forked from scikit-learn/scikit-learn.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_generators.html
540 lines (460 loc) · 29.6 KB
/
sample_generators.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>7.3. Generated datasets — scikit-learn 1.0.dev0 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/datasets/sample_generators.html" />
<link rel="shortcut icon" href="../_static/favicon.ico"/>
<link rel="stylesheet" href="../_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/gallery.css" type="text/css" />
<link rel="stylesheet" href="../_static/gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../_static/gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../_static/gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="../index.html">
<img
class="sk-brand-img"
src="../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../modules/classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../auto_examples/index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../getting_started.html">Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../tutorial/index.html">Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../whats_new/v1.0.html">What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../glossary.html">Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../developers/index.html">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../faq.html">FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../support.html">Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../related_projects.html">Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../roadmap.html">Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../about.html">About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn">GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html">Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="../getting_started.html">Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../tutorial/index.html">Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../whats_new/v1.0.html">What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../glossary.html">Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../developers/index.html">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../faq.html">FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../support.html">Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../related_projects.html">Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../roadmap.html">Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../about.html">About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn">GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html">Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="../search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="sk-sidebar-toc-logo">
<a href="../index.html">
<img
class="sk-brand-img"
src="../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
</div>
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="real_world.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="7.2. Real world datasets">Prev</a><a href="../datasets.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="7. Dataset loading utilities">Up</a>
<a href="loading_other_datasets.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="7.4. Loading other datasets">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.0.dev0</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li>
<a href="../user_guide.html" class="sk-toc-active">User Guide</a>
</li>
<ul>
<li>
<a href="../supervised_learning.html" class="">1. Supervised learning</a>
</li>
<li>
<a href="../unsupervised_learning.html" class="">2. Unsupervised learning</a>
</li>
<li>
<a href="../model_selection.html" class="">3. Model selection and evaluation</a>
</li>
<li>
<a href="../inspection.html" class="">4. Inspection</a>
</li>
<li>
<a href="../visualizations.html" class="">5. Visualizations</a>
</li>
<li>
<a href="../data_transforms.html" class="">6. Dataset transformations</a>
</li>
<li>
<a href="../datasets.html" class="sk-toc-active">7. Dataset loading utilities</a>
<ul>
<li class="sk-toctree-l3">
<a href="toy_dataset.html">7.1. Toy datasets</a>
</li>
<li class="sk-toctree-l3">
<a href="real_world.html">7.2. Real world datasets</a>
</li>
<li class="sk-toctree-l3">
<a href="">7.3. Generated datasets</a>
</li>
<li class="sk-toctree-l3">
<a href="loading_other_datasets.html">7.4. Loading other datasets</a>
</li>
</ul>
</li>
<li>
<a href="../computing.html" class="">8. Computing with scikit-learn</a>
</li>
<li>
<a href="../modules/model_persistence.html" class="">9. Model persistence</a>
</li>
<li>
<a href="../common_pitfalls.html" class="">10. Common pitfalls and recommended practices</a>
</li>
</ul>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<div class="section" id="generated-datasets">
<span id="sample-generators"></span><h1><span class="section-number">7.3. </span>Generated datasets<a class="headerlink" href="#generated-datasets" title="Permalink to this headline">¶</a></h1>
<p>In addition, scikit-learn includes various random sample generators that
can be used to build artificial datasets of controlled size and complexity.</p>
<div class="section" id="generators-for-classification-and-clustering">
<h2><span class="section-number">7.3.1. </span>Generators for classification and clustering<a class="headerlink" href="#generators-for-classification-and-clustering" title="Permalink to this headline">¶</a></h2>
<p>These generators produce a matrix of features and corresponding discrete
targets.</p>
<div class="section" id="single-label">
<h3><span class="section-number">7.3.1.1. </span>Single label<a class="headerlink" href="#single-label" title="Permalink to this headline">¶</a></h3>
<p>Both <a class="reference internal" href="../modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs" title="sklearn.datasets.make_blobs"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_blobs</span></code></a> and <a class="reference internal" href="../modules/generated/sklearn.datasets.make_classification.html#sklearn.datasets.make_classification" title="sklearn.datasets.make_classification"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_classification</span></code></a> create multiclass
datasets by allocating each class one or more normally-distributed clusters of
points. <a class="reference internal" href="../modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs" title="sklearn.datasets.make_blobs"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_blobs</span></code></a> provides greater control regarding the centers and
standard deviations of each cluster, and is used to demonstrate clustering.
<a class="reference internal" href="../modules/generated/sklearn.datasets.make_classification.html#sklearn.datasets.make_classification" title="sklearn.datasets.make_classification"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_classification</span></code></a> specialises in introducing noise by way of:
correlated, redundant and uninformative features; multiple Gaussian clusters
per class; and linear transformations of the feature space.</p>
<p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_gaussian_quantiles.html#sklearn.datasets.make_gaussian_quantiles" title="sklearn.datasets.make_gaussian_quantiles"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_gaussian_quantiles</span></code></a> divides a single Gaussian cluster into
near-equal-size classes separated by concentric hyperspheres.
<a class="reference internal" href="../modules/generated/sklearn.datasets.make_hastie_10_2.html#sklearn.datasets.make_hastie_10_2" title="sklearn.datasets.make_hastie_10_2"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_hastie_10_2</span></code></a> generates a similar binary, 10-dimensional problem.</p>
<a class="reference external image-reference" href="../auto_examples/datasets/plot_random_dataset.html"><img alt="../_images/sphx_glr_plot_random_dataset_0011.png" class="align-center" src="../_images/sphx_glr_plot_random_dataset_0011.png" style="width: 400.0px; height: 400.0px;" /></a>
<p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_circles.html#sklearn.datasets.make_circles" title="sklearn.datasets.make_circles"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_circles</span></code></a> and <a class="reference internal" href="../modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons" title="sklearn.datasets.make_moons"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_moons</span></code></a> generate 2d binary classification
datasets that are challenging to certain algorithms (e.g. centroid-based
clustering or linear classification), including optional Gaussian noise.
They are useful for visualisation. <a class="reference internal" href="../modules/generated/sklearn.datasets.make_circles.html#sklearn.datasets.make_circles" title="sklearn.datasets.make_circles"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_circles</span></code></a> produces Gaussian data
with a spherical decision boundary for binary classification, while
<a class="reference internal" href="../modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons" title="sklearn.datasets.make_moons"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_moons</span></code></a> produces two interleaving half circles.</p>
</div>
<div class="section" id="multilabel">
<h3><span class="section-number">7.3.1.2. </span>Multilabel<a class="headerlink" href="#multilabel" title="Permalink to this headline">¶</a></h3>
<p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_multilabel_classification.html#sklearn.datasets.make_multilabel_classification" title="sklearn.datasets.make_multilabel_classification"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_multilabel_classification</span></code></a> generates random samples with multiple
labels, reflecting a bag of words drawn from a mixture of topics. The number of
topics for each document is drawn from a Poisson distribution, and the topics
themselves are drawn from a fixed random distribution. Similarly, the number of
words is drawn from Poisson, with words drawn from a multinomial, where each
topic defines a probability distribution over words. Simplifications with
respect to true bag-of-words mixtures include:</p>
<ul class="simple">
<li><p>Per-topic word distributions are independently drawn, where in reality all
would be affected by a sparse base distribution, and would be correlated.</p></li>
<li><p>For a document generated from multiple topics, all topics are weighted
equally in generating its bag of words.</p></li>
<li><p>Documents without labels words at random, rather than from a base
distribution.</p></li>
</ul>
<a class="reference external image-reference" href="../auto_examples/datasets/plot_random_multilabel_dataset.html"><img alt="../_images/sphx_glr_plot_random_multilabel_dataset_0011.png" class="align-center" src="../_images/sphx_glr_plot_random_multilabel_dataset_0011.png" style="width: 400.0px; height: 200.0px;" /></a>
</div>
<div class="section" id="biclustering">
<h3><span class="section-number">7.3.1.3. </span>Biclustering<a class="headerlink" href="#biclustering" title="Permalink to this headline">¶</a></h3>
<table class="longtable docutils align-default">
<colgroup>
<col style="width: 10%" />
<col style="width: 90%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_biclusters.html#sklearn.datasets.make_biclusters" title="sklearn.datasets.make_biclusters"><code class="xref py py-obj docutils literal notranslate"><span class="pre">make_biclusters</span></code></a>(shape, n_clusters, *[, …])</p></td>
<td><p>Generate an array with constant block diagonal structure for biclustering.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_checkerboard.html#sklearn.datasets.make_checkerboard" title="sklearn.datasets.make_checkerboard"><code class="xref py py-obj docutils literal notranslate"><span class="pre">make_checkerboard</span></code></a>(shape, n_clusters, *[, …])</p></td>
<td><p>Generate an array with block checkerboard structure for biclustering.</p></td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="generators-for-regression">
<h2><span class="section-number">7.3.2. </span>Generators for regression<a class="headerlink" href="#generators-for-regression" title="Permalink to this headline">¶</a></h2>
<p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_regression.html#sklearn.datasets.make_regression" title="sklearn.datasets.make_regression"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_regression</span></code></a> produces regression targets as an optionally-sparse
random linear combination of random features, with noise. Its informative
features may be uncorrelated, or low rank (few features account for most of the
variance).</p>
<p>Other regression generators generate functions deterministically from
randomized features. <a class="reference internal" href="../modules/generated/sklearn.datasets.make_sparse_uncorrelated.html#sklearn.datasets.make_sparse_uncorrelated" title="sklearn.datasets.make_sparse_uncorrelated"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_sparse_uncorrelated</span></code></a> produces a target as a
linear combination of four features with fixed coefficients.
Others encode explicitly non-linear relations:
<a class="reference internal" href="../modules/generated/sklearn.datasets.make_friedman1.html#sklearn.datasets.make_friedman1" title="sklearn.datasets.make_friedman1"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_friedman1</span></code></a> is related by polynomial and sine transforms;
<a class="reference internal" href="../modules/generated/sklearn.datasets.make_friedman2.html#sklearn.datasets.make_friedman2" title="sklearn.datasets.make_friedman2"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_friedman2</span></code></a> includes feature multiplication and reciprocation; and
<a class="reference internal" href="../modules/generated/sklearn.datasets.make_friedman3.html#sklearn.datasets.make_friedman3" title="sklearn.datasets.make_friedman3"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_friedman3</span></code></a> is similar with an arctan transformation on the target.</p>
</div>
<div class="section" id="generators-for-manifold-learning">
<h2><span class="section-number">7.3.3. </span>Generators for manifold learning<a class="headerlink" href="#generators-for-manifold-learning" title="Permalink to this headline">¶</a></h2>
<table class="longtable docutils align-default">
<colgroup>
<col style="width: 10%" />
<col style="width: 90%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_s_curve.html#sklearn.datasets.make_s_curve" title="sklearn.datasets.make_s_curve"><code class="xref py py-obj docutils literal notranslate"><span class="pre">make_s_curve</span></code></a>([n_samples, noise, random_state])</p></td>
<td><p>Generate an S curve dataset.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_swiss_roll.html#sklearn.datasets.make_swiss_roll" title="sklearn.datasets.make_swiss_roll"><code class="xref py py-obj docutils literal notranslate"><span class="pre">make_swiss_roll</span></code></a>([n_samples, noise, random_state])</p></td>
<td><p>Generate a swiss roll dataset.</p></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="generators-for-decomposition">
<h2><span class="section-number">7.3.4. </span>Generators for decomposition<a class="headerlink" href="#generators-for-decomposition" title="Permalink to this headline">¶</a></h2>
<table class="longtable docutils align-default">
<colgroup>
<col style="width: 10%" />
<col style="width: 90%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_low_rank_matrix.html#sklearn.datasets.make_low_rank_matrix" title="sklearn.datasets.make_low_rank_matrix"><code class="xref py py-obj docutils literal notranslate"><span class="pre">make_low_rank_matrix</span></code></a>([n_samples, …])</p></td>
<td><p>Generate a mostly low rank matrix with bell-shaped singular values.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_sparse_coded_signal.html#sklearn.datasets.make_sparse_coded_signal" title="sklearn.datasets.make_sparse_coded_signal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">make_sparse_coded_signal</span></code></a>(n_samples, *, …)</p></td>
<td><p>Generate a signal as a sparse combination of dictionary elements.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_spd_matrix.html#sklearn.datasets.make_spd_matrix" title="sklearn.datasets.make_spd_matrix"><code class="xref py py-obj docutils literal notranslate"><span class="pre">make_spd_matrix</span></code></a>(n_dim, *[, random_state])</p></td>
<td><p>Generate a random symmetric, positive-definite matrix.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_sparse_spd_matrix.html#sklearn.datasets.make_sparse_spd_matrix" title="sklearn.datasets.make_sparse_spd_matrix"><code class="xref py py-obj docutils literal notranslate"><span class="pre">make_sparse_spd_matrix</span></code></a>([dim, alpha, …])</p></td>
<td><p>Generate a sparse symmetric definite positive matrix.</p></td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2020, scikit-learn developers (BSD License).
<a href="../_sources/datasets/sample_generators.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="../_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
var hide_text = 'Hide prompts and outputs';
var show_text = 'Show prompts and outputs';
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
if (jthis.find('.gp').length > 0) {
var button = $('<span class="copybutton">>>></span>');
button.attr('title', hide_text);
button.data('hidden', 'false');
jthis.prepend(button);
}
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
// define the behavior of the button when it's clicked
$('.copybutton').click(function(e){
e.preventDefault();
var button = $(this);
if (button.data('hidden') === 'false') {
// hide the code output
button.parent().find('.go, .gp, .gt').hide();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden');
button.css('text-decoration', 'line-through');
button.attr('title', show_text);
button.data('hidden', 'true');
} else {
// show the code output
button.parent().find('.go, .gp, .gt').show();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible');
button.css('text-decoration', 'none');
button.attr('title', hide_text);
button.data('hidden', 'false');
}
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
/*** Hide navbar when scrolling down ***/
// Returns true when headerlink target matches hash in url
(function() {
hashTargetOnTop = function() {
var hash = window.location.hash;
if ( hash.length < 2 ) { return false; }
var target = document.getElementById( hash.slice(1) );
if ( target === null ) { return false; }
var top = target.getBoundingClientRect().top;
return (top < 2) && (top > -2);
};
// Hide navbar on load if hash target is on top
var navBar = document.getElementById("navbar");
var navBarToggler = document.getElementById("sk-navbar-toggler");
var navBarHeightHidden = "-" + navBar.getBoundingClientRect().height + "px";
var $window = $(window);
hideNavBar = function() {
navBar.style.top = navBarHeightHidden;
};
showNavBar = function() {
navBar.style.top = "0";
}
if (hashTargetOnTop()) {
hideNavBar()
}
var prevScrollpos = window.pageYOffset;
hideOnScroll = function(lastScrollTop) {
if (($window.width() < 768) && (navBarToggler.getAttribute("aria-expanded") === 'true')) {
return;
}
if (lastScrollTop > 2 && (prevScrollpos <= lastScrollTop) || hashTargetOnTop()){
hideNavBar()
} else {
showNavBar()
}
prevScrollpos = lastScrollTop;
};
/*** high performance scroll event listener***/
var raf = window.requestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.msRequestAnimationFrame ||
window.oRequestAnimationFrame;
var lastScrollTop = $window.scrollTop();
if (raf) {
loop();
}
function loop() {
var scrollTop = $window.scrollTop();
if (lastScrollTop === scrollTop) {
raf(loop);
return;
} else {
lastScrollTop = scrollTop;
hideOnScroll(lastScrollTop);
raf(loop);
}
}
})();
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>