-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlongest-increasing-subsequence.html
37 lines (27 loc) · 1.18 KB
/
longest-increasing-subsequence.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
<p>Given an integer array <code>nums</code>, return the length of the longest strictly increasing subsequence.</p>
<p>A <strong>subsequence</strong> is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, <code>[3,6,2,7]</code> is a subsequence of the array <code>[0,3,1,6,2,2,7]</code>.</p>
<p> </p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [10,9,2,5,3,7,101,18]
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,1,0,3,2,3]
<strong>Output:</strong> 4
</pre>
<p><strong>Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [7,7,7,7,7,7,7]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2500</code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><b>Follow up:</b> Can you come up with an algorithm that runs in <code>O(n log(n))</code> time complexity?</p>