-
Notifications
You must be signed in to change notification settings - Fork 187
/
Copy paths2_test_test.go
251 lines (229 loc) · 8.74 KB
/
s2_test_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package s2
import (
"fmt"
"math"
"testing"
"github.com/golang/geo/s1"
)
func TestKmToAngle(t *testing.T) {
tests := []struct {
have float64
want s1.Angle
}{
{0.0, 0.0},
{1.0, 0.00015696098420815537 * s1.Radian},
{earthRadiusKm, 1.0 * s1.Radian},
{-1.0, -0.00015696098420815537 * s1.Radian},
{-10000.0, -1.5696098420815536300 * s1.Radian},
{1e9, 156960.984208155363007 * s1.Radian},
}
for _, test := range tests {
if got := kmToAngle(test.have); !float64Eq(float64(got), float64(test.want)) {
t.Errorf("kmToAngle(%f) = %0.20f, want %0.20f", test.have, got, test.want)
}
}
}
func numVerticesAtLevel(level int) int {
// Sanity / overflow check
if level < 0 || level > 14 {
panic(fmt.Sprintf("level %d out of range for fractal tests", level))
}
return 3 * (1 << (2 * uint(level))) // 3*(4**level)
}
func TestTestingFractal(t *testing.T) {
tests := []struct {
label string
minLevel int
maxLevel int
dimension float64
}{
{
label: "TriangleFractal",
minLevel: 7,
maxLevel: 7,
dimension: 1.0,
},
{
label: "TriangleMultiFractal",
minLevel: 2,
maxLevel: 6,
dimension: 1.0,
},
{
label: "SpaceFillingFractal",
minLevel: 4,
maxLevel: 4,
dimension: 1.999,
},
{
label: "KochCurveFractal",
minLevel: 7,
maxLevel: 7,
dimension: math.Log(4) / math.Log(3),
},
{
label: "KochCurveMultiFractal",
minLevel: 4,
maxLevel: 8,
dimension: math.Log(4) / math.Log(3),
},
{
label: "CesaroFractal",
minLevel: 7,
maxLevel: 7,
dimension: 1.8,
},
{
label: "CesaroMultiFractal",
minLevel: 3,
maxLevel: 6,
dimension: 1.8,
},
}
// Constructs a fractal and then computes various metrics (number of
// vertices, total length, minimum and maximum radius) and verifies that
// they are within expected tolerances. Essentially this
// directly verifies that the shape constructed *is* a fractal, i.e. the
// total length of the curve increases exponentially with the level, while
// the area bounded by the fractal is more or less constant.
// The radius needs to be fairly small to avoid spherical distortions.
const nominalRadius = 0.001 // radians, or about 6km
const distortionError = 1e-5
for _, test := range tests {
f := newFractal()
f.minLevel = test.minLevel
f.maxLevel = test.maxLevel
f.dimension = test.dimension
frame := randomFrame()
loop := f.makeLoop(frame, nominalRadius)
if err := loop.Validate(); err != nil {
t.Errorf("%s. fractal loop was not valid: %v", test.label, err)
}
// If minLevel and maxLevel are not equal, then the number of vertices and
// the total length of the curve are subject to random variation. Here we
// compute an approximation of the standard deviation relative to the mean,
// noting that most of the variance is due to the random choices about
// whether to stop subdividing at minLevel or not. (The random choices
// at higher levels contribute progressively less and less to the variance.)
// The relativeError below corresponds to *one* standard deviation of
// error; it can be increased to a higher multiple if necessary.
//
// Details: Let n=3*(4**minLevel) and k=(maxLevel-minLevel+1). Each of
// the n edges at minLevel stops subdividing at that level with
// probability (1/k). This gives a binomial distribution with mean u=(n/k)
// and standard deviation s=sqrt((n/k)(1-1/k)). The relative error (s/u)
// can be simplified to sqrt((k-1)/n).
numLevels := test.maxLevel - test.minLevel + 1
minVertices := numVerticesAtLevel(test.minLevel)
relativeError := 2.0 * math.Sqrt((float64(numLevels)-1.0)/float64(minVertices))
// expansionFactor is the total fractal length at level n+1 divided by
// the total fractal length at level n.
expansionFactor := math.Pow(4, 1-1/test.dimension)
expectedNumVertices := 0.0
expectedLengthSum := 0.0
// trianglePerim is the perimeter of the original equilateral triangle
// before any subdivision occurs.
trianglePerim := 3 * sqrt3 * math.Tan(nominalRadius)
minLengthSum := trianglePerim * math.Pow(expansionFactor, float64(test.minLevel))
for level := test.minLevel; level <= test.maxLevel; level++ {
expectedNumVertices += float64(numVerticesAtLevel(level))
expectedLengthSum += math.Pow(expansionFactor, float64(level))
}
expectedNumVertices /= float64(numLevels)
expectedLengthSum *= trianglePerim / float64(numLevels)
if got, want := loop.NumVertices(), minVertices; got < want {
t.Errorf("%s. number of vertices = %d, should be more than %d", test.label, got, want)
}
if got, want := loop.NumVertices(), numVerticesAtLevel(test.maxLevel); got > want {
t.Errorf("%s. number of vertices = %d, should be less than %d", test.label, got, want)
}
if got, want := expectedNumVertices, float64(loop.NumVertices()); !float64Near(got, want, relativeError*(expectedNumVertices-float64(minVertices))) {
t.Errorf("%s. expected number of vertices %v should be close to %v, difference: %v", test.label, got, want, (got - want))
}
center := frame.col(2)
minRadius := 2 * math.Pi
maxRadius := 0.0
lengthSum := s1.Angle(0.0)
for i := 0; i < loop.NumVertices(); i++ {
// Measure the radius of the fractal in the tangent plane at center.
r := math.Tan(center.Angle(loop.Vertex(i).Vector).Radians())
minRadius = math.Min(minRadius, r)
maxRadius = math.Max(maxRadius, r)
lengthSum += loop.Vertex(i).Angle(loop.Vertex(i + 1).Vector)
}
// vertexError is an approximate bound on the error when computing vertex
// positions of the fractal (due to fromFrame, trig calculations, etc).
const vertexError = 1e-14
// Although minRadiusFactor() is only a lower bound in general, it happens
// to be exact (to within numerical errors) unless the dimension is in the
// range (1.0, 1.09).
if test.dimension == 1.0 || test.dimension >= 1.09 {
// Expect the min radius to match very closely.
if got, want := f.minRadiusFactor()*nominalRadius, minRadius; !float64Near(got, want, vertexError) {
t.Errorf("%s. minRadiusFactor()*nominalRadius = %v, want ~%v", test.label, got, want)
}
} else {
// Expect the min radius to satisfy the lower bound.
if got, want := f.minRadiusFactor()*nominalRadius-vertexError, minRadius; got < want {
t.Errorf("%s. minRadiusFactor()*nominalRadius = %v, want >= %v", test.label, got, want)
}
}
// maxRadiusFactor() is exact (modulo errors) for all dimensions.
if got, want := f.maxRadiusFactor()*nominalRadius, maxRadius; !float64Near(got, want, vertexError) {
t.Errorf("%s. maxRadiusFactor()*nominalRadius = %v, want >= %v", test.label, got, want)
}
if got, want := lengthSum.Radians(), expectedLengthSum; !float64Near(got, want, relativeError*(expectedLengthSum-minLengthSum)+distortionError*lengthSum.Radians()) {
t.Errorf("%s. expected perimieter length = %v, want ~%v", test.label, got, want)
}
}
}
// TestChordAngleMaxPointError is located in here to work around circular
// import issues. This s1 test needs s2.Points which won't work with our
// packages. The test is in this file since while it uses Points, it's not
// part of Points methods so it shouldn't be in s2point_test.
func TestChordAngleMaxPointError(t *testing.T) {
// Check that the error bound returned by s1.MaxPointError() is
// large enough.
const iters = 100000
for iter := 0; iter < iters; iter++ {
x := randomPoint()
y := randomPoint()
if oneIn(10) {
// Occasionally test a point pair that is nearly identical or antipodal.
r := s1.Angle(1e-15 * randomFloat64())
y = InterpolateAtDistance(r, x, y)
if oneIn(2) {
y = Point{y.Mul(-1)}
}
}
dist := ChordAngleBetweenPoints(x, y)
err := dist.MaxPointError()
if got, want := CompareDistance(x, y, dist.Expanded(err)), 0; got > 0 {
t.Errorf("CompareDistance(%v, %v, %v.Expanded(%v)) = %v, want <= %v", x, y, dist, err, got, want)
}
if got, want := CompareDistance(x, y, dist.Expanded(-err)), 0; got < 0 {
t.Errorf("CompareDistance(%v, %v, %v.Expanded(-%v)) = %v, want >= %v", x, y, dist, err, got, want)
}
}
}
// TODO(rsned): Remaining tests
// TriangleFractal
// TriangleMultiFractal
// SpaceFillingFractal
// KochCurveFractal
// KochCurveMultiFractal
// CesaroFractal
// CesaroMultiFractal