forked from rampatra/Algorithms-and-Data-Structures-in-Java
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCheckForBST.java
127 lines (107 loc) · 3.84 KB
/
CheckForBST.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
package com.rampatra.trees;
import com.rampatra.base.BinaryNode;
import com.rampatra.base.BinarySearchTree;
import com.rampatra.base.BinaryTree;
import java.util.List;
import static java.lang.System.out;
/**
* Created by IntelliJ IDEA.
*
* @author rampatra
* @since 6/26/15
* @time: 7:14 PM
*/
public class CheckForBST {
/**
* Traverse the tree in in-order fashion and insert all nodes
* in a list and check for sort order of list.
* <p/>
* Concept: In-order traversal of a BST is always sorted in ascending
* manner.
*
* @param node
* @param list
* @return
*/
public static <E extends Comparable<E>> boolean isBST(BinaryNode<E> node, List<BinaryNode<E>> list) {
if (node == null) return true;
boolean left = isBST(node.left, list);
// while adding node to list, compare it with previous node in list
if (list.size() > 0 && list.get(list.size() - 1).value.compareTo(node.value) > 0) {
return false;
}
list.add(node);
boolean right = isBST(node.right, list);
return left && right;
}
/**
* Traverse the tree in in-order fashion and keep track of its in-order
* predecessor value. If at any point current node's value is found greater
* than its predecessor value then return {@code false}.
* <p/>
* Concept: In-order traversal of a BST is always sorted in ascending
* manner.
*
* @param node
* @param prev
* @return
*/
public static <E extends Comparable<E>> boolean isBST(BinaryNode<E> node, BinaryNode<E> prev) {
if (node == null) return true;
boolean left = isBST(node.left, prev);
// compare current node with previous node
if (prev.value != null && prev.value.compareTo(node.value) > 0) {
return false;
}
prev.value = node.value;
boolean right = isBST(node.right, prev);
return left && right;
}
/**
* Simplest way to test whether a binary tree is a BST or not.
* <p/>
* CONCEPT: A node's left sub-tree cannot have a value more than
* the node's value and similarly the node's right sub-tree cannot
* have a value less than the node's value.
*
* @param node
* @param minValue
* @param maxValue
* @param <E>
* @return
*/
public static <E extends Comparable<E>> boolean isBST(BinaryNode<E> node, E minValue, E maxValue) {
if (node == null) return true;
if (node.value.compareTo(minValue) < 0 || node.value.compareTo(maxValue) > 0) {
return false;
}
return isBST(node.left, minValue, node.value) && isBST(node.right, node.value, maxValue);
}
public static void main(String a[]) {
// in-order approach
BinarySearchTree<Integer> binarySearchTree = new BinarySearchTree<>();
binarySearchTree.put(6);
binarySearchTree.put(3);
binarySearchTree.put(5);
binarySearchTree.put(7);
binarySearchTree.put(8);
binarySearchTree.put(9);
out.println("1) Is BST: ");
out.println(isBST(binarySearchTree.root, new BinaryNode<>(null))); // should be true
BinaryTree<Integer> binaryTree = new BinaryTree<>();
binaryTree.put(6);
binaryTree.put(4);
binaryTree.put(9);
binaryTree.put(2);
binaryTree.put(8);
binaryTree.put(7);
binaryTree.put(10);
out.println("2) Is BST: ");
out.println(isBST(binaryTree.root, new BinaryNode<>(null))); // should be false
// min max approach
out.println("3) Is BST: ");
out.println(isBST(binarySearchTree.root, Integer.MIN_VALUE, Integer.MAX_VALUE)); // should be true
out.println("4) Is BST: ");
out.println(isBST(binaryTree.root, Integer.MIN_VALUE, Integer.MAX_VALUE)); // should be false
}
}