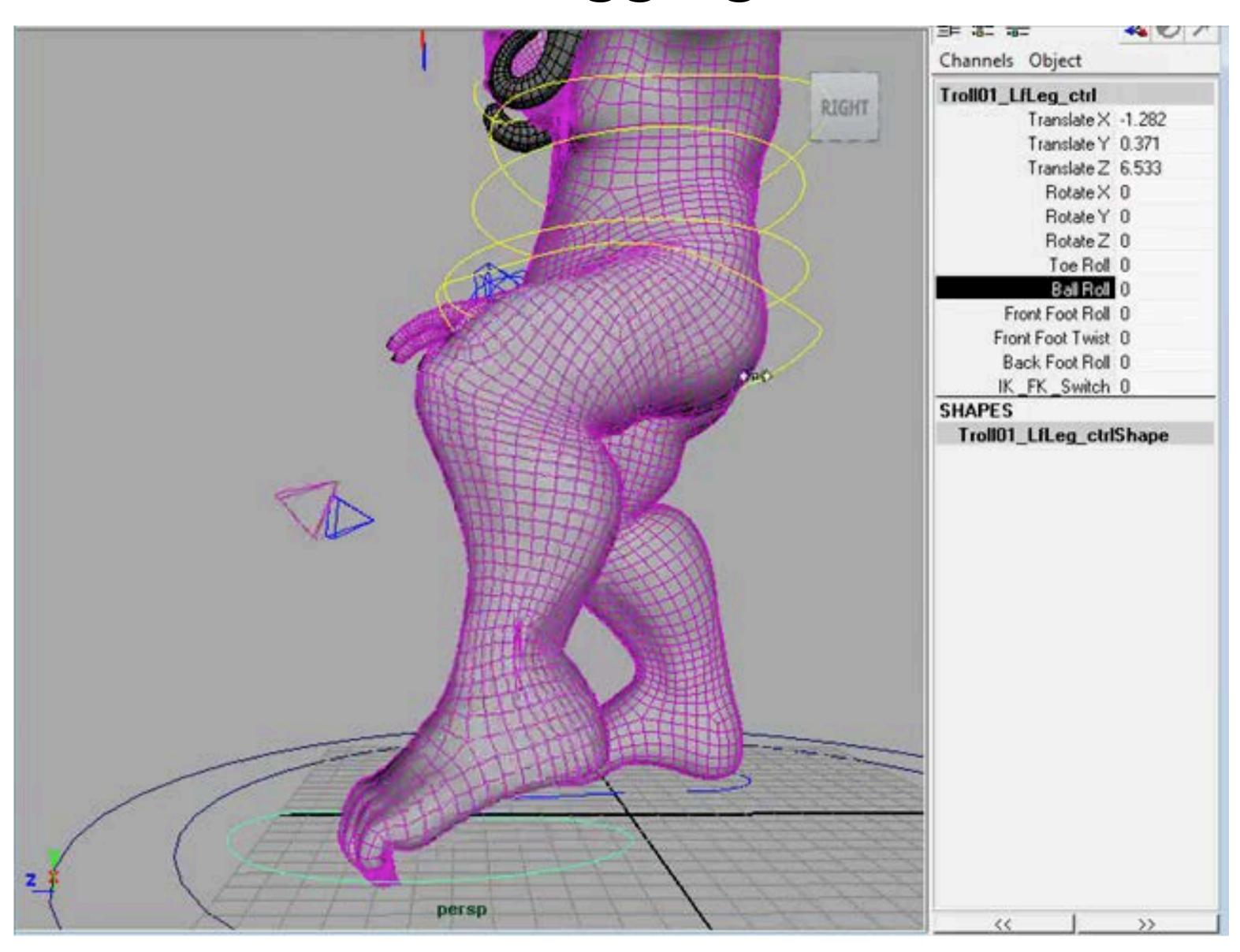
Cube



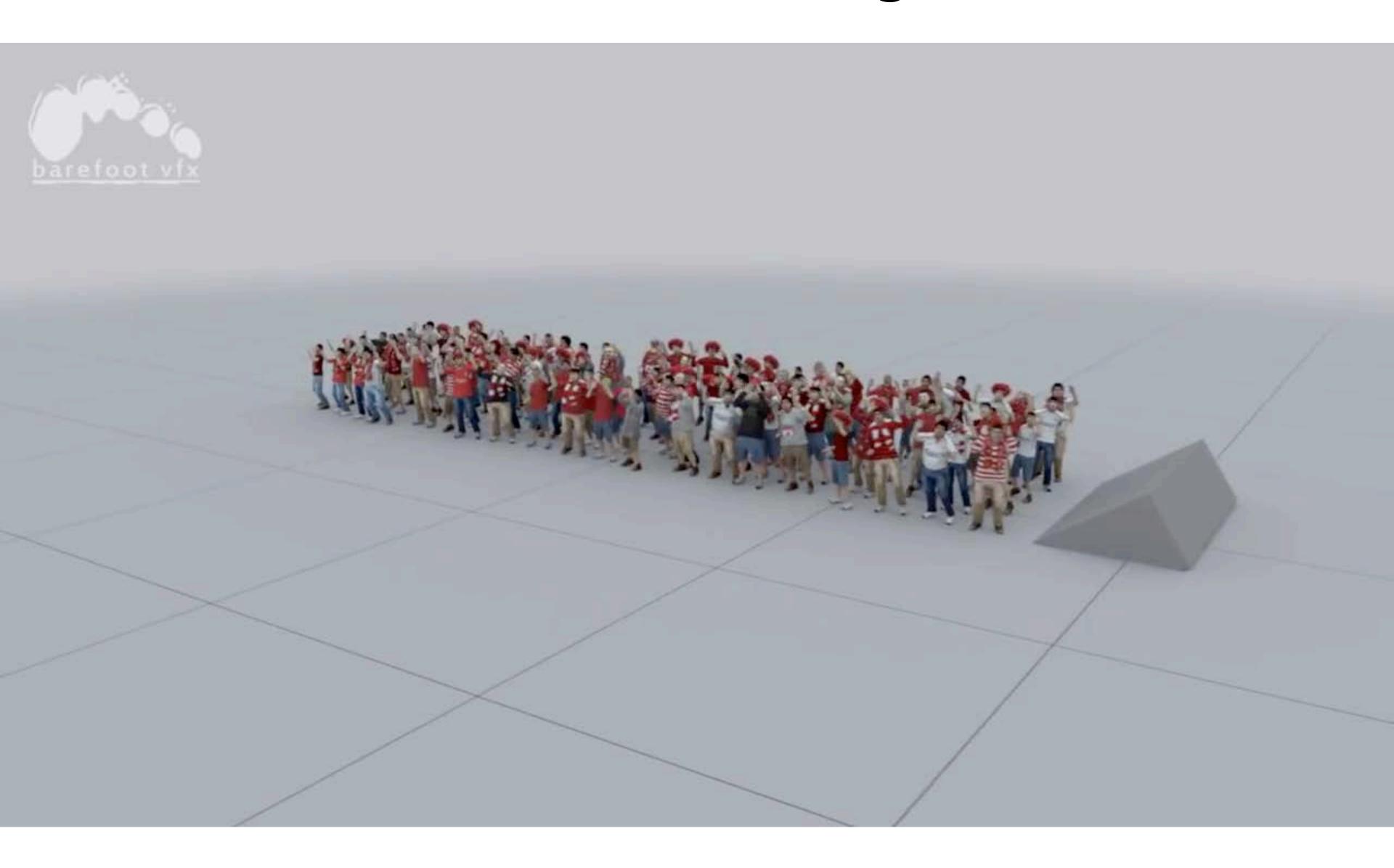
Cube man



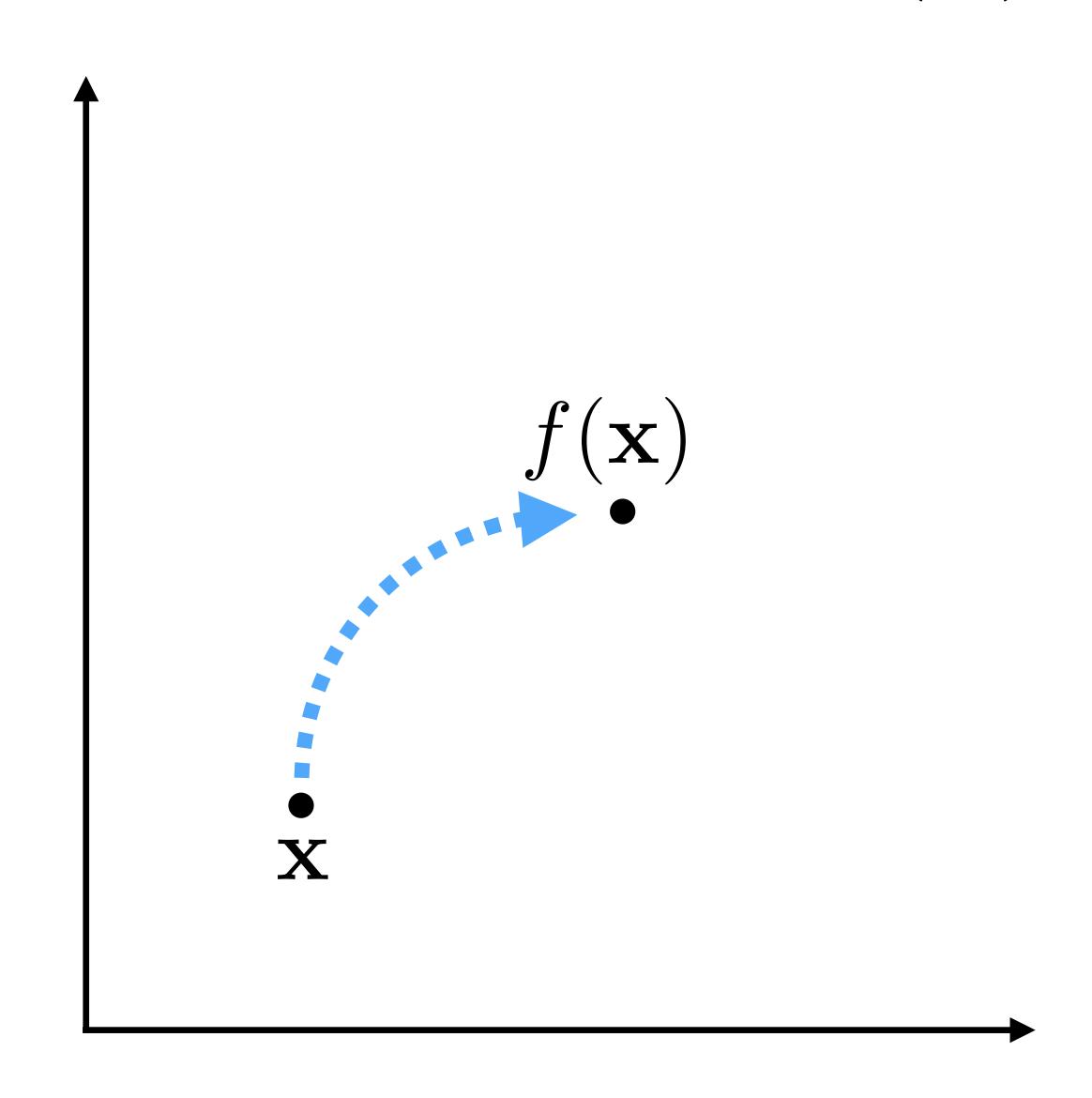
Transformations in Rigging



Transformations in Instancing



Basic idea: f transforms \mathbf{x} to $f(\mathbf{x})$



What can we do with *linear* transformations?

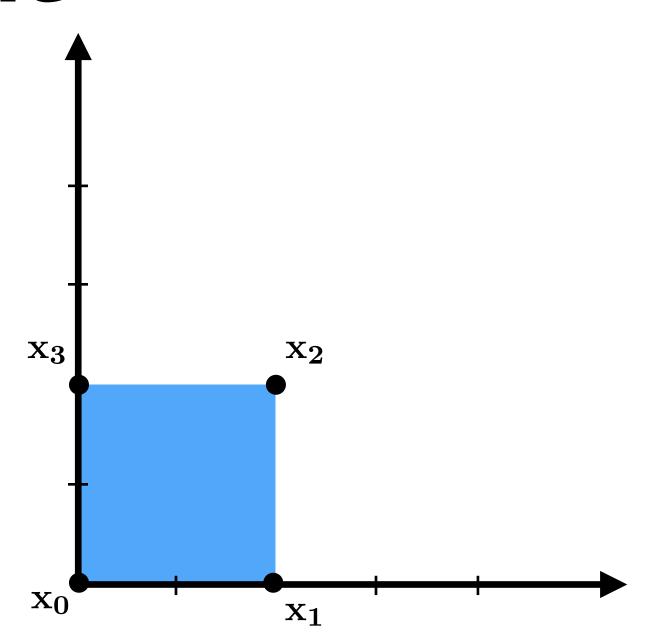
(What did *linear* mean?)

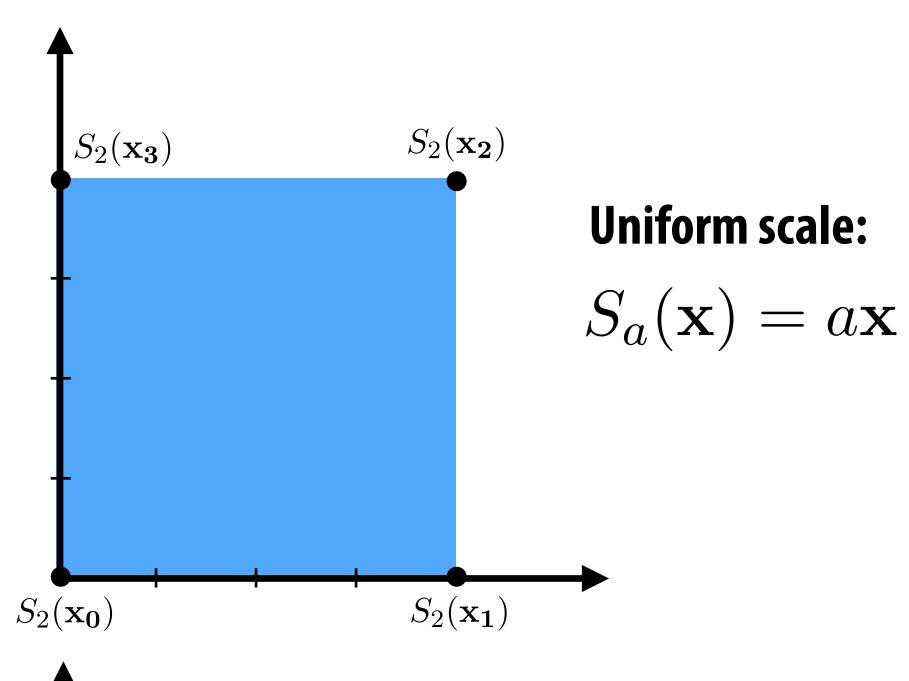
$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$

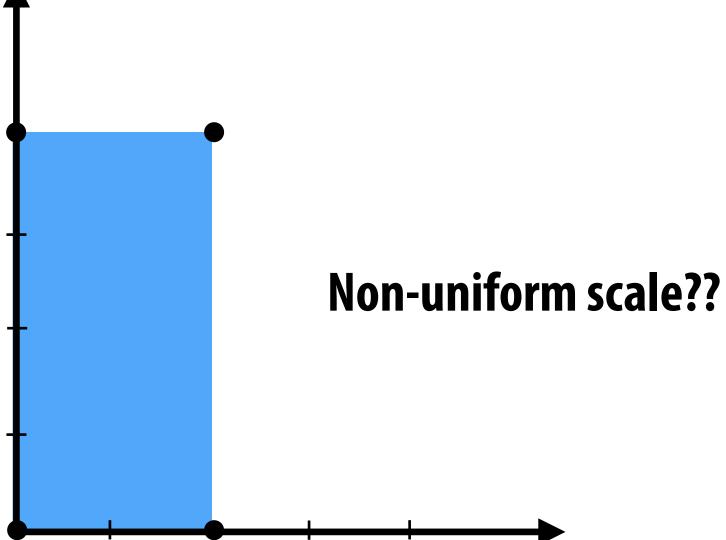
$$f(a\mathbf{x}) = af(\mathbf{x})$$

- Cheap to compute
- Composition of linear transformations is linear
 - Leads to uniform representation of transformations
 - E.g., in graphics card (GPU) or graphics APIs

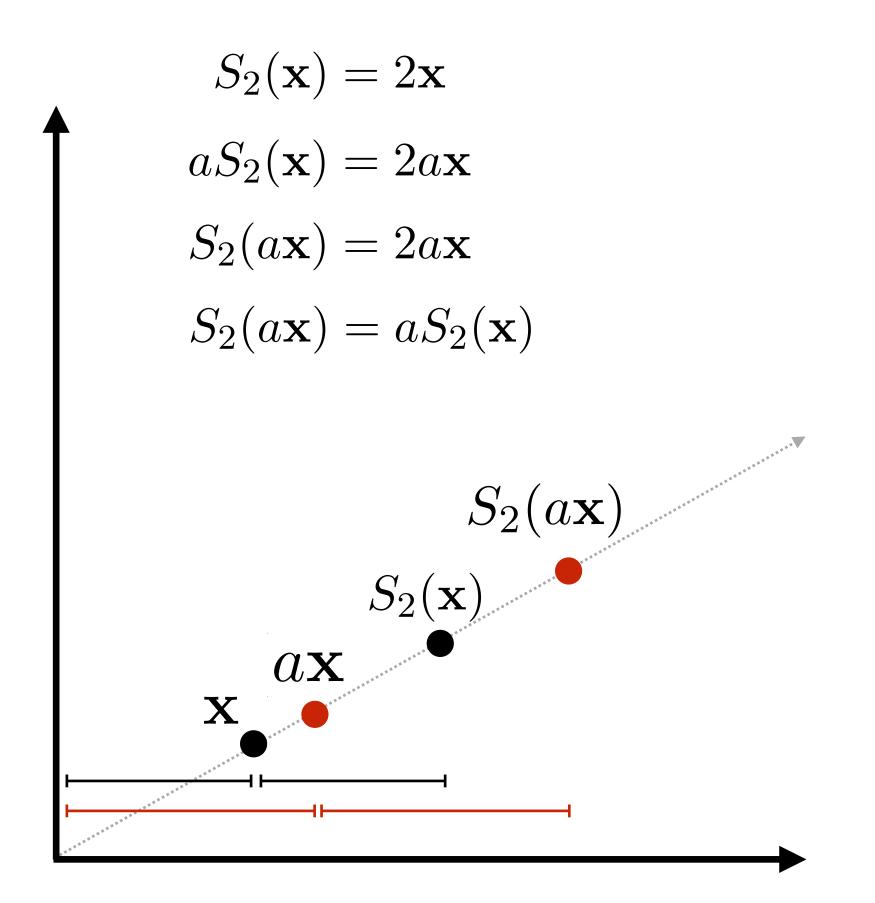
Scale

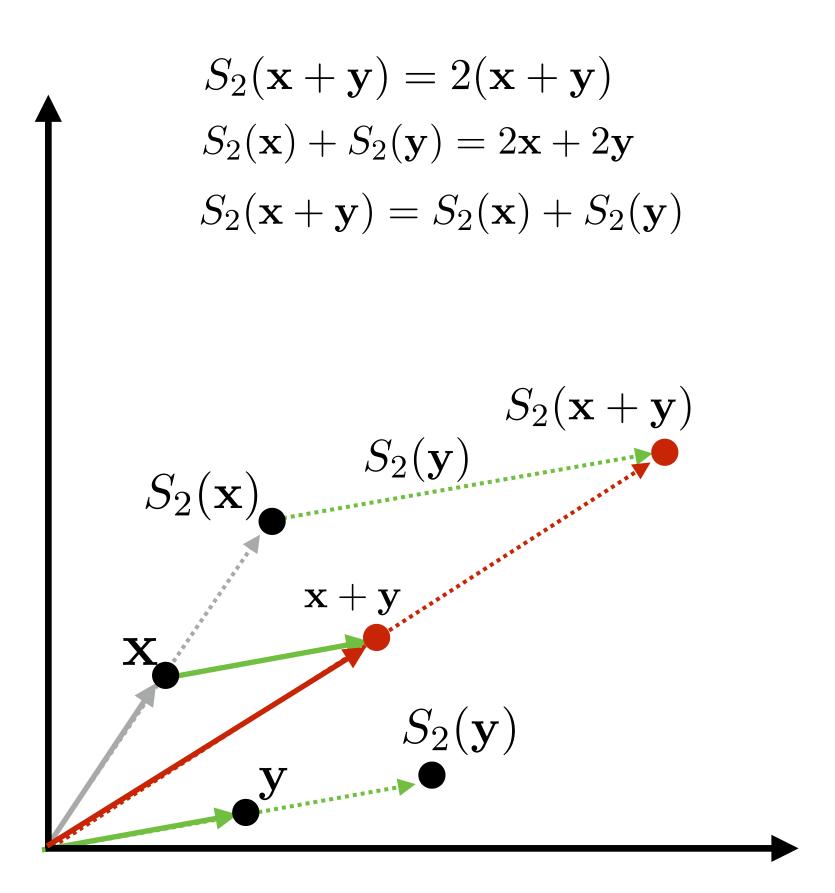






Is scale a linear transform?



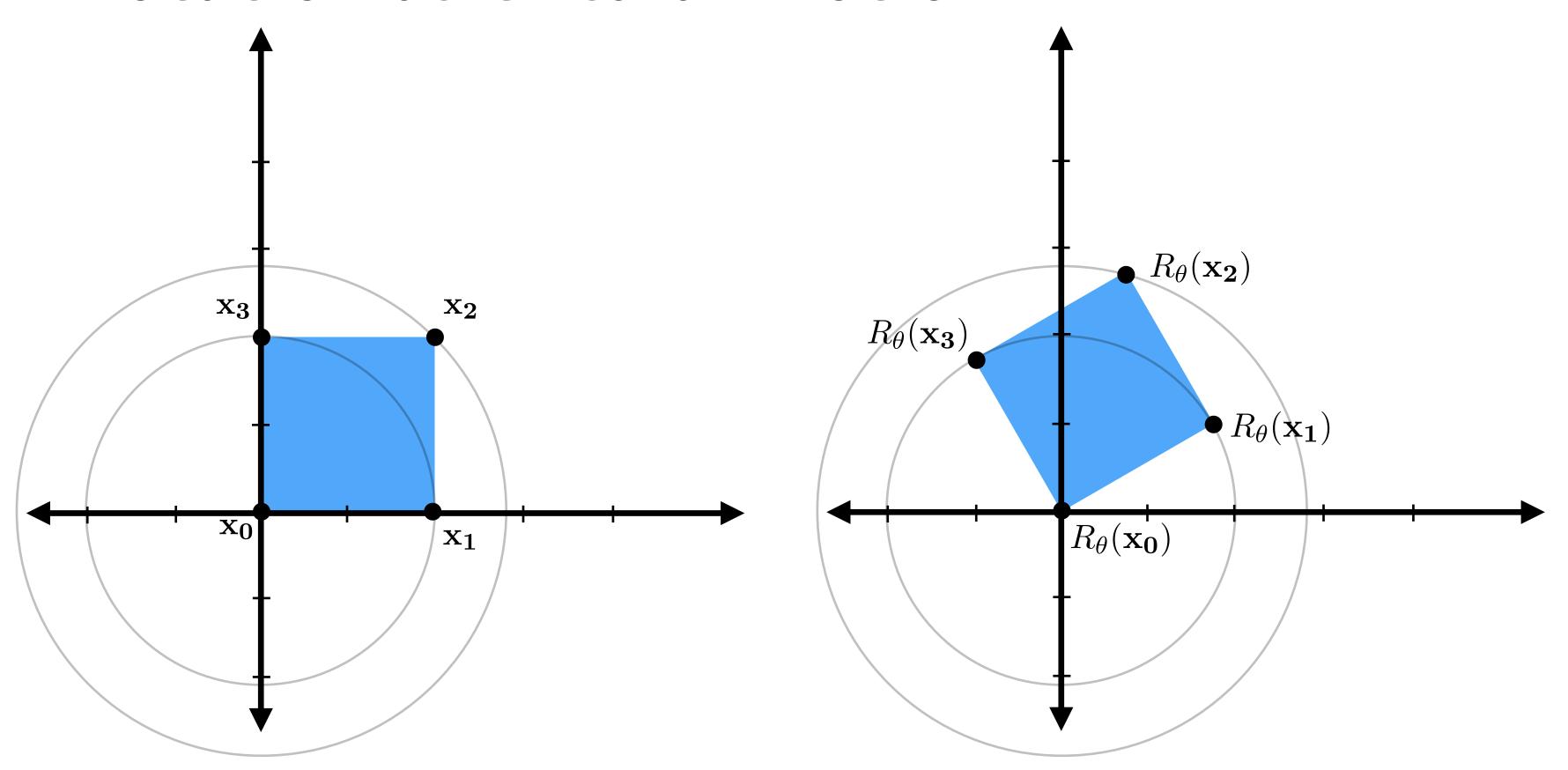


Yes!

Rotation $\mathbf{e} R_{\theta}(\mathbf{x_2})$ $\mathbf{x_3}$ $\mathbf{x_2}$ $R_{\theta}(\mathbf{x_3})$ $ullet R_{ heta}(\mathbf{x_1})$ $\mathbf{x_0}$ $R_{\theta}(\mathbf{x_0})$ \mathbf{x}_1

 $R_{ heta}$ = rotate counter-clockwise by heta

Rotation as Circular Motion

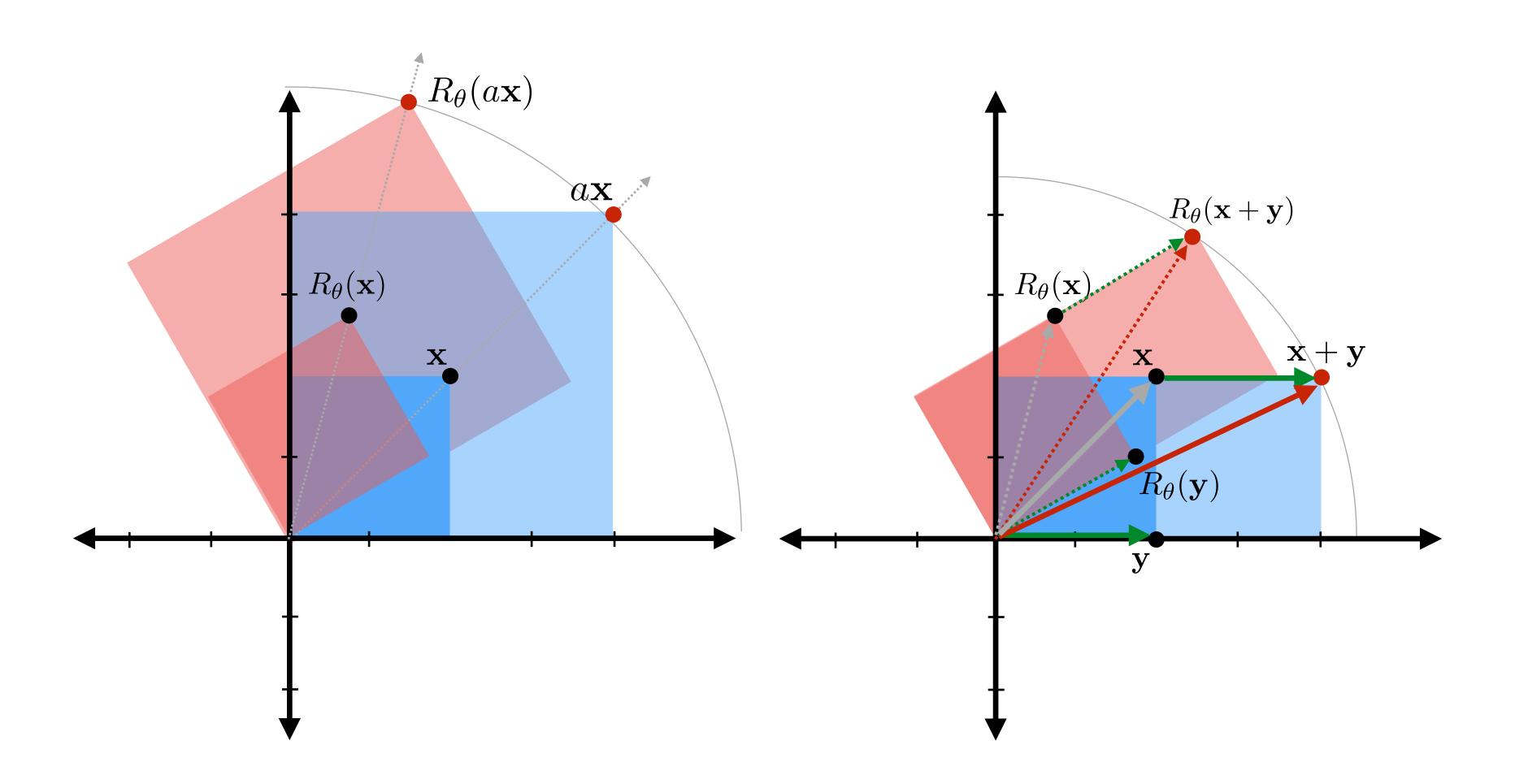


 $R_{ heta}$ = rotate counter-clockwise by heta

As angle changes, points move along circular trajectories.

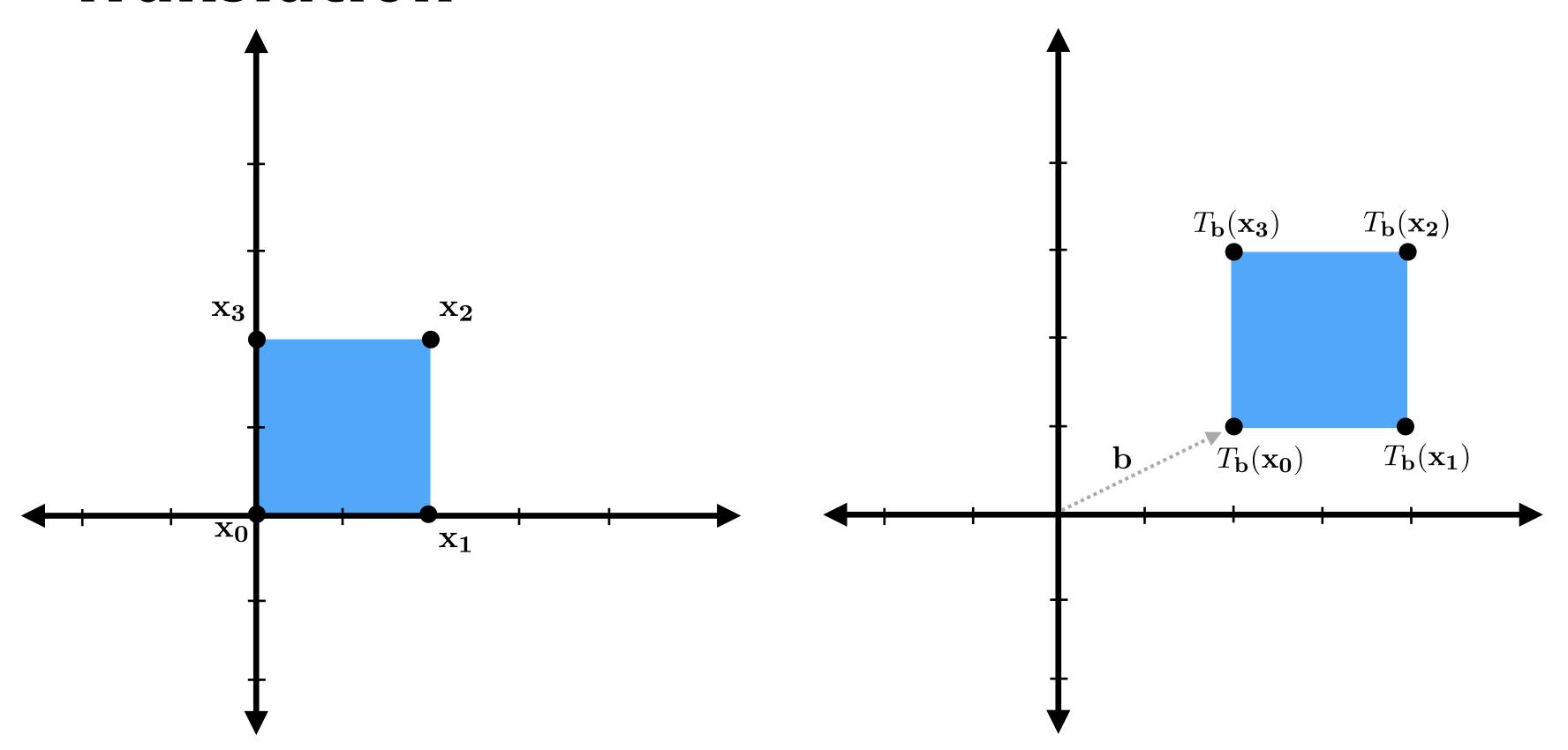
Hence, rotations preserve length of vectors: $|R_{ heta}(\mathbf{x})| = |\mathbf{x}|$

Is rotation linear?



Yes!

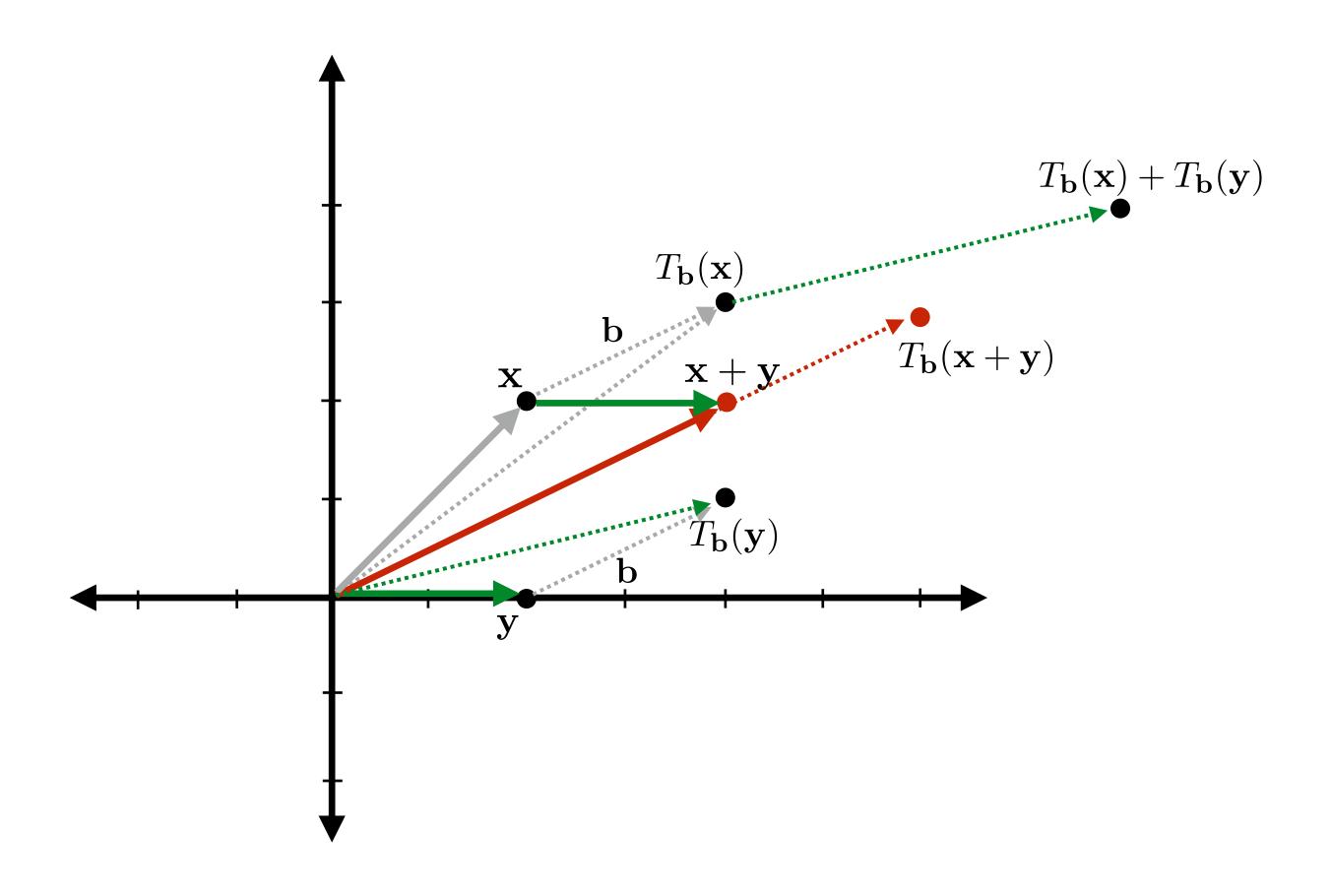
Translation



 $T_{\mathbf{b}}$ — "translate by b"

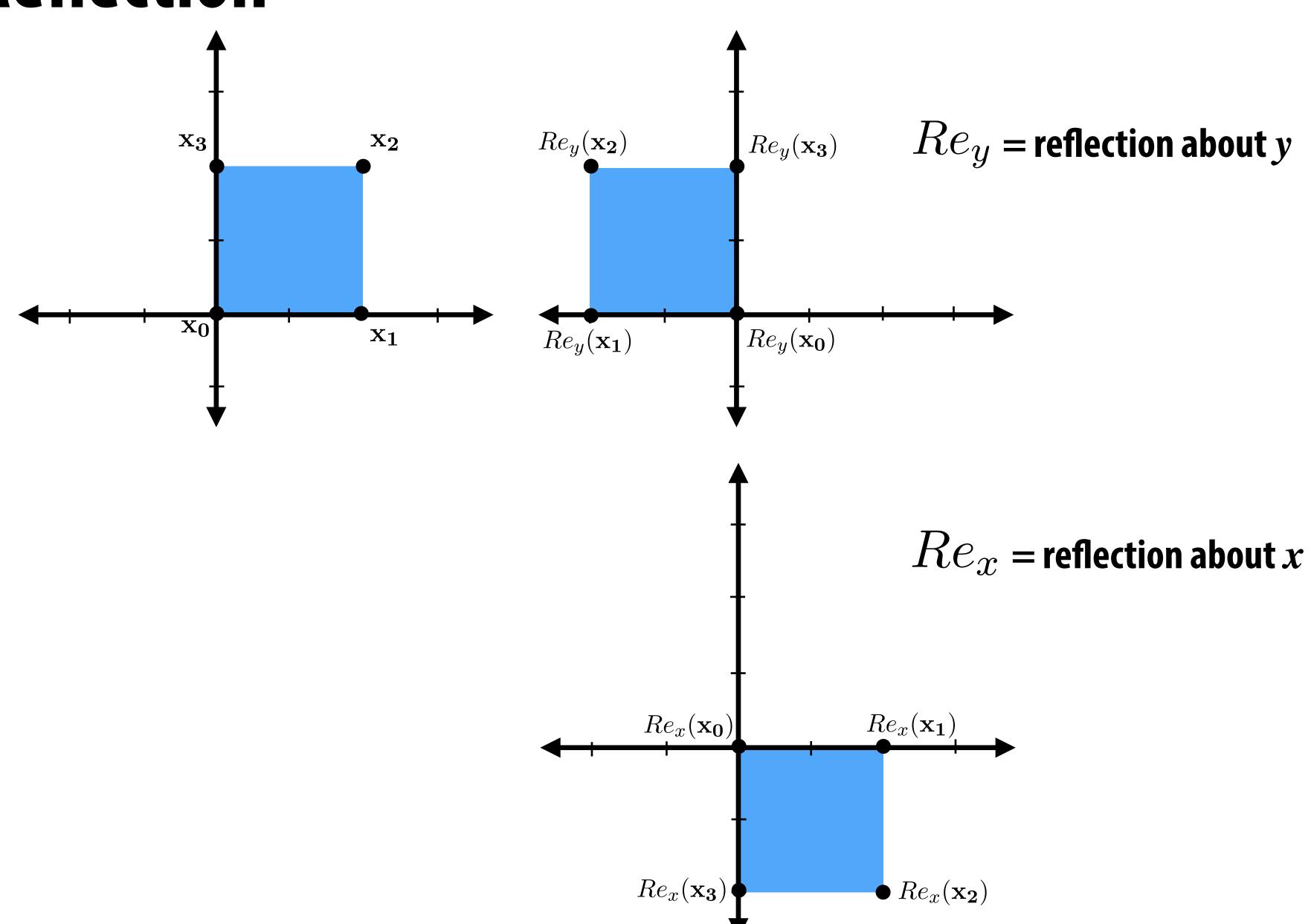
$$T_{\mathbf{b}}(\mathbf{x}) = \mathbf{x} + \mathbf{b}$$

Is translation linear?

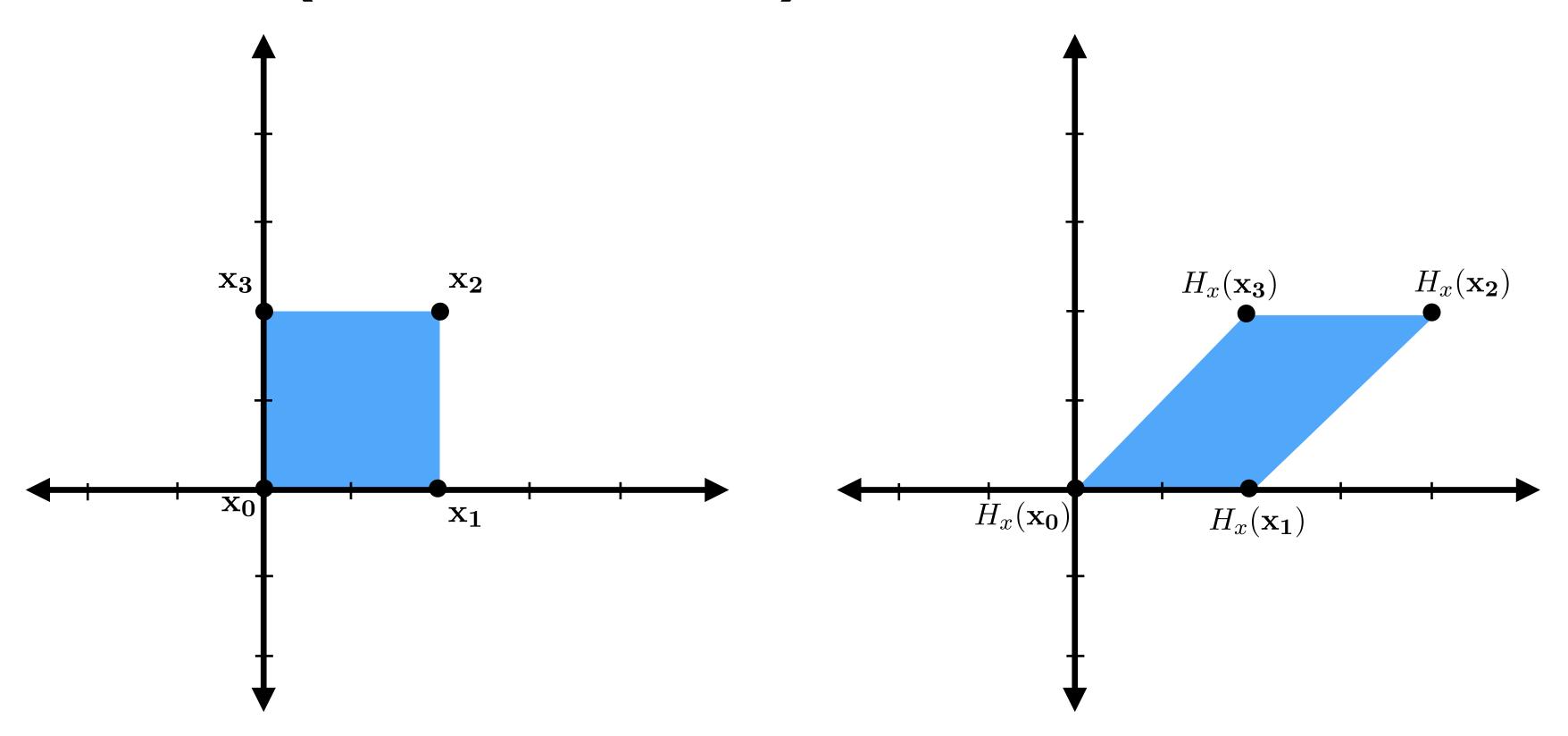


No. Translation is affine.

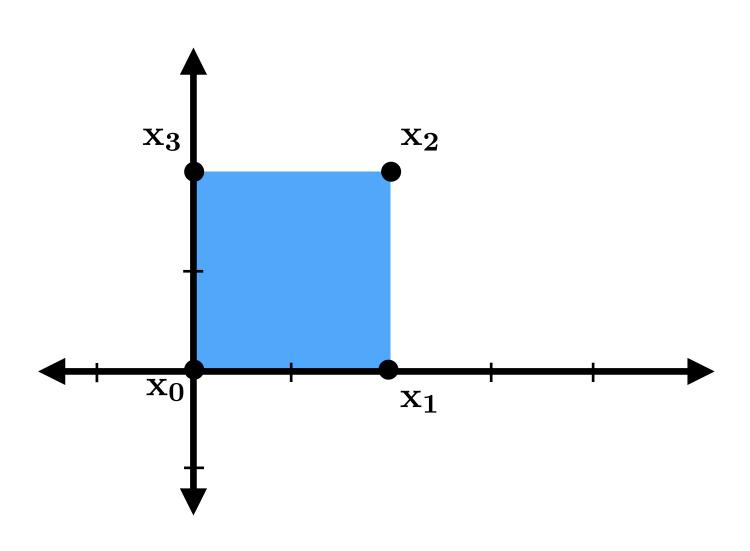
Reflection



Shear (in x direction)



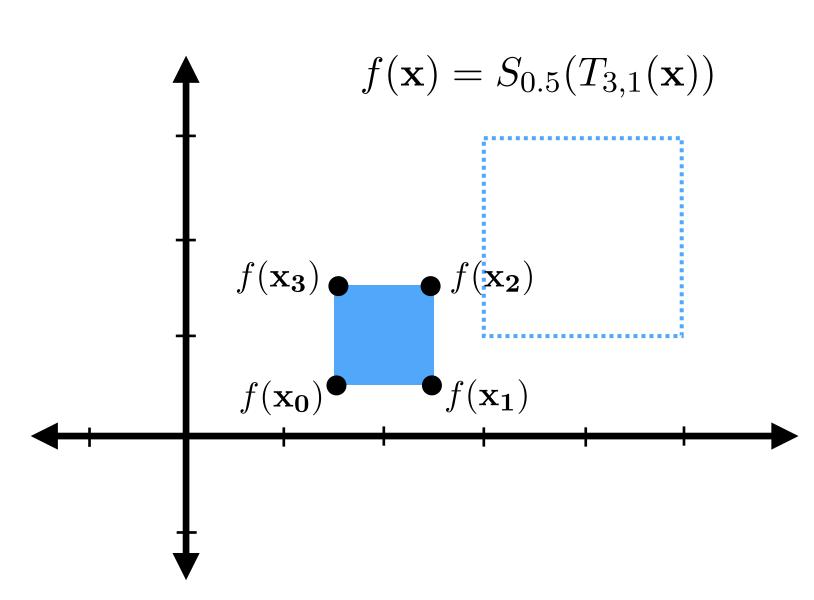
Compose basic transformations to construct more complicated ones



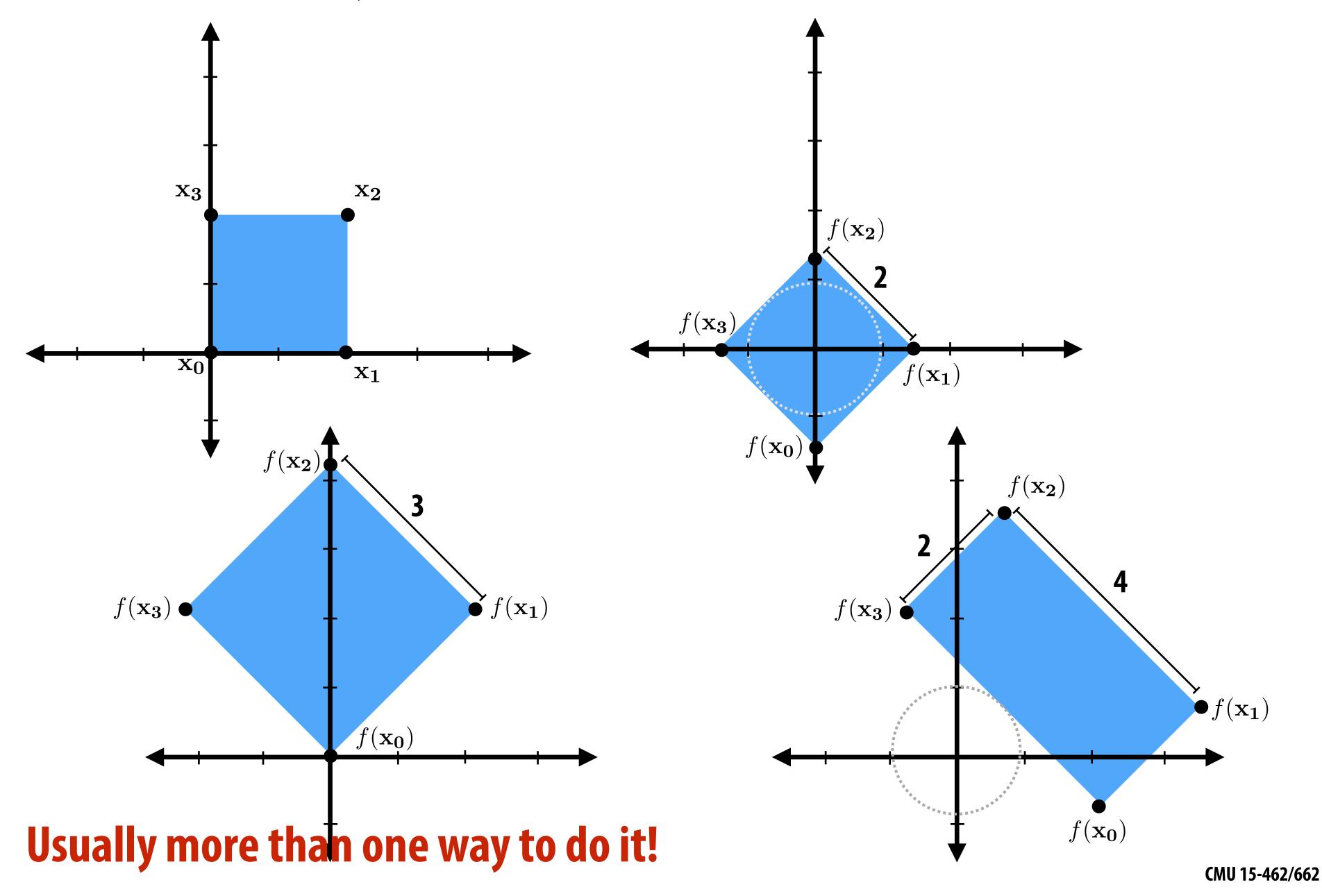
 $f(\mathbf{x}) = T_{3,1}(S_{0.5}(\mathbf{x}))$ $f(\mathbf{x_3}) \qquad f(\mathbf{x_2})$ $f(\mathbf{x_0}) \qquad f(\mathbf{x_1})$

Note: order of composition matters

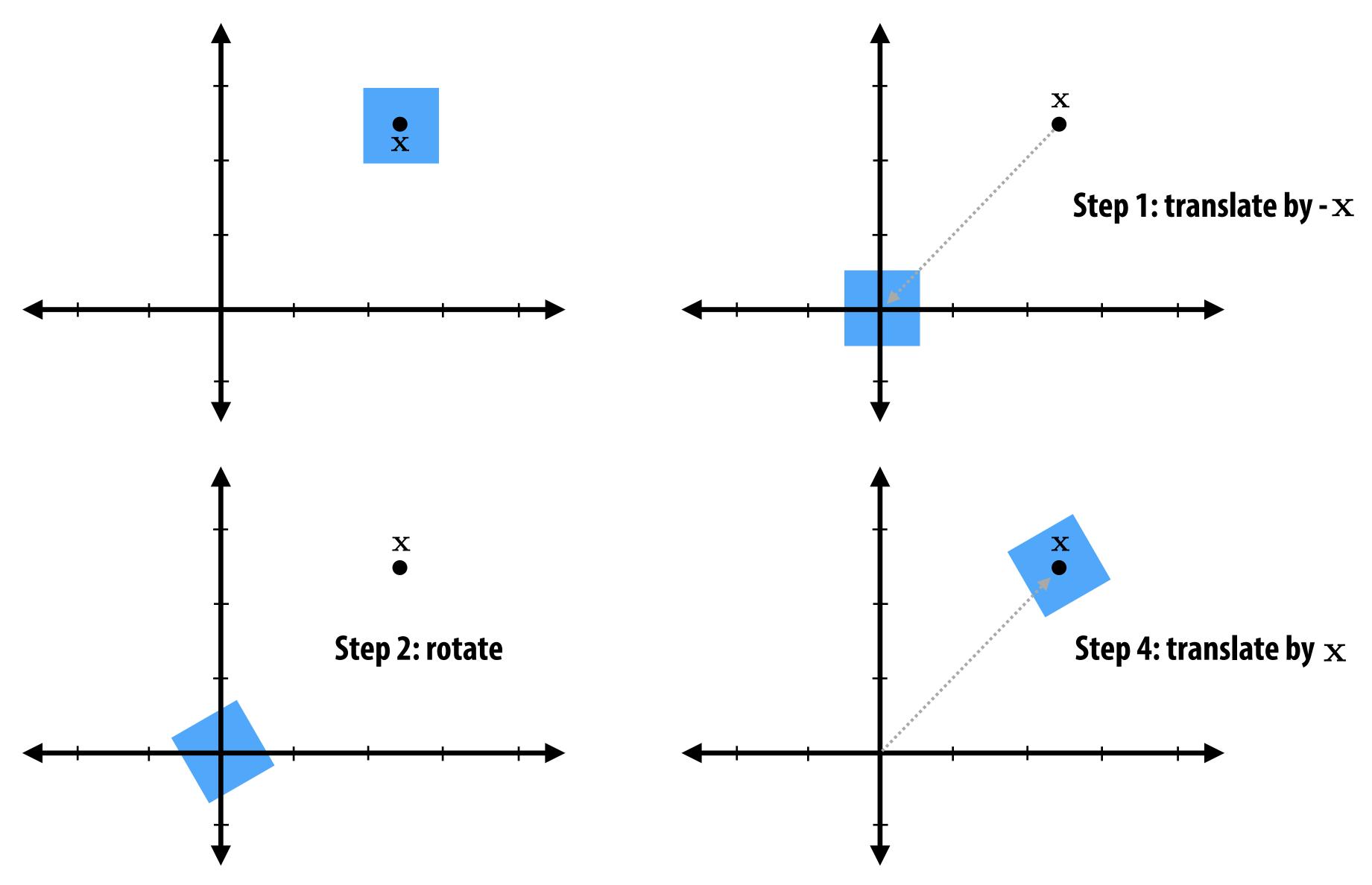
Top-right: scale, then translate Bottom-right: translate, then scale



How would you perform these transformations?



Common task: rotate about a point x



Summary of basic transformations

Linear:

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$
$$f(a\mathbf{x}) = af(\mathbf{x})$$

Scale

Rotation

Reflection

Shear

Not linear:

Translation

Affine:

Composition of linear transform + translation (all examples on previous two slides)

$$f(\mathbf{x}) = g(\mathbf{x}) + \mathbf{b}$$

Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)

Preserve distance between points (preserves length)

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$$

Translation

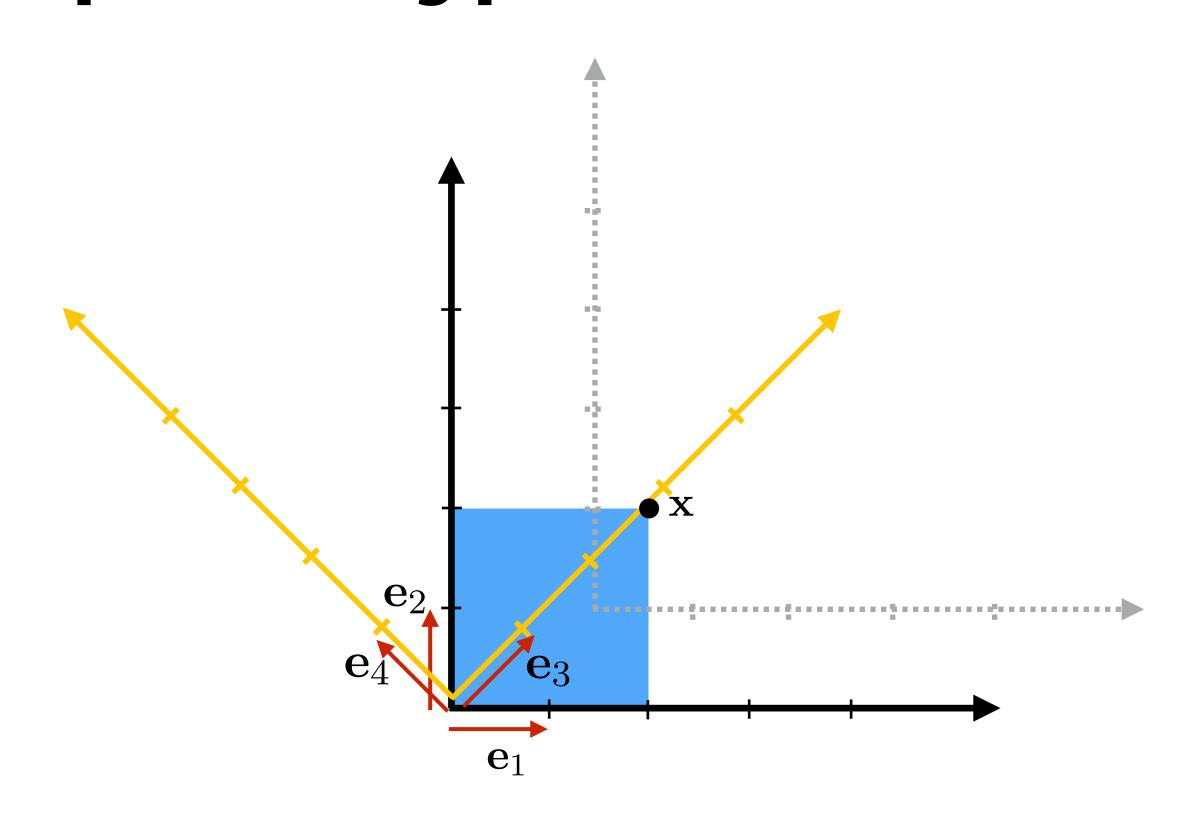
Rotation

Reflection

"Rigid body" transformations are distance-preserving motions that also preserve *orientation* (i.e., does not include reflection)

Representing Transformations in Coordinates

Review: representing points in a coordinate space



Consider coordinate space defined by orthogonal vectors e_1 and e_2

$$\mathbf{x} = 2\mathbf{e}_1 + 2\mathbf{e}_2$$

$$\mathbf{x} = \begin{bmatrix} 2 & 2 \end{bmatrix}$$

 $\mathbf{x} = \begin{bmatrix} 0.5 & 1 \end{bmatrix}$ in coordinate space defined by \mathbf{e}_1 and \mathbf{e}_2 , with origin at (1.5, 1)

 ${f x}=\begin{bmatrix}\sqrt{8}&0\end{bmatrix}$ in coordinate space defined by ${f e}_3$ and ${f e}_4$, with origin at (0, 0)

Review: 2D matrix multiplication

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} =$$

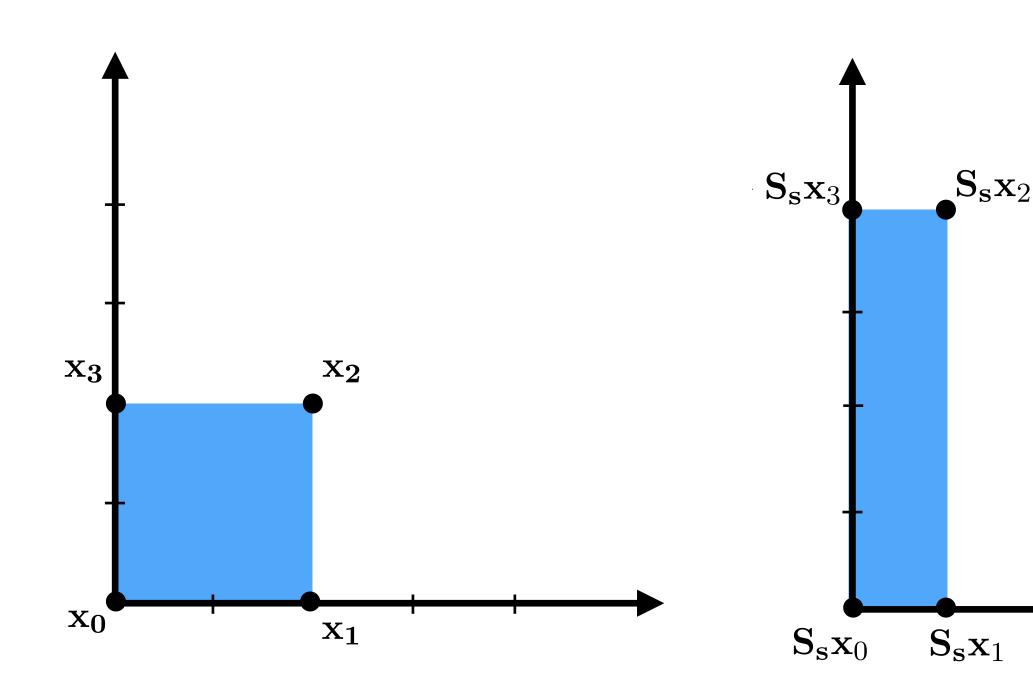
$$x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix} =$$

$$\begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

- Matrix multiplication is linear combination of columns
- Encodes a linear map!

Linear transformations in 2D can be represented as 2x2 matrices

Consider non-uniform scale: $\mathbf{S_s} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix}$



Scaling amounts in each direction:

$$\mathbf{s} = \begin{bmatrix} 0.5 & 2 \end{bmatrix}^T$$

Matrix representing scale transform:

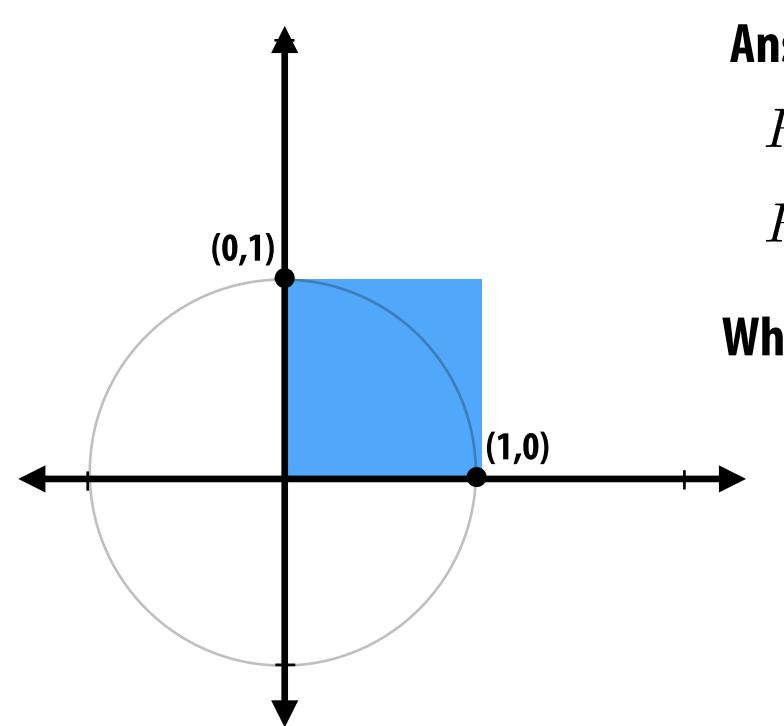
$$\mathbf{S_s} = \begin{bmatrix} 0.5 & 0 \\ 0 & 2 \end{bmatrix}$$

Rotation matrix (2D)

Question: what happens to (1, 0) and (0,1) after rotation by θ ?

Reminder: rotation moves points along circular trajectories.

(Recall that $\cos heta$ and $\sin heta$ are the coordinates of a point on the unit circle.)



Answer:

$$R_{\theta}(1,0) = (\cos(\theta), \sin(\theta))$$

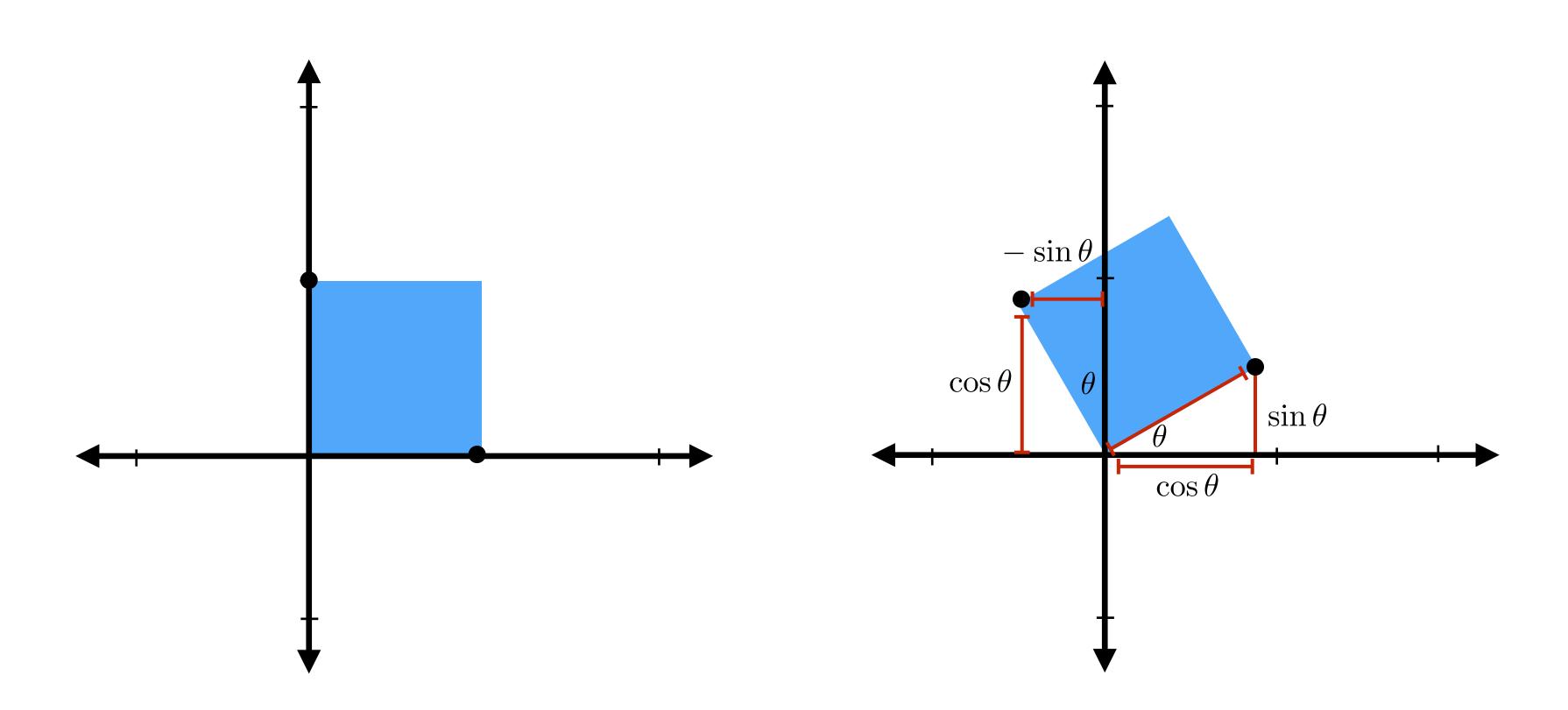
$$R_{\theta}(0,1) = (\cos(\theta + \pi/2), \sin(\theta + \pi/2))$$

Which means the matrix must look like:

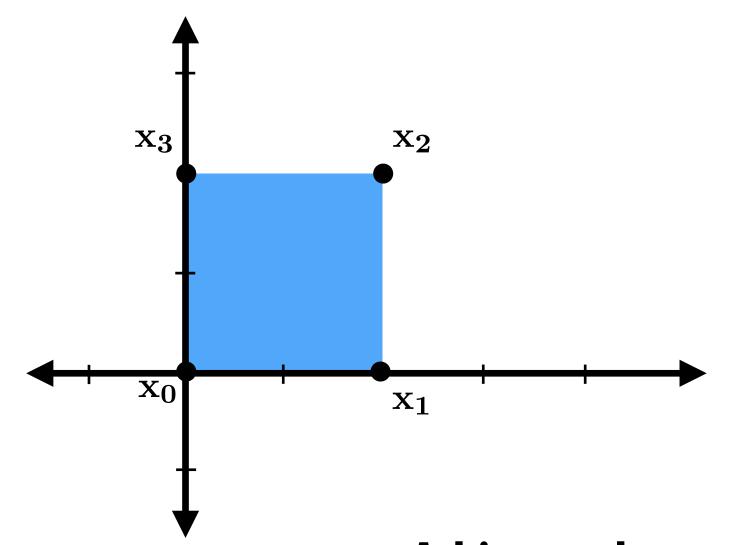
$$R_{\theta} = \begin{bmatrix} \cos(\theta) & \cos(\theta + \pi/2) \\ \sin(\theta) & \sin(\theta + \pi/2) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Rotation matrix (2D): another way...

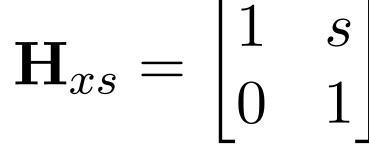
$$\mathbf{R}_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$



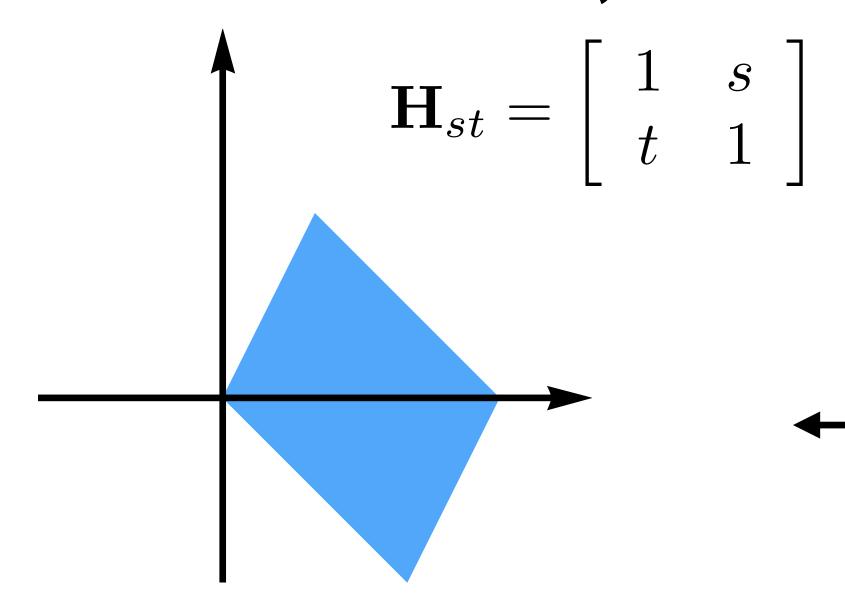
Shear

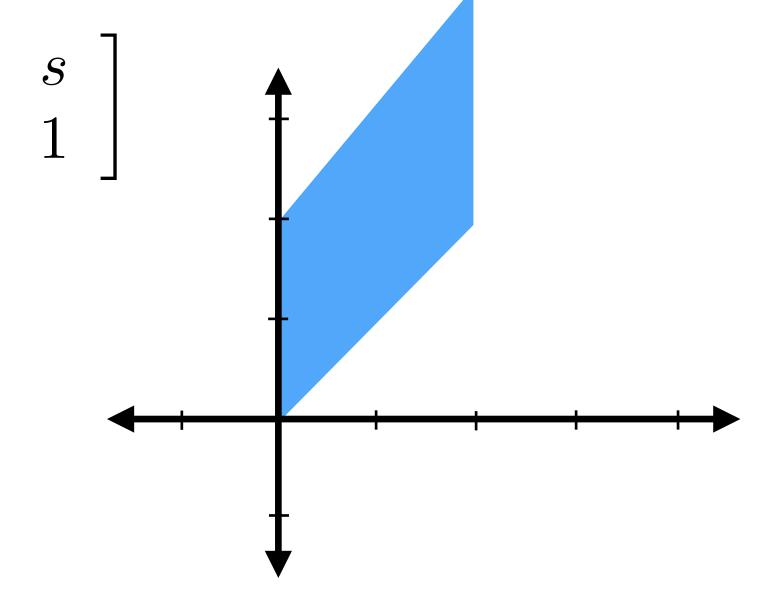


Shear in x:



Arbitrary shear:

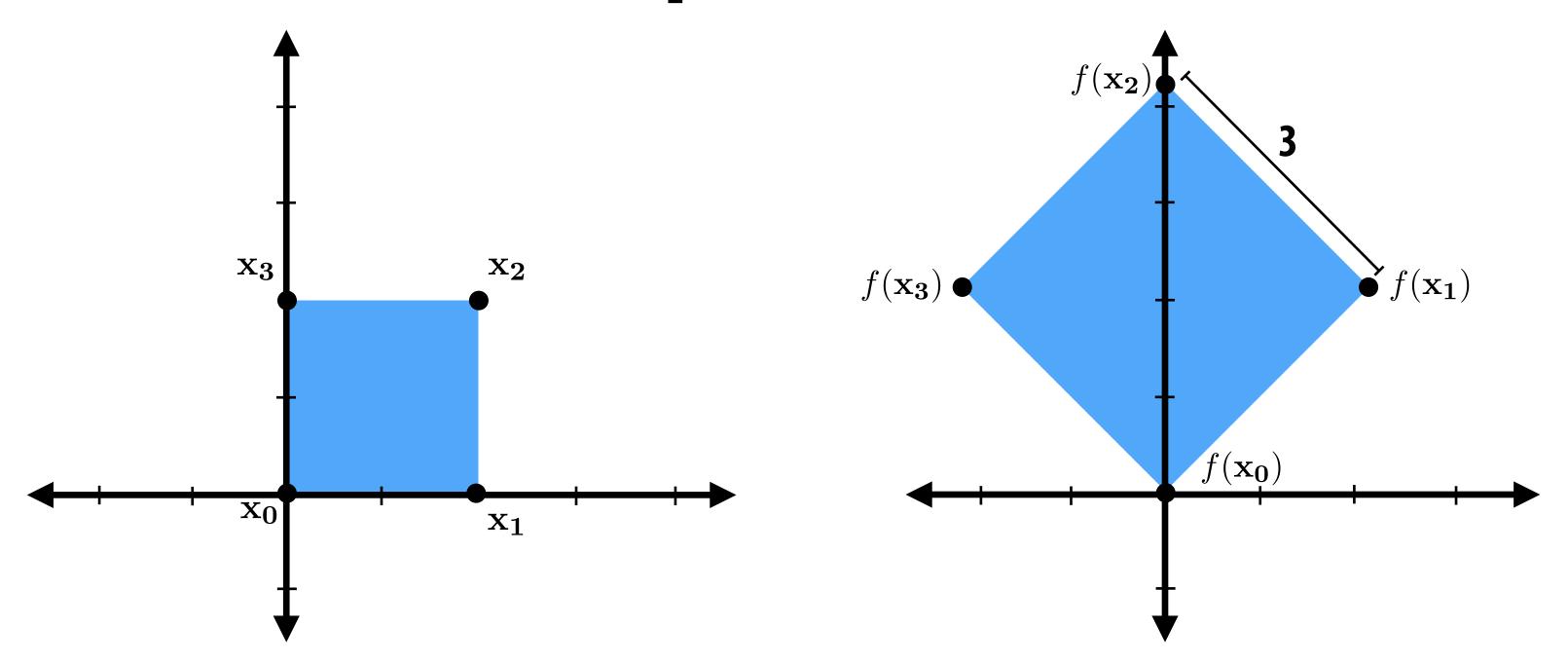




Shear in y:

$$\mathbf{H}_{ys} = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix}$$

How do we compose linear transformations?



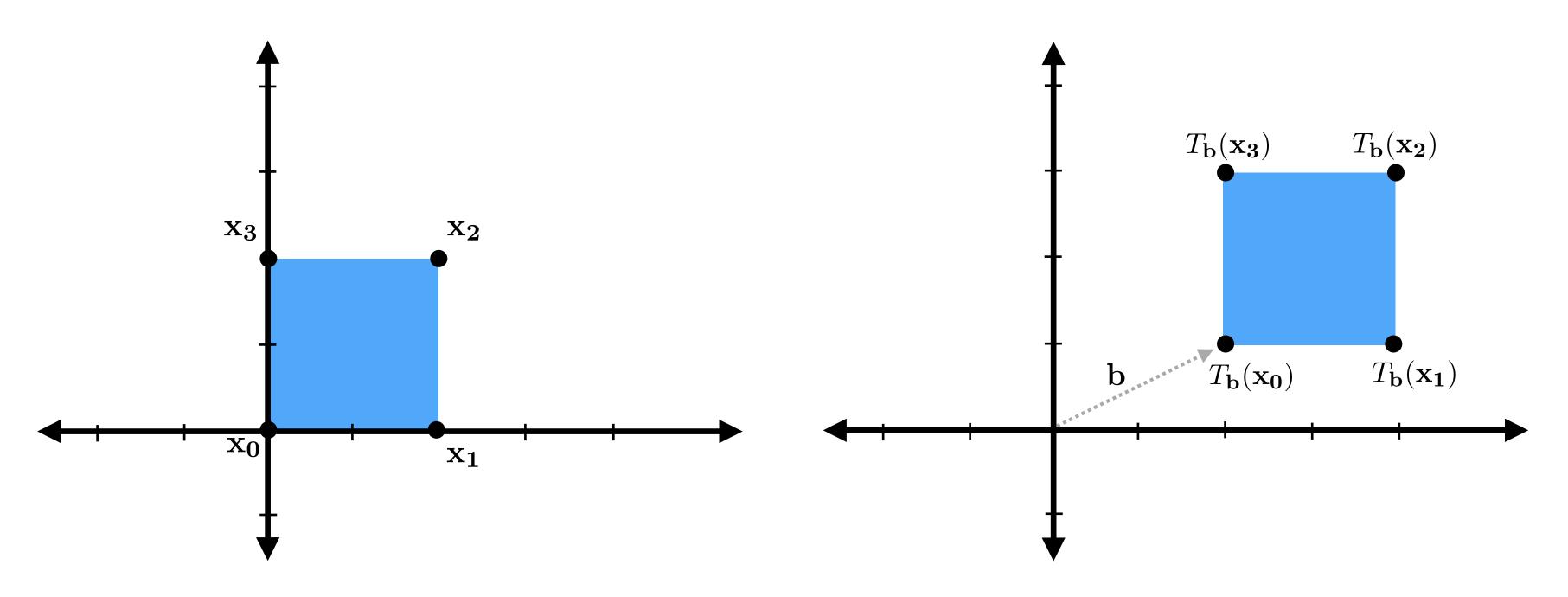
Compose linear transformations via matrix multiplication. This example: uniform scale, followed by rotation

$$f(\mathbf{x}) = R_{\pi/4} \mathbf{S}_{[1.5, 1.5]} \mathbf{x}$$

Enables simple, efficient implementation: reduce complex chain of transformations to a single matrix multiplication.

How do we deal with translation? (Not linear)

$$T_{\mathbf{b}}(\mathbf{x}) = \mathbf{x} + \mathbf{b}$$



Recall: translation is not a linear transform

- → Output coefficients are not a linear combination of input coefficients
- → Translation operation cannot be represented by a 2x2 matrix

$$\mathbf{x}_{\mathbf{out}x} = \mathbf{x}_x + \mathbf{b}_x$$

$$\mathbf{x_{out}}_y = \mathbf{x}_y + \mathbf{b}_y$$

Translation math

2D homogeneous coordinates (2D-H)

Interesting idea: represent 2D points with THREE values ("homogeneous coordinates")

So the point
$$(x,y)$$
 is represented as the 3-vector: $\begin{bmatrix} x & y & 1 \end{bmatrix}^T$

And transformations are represented a 3x3 matrices that transform these vectors.

Recover final 2D coordinates by dividing by "extra" (third) coordinate

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow \begin{bmatrix} x/w \\ y/w \end{bmatrix}$$

(More on this later...)

Example: Scale & Rotation in 2D-H Coords

For transformations that are already linear, not much changes:

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R}_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Notice that the last row/column doesn't do anything interesting. E.g., for scaling:

$$\mathbf{S_s} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_x x \\ \mathbf{S}_y y \\ 1 \end{bmatrix}$$

Now we divide by the 3rd coordinate to get our final 2D coordinates (not too exciting!)

$$\begin{bmatrix} \mathbf{S}_x x \\ \mathbf{S}_y y \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{S}_x x/1 \\ \mathbf{S}_y y/1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_x x \\ \mathbf{S}_y y \end{bmatrix}$$

(Will get more interesting when we talk about *perspective*...)

Translation in 2D homogeneous coordinates

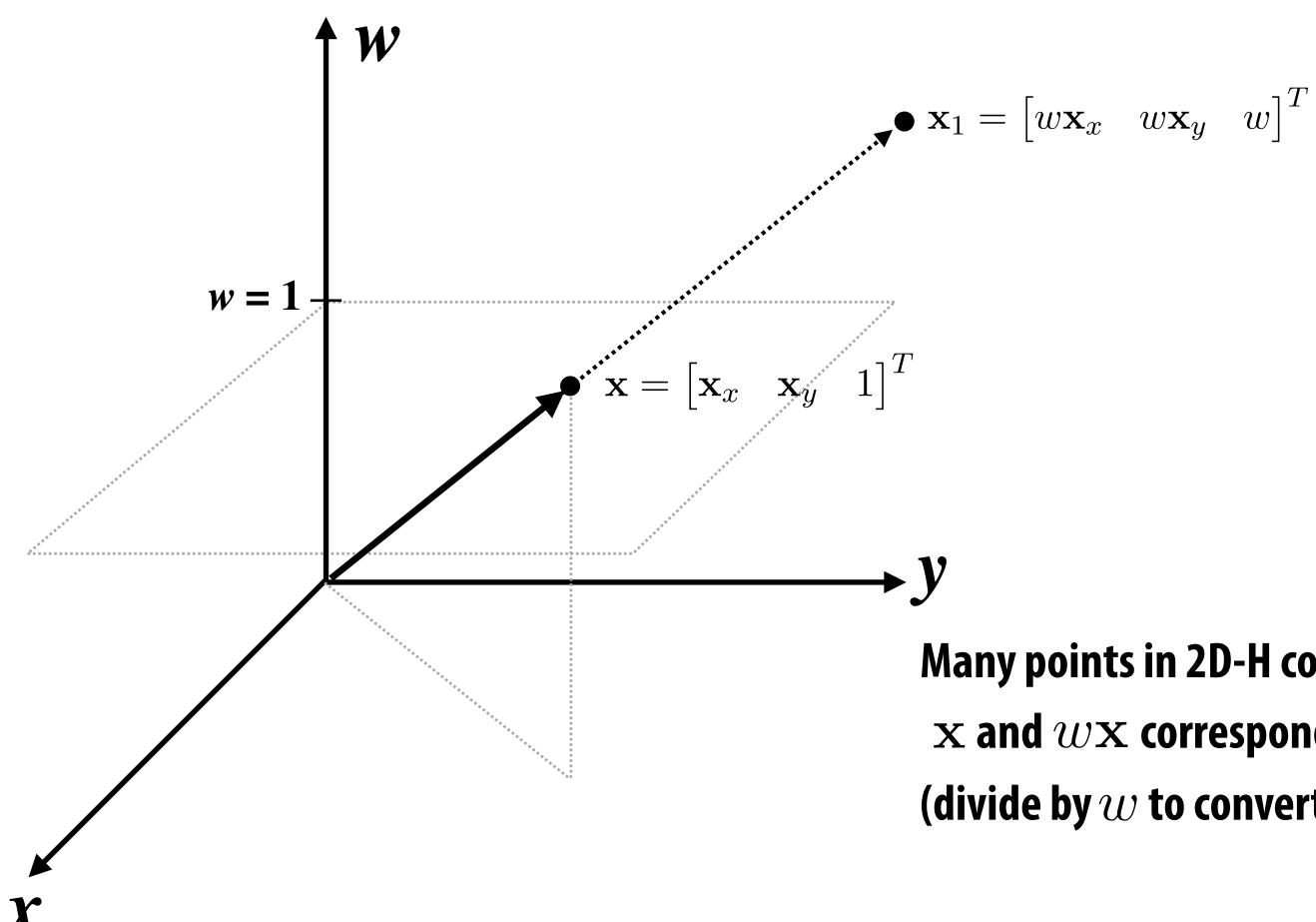
Translation expressed as 3x3 matrix multiplication:

$$\mathbf{T_b} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T_bx} = egin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} \mathbf{x}_x \\ \mathbf{x}_y \\ 1 \end{bmatrix} = egin{bmatrix} \mathbf{x}_x + \mathbf{b}_x \\ \mathbf{x}_y + \mathbf{b}_y \\ 1 \end{bmatrix}$$
 (remember: linear combination of columns!)

Cool: homogeneous coordinates let us encode translations as linear transformations!

Homogeneous coordinates: some intuition

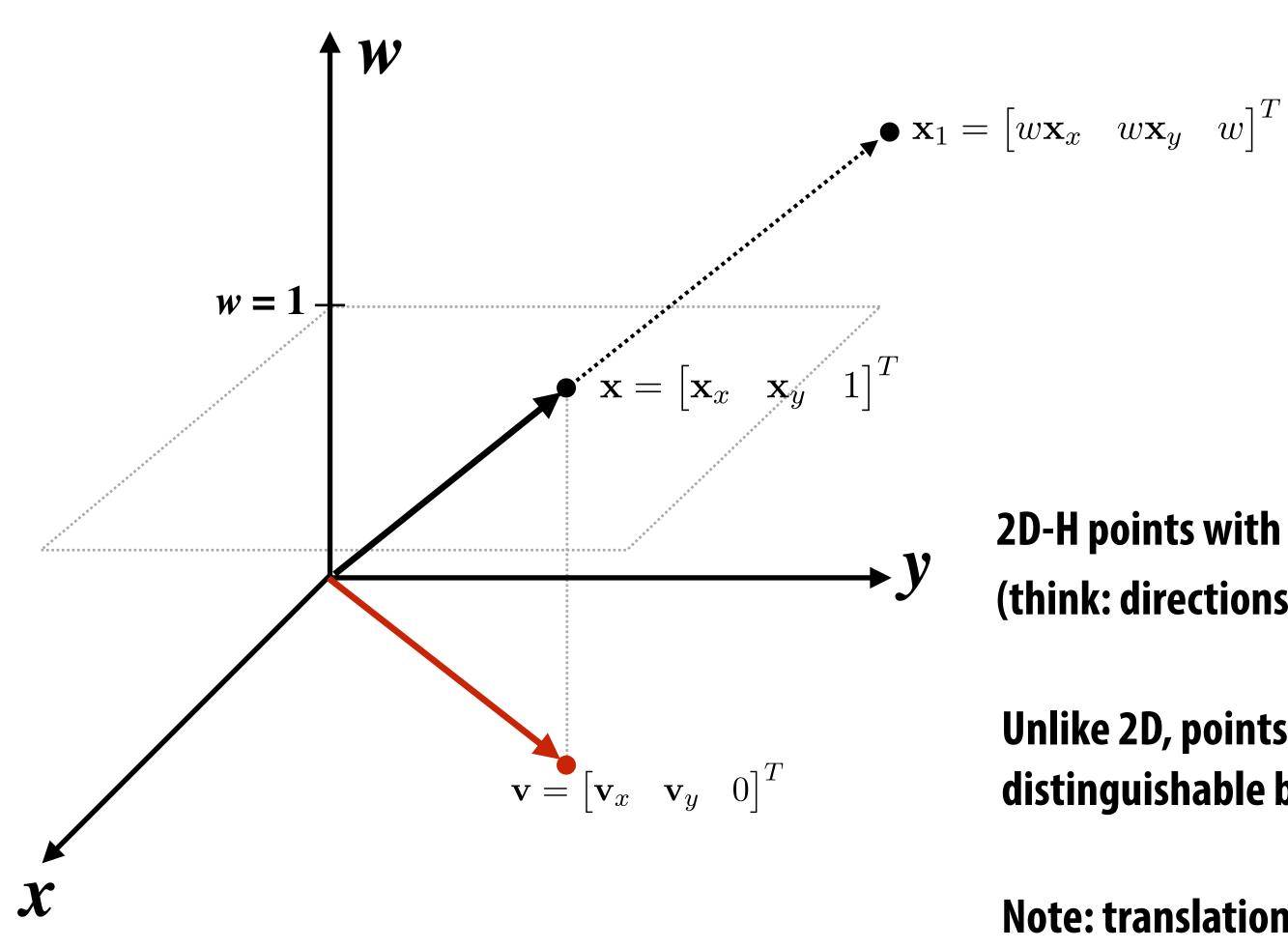


Many points in 2D-H correspond to same point in 2D \mathbf{x} and $w\mathbf{x}$ correspond to the same 2D point (divide by w to convert 2D-H back to 2D)

Translation is a shear in x and y in 2D-H space

$$\mathbf{T_bx} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} w\mathbf{x}_x \\ w\mathbf{x}_y \\ w \end{bmatrix} = \begin{bmatrix} w\mathbf{x}_x + w\mathbf{b}_x \\ w\mathbf{x}_y + w\mathbf{b}_y \\ w \end{bmatrix}$$

Homogeneous coordinates: points vs. vectors



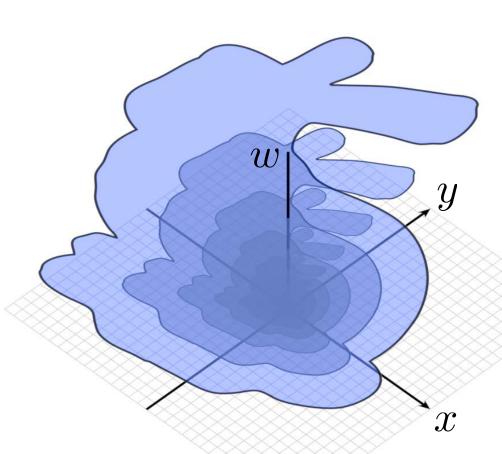
2D-H points with w=0 represent 2D vectors (think: directions are points at infinity)

Unlike 2D, points and directions are distinguishable by their representation in 2D-H

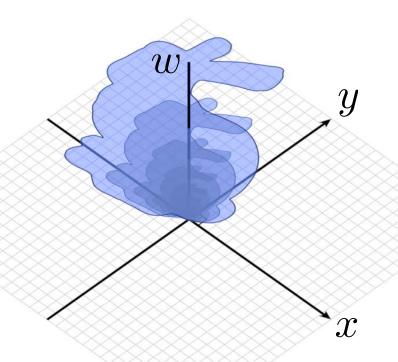
Note: translation does not modify directions:

$$\mathbf{T_b}\mathbf{v} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ 0 \end{bmatrix}$$

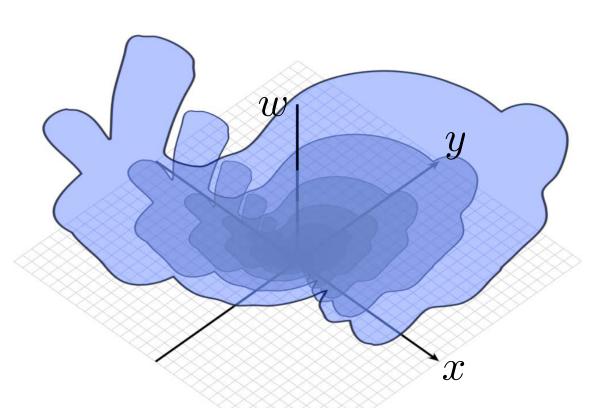
Visualizing 2D transformations in 2D-H



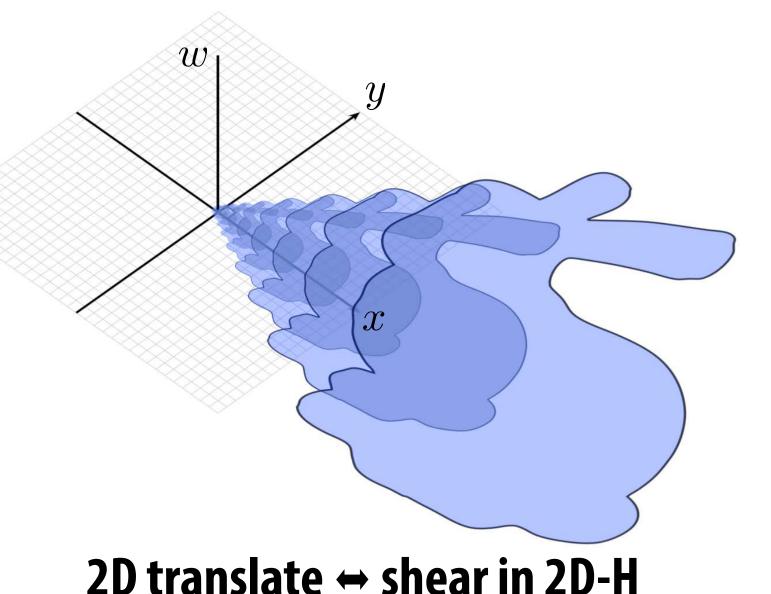
Original shape in 2D can be viewed as many copies, uniformly scaled by w.



2D scale → scale x and y; preserve w (Question: what happens to 2D shape if you scale x, y, and w uniformly?)



2D rotation → rotate around w



(LINEAR!)

CMU 15-462/662

Moving to 3D (and 3D-H)

Represent 3D transformations as 3x3 matrices and 3D-H transformations as 4x4 matrices

Scale:

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & \mathbf{S}_z \end{bmatrix} \quad \mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 & 0 \\ 0 & \mathbf{S}_y & 0 & 0 \\ 0 & 0 & \mathbf{S}_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shear (in x, based on y,z position):

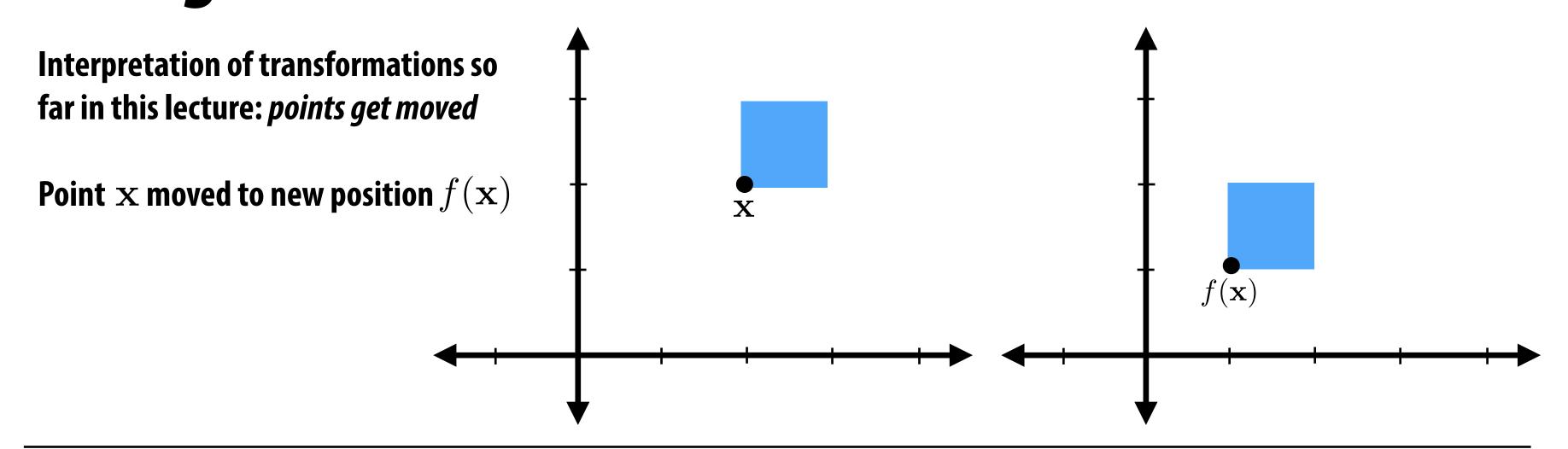
$$\mathbf{H}_{x,\mathbf{d}} = \begin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{H}_{x,\mathbf{d}} = \begin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

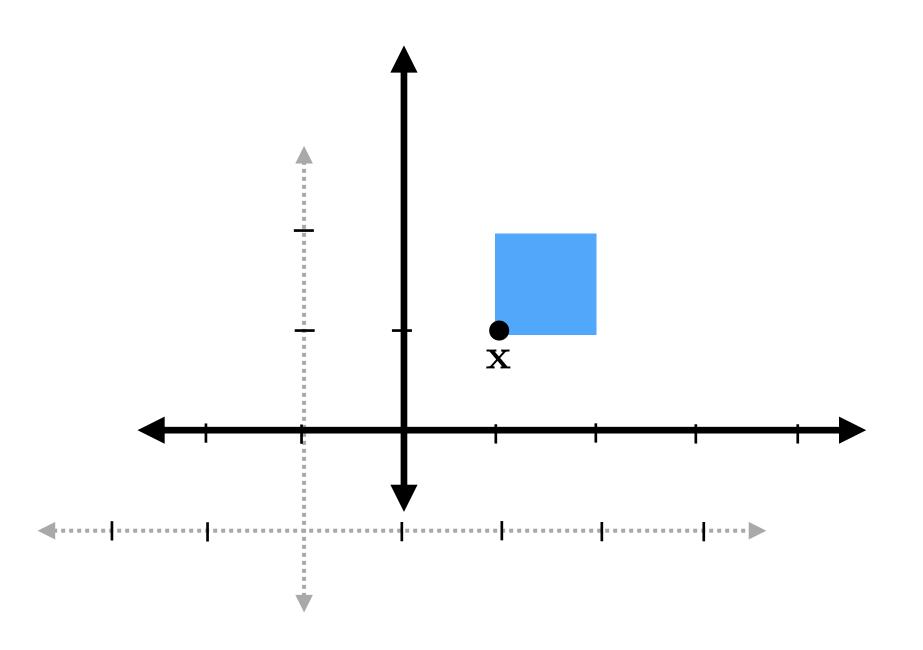
Translate:

$$\mathbf{T_b} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{b}_x \\ 0 & 1 & 0 & \mathbf{b}_y \\ 0 & 0 & 1 & \mathbf{b}_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Much more about rotations in next lecture!

Another way to think about transformations: change of coordinates





Alternative interpretation:

Transformations induce of change of coordinates: Representation of \mathbf{x} changes since point is now expressed in new coordinates

Screen transformation *

Convert points in normalized coordinate space to screen pixel coordinates Example:

All points within (-1,1) to (1,1) region are on screen (1,1) in normalized space maps to (W,0) in screen

Normalized coordinate space:

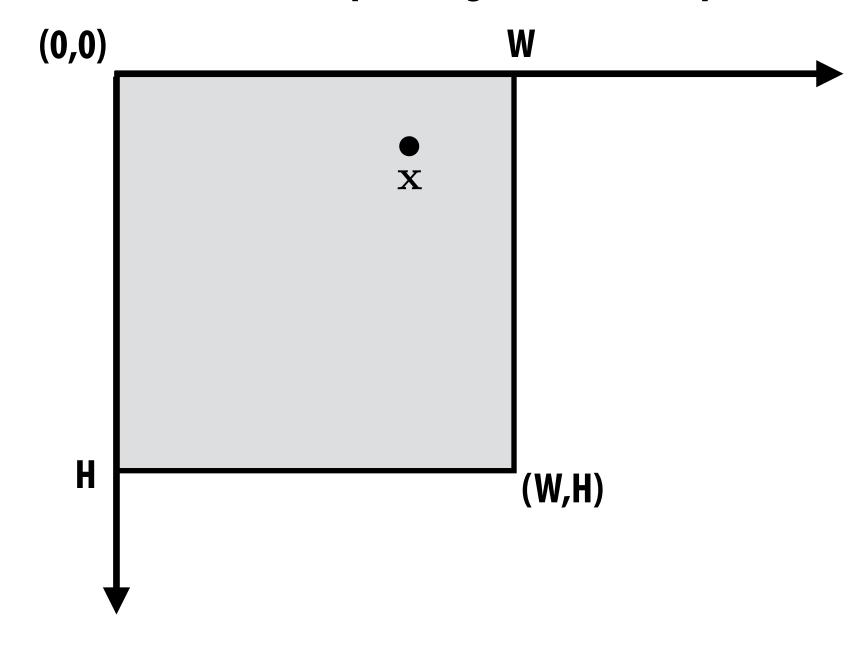


Step 1: reflect about x

Step 2: translate by (1,1)

Step 3: scale by (W/2,H/2)

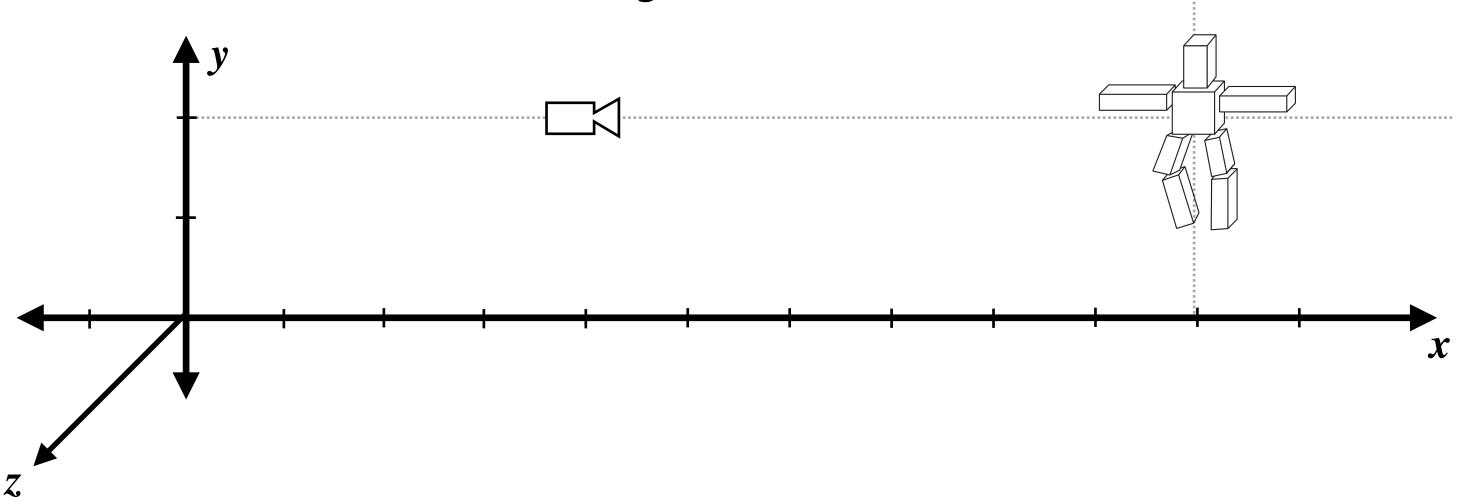
Screen (W x H output image) coordinate space:



^{*} Adopting convention that top-left of screen is (0,0) to match SVG convention in Assignment 1. Many 3D graphics systems like OpenGL place (0,0) in bottom-left. In this case what would the transform be?

Example: simple camera transform

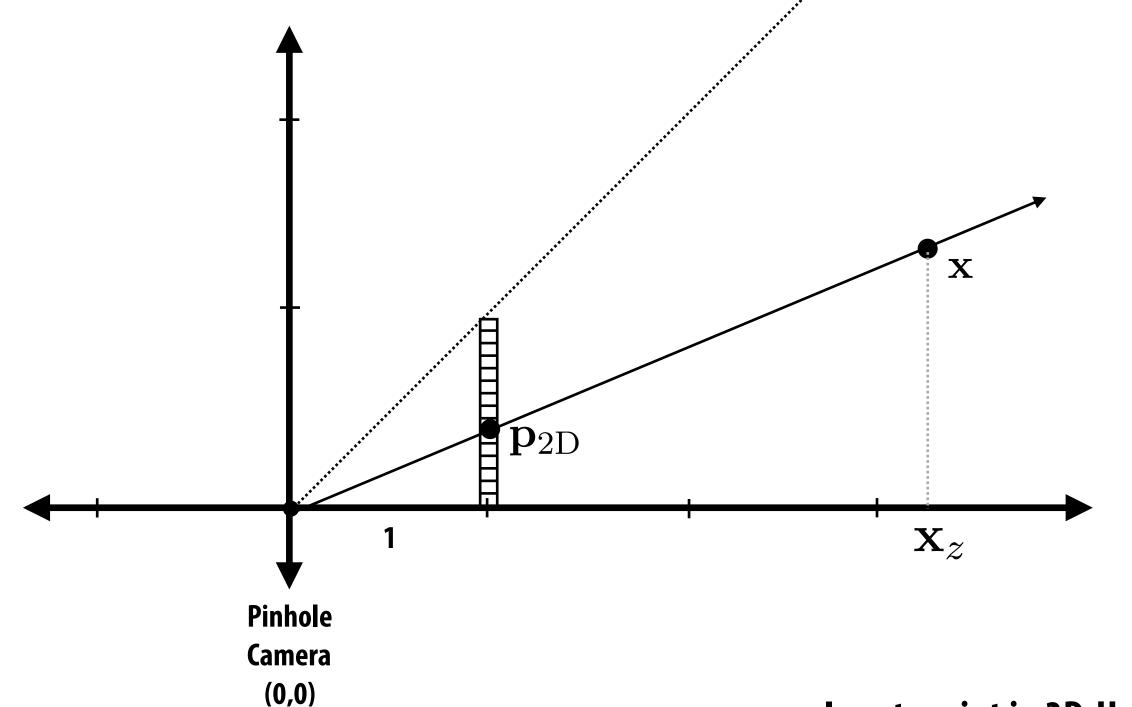
- Consider object in world at (10, 2, 0)
- Consider camera at (4, 2, 0), looking down x axis



- Translating object vertex positions by (-4, -2, 0) yields position relative to camera.
- Rotation about y by $-\pi/2$ gives position of object in coordinate system where camera's view direction is aligned with the z axis *

^{*} The convenience of such a coordinate system will become clear on the next slide!

Basic perspective projection



$$\mathbf{p}_{\mathrm{2D}} = \begin{bmatrix} \mathbf{x}_x/\mathbf{x}_z & \mathbf{x}_y/\mathbf{x}_z \end{bmatrix}^T$$

 $\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Input: point in 3D-H

After applying **P**: point in 3D-H

After homogeneous divide:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_x & \mathbf{x}_y & \mathbf{x}_z & 1 \end{bmatrix}$$

$$\mathbf{P}\mathbf{x} = egin{bmatrix} \mathbf{x}_x & \mathbf{x}_y & \mathbf{x}_z & \mathbf{x}_z \end{bmatrix}^T$$

$$\begin{bmatrix} \mathbf{x}_x/\mathbf{x}_z & \mathbf{x}_y/\mathbf{x}_z & 1 \end{bmatrix}^T$$

(throw out third component)

Assumption:

Pinhole camera at (0,0) looking down z

Much more about perspective in later lecture!

Transformations summary

- Transformations can be interpreted as operations that move points in space
 - e.g., for modeling, animation
- Or as a change of coordinate system
 - e.g., screen and view transforms
- Construct complex transformations as compositions of basic transforms
- Homogeneous coordinate representation allows for expression of non-linear transforms (e.g., affine, perspective projection) as matrix operations (linear transforms) in higher-dimensional space
 - Matrix representation affords simple implementation and efficient composition

