Skip to content

Latest commit

 

History

History
167 lines (101 loc) · 4.44 KB

plot_confusion_matrix.rst.txt

File metadata and controls

167 lines (101 loc) · 4.44 KB
.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_auto_examples_model_selection_plot_confusion_matrix.py>`
        to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title

Confusion matrix

Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions.

The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified.

Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`.

.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/model_selection/images/sphx_glr_plot_confusion_matrix_001.png
          :alt: Confusion matrix, without normalization
          :class: sphx-glr-multi-img

    *

      .. image:: /auto_examples/model_selection/images/sphx_glr_plot_confusion_matrix_002.png
          :alt: Normalized confusion matrix
          :class: sphx-glr-multi-img

.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none


    Confusion matrix, without normalization
    [[13  0  0]
     [ 0 10  6]
     [ 0  0  9]]
    Normalized confusion matrix
    [[1.   0.   0.  ]
     [0.   0.62 0.38]
     [0.   0.   1.  ]]






print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import ConfusionMatrixDisplay

# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
class_names = iris.target_names

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
classifier = svm.SVC(kernel='linear', C=0.01).fit(X_train, y_train)

np.set_printoptions(precision=2)

# Plot non-normalized confusion matrix
titles_options = [("Confusion matrix, without normalization", None),
                  ("Normalized confusion matrix", 'true')]
for title, normalize in titles_options:
    disp = ConfusionMatrixDisplay.from_estimator(
        classifier, X_test, y_test, display_labels=class_names,
        cmap=plt.cm.Blues, normalize=normalize
    )
    disp.ax_.set_title(title)

    print(title)
    print(disp.confusion_matrix)

plt.show()
.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  0.520 seconds)

.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example


  .. container:: binder-badge

    .. image:: images/binder_badge_logo.svg
      :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/model_selection/plot_confusion_matrix.ipynb
      :alt: Launch binder
      :width: 150 px


  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: plot_confusion_matrix.py <plot_confusion_matrix.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: plot_confusion_matrix.ipynb <plot_confusion_matrix.ipynb>`

.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_